Powered by Deep Web Technologies
Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

2

Reduce Your Heating Bills with Better Insulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation Reduce Your Heating Bills with Better Insulation October 3, 2008 - 11:09am Addthis John Lippert If you pay your own energy bills, you don't need to be reminded that energy prices are escalating. Energy price projections for this coming winter are not encouraging. According to the Energy Information Administration, residential natural gas prices during the upcoming heating season (October though March) are projected to average $14.93 per Mcf, an increase of about 17% compared to last year's heating season. Residential heating oil prices are projected to average $4.13 per gallon this winter, an increase of about 25%. What if you live in an all-electric house? Many utilities are continuing to pursue retail electricity rate increases in response to power generation

3

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill 15 Ways to Save on Your Water Heating Bill October 26, 2009 - 3:49pm Addthis Allison Casey Senior Communicator, NREL Sometimes it surprises me to see that the most popular pages on the site are the ones about solar water heaters and demand (or tankless) water heaters. But considering that water heating can account for around 12% of a family's utility bill-the biggest chunk after space heating and cooling-it really shouldn't be that surprising that you want to know how to heat your water more efficiently. Obviously, not everyone is in a position to go out and buy a new water heater, but we can all do something to use less water and save on our bills. Whether you're looking for no-cost habit changes, low-cost purchases or

4

High Water Heating Bills on Lockdown at Idaho Jail | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail High Water Heating Bills on Lockdown at Idaho Jail August 19, 2010 - 12:05pm Addthis The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine Lindsay Gsell What does this project do? The new solar thermal hot water system will provide nearly 70 percent of the BTUs required for heating 600,000 gallons of water for the jail annually, saving the county more than $4,000 a year in electricity costs at current rates. In Hailey, Idaho, one 330,000 square foot building - the Blaine County Public Safety Facility - accounts for the county's highest operational

5

A Proposed Method for Improving Residential Heating Energy Estimates Based on Billing Data  

E-Print Network [OSTI]

on these homes by the Bonneville Power Administration (Bonneville) and Pacific Power. Manufactured home billing data, for four years, and 15-min. measured space-heating data for a subset of homes, for two years, were available to us for analysis. Data were... on these homes by the Bonneville Power Administration (Bonneville) and Pacific Power. Manufactured home billing data, for four years, and 15-min. measured space-heating data for a subset of homes, for two years, were available to us for analysis. Data were...

Lee, A. D.; Hadley, D. L.

1988-01-01T23:59:59.000Z

6

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

7

Coal ban could heat up electricity prices  

Science Journals Connector (OSTI)

Coal ban could heat up electricity prices ... The U.S. EPA’s new report on the economic impact of the bill suggests it would cost households $100?140 per year by 2030. ...

Janet Pelley

2009-05-13T23:59:59.000Z

8

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

9

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

10

Space Heating Scenarios for Ontario: a Demonstration of the Statistics Canada Household Model  

Science Journals Connector (OSTI)

ABSTRACT This paper describes the analytical and simulation capabilities of the currently implemented version of the “household model” developed by the Structural Analysis Division, Statistics Canada. The household model, as described in A Design Framework for Long Term Energy – Economic Analysis of Dwelling Related Demand [1], is a simulation framework and related data base of the Canadian housing stocks, residential construction, and end-use energy consumption in the residential sector. The purpose of the model is to provide an analytical tool for evaluating a variety of residential energy conservation strategies including insulation retrofitting and the introduction of new building standards, the possibilities for fuel substitution afforded by equipment retrofitting, and the impact of new technologies for space conditioning with respect to impacts on residential energy requirements and construction materials over time. The simulation results for Ontario that are presented in the paper are for demonstration purposes only and do not constitute a forecast. The choice of Ontario was arbitrary; similar calculations can be performed for other provinces, for Canada as a whole, and for selected subprovincial regions. At the time of preparation of this paper, the population and household formation block at the national level, the housing stock block, and the space heating part of the space conditioning block are implemented. Therefore simulation results are limited to these areas.

R.H.H. Moll; K.H. Dickinson

1982-01-01T23:59:59.000Z

11

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

SciTech Connect (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

12

Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps  

Science Journals Connector (OSTI)

(3) Lighting is another component of this household energy challenge, with millions of households still relying on simple liquid-fueled lamps, but little is known of the associated environmental and health impacts. ... For laboratory tests, CO2 and CO concentrations were measured in real-time with a Li-COR 6252 (Li-COR Biosciences, Lincoln, NE) and Horiba AIA-220 (Horiba, Kyoto, Japan) nondispersive infrared (NDIR) analyzer, respectively. ...

Nicholas L. Lam; Yanju Chen; Cheryl Weyant; Chandra Venkataraman; Pankaj Sadavarte; Michael A. Johnson; Kirk R. Smith; Benjamin T. Brem; Joseph Arineitwe; Justin E. Ellis; Tami C. Bond

2012-11-19T23:59:59.000Z

13

15 Ways to Save on Your Water Heating Bill | Department of Energy  

Energy Savers [EERE]

traps. Learn more about heat traps. Insulate your hot-water storage tank. For electric tanks, be careful not to cover the thermostat, and for natural gas or oil hot water storage...

14

Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings  

Science Journals Connector (OSTI)

Abstract In Stockholm, 472 multi-family buildings with 7554 dwellings has been selected by stratified random sampling. Information about building characteristics and property management was gathered from each property owners. Energy use for space heating was collected from the utility company. Perceived thermal comfort, household and personal factors were assessed by a standardized self-administered questionnaire, answered by one adult person in each dwelling, and a proportion of each factor was calculated for each building. Statistical analysis was performed by multiple linear regression models with control for relevant factors all at the same time in the model. Energy use for heating was significantly related to the building age, type of building and ventilation, length of time since the last heating adjustment, ownership form, proportion of females, and proportion of occupants expressing thermal discomfort. How beneficial energy efficiency measures will be may depend on the relationship between energy use and factors related to the building and the property maintenance together with household and personal factors, as all these factors interact with each other. The results show that greater focus should be on real estate management and maintenance and also a need for research with a gender perspective on energy use for space heating.

Karin Engvall; Erik Lampa; Per Levin; Per Wickman; Egil Öfverholm

2014-01-01T23:59:59.000Z

15

Space-Heating energy used by households in the residential sector.  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 The following 28 tables present detailed data describing the consumption of and expenditures for energy used by households in the residential sector. The data are presented at the national level, Census region and division levels, for climate zones and for the most populous States, as well as for other selected characteristics of households. This section provides assistance in reading the tables by explaining some of the headings for the categories of data. It also explains the use of the row and column factors to compute the relative standard error of the estimates given in the tables. Organization of the Tables The tables cover consumption and expenditures for six topical areas: Major Energy Source

16

Bill Wicker  

Office of Energy Efficiency and Renewable Energy (EERE)

[[{"type":"media","view_mode":"media_large","fid":"745576","attributes":{"alt":"Photo of Bill Wicker","class":"media-image caption","style":"width: 161px; height: 201px; float: right;","typeof":...

17

The impacts of solar water heating in low-income households on the distribution utility’s active, reactive and apparent power demands  

Science Journals Connector (OSTI)

In Brazilian low-income households, water-heating requirements are typically met by electrical showerheads. On average, 73.1% of all residential units in the country are equipped with these resistance-heating devices, with nominal powers ranging from 3 to 8 kW. This situation imposes a considerable burden on the electricity utility companies, since electrical showerheads typically represent the highest load but the lowest utilization (load factor) in a residential consumer unit. Furthermore, typical utilization times coincide with, and contribute to, the electrical power demand peaks in Brazil, rendering these low-cost, high-power electrical devices a high-cost consumer for the electrical system to cater for. For low-income residential consumers, electricity tariffs are subsidized, and utilities must therefore make a considerable investment in infrastructure for a limited return. In this paper we analyze the impacts of solar water heating in low-income households on the distribution utility active, reactive and apparent power demands. We have monitored a statistically representative group of low-income residences equipped with a compact domestic solar water heater in Florianopolis – Brazil for 1 year. We show that in comparison with identical residential units using electrical showerheads, with the adoption of solar water heating the reductions in the active, reactive and apparent power demands on the distribution utility were 49%, 29% and 49% respectively.

Helena F. Naspolini; Ricardo Rüther

2011-01-01T23:59:59.000Z

18

Net Energy Billing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Billing Energy Billing Net Energy Billing < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Maine Program Type Net Metering Provider Maine Public Utilities Commission All of Maine's electric utilities -- investor-owned utilities (IOUs), consumer-owned utilities (COUs), which include municipal utilities and electric cooperatives -- must offer net energy billing for individual customers. Furthermore IOUs are required to offer net metering for shared ownership customers, while COUs may offer net metering to shared ownership

19

Bill Maurer Curriculum Vitae  

E-Print Network [OSTI]

proceedings 2013 `When perhaps the real problem is money itself!' The practical materiality of Bitcoin. Bill

Brody, James P.

20

Assessment of a Solar Assisted Air Source and a Solar Assisted Water Source Heat Pump System in a Canadian Household  

Science Journals Connector (OSTI)

This paper presents an assessment of two solar assisted heat pump systems integrated into an air distribution system in three different 210 m2 single detached residential houses in Montreal, Canada. The housing types considered are a 1980's house, an energy efficient house and a “net zero ready” house. The advanced heat pump systems considered in the analysis focused on coupling solar energy on the evaporator side of an air source and water source heat pumps to improve performance compared to a standard air source heat pump and provide an alternative to a costly ground source heat pump system. The annual energy consumption and utility cost of the solar assisted heat pump systems were compared to a market available air source heat pump, a ground source heat pump system as well as the typical reference housing heating and cooling system. The results predicted that a solar assisted air source heat pump has a comparable capital cost to a ground source heat pump system in all housing types and the highest energy savings for a “net zero ready” house of 34% compared to the base case. The solar assisted water source heat pump did not yield interesting results, as the solar assisted air source heat pump demonstrated improved energy savings and lower capital costs in all housing types considered. Comparing the 20 year life cycle costs of the solar assisted heat pump systems to the base case, only in the 1980's housing archetype did the solar assisted air source heat pump system demonstrate a lower life cycle cost than the base case. A standard air source heat pump yielded the lowest life cycle cost in the 1980's and energy efficient house considered and the reference base case system had the lowest life cycle cost in the net zero ready house considered.

Martin Kegel; Justin Tamasauskas; Roberto Sunye; Antoine Langlois

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Space Heating by Household Income, 3a. Space Heating by Household Income, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Heat Home ..................................... 106.0 18.4 22.7 26.8 38.1 14.6 33.4 3.3 Do Not Heat Home ........................ 1.0 0.3 Q 0.3 0.3 0.3 0.4 23.4 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 35.0 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q 0.2 0.3 22.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 18.4 22.7

22

HOUSE PASSES ENERGY BILLS  

Science Journals Connector (OSTI)

Among the dissimilarities, the House bill would require that, by 2020, utilities generate 15% of their electricity from renewable sources—wind, solar, and hydropower. ...

JEFF JOHNSON

2007-08-13T23:59:59.000Z

23

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Air Conditioning by Household Income, 3a. Air Conditioning by Household Income, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.9 1.5 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 12.3 17.4 21.5 31.7 9.6 23.4 3.9 Air Conditioners Not Used ............ 2.1 0.4 0.7 0.5 0.5 0.4 0.9 20.8 Households Using Electric Air-Conditioning 2 .......................... 80.8 11.9 16.7 21.0 31.2 9.1 22.6 3.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 6.2 10.7 15.2 25.3 4.5 12.4 5.3 Without a Heat Pump .................. 46.2 4.9 9.1 12.1 20.1 3.6 10.4 6.1 With a Heat Pump

24

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

25

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

26

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

27

Average summer electric power bills expected to be lowest in four years  

U.S. Energy Information Administration (EIA) Indexed Site

summer electric power bills expected to be lowest in summer electric power bills expected to be lowest in four years The average U.S. household is expected to pay $395 for electricity this summer. That's down 2.5% from last year and the lowest residential summer power bill in four years, according to the new forecast from the U.S. Energy Information Administration. Lower electricity use to meet cooling demand this summer because of forecasted milder temperatures compared with last summer is expected to more than offset higher electricity prices. The result is lower power bills for most U.S. households during the June, July, and August period. However electricity use and prices vary by region. EIA expects residential power bills will be lower in all areas of the country... except for the West South Central region, which includes

28

Take a Vacation from Your Energy Bill | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Take a Vacation from Your Energy Bill Take a Vacation from Your Energy Bill Take a Vacation from Your Energy Bill November 16, 2011 - 2:48pm Addthis Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs We are always talking about preparing our homes for energy efficiency and taking the right steps to decrease our carbon footprints as homeowners and renters. I realized today that it's already the middle of November, meaning it's time to begin preparing for holiday vacations. I can't think of a better time than now to revisit the ways we can save money on our energy bills this holiday season. In my household, there will be about seven consecutive days in December when no one will be home, not even the dog. Aside from the usual preparations, such as clothing and gift shopping,

29

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Space Heating by South Census Region, 1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home ....................................... 1.0 Q Q Q Q 20.1 No Heating Equipment ................................ 0.5 Q Q Q Q 39.8 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q Q 39.0 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0

30

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Space Heating by Northeast Census Region, 9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No Heating Equipment ................................ 0.5 Q Q Q 39.5 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.7 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 20.1 14.7 5.4 NE Natural Gas .................................................

31

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Space Heating by Midwest Census Region, 0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No Heating Equipment ................................ 0.5 Q Q Q 39.2 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.4 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 24.5 17.1 7.4 NE Natural Gas

32

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by West Census Region, 2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment ................................ 0.5 0.4 Q 0.4 18.1 Have Equipment But Do Not Use It ............................................... 0.4 0.2 Q 0.2 27.5 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 22.6 6.7 15.9 NE Natural Gas .................................................

33

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Broader source: Energy.gov (indexed) [DOE]

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Maximum of two rebates per household Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Geothermal System: $250 Air-Source Heat Pump: $150 Electric Water Heater: $75 - $125 Provider Kosciusko REMC Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters. For each purchase of an

34

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Household Tables Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC2-6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC2-7a. Household Characteristics by Four Most Populated States, Million U.S. Households, 2001 2

35

Fort Collins Utilities - Residential On-Bill Financing Program Program  

Broader source: Energy.gov (indexed) [DOE]

Fort Collins Utilities - Residential On-Bill Financing Program Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Heating & Cooling Heating Heat Pumps Water Heating Solar Maximum Rebate $15,000 Program Info State Colorado Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space heating systems, and

36

Upping Efficiency Standards, Lowering Utility Bills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Upping Efficiency Standards, Lowering Utility Bills Upping Efficiency Standards, Lowering Utility Bills Upping Efficiency Standards, Lowering Utility Bills September 2, 2010 - 4:17pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Using energy-efficient appliances is one of the easiest and most important ways consumers have to save money. Purchasing energy-efficient appliances is one of the easiest and most important ways consumers have to save money, reduce their electricity consumption and help cut down on carbon pollution. We use appliances every day - to cook our food, cool our homes, heat our water and clean our clothes. In fact, for a typical U.S. family, heating and cooling and water heating account for about 50 percent of utility bills. Home appliances and

37

Clean Energy On-Bill Financing (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy On-Bill Financing (Connecticut) Clean Energy On-Bill Financing (Connecticut) Clean Energy On-Bill Financing (Connecticut) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Water Heating Wind Program Info Start Date 4/1/2014 State Connecticut Program Type State Loan Program Provider Clean Energy Finance and Investment Authority By April 1, 2014, the Energy Conservation Management Board and the Clean Energy Finance and Investment Authority (CEFIA) must consult with electric distribution companies and gas companies to develop a residential clean energy on-bill repayment program. The program will be financed by

38

Upping Efficiency Standards, Lowering Utility Bills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Upping Efficiency Standards, Lowering Utility Bills Upping Efficiency Standards, Lowering Utility Bills Upping Efficiency Standards, Lowering Utility Bills September 2, 2010 - 4:17pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Using energy-efficient appliances is one of the easiest and most important ways consumers have to save money. Purchasing energy-efficient appliances is one of the easiest and most important ways consumers have to save money, reduce their electricity consumption and help cut down on carbon pollution. We use appliances every day - to cook our food, cool our homes, heat our water and clean our clothes. In fact, for a typical U.S. family, heating and cooling and water heating account for about 50 percent of utility bills. Home appliances and

39

Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program  

SciTech Connect (OSTI)

Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As a local sponsor for HPwES, Austin Energy's HPwES program offers a complete home energy assessment and a list of recommendations for efficiency improvements, along with cost estimates. The owner can choose to implement only one or the complete set of energy conservation measures. Austin Energy facilitates the process by providing economic incentives to the homeowner through its HPwES Loan program and its HPwES Rebate program. In 2005, the total number of participants in both programs was approximately 1,400. Both programs are only available for improvements made by a participating HPwES contractor. The individual household billing data - encompassing more than 7,000 households - provided by Austin Energy provides a rich data set to estimate the impacts of its HPwES program. The length of the billing histories is sufficient to develop PRISM-type models of electricity use based on several years of monthly bills before and after the installation of the conservation measures. Individual household savings were estimated from a restricted version of a PRISM-type regression model where the reference temperature to define cooling (or heating degree days) was estimated along with other parameters. Because the statistical quality of the regression models varies across individual households, three separate samples were used to measure the aggregate results. The samples were distinguished on the basis of the statistical significance of the estimated (normalized) cooling consumption. A normalized measure of cooling consumption was based on average temperatures observed over the most recent nine-year period ending in 2006. This study provided a statistically rigorous approach to incorporating the variability of expected savings across the households in the sample together with the uncertainty inherent in the regression models used to estimate those savings. While the impact of the regression errors was found to be relatively small in these particular samples, this approach may be useful in future studies using individual household billing data. The median percentage savings for the largest sample of 6,000 households in the analysis was 32%, while the mean savings was 28%. Because the number of households in the sample is very large, the standard error associated with the mean percentage savings are very small, less than 1%. A conservative statement of the average savings is that is falls in the range of 25% to 30% with a high level of certainty. This preliminary analysis provides robust estimates of average program savings, but offers no insight into how savings may vary by type of conservation measure or whether savings vary by the amount of cooling electricity used prior to undertaking the measure. Follow-up researchers may want to analyze the impacts of specific ECMs. Households that use electricity for heating might also be separately analyzed. In potential future work several methodological improvements could also be explored. As mentioned in Section 2, there was no formal attempt to clean the data set of outliers and other abnormal patterns of billing data prior to the statistical analysis. The restriction of a constant reference temperature might also be relaxed. This approach may provide evidence as to whether any 'take-back' efforts are present, whereby thermostat settings are lowered during the summer months after the measures are undertaken (reflected in lower reference temperatures in the post-ECM period). A more extended analysis may also justify the investment in and use of the PRISM software package, which may provide more diagnostic measures with respect to the reference temperature. PRISM also appears to contain some built-in capability to detect outliers and other an

Belzer, D.; Mosey, G.; Dagher, L.; Plympton, P.

2008-01-01T23:59:59.000Z

40

HII Absorption Bill Erickson  

E-Print Network [OSTI]

HII Absorption Bill Erickson November 10, 2006 It would make all of the drift curve simulations.8 dB above the data. One reason for this might be HII absorption which is not modeled in simulations. There are a number of ways that one might try to estimate the absorption. One might use optical maps of HII

Ellingson, Steven W.

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to cut your water heating bill. Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy efficiency is determined by the energy...

42

Household energy consumption and expenditures 1993  

SciTech Connect (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

43

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Air Conditioning by Midwest Census Region, 0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 20.2 13.4 6.7 2.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 14.3 9.5 4.8 3.8 Without a Heat Pump ................................ 46.2 13.6 9.0 4.6 3.9 With a Heat Pump .....................................

44

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Air Conditioning by Urban/Rural Location, 8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4 18.6 13.3 4.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 ............................ 57.5 23.6 8.6 15.8 9.4 5.1 Without a Heat Pump ................................ 46.2 19.3 7.4 13.1 6.4 6.3 With a Heat Pump ..................................... 11.3 4.4

45

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Air Conditioning by Type of Owner-Occupied Housing Unit, 5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using Electric Air-Conditioning 1 .......................... 58.2 57.6 6.3 11.8 5.1 5.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 44.7 43.6 3.2 7.1 3.5 7.0 Without a Heat Pump .................. 35.6 35.0 2.4 6.1 2.7 7.7 With a Heat Pump .......................

46

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Air Conditioning by Type of Rented Housing Unit, 6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning 1 .......................... 22.5 57.6 6.3 11.8 5.1 6.2 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 12.7 43.6 3.2 7.1 3.5 8.5 Without a Heat Pump .................. 10.6 35.0 2.4 6.1 2.7 9.3 With a Heat Pump ....................... 2.2 8.6 0.8 1.0

47

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Air Conditioning by South Census Region, 1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 36.9 19.0 6.4 11.5 1.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 30.4 16.1 5.0 9.2 2.8 Without a Heat Pump ................................ 46.2 22.1 10.4 3.4 8.3 5.6 With a Heat Pump

48

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Air Conditioning by Northeast Census Region, 9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1 ........................................ 80.8 14.2 11.1 3.2 3.4 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 5.7 4.9 0.8 8.9 Without a Heat Pump ................................ 46.2 5.2 4.5 0.7 9.2 With a Heat Pump .....................................

49

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Air Conditioning by Year of Construction, 2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2 .......................... 80.8 13.4 15.8 14.2 10.1 10.2 17.1 4.7 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 12.6 13.7 11.0 7.1 6.6 6.4 5.9 Without a Heat Pump .................. 46.2 10.1 10.4 8.0 6.1 5.9 5.7 7.0 With a Heat Pump ....................... 11.3 2.5 3.3

50

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Air Conditioning by Type of Housing Unit, 4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1 .......................... 80.8 57.6 6.3 11.8 5.1 4.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 57.5 43.6 3.2 7.1 3.5 6.7 Without a Heat Pump .................. 46.2 35.0 2.4 6.1 2.7 7.7 With a Heat Pump ....................... 11.3 8.6 0.8 1.0 0.8 19.7 Room Air-Conditioning

51

Households and Pension  

Science Journals Connector (OSTI)

This chapter deals with two economic issues. First, we examine Japan’s household structure. In the previous chapter ( Chapter 10 ...), we recognized the importance of the ...

Mitsuhiko Iyoda

2010-01-01T23:59:59.000Z

52

HOUSEHOLD SOLAR POWER SYSTEM.  

E-Print Network [OSTI]

?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power… (more)

Jiang, He

2014-01-01T23:59:59.000Z

53

Heating Energy Meter Validation for Apartments  

E-Print Network [OSTI]

Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

Cai, B.; Li, D.; Hao, B.

2006-01-01T23:59:59.000Z

54

Category:Billings, MT | Open Energy Information  

Open Energy Info (EERE)

MT MT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Billings, MT" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Billings MT NorthWestern Corporation.png SVFullServiceRestauran... 64 KB SVHospital Billings MT NorthWestern Corporation.png SVHospital Billings MT... 62 KB SVLargeHotel Billings MT NorthWestern Corporation.png SVLargeHotel Billings ... 62 KB SVLargeOffice Billings MT NorthWestern Corporation.png SVLargeOffice Billings... 62 KB SVMediumOffice Billings MT NorthWestern Corporation.png SVMediumOffice Billing... 62 KB SVMidriseApartment Billings MT NorthWestern Corporation.png SVMidriseApartment Bil... 63 KB SVOutPatient Billings MT NorthWestern Corporation.png SVOutPatient Billings ...

55

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

56

Bill Bradbury Jennifer Anders  

E-Print Network [OSTI]

electric heating systems to ductless heat pumps. These savings estimates were based on an analysis of the pre and post- electricity use of over 3,400 homes with existing zonal electric heating systems on the previous zonal electric heating system and, as a result, were using less wood. Based on these findings

57

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Space Heating by Urban/Rural Location, 8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating Equipment ................................ 0.5 0.4 0.1 Q 0.1 33.2 Have Equipment But Do Not Use It ............................................... 0.4 0.3 Q Q Q 30.2 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 49.1 18.0 21.2 17.8 4.3 Natural Gas

58

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Space Heating by Type of Owner-Occupied Housing Unit, 5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.4 1.9 3.0 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Heat Home ..................................... 72.4 63.0 2.0 1.7 5.7 6.7 Do Not Heat Home ........................ 0.4 0.2 Q Q Q 46.2 No Heating Equipment .................. 0.3 0.2 Q Q Q 39.0 Have Equipment But Do Not Use It ................................ Q Q Q Q Q NF Main Heating Fuel and Equipment (Have and Use Equipment) ............ 72.4 63.0 2.0 1.7 5.7 6.7 Natural Gas

59

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by Year of Construction, 2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................ 1.0 Q Q Q 0.2 0.3 Q 23.2 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 30.3 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q Q Q 37.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Natural Gas ...................................

60

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Space Heating by Type of Housing Unit, 4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No Heating Equipment .................. 0.5 0.2 Q 0.3 Q 24.2 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 28.1 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 73.4 9.4 16.4 6.8 4.5 Natural Gas ...................................

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Space Heating by Type of Rented Housing Unit, 6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home ........................ 0.6 Q Q 0.5 Q 21.4 No Heating Equipment .................. 0.2 Q Q Q Q 84.5 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 36.4 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 33.7 10.4 7.4 14.8 1.1 6.9 Natural Gas ...................................

62

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

63

Administrative Billing Procedures (pbl/contracts)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Post-2006) Subscription Contracts IOUPublic Settlement Slice of the System Billing Procedures Firstgov Power Business Line (PBL) Administrative Billing Procedures This page has...

64

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 1.3 3.9 6.2 5.7 6.7 Without a Heat Pump ................................ 46.2 1.2 3.2 5.5 3.8 8.1 With a Heat Pump ..................................... 11.3 Q 0.8 0.6 1.9 14.7 Room Air-Conditioning ................................ 23.3 3.4 1.2 1.2 0.3 13.6 1 Unit

65

The Household “Pie”  

Science Journals Connector (OSTI)

The discussion of theoretical, conceptual, and methodological concerns in the last three chapters has set the stage for an examination of the total effort that households devote to domestic and market activiti...

Sarah Fenstermaker Berk

1985-01-01T23:59:59.000Z

66

Differentially Private Billing with Rebates  

Science Journals Connector (OSTI)

A number of established and novel business models are based on fine grained billing, including pay-per-view, mobile messaging, voice calls, pay-as-you-drive insurance, smart metering for utility provision, pri...

George Danezis; Markulf Kohlweiss; Alfredo Rial

2011-01-01T23:59:59.000Z

67

from Microsoft's Bill Gates. Summer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with backing from Microsoft's Bill Gates. Summer fun (pages 4-5) All aboard a bus or train and tour Y-12 and the Secret City. August 2012 Visit us Many phrases can be used to...

68

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

69

housingunit_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Tables Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 4 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 4 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 2001 4

70

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Home Office Equipment Tables Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 1 HC7-6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 1 HC7-7a. Home Office Equipment by Four Most Populated States, Million U.S. Households, 2001 1

71

Household portfolios in Japan  

Science Journals Connector (OSTI)

I provide a detailed description and in-depth analysis of household portfolios in Japan. (1) It is shown that the share of equities in financial wealth and the stock market participation of Japanese households decreased throughout the 1990s. (2) Using survey data, age-related variations in the share of stocks in financial wealth are analyzed. The equity share and stock market participation increase with age among young households, peaking when people reach their 50s, and then stabilizing. However, the share of equities conditional on ownership exhibits no significant age-related pattern, implying that age-related patterns are primarily explained by the decision to hold stocks. A similar mechanism operates to that found in previous studies of Western countries. (3) Owner-occupied housing has a significantly positive effect on stock market participation and on the share of stocks in financial wealth.

Tokuo Iwaisako

2009-01-01T23:59:59.000Z

72

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network [OSTI]

50% of energy use in households. Energy consumption is decreasing per unit area and per household.444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils ............................................................................................................................1 2 Norway's energy sector

73

Household Vehicles Energy Use Cover Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

74

"Keeping Up" or "Keeping Afloat"? : how American households accumulate wealth  

E-Print Network [OSTI]

having a Black or Hispanic household head, and experiencingBlack households, Hispanic households, poor households, etc.that Black- and Hispanic- headed households appear to be at

Lundy, Jeffrey Dalton

2012-01-01T23:59:59.000Z

75

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

76

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

77

New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program | Department  

Broader source: Energy.gov (indexed) [DOE]

New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program New Jersey Natural Gas - SAVEGREEN On-Bill Financing Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Sealing Your Home Ventilation Maximum Rebate $10,000 Program Info State New Jersey Program Type Utility Loan Program Rebate Amount $2,500-$10,000 Provider New Jersey Natural Gas Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides an On-Bill Repayment Program. Qualified customers can borrow $2,500-$10,000 at 0% APR fixed rate for 10 years with no fees, points or closing costs. A variety of equipment and measures may qualify for financing under this

78

Bill Lewis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bill Lewis Bill Lewis About Us Bill Lewis William A. Lewis, Jr. was appointed Deputy Director of the Office of Civil Rights and Diversity in October 2005. Prior to this appointment, Mr. Lewis was named Director, Office of Employee Concerns, as part of a Secretarial Whistleblower initiative on October 1, 1996. The Employee Concerns Office at the United States Department of Energy Headquarters was established to provide the necessary leadership and policy guidance to employee concerns programs at the Department's major facilities. In February 2002, Mr. Lewis was named the National Ombudsman for the Department, a position he held for three years. Prior to these appointments, Mr. Lewis served as the Director of the Office of Science Education Programs. Mr. Lewis joined the Department of Energy in July 1992 and became a member

79

Bill Valdez | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bill Valdez Bill Valdez About Us Bill Valdez - Principal Deputy Director Mr. Valdez is the Principal Deputy Director of the Office of Economic Impact and Diversity (ED). Mr. Valdez's career with the Department of Energy spans over 17 years, providing him with extensive knowledge in the areas of workforce development, budget planning, diversity and equal opportunity issues, science policy, corporate and strategic planning, and contract management. In his current position, Mr. Valdez plays a pivotal role in setting overall strategic direction for DOE's diversity, minority education, civil rights, and small business initiatives and activities. Mr. Valdez works with Department program offices to develop a corporate funding strategy for minority institutions to ensure that faculty and

80

Projecting household energy consumption within a conditional demand framework  

SciTech Connect (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Projecting household energy consumption within a conditional demand framework  

SciTech Connect (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

82

Know Your Energy Bill! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

keep track of your energy bill? Tell Us Addthis Keeping track of your power bill can help you make informed decisions about energy use in your home. | Photo courtesy of...

83

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network [OSTI]

be damaged when corrosive chemicals are put down the drain. Burning hazardous wastes simply distributes themHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any

de Lijser, Peter

84

ELECTRONIC BILLING EXEMPTION APPEAL Return this form  

E-Print Network [OSTI]

ELECTRONIC BILLING EXEMPTION APPEAL Return this form In person on campus: 333 Science Teaching or black ink. DIRECTIONS To be considered for an exemption from an electronic billing, which is mandatory to be exempt from electronic billing. If you circumstances are similar to the following examples, you may

Amin, S. Massoud

85

Indoor air quality bill opposed by EPA  

Science Journals Connector (OSTI)

Indoor air quality bill opposed by EPA ... Sen. George J. Mitchell (D.-Me.) has introduced a bill to protect the quality of indoor air. ... According to J. Craig Potter, assistant EPA administrator for air and radiation, the "Indoor Air Quality Act of 1987," S. 1629, is a bill whose time has not yet arrived. ...

LOIS EMBER

1987-12-07T23:59:59.000Z

86

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning Tables Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC4-6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC4-7a. Air Conditioning by Four Most Populated States, Million U.S. Households, 2001 2 HC4-8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 2

87

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

88

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

89

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Household Characteristics by Household Income, 3a. Household Characteristics by Household Income, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Household Size 1 Person ....................................... 28.2 9.7 -- -- -- 6.5 11.3 5.7 2 Persons ...................................... 35.1 4.3 -- -- -- 2.0 7.8 5.8 3 Persons ...................................... 17.0 -- 3.3 -- -- 2.2 5.2 7.3 4 Persons ...................................... 15.6 -- 2.2 -- -- -- 4.3 8.1 5 Persons ...................................... 7.1

90

When Utility Bills Attack! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

When Utility Bills Attack! When Utility Bills Attack! When Utility Bills Attack! March 1, 2010 - 11:05am Addthis Amy Foster Parish It may come as a shock to my college math professor, but where my family's finances are concerned, I'm a budgeter. Just before a new month begins, I take some time to plan for the month's regular bills as well as any special events or holidays that might require setting some extra money aside. I even have a special notebook to track all this financial data (and shopping for a new notebook every year is half the fun of fiscal responsibility). But as proactive as I am with my monthly budgeting, I tend to be reactive when it comes to my monthly utility bills. I take a guess at what my bill will be at the beginning of the month, and then I'm either excited when the

91

Standby electricity consumption and saving potentials of Turkish households  

Science Journals Connector (OSTI)

Abstract The share of the residential sector currently accounts for about 25% of the national electricity consumption in Turkey. Due to increase in household income levels and decrease in the costs of appliances; significant increases in appliance ownerships and residential electricity consumption levels have been observed in recent years. Most domestic appliances continue consuming electricity when they are not performing their primary functions, i.e. at standby mode, which can constitute up 15% of the total household electricity consumption in some countries. Although the demand in Turkish residential electricity consumption is increasing, there are limited studies on the components of the residential electricity consumption and no studies specifically examining the extent and effects of standby electricity consumption using a surveying/measurement methodology. Thus, determining the share of standby electricity consumption in total home electricity use and the ways of reducing it are important issues in residential energy conservation strategies. In this study, surveys and standby power measurements are conducted at 260 households in Ankara, Turkey, to determine the amount, share, and saving potentials of the standby electricity consumption of Turkish homes. The survey is designed to gather information on the appliance properties, lights, electricity consumption behavior, economic and demographics of the occupants, and electricity bills. A total of 1746 appliances with standby power are measured in the surveyed homes. Using the survey and standby power measurements data, the standby, active, and lighting end-use electricity consumptions of the surveyed homes are determined. The average Turkish household standby power and standby electricity consumption are estimated as 22 W and 95 kW h/yr, respectively. It was also found that the standby electricity consumption constitutes 4% of the total electricity consumption in Turkish homes. Two scenarios are then applied to the surveyed homes to determine the potentials in reducing standby electricity consumption of the households.

Mustafa Cagri Sahin; Merih Aydinalp Koksal

2014-01-01T23:59:59.000Z

92

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

93

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Household Characteristics by Midwest Census Region, 0a. Household Characteristics by Midwest Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 24.5 17.1 7.4 NE Household Size 1 Person ...................................................... 28.2 6.7 4.7 2.0 6.2 2 Persons .................................................... 35.1 8.0 5.4 2.6 5.0 3 Persons .................................................... 17.0 3.8 2.7 1.1 7.9 4 Persons .................................................... 15.6 3.5 2.5 1.0 8.1 5 Persons .................................................... 7.1 1.7

94

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by West Census Region, 2a. Household Characteristics by West Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.8 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Household Size 1 Person ...................................................... 28.2 5.6 1.8 3.8 5.4 2 Persons .................................................... 35.1 7.3 1.9 5.5 4.9 3 Persons .................................................... 17.0 3.5 0.9 2.6 7.6 4 Persons .................................................... 15.6 3.5 1.1 2.4 6.4 5 Persons .................................................... 7.1 2.0 0.6 1.4 9.7 6 or More Persons

95

Nuclear waste bill dead for this year  

Science Journals Connector (OSTI)

Nuclear waste bill dead for this year ... "Politics pure and simple" killed compromise legislation to create an interim storage facility in Nevada for commercial high-level nuclear waste, say bill proponents in Congress and in the nuclear power industry. ... Last year, bills passed both the House and Senate that would have required the government to, among other things, temporarily store nuclear waste until a permanent facility could be built. ...

JEFF JOHNSON

1998-06-08T23:59:59.000Z

96

Asset Pricing with Countercyclical Household Consumption Risk  

E-Print Network [OSTI]

1 Asset Pricing with Countercyclical Household Consumption Risk George M. Constantinides that shocks to household consumption growth are negatively skewed, persistent, and countercyclical and play that drives the conditional cross-sectional moments of household consumption growth. The estimated model

Sadeh, Norman M.

97

BILL GATES, AIDS GIVING, AND TAX REBATES  

Science Journals Connector (OSTI)

BILL GATES, AIDS GIVING, AND TAX REBATES ... Gates Foundation's support for global health inspires ideas on how to spend the tax rebate ...

PAMELA S. ZURER

2001-07-30T23:59:59.000Z

98

Nuclear waste storage bill passes Congress  

Science Journals Connector (OSTI)

Nuclear waste storage bill passes Congress ... The law sets up provisions to evaluate ways to store spent nuclear fuel and wastes. ...

1983-01-03T23:59:59.000Z

99

Household environmental monitoring a strategy to help homeowners reduce their environmental impact  

Science Journals Connector (OSTI)

A group of 20 households was established to study whether we can motivate environmentally sustainable behaviour by providing homeowners with a clear picture of their impact, tangible reasons for improvement, and tailored solutions to follow. Reports for each household compared heating fuel, electricity, water, vehicle fuel/waste generation within the group and recommended cost-effective measures to reduce consumption. On average, 26% of the recommended measures were implemented, resulting in an estimated greenhouse gas reduction of about 2 tonnes per household. Wide variations were found between households, demonstrating the potential to reduce environmental impact through lifestyle, conservation, and energy conscious retrofits.

Jane Thompson; Magda Goemans; Peter C. Goemans; Andrzej Wisniowski

2008-01-01T23:59:59.000Z

100

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

102

Household equipment of Canadians -- features of the 1993 stock and the 1994 and 1995 purchases: Analysis report  

SciTech Connect (OSTI)

This report reviews the results of three surveys that collected information on household equipment: The 1994 and 1995 Household Equipment Surveys and the 1993 Survey of Household Energy Use. The goal of the report is to highlight the features of energy-consuming equipment bought by Canadian households in 1994 and 1995 in comparison to those owned by households in 1993. Results are presented by type of equipment: Refrigerators, stoves, dishwashers, freezers, automatic washers, automatic dryers, air conditioning systems, heating systems, and water heaters. Appendices include information on survey methodology and a copy of the survey questionnaire.

Not Available

1997-01-01T23:59:59.000Z

103

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

104

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

Gasoline and Diesel Fuel Update (EIA)

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

105

Household vehicles energy consumption 1991  

SciTech Connect (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

106

DOE - Office of Legacy Management -- Billings Hospital - Small...  

Office of Legacy Management (LM)

Billings Hospital - Small Animal Facility - University of Chicago - IL 01 FUSRAP Considered Sites Site: Billings Hospital, Small Animal Facility, University of Chicago (IL 01)...

107

Data Management Policies Co-Chairs: Bill Allcock, Julia White  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policies Co-Chairs: Bill Allcock, Julia White HPCOR 2014, June 18-19, Oakland, CA 1 Contributors * Bill Allcock, ANL * Sasha Ames, LLNL * Ashley Barker, ORNL * Laura...

108

Office of Personnel Management (OPM) Billing System PIA, Office...  

Office of Environmental Management (EM)

Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and Security Office of Personnel Management (OPM) Billing System PIA, Office of Health, Safety and...

109

Two Years Later: Bill Picciano of DOE's Savannah River Site ...  

Broader source: Energy.gov (indexed) [DOE]

-- Bill put in for the job. Within two months, Bill officially became an Associate EngineerTechnical Support Specialist at SRS with the Nuclear Nonproliferation (NNP)...

110

Lifestyle change and energy use in Japan: Household equipment and energy consumption  

Science Journals Connector (OSTI)

Energy use in the Japanese residential sector has more than doubled (on a per-household basis) during the post-war period. Important factors contributing to the increase include changes in the types of housing built, heating, cooling, water-heating equipment, and other appliances. In this paper, the developments of household equipment and living conditions in Japan are described, from their 1950s state to the present. Trends in energy consumption by fuel types and end uses are reviewed over the same period. The past trends are combined with expectations for future developments in household equipment and quality, as well as with international comparisons of household-energy use, to predict further increases in household-energy consumption. The results indicate the importance of a renewed emphasis on energy efficiency in the residential sector.

Hidetoshi Nakagami

1996-01-01T23:59:59.000Z

111

The Honorable Bill Johnson j.  

Office of Legacy Management (LM)

- Department of En&gy, - Department of En&gy, Washington, DC 20585 \APR 0 3 7995 The Honorable Bill Johnson j. 30 Church Street, Rochester, New-York 14614 / Dear MayorJohnson: 'I Secretary of Energy Hazel O'Leary has announced a'nei approach to openness in the Department of'Energy (DDE) and its communications with the public. In, support of this initiative, we are pleased to forward the enclosed info&tion related to the former University of. Rochester site in, your jurisdiction performed work for DOE or its predecessor agencies. Thins information is provided for your information, use, and retqntion. DDE's Formerly Utilized SitesRemedial Action Program.isI responsible for identification of sites used by DOE's predecessor agencies, determining current 'radiological condition.'and, where, it has authority, performing

112

Reducing the Federal Energy Bill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Reducing the Federal Energy Bill Berkeley Lab's Work with the Federal Energy Management Program It costs billions of dollars and uses more energy than any other entity in the United States. What is it? Answer: the Federal government. In fiscal year 1995, the Federal government spent $8 billion on a net energy consumption of 1.15 quadrillion BTUs. While that may be a lot of energy in absolute terms, the numbers have been improving for years. Compared with fiscal year 1985, the 1995 energy-use figure is down by 22.5%, and the costs are down $2.5 billion. The decline is explained in part by the activities of FEMP (the Federal Energy Management Program) and the efforts of energy-efficiency experts at national laboratories, such as those at Berkeley Lab's Environmental Energy

113

SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department...  

Energy Savers [EERE]

summer heat waves can send Floridians' utility bills soaring. St. Lucie County in the heart of Florida's Treasure Coast committed to helping homeowners reduce their rising...

114

Communications on energy Household energy conservation  

Science Journals Connector (OSTI)

This study assesses the influence of attitudinal and socio-economic factors on household energy conservation actions. A household interview survey in Regina, Saskatchewan found that respondents perceive an energy problem, although no association with energy conservation actions was determined. Two attitudinal and five socio-economic variables influence household energy conservation. Energy and monetary savings are available to households through energy conservation. Public awareness of household energy conservation through the media can reinforce existing energy conservation actions and encourage new actions.

Fred A. Curtis; P. Simpson-Housley; S. Drever

1984-01-01T23:59:59.000Z

115

Consumer access to utility billing envelopes  

SciTech Connect (OSTI)

Billing envelope inserts are a medium of advertising used by utilities for a variety of purposes, from encouraging conservation to expressing political opinions. Recently, consumer groups have begun to assert a right of access to the same medium. A constitutional right of reply has been advocated. Commissions have found regulatory authority to direct companies to provide access on the basis of several different theories. At least two states have passed legislation permitting consumer groups to use bill inserts to solicit members and contributions. When examined, these developments reveal a trend of granting organizations access to utility billing envelopes.

Anglin, M.K.

1984-09-13T23:59:59.000Z

116

Evaluatoni of Automated Utility Bill Calibration Methods  

Broader source: Energy.gov (indexed) [DOE]

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Evaluation of Automated Utility Bill Calibration Methods BA Technical Update Meeting Ben Polly, Joe Robertson 04/30/13 Utility Bill Calibration * "Calibrate" or "true-up" building energy models to utility bill data to increase the accuracy of retrofit savings predictions * Calibration methods typically involve adjusting input parameters * Predict retrofit savings using the adjusted (calibrated) model 2 Background: BESTEST-EX * BESTEST-EX is a suite for testing calibration methods and retrofit savings predictions associated with audit software * Field trials showed that:

117

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Household Characteristics by Type of Owner-Occupied Housing Unit, 5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.3 0.4 2.0 2.9 1.3 Total Owner-Occupied Units ....... 72.7 63.2 2.1 1.8 5.7 6.7 Household Size 1 Person ....................................... 15.8 12.5 0.8 0.9 1.6 10.3 2 Persons ...................................... 25.9 23.4 0.5 0.5 1.5 10.1 3 Persons ...................................... 11.6 9.6 0.5 Q 1.3 12.1 4 Persons ...................................... 11.8 10.9 Q Q 0.7 15.7 5 Persons ...................................... 5.1 4.5 Q Q 0.4 24.2 6 or More Persons

118

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Household Characteristics by South Census Region, 1a. Household Characteristics by South Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.5 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Household Size 1 Person ...................................................... 28.2 9.9 5.0 1.8 3.1 6.3 2 Persons .................................................... 35.1 13.0 6.7 2.5 3.8 4.2 3 Persons .................................................... 17.0 6.6 3.7 1.2 1.7 8.8 4 Persons .................................................... 15.6 6.0 3.3 0.8 1.9 10.7 5 Persons ....................................................

119

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Household Characteristics by Urban/Rural Location, 8a. Household Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Household Size 1 Person ...................................................... 28.2 14.6 5.3 4.8 3.6 6.4 2 Persons .................................................... 35.1 15.7 5.7 6.9 6.8 5.4 3 Persons .................................................... 17.0 7.6 2.8 3.5 3.1 7.2 4 Persons .................................................... 15.6 6.8 2.3 4.1 2.4 8.1 5 Persons .................................................... 7.1 3.1 1.3 1.3 1.4 12.3 6 or More Persons

120

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Household Characteristics by Climate Zone, a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Household Size 1 Person ....................................... 28.2 2.5 8.1 6.5 4.8 6.2 9.9 2 Persons ...................................... 35.1 3.1 9.4 8.2 6.5 7.9 8.7 3 Persons ...................................... 17.0 1.3 4.3 4.0 3.3 4.1 10.7 4 Persons ...................................... 15.6 1.4 3.9 3.4 3.4 3.5 10.5 5 Persons ......................................

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Household Characteristics by Type of Rented Housing Unit, 6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total Rented Units ........................ 34.3 10.5 7.4 15.2 1.1 6.9 Household Size 1 Person ....................................... 12.3 2.5 2.6 7.0 0.3 10.0 2 Persons ...................................... 9.2 2.5 2.5 4.1 Q 11.8 3 Persons ...................................... 5.4 2.0 1.1 2.0 0.4 13.9 4 Persons ...................................... 3.8 1.6 0.7 1.4 Q 17.7 5 Persons ...................................... 2.0 0.9 0.4 0.6 Q 24.1 6 or More Persons ........................

122

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Home Office Equipment by Household Income, 3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7 10.7 38.8 3.2 Personal Computers 2 ................... 60.0 3.7 8.7 16.0 31.6 3.7 17.4 4.6 Number of Desktop PCs 1 .................................................. 45.1 2.8 7.1 12.8 22.4 2.8 13.6 5.1 2 or more .................................... 9.1 0.6 0.7 1.7 6.2 0.6 2.2 13.0 Number of Laptop PCs

123

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by Year of Construction, 2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons ...................................... 35.1 4.8 6.2 6.6 4.5 5.3 7.8 5.8 3 Persons ...................................... 17.0 2.5 3.3 2.9 2.3 1.9 4.1 8.4 4 Persons ...................................... 15.6 3.4 2.8 2.3 1.9 1.8 3.4 9.6 5 Persons ...................................... 7.1 1.6 1.2 1.3 0.6 0.7 1.6 14.3 6 or More Persons

124

Monroe County Extension Saves $2,000 Annually on Utility Bills  

E-Print Network [OSTI]

antiquated tube boilers with new, high-efficiency, condensing boilers. Projected Savings Over $2,000 per year% efficiency, were replaced with 95%-efficiency condensing boilers. The new boilers use 70% less water, operateMonroe County Extension Saves $2,000 Annually on Utility Bills Heating Efficiency Upgrades Lower

Keinan, Alon

125

W. Bill Booth Bruce A. Measure  

E-Print Network [OSTI]

W. Bill Booth Chair Idaho Bruce A. Measure Vice-Chair Montana James A. Yost Idaho Tom Karier the ISRP and the CSKT held a teleconference on March 30, 2007. On May 25, 2007 received the revised

126

Bill Nye (Energy All Stars Presentation)  

Broader source: Energy.gov [DOE]

Bill Nye the Science Guy delivered this presentation on space and the lessons about climate change that can be gleaned from the other planets in our solar system at the Energy All Stars event on...

127

W. Bill Booth Bruce A. Measure  

E-Print Network [OSTI]

W. Bill Booth Chair Idaho Bruce A. Measure Vice-Chair Montana James A. Yost Idaho Tom Karier on the consultations held with entities through the October Council meeting and the key themes from those discussions

128

Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462)  

E-Print Network [OSTI]

Nuclear Subsidies in the House Climate bill (H.R. 2454) and Senate Energy bill (S. 1462) Subsidy per year. #12;Sense of Congress in favor of nuclear power No Yes The Senate energy bill includes for nuclear power R&D No Yes The Senate bill authorizes $5.17 billion from FY2010-FY2013 for nuclear energy

Laughlin, Robert B.

129

Characteristics RSE Column Factor: Households with Children Households...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 6.1 0.8 2.7 2.6 Q Q Q Q Q Q Q 23.2 Race of Householder White ... 54.8 14.4 27.6 12.8 83.7 3.2 6.7 7.2...

130

Physical activity of adults in households with and without children  

E-Print Network [OSTI]

whites, fewer Hispanics, and higher household incomes thanWhites, fewer Hispanics, and higher household incomes thanWhites, fewer Hispanics, and higher household incomes than

Candelaria, Jeanette Irene

2010-01-01T23:59:59.000Z

131

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

132

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

133

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Appliances by Household Income, 3a. Appliances by Household Income, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.8 1.6 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2 1 ................................................ 95.2 17.3 21.1 24.8 32.0 13.8 31.1 3.4 2 or More .................................. 6.5 0.8 0.9 1.3 3.6 0.6 1.5 13.1 Most Used Oven ........................ 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2

134

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

or More...... 23.1 15.2 197 12.3 10.7 13.0 1.3 12.8 13.0| 6.7 | Race of Householder | White... 135.3 89.5 1,429 89.2 73.9 89.2 9.1 87.5 89.1| 2.0...

135

The World Distribution of Household Wealth  

E-Print Network [OSTI]

Japan is not a remote prospect. In summary, it is clear that householdJapan Korea, South New Zealand Norway Spain Sweden Switzerland United Kingdom United States Year Unit share of top 2002 household

DAVIES, JAMES B; Shorrocks, Anthony; Sandstrom, Susanna; WOLFF, EDWARD N

2007-01-01T23:59:59.000Z

136

ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111-228  

E-Print Network [OSTI]

ENERGY AND WATER DEVELOPMENT APPROPRIATIONS BILL, FY 2011 Senate Bill 3635, Report 111. Fusion Energy Sciences (FES) would be funded at $384.0 million, a decrease of $42.0 million below the FY10 enacted level and $4.0 million above the budget request. FUSION ENERGY SCIENCES The Committee

137

Look Up to See Your Bills Go Down: Making Your Attic More Efficient |  

Broader source: Energy.gov (indexed) [DOE]

Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient July 18, 2011 - 5:29pm Addthis Allison Casey Senior Communicator, NREL This year at my house, we have been on a quest to make our attic more energy efficient. I think we realized just how much this unseen area contributes to our overall comfort -not to mention what we pay to heat and cool the house. The first thing we did was install more insulation this winter. In addition to the tax credits we'll be able to claim, there were several incentives available from our state and utility that made it a great time for us to make this improvement. Following the installation, we noticed an immediate improvement in the overall comfort of our home and the furnace seemed to

138

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico | Department  

Broader source: Energy.gov (indexed) [DOE]

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? 150 new jobs. 1200 solar water heaters installed. In Puerto Rico, solar water heaters have been popular for decades. But even with energy savings, not everyone can afford one. Through a new Recovery Act-funded program for the island, more families are showering with water heated by the sun. The U.S. Department of Energy's new Weatherization Assistance Program (WAP) in Puerto Rico has made it a priority to install the systems in homes of income-eligible residents, as part of its weatherization assistance services. The Puerto Rico Energy Affairs Administration (PREAA), which

139

Look Up to See Your Bills Go Down: Making Your Attic More Efficient |  

Broader source: Energy.gov (indexed) [DOE]

Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient Look Up to See Your Bills Go Down: Making Your Attic More Efficient July 18, 2011 - 5:29pm Addthis Allison Casey Senior Communicator, NREL This year at my house, we have been on a quest to make our attic more energy efficient. I think we realized just how much this unseen area contributes to our overall comfort -not to mention what we pay to heat and cool the house. The first thing we did was install more insulation this winter. In addition to the tax credits we'll be able to claim, there were several incentives available from our state and utility that made it a great time for us to make this improvement. Following the installation, we noticed an immediate improvement in the overall comfort of our home and the furnace seemed to

140

Trip rate comparison of workplace and household surveys  

E-Print Network [OSTI]

Available vs. Trip Rate) 14 El Paso Household Survey (Household Income vs. Trip Rate) . 15 El Paso Workplace Survey (Household Income vs. Trip Rate) . 52 52 53 53 54 54 16 BPA Household Survey (Household Size vs. Trip Rate) . . 17 BPA Workplace... Survey (Household Size vs. Trip Rate) . . 56 56 18 BPA Household Survey (No. of Employees vs. Trip Rate) . . 19 BPA Workplace Survey (No. of Employees vs. Trip Rate) . . 20 BPA Household Survey (Vehicles Available vs. Trip Rate) . . 21 BPA Workplace...

Endres, Stephen Michael

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Stakeholder Engagement and Outreach: USDA Farm Bill State Workshop  

Wind Powering America (EERE)

Rural Rural Communities Printable Version Bookmark and Share Agricultural & Rural Farm Bill Outreach Articles Wind for Homeowners, Farmers, & Businesses Wind Farms Resources & Tools Native Americans USDA Farm Bill State Workshop Materials The Farm Bill presentations below were used at four Farm Bill Workshops in Montana, February 2004. We encourage state wind working groups to use the presentations below in their state workshops to help farmers, ranchers, and rural small businesses take advantage of the USDA Farm Bill (Section 9006) grants for renewable energy projects. These presentations will help those interested in developing wind projects to organize, write, and submit an application for funding assistance under the Farm Bill. Introduction to Wind Energy Applications

142

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

143

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households ... Conventional wisdom holds that large appliances, in particular washers, dryers, refrigerators and freezers, dominate residential energy consumption apart from heat, hot water and light. ... (16) It excludes lighting, all professional equipment, space heating, hot water, garden or car equipment, fire alarms, and air conditioning. ...

Edgar G. Hertwich; Charlotte Roux

2011-08-30T23:59:59.000Z

144

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Home Office Equipment by Northeast Census Region, 9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9 7.7 3.3 3.1 Number of Desktop PCs 1 ................................................................ 45.1 8.7 6.2 2.5 3.7 2 or more ................................................... 9.1 1.4 0.9 0.5 12.9 Number of Laptop PCs 1 ................................................................

145

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

146

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

147

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Home Office Equipment by Midwest Census Region, 0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0 14.1 9.9 4.2 3.7 Number of Desktop PCs 1 ................................................................ 45.1 10.4 7.2 3.2 3.7 2 or more ................................................... 9.1 2.3 1.6 0.7 10.1 Number of Laptop PCs 1 ................................................................

148

Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Water Heating Infographic: Water Heaters 101 Everything you need to know about saving money on water heating costs Read more Selecting a New Water Heater Tankless? Storage? Solar? Save money on your water heating bill by choosing the right type of energy-efficient water heater for your needs. Read more Sizing a New Water Heater When buying a new water heater, bigger is not always better. Learn how to buy the right size of water heater. Read more You can reduce your monthly water heating bills by selecting the appropriate water heater for your home or pool and by using some energy-efficient water heating strategies. Some simple do-it-yourself projects, like insulating hot water pipes and lowering your water heating temperature, can also help you save money and energy on your water heating.

149

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

Clean Energy Works Oregon Bill Payment History as a ProxyEnergy and Clean Energy Works Oregon (CEWO), also use utility bill repayment history

Zimring, Mark

2012-01-01T23:59:59.000Z

150

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons .................................................... 17.0 1.1 2.0 1.2 1.2 9.5 4 Persons .................................................... 15.6 0.8 1.9 1.3 0.9 11.2 5 Persons .................................................... 7.1 0.4 1.1 0.4 0.5 19.8 6 or More Persons ....................................... 4.0 0.4 0.9 0.4 0.1 16.4 2001 Household Income Category

151

Bill Sergeant ? An icon of Oak Ridge Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bill Sergeant - An icon of Oak Ridge Security On Friday, February 18, 2011, I attended the burial and celebration of life of Bill Sergeant. He was loved by family, admired by...

152

Energy Efficiency Tricks to Stop Your Energy Bill from Haunting...  

Office of Environmental Management (EM)

Efficiency Tricks to Stop Your Energy Bill from Haunting You Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You October 31, 2014 - 9:25am Addthis This Halloween,...

153

ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill...  

Broader source: Energy.gov (indexed) [DOE]

2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott September...

154

On Bill Financing: SDG&E/SoCalGas  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about On-Bill Financing used by Southern California Gas Company and the different options the program offers.

155

Assembly Bill No. 1007 CHAPTER 371  

E-Print Network [OSTI]

) to Chapter 4 of Part 5 of Division 26 of the Health and Safety Code, relating to air pollution. [Approved on emissions of air contaminants for the control of air pollution from vehicular and nonvehicular sources responsibility for the control of vehicular air pollution. This bill would require that, not later than June 30

156

The Balanced Billing Cycle Vehicle Routing Problem  

SciTech Connect (OSTI)

Utility companies typically send their meter readers out each day of the billing cycle in order to determine each customer s usage for the period. Customer churn requires the utility company to periodically remove some customer locations from its meter-reading routes. On the other hand, the addition of new customers and locations requires the utility company to add newstops to the existing routes. A utility that does not adjust its meter-reading routes over time can find itself with inefficient routes and, subsequently, higher meter-reading costs. Furthermore, the utility can end up with certain billing days that require substantially larger meter-reading resources than others. However, remedying this problem is not as simple as it may initially seem. Certain regulatory and customer service considerations can prevent the utility from shifting a customer s billing day by more than a few days in either direction. Thus, the problem of reducing the meterreading costs and balancing the workload can become quite difficult. We describe this Balanced Billing Cycle Vehicle Routing Problem in more detail and develop an algorithm for providing solutions to a slightly simplified version of the problem. Our algorithm uses a combination of heuristics and integer programming via a three-stage algorithm. We discuss the performance of our procedure on a real-world data set.

Groer, Christopher S [ORNL; Golden, Bruce [University of Maryland; Edward, Wasil [American University

2009-01-01T23:59:59.000Z

157

-----Original Message-----From: Bill Eastlake  

E-Print Network [OSTI]

-----Original Message----- From: Bill Eastlake Sent: Friday, December 12, 2003 1:56 PM To: comments@nwcouncil.org Subject: Personal comments--NOT OFFICIAL IPUC COMMENTS Mark Walker Director of Public Affairs Northwest Power and Conservation Council 851 SW 6th Avenue, Suite 1100 Portland, OR 97204-1348 Re: The Future Role

158

Assembly Bill No. 1632 CHAPTER 722  

E-Print Network [OSTI]

safety, and the economy. The bill would also require the commission, in absence of a long-term nuclear waste storage facility, to assess the potential state and local costs and impacts associated with accumulating waste at California's nuclear powerplants, and to further assess other key policy and planning

159

Consumer Value Segments in Mobile Bill Paying  

Science Journals Connector (OSTI)

The purpose of the present study was to explore consumer value in mobile banking and in mobile bill paying especially. Today mobile communications technologies offer an opportunity for vast additional value for consumers' banking actions due to their ... Keywords: Consumer, value, banking, mobile banking, mobile communications

Tommi Laukkanen; Teuvo Kantanen

2006-04-01T23:59:59.000Z

160

Solar Swimming Pool Heating in Pakistan  

Science Journals Connector (OSTI)

Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts ... solar collectors may be used to extend the swimming season. Installing the pool in a wi...

Irshad Ahmad; Nasim A Khan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

BILL HAMILTON AT SCHOOL 1949 1954 compiled by Martin Jacoby  

E-Print Network [OSTI]

1 BILL HAMILTON AT SCHOOL 1949 ­ 1954 compiled by Martin Jacoby Bill and I this letter to selected school contemporaries: W. D. Hamilton at Tonbridge School Dear [surname, to avoid 50 years ago. You probably know that Bill Hamilton (Smythe House 19493 ­ 19543 ) was one of the most

Amrhein, Valentin

162

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

163

RECS Data Show Decreased Energy Consumption per Household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-01-01T23:59:59.000Z

164

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Home Office Equipment by Year of Construction, 2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2 ................... 60.0 11.0 11.6 10.3 7.2 7.8 12.0 5.3 Number of Desktop PCs 1 .................................................. 45.1 8.0 9.0 7.7 5.3 6.1 9.1 5.8 2 or more .................................... 9.1 1.8 1.6 2.0 1.1 1.0 1.6 11.8 Number of Laptop PCs 1 ..................................................

165

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Home Office Equipment by South Census Region, 1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1 ................................. 60.0 20.7 11.7 3.2 5.8 4.0 Number of Desktop PCs 1 ................................................................ 45.1 15.5 8.6 2.6 4.3 4.9 2 or more ................................................... 9.1 3.1 2.0 0.4 0.7 9.6 Number of Laptop PCs

166

Electricity Prices for Households - EIA  

Gasoline and Diesel Fuel Update (EIA)

Households for Selected Countries1 Households for Selected Countries1 (U.S. Dollars per Kilowatthour) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA 0.023 NA NA Australia 0.091 0.092 0.094 0.098 NA NA NA NA NA Austria 0.144 0.154 0.152 0.163 0.158 0.158 0.178 0.201 NA Barbados NA NA NA NA NA NA NA NA NA Belgium NA NA NA NA NA NA NA NA NA Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA 0.145 0.171 NA Canada 0.067 0.069 0.070 0.071 0.076 0.078 NA NA NA Chile NA NA NA NA NA NA 0.140 0.195 NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 0.075 0.071 0.074 0.076 0.079 0.079 0.080 0.086 NA Colombia NA NA NA NA NA NA 0.111 0.135 NA

167

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Home Office Equipment by Climate Zone, a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0 21.5 7.8 Personal Computers 2 ................... 60.0 5.7 16.7 13.1 12.1 12.6 7.4 Number of Desktop PCs 1 .................................................. 45.1 4.2 12.8 9.6 8.8 9.6 7.8 2 or more .................................... 9.1 0.8 2.4 2.3 2.0 1.7 12.1 Number of Laptop PCs 1 ..................................................

168

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

169

Billings, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Billings, Montana: Energy Resources Billings, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7832856°, -108.5006904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7832856,"lon":-108.5006904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Billings, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Billings, MT) Billings, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7832856°, -108.5006904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.7832856,"lon":-108.5006904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Appliances by Northeast Census Region, 9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1 .............................................................. 95.2 18.2 13.3 4.9 1.1 2 or More ................................................. 6.5 1.4 1.1 0.3 11.7 Most Used Oven ...................................... 101.7 19.6 14.5 5.2 1.1 Electric .....................................................

172

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by West Census Region, 2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1 .............................................................. 95.2 20.9 6.4 14.5 1.1 2 or More ................................................. 6.5 1.2 0.2 1.0 14.6 Most Used Oven ...................................... 101.7 22.1 6.6 15.5 1.1 Electric .....................................................

173

Household Response To Dynamic Pricing Of Electricity: A Survey...  

Open Energy Info (EERE)

Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

174

Apartment Hunting - Part II - Keeping those Energy Bills Down |  

Broader source: Energy.gov (indexed) [DOE]

- Part II - Keeping those Energy Bills Down - Part II - Keeping those Energy Bills Down Apartment Hunting - Part II - Keeping those Energy Bills Down August 23, 2010 - 5:17pm Addthis Kyle Rudzinski Special Assistant to the Director of Technology Advancement and Outreach, EERE I recently went looking for a new apartment. And though my parents may say I'm stingy, I like to think I'm economical. Or better yet, I'm a bargain hunter. I asked myself three main questions when looking for my new place: How far is it from public transit and community businesses? Can I keep my energy bills to a minimum? What's the rent? In the second of two entries on apartment hunting, I discuss things to look for that might help keep your energy bills low. When you think about it, energy bills can, in effect, increase your rent

175

On-Bill Financing for Energy Efficiency Improvements Toolkit...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Financing Energy Upgrades for K-12 School Districts On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program Challenges, Opportunities, and...

176

On-Bill Financing for Energy Efficiency Improvements: A Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improvements: A Review of Current Program Challenges, Opportunities, and Best Practices On-Bill Financing for Energy Efficiency Improvements: A Review of Current Program...

177

On-Bill Financing and Repayment Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

to pay for investments in clean energy upgrades through their utility. While electric utilities and natural gas companies typically run on-bill programs, there is an opportunity...

178

2005 Double white lines on bills of Razorbill 103 DOUBLE WHITE LINES ON THE BILL OF THE  

E-Print Network [OSTI]

2005 Double white lines on bills of Razorbill 103 DOUBLE WHITE LINES ON THE BILL OF THE RAZORBILL.L., MUZAFFAR S.B. & JONES I.L. Lavers J.L., Muzaffar S.B. & Jones I.L. 2006. Double white lines on the bill Seabirds 7(3): 103-108. One of the diagnostic features of the Razorbill Alca torda is the distinct white

Jones, Ian L.

179

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Appliances by Climate Zone, a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven .............................................. 101.7 9.1 27.9 23.1 19.4 22.2 7.8 1 ................................................... 95.2 8.7 26.0 21.6 17.7 21.2 7.9 2 or More ..................................... 6.5 0.4 1.9 1.5 1.7 1.0 14.7 Most Used Oven ........................... 101.7 9.1 27.9 23.1 19.4 22.2

180

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Appliances by Type of Housing Unit, 4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1 ................................................ 95.2 63.7 8.9 16.2 6.3 4.3 2 or More .................................. 6.5 5.4 0.4 0.4 0.2 15.9 Most Used Oven ........................ 101.7 69.1 9.4 16.7 6.6 4.3 Electric ...................................... 63.0 43.3 5.2 10.9 3.6

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

More efficient household electricity use  

SciTech Connect (OSTI)

The energy efficiency of electric appliances has increased markedly in OECD countries, according to data provided by utilities, appliance associations, appliance manufacturers, and independent analyses of each country we reviewed (US, Sweden, Norway, Holland, Japan, Germany, UK). These improvements have, in part, offset increases in electricity demand due to increasing saturation of appliances. However, we see evidence that the efficiency of new devices has hit a temporary plateau: Appliances sold in 1988, while far more efficient than similar ones sold in the early 1970s, may not be significantly more efficient than those sold in 1987. The reason for this plateau, according to manufacturers we interviewed, is that the simple energy-saving features have been incorporated; more sophisticated efficiency improvements are economically justified by five to ten year paybacks, but unattractive to consumers in most countries who appear to demand paybacks of less than three years. Manufacturers see features other than efficiency --- such as number of storage compartments and automatic ice-makers --- as more likely to boost sales, market share, or profits. If this efficiency plateau'' proves lasting, then electricity use for appliance could begin to grow again as larger and more fancy models appear in households. 38 refs., 10 figs., 1 tab.

Schipper, L.; Hawk, D.V.

1989-12-01T23:59:59.000Z

182

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Appliances by Type of Owner-Occupied Housing Unit, 5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ........................................... 68.3 59.1 2.0 1.7 5.4 7.0 1 ................................................ 62.9 54.1 2.0 1.6 5.2 7.1 2 or More .................................. 5.4 5.0 Q Q 0.2 22.1 Most Used Oven ........................ 68.3 59.1 2.0 1.7 5.4 7.0 Electric ......................................

183

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by Year of Construction, 2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1 ................................................ 95.2 13.1 16.3 16.6 12.1 12.7 24.3 4.4 2 or More .................................. 6.5 1.2 0.9 1.1 0.7 1.0 1.6 14.8 Most Used Oven ........................ 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 Electric ......................................

184

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

185

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

186

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

187

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network [OSTI]

Energy Efficiency Potential Study.  Technical Report Energy Efficiency  Potential Study.  Technical Report Energy Efficiency   Renewable Energy Technologies   Transportation   Assessment of Household Carbon Footprint Reduction Potentials is the final report 

Masanet, Eric

2010-01-01T23:59:59.000Z

188

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

189

STEO October 2012 - home heating supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas, propane, and electricity supplies seen plentiful Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be plentiful this winter, with the possible exception of heating oil, which is consumed mostly by households in the Northeast. Heating oil stocks are expected to be low in the East Coast and Gulf Coast states. And with New York state requiring heating oil with lower sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. However, U.S. inventories of natural gas, the most common primary heating fuel used by households and a key fuel for electricity generation, is expected to reach 3.9 trillion cubic feet by

190

Nevada: Kingston Creek Hydro Project Powers 100 Households  

Broader source: Energy.gov [DOE]

Hydropower project produces enough electricity to annually power nearly 100 typical American households.

191

Energy Saver 101: Home Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Saver 101: Home Heating Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

192

UNO Student Health Services Patient's Bill of Rights and Responsibilities  

E-Print Network [OSTI]

health care program. UNO Student Health Services Human Performance Center Rm. 109 (504) 280-6387 wwwUNO Student Health Services Patient's Bill of Rights and Responsibilities Patient's Bill of Rights to the Health Service regarding its operations and the right to change caregivers for any reason. #12;Patient

Kulp, Mark

193

The influence of energy audits on the energy efficiency investments of private owner-occupied households in the Netherlands  

Science Journals Connector (OSTI)

Abstract Energy audits are promoted as an effective tool to drive investment in energy efficiency measures in the residential sector. Despite operating in many countries for several decades details of the impact of audits are mixed. The aim of research presented here is to explore the role of audits on investment in energy efficiency measures by private owner-occupied householders in the Netherlands. Results showed that the main influence of the energy audit was to confirm information held by householders. A significant portion of audit recommendations was ignored, the main reason being that householders considered their dwellings to be adequately energy efficient. A comparison of audit recipients to non-recipients showed that audit recipients did not adopt, plan to adopt or invest in more energy efficiency measures than non-recipients. In fact non-recipients adopted more and invested more in measures. It is concluded that energy based renovation is driven by householder perception of comfort and acceptable outlay on energy bills and not necessarily to expert technical tailored information on the potential to reduce CO2 emissions and environmental impact. Results support arguments for minimum energy efficiency standards and performance based incentives.

Lorraine Murphy

2014-01-01T23:59:59.000Z

194

Lower oil prices also cutting winter heating oil and propane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in...

195

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Household Income, 2005" 4 Space Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Space Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Main Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Main Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

196

E:\BILLS\H6.PP  

Broader source: Energy.gov (indexed) [DOE]

July 14, 2005 July 14, 2005 Ordered to be printed as passed In the Senate of the United States, June 28, 2005. Resolved, That the bill from the House of Representa- tives (H.R. 6) entitled ''An Act to ensure jobs for our future with secure, affordable, and reliable energy.'', do pass with the following AMENDMENT: Strike out all after the enacting clause and insert: SECTION 1. SHORT TITLE; TABLE OF CONTENTS. 1 (a) SHORT TITLE.-This Act may be cited as the ''En- 2 ergy Policy Act of 2005''. 3 2 HR 6 PAP (b) TABLE OF CONTENTS.-The table of contents of this 1 Act is as follows: 2 Sec. 1. Short title; table of contents. Sec. 2. Definitions. TITLE I-ENERGY EFFICIENCY Subtitle A-Federal Programs Sec. 101. Energy and water saving measures in congressional buildings. Sec. 102. Energy management requirements.

197

Energy Saver 101: Home Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download individual sections of the infographic or a high resolution version now. homeHeating.pdf homeHeating_slide-01.png homeHeating_slide-02.png homeHeating_slide-03.png homeHeating_slide-04.png homeHeating_slide-05.png

198

Alternative Underwriting Criteria … Using Utility Bill Payment History as a Proxy for Credit: Case Study on Clean Energy Works Oregon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Policy Brief is an excerpt from the report: "Delivering Energy Efficiency to Middle Income Single Family Households." For the full report and other resources visit: http://middleincome.lbl.gov April 4, 2012 Alternative Underwriting Criteria - Using Utility Bill Payment History as a Proxy for Credit: Case Study on Clean Energy Works Oregon Launched as a Portland-based pilot in April 2010, Clean Energy Works Oregon (CEWO) provides outreach,

199

Expected annual electricity bill savings for various PPA price options |  

Open Energy Info (EERE)

Expected annual electricity bill savings for various PPA price options Expected annual electricity bill savings for various PPA price options Jump to: navigation, search Impact of Utility Rates on PV Economics Bill savings tables (main section): When evaluating PV systems under a PPA, it is important to look at the net effect on the building's annual electricity expense. If the solar value is greater than the PPA price, then the building will realize a net savings on annual energy expenses. If the solar value is less than the PPA price, then the building will realize a net loss. It is useful to understand how annual electricity expenses will be impacted at various PPA price levels. Bill Savings at PPA price of $0.04/kWhr Bill Savings at PPA price of $0.08/kWhr Bill Savings at PPA price of $0.12/kWhr Retrieved from "http://en.openei.org/w/index.php?title=Expected_annual_electricity_bill_savings_for_various_PPA_price_options&oldid=515464"

200

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

202

Omnibus Energy Bill of 2013 (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Wind Program Info State Maine Program Type Climate Policies Generating Facility Rate-Making Green Power Purchasing Interconnection Line Extension Analysis Loan Program Public Benefits Fund Renewables Portfolio Standards and Goals

203

Table 5.17. U.S. Number of Households by Vehicle Fuel Expenditures...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5.17. U.S. Number of Households by Vehicle Fuel Expenditures, 1994 (Continued) (Million Households) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: All...

204

Using census aggregates to proxy for household characteristics: an application to vehicle ownership  

E-Print Network [OSTI]

Instead, Asian and Hispanic households were undersampled byhousehold Age of the householder/Average age of residents Hispanichousehold Age of the householder/Average age of residents Hispanic

Adjemian, Michael; Williams, Jeffrey

2009-01-01T23:59:59.000Z

205

My Energy Audit, Part 1: Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating June 6, 2012 - 2:05pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory My utility company offers a free energy audit, of which I finally took advantage. It was mostly discussion about different ways to save energy, with inspection of a few areas of the house (not quite as comprehensive as the utility company's website indicated it would be, but it was, after all, free). The auditor had a table of my electric bills for the last two years (I forgot to ask for a copy, but I've got several years' worth of bills, and I've started to create my own table anyway). It clearly showed that my winter bills are very high compared to my summer bills. Since I don't have air conditioning, the difference is primarily due to furnace use during the

206

My Energy Audit, Part 1: Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating My Energy Audit, Part 1: Heating June 6, 2012 - 2:05pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory My utility company offers a free energy audit, of which I finally took advantage. It was mostly discussion about different ways to save energy, with inspection of a few areas of the house (not quite as comprehensive as the utility company's website indicated it would be, but it was, after all, free). The auditor had a table of my electric bills for the last two years (I forgot to ask for a copy, but I've got several years' worth of bills, and I've started to create my own table anyway). It clearly showed that my winter bills are very high compared to my summer bills. Since I don't have air conditioning, the difference is primarily due to furnace use during the

207

Consumer Tips for Lowering Your Utility Bill | Open Energy Information  

Open Energy Info (EERE)

Consumer Tips for Lowering Your Utility Bill Consumer Tips for Lowering Your Utility Bill Jump to: navigation, search Whether you are a residential or commercial customer, your monthly utility bill contains a wide range of data such as how much energy you use, what your current rate is, and detailed fees. Depending on how much information your utility provider offers, you can refer to it along with these tips to reduce your energy use and save money. For in-depth tips on saving energy and money at home, visit EnergySavers.gov. If you have 13 months of historical data on your bill: See if you're using more energy now than you did during the same month last year. Are you using more energy? Look for ways to use less electricity such as purchasing energy efficient appliances and lighting and using a programmable thermostat.

208

DOE - Office of Legacy Management -- Billings Hospital - Small Animal  

Office of Legacy Management (LM)

Billings Hospital - Small Animal Billings Hospital - Small Animal Facility - University of Chicago - IL 01 FUSRAP Considered Sites Site: Billings Hospital, Small Animal Facility, University of Chicago (IL 01) Eliminated from consideration under FUSRAP due to limited scope of activities and 15 day half-life of P-32 Designated Name: Not Designated Alternate Name: Small Animal Facility, U. of Chicago IL.01-1 Location: University of Chicago , Chicago , Illinois IL.01-1 Evaluation Year: 1979 IL.01-1 Site Operations: Nature of operations is not clear. Portions of Billings Hospital were reported to have been used as an animal research facility. IL.01-1 Site Disposition: Eliminated IL.01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Phosphorus - 32 IL.01-1

209

DOE Names Bill Drummond As New Bonneville Power Administration  

Broader source: Energy.gov (indexed) [DOE]

Names Bill Drummond As New Bonneville Power Administration Names Bill Drummond As New Bonneville Power Administration Administrator DOE Names Bill Drummond As New Bonneville Power Administration Administrator January 16, 2013 - 7:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department has chosen Bill Drummond to be the new Administrator for the Bonneville Power Administration (BPA), one of the four Power Marketing Administrations (PMAs) the Department oversees. As BPA's Administrator, Drummond will be responsible for managing the non-profit federal agency, which markets carbon-free power from Columbia River hydroelectic dams and operates the surrounding power grid, distributing wind, nuclear and other energy to the Pacific Northwest and beyond. Drummond's leadership of BPA is part of a larger strategy for

210

Energy Efficiency & On-Bill Financing for Small Businesses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency & On-Bill Financing For Small Businesses Presentation for: Webinar DOE 05/11/2011 5/12/2011 Connecticut Energy Efficiency Fund (CEEF) Connecticut's Energy Efficiency Programs are funded by a Charge on Customer's electric bills. The Programs are designed to help customers manage their energy usage and cost. Objective PROVIDE > COST-EFFECTIVE, turn-key CONSERVATION and LOAD MANAGEMENT SERVICES to SMALL C&I CUSTOMERS. What qualifies as a SMALL BUSINESS? A "Mom & Pop" store with a $150 monthly electric bill up to a mid size manufacturing company with a $20,000 monthly electric bill. Examples: Retail, convenience stores, houses of worship, professional offices, non-profits, gas stations, restaurants, common areas of apartment buildings,

211

Reach Survival Estimates, 2008 Bill Muir, Steve Smith, Doug Marsh,  

E-Print Network [OSTI]

Reach Survival Estimates, 2008 Bill Muir, Steve Smith, Doug Marsh, John Williams, and Jim Faulkner Grand Coulee McNary IceHarbor LittleGoose LowerGranite LowerMonumental Juvenile detectors Snake R. trap

212

Bill Wilcox ? The transformation and second birth of Oak Ridge...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 As we continue to examine the transition of the city of Oak Ridge in the late 1950s toward incorporation, the speech Bill Wilcox, who was the Oak Ridge city historian until his...

213

Bill Wilcox ? The transformation and second birth of Oak Ridge...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Bill Wilcox, who was the Oak Ridge city historian, until his passing on September 2, 2013, gave a speech on June 4, 2010, entitled The Transformation and Second Birth of Oak...

214

Bill Wilcox ? The transformation and second birth of Oak Ridge...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 As we continue to examine the transition of the city of Oak Ridge in the late 1950s toward incorporation, the speech Bill Wilcox, who was the Oak Ridge city historian, until his...

215

Secret Lives of Scientists & Engineers - Bill Gasper | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

keeps 300,000 bees in his backyard. Here he's introducing a batch of bees to their new homes. Photos by Mark Lopez. 30418D005 Secret Lives of Scientists: Bill Gasper - Spring set...

216

Riehle. Dorothy From: Sent: To: Subject: Bill Green Tuesday.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Riehle. Dorothy From: Sent: To: Subject: Bill Green . Tuesday. January 11. 2011 9:33 AM - Dorothy- CRiehle@rl.gov Freedom of Information Act (FOIA) request -c-22) 2-...

217

Bill Robinson (Train2Build) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Bill Robinson (Train2Build) Place: Arroyo Grande, CA Website: http:train2build.com References: Train2Build Website1 Information About...

218

FIA-14-0015- In the Matter of Bill Streifer  

Broader source: Energy.gov [DOE]

On March 6, 2014, The Office of Hearings and Appeals (OHA) denied an Appeal filed by Bill Streifer under the FOIA of a final determination issued by the Office of Science’s Chicago Office.  Mr....

219

STEO October 2012 - home heating use  

U.S. Energy Information Administration (EIA) Indexed Site

Last year's warm U.S. winter temperatures to give way to Last year's warm U.S. winter temperatures to give way to normal, increasing household heating fuel use U.S. households will likely burn more heating fuels to stay warm this winter compared with last year Average household demand for natural gas, the most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly in the Northeast, is expected to be 17 percent higher with propane, used mostly in rural areas, also up 17 percent. The primary reason for the boost in heating fuel demand is weather, which is expected to be 20 to 27 percent colder than last winter's unusually warm temperatures in regions of the country

220

Summary of Major Energy Bill Provisions Affecting Federal Energy Managers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Major Energy Bill Provisions Affecting Federal Energy Managers of Major Energy Bill Provisions Affecting Federal Energy Managers Section Lead Agency Provisions 102. Energy management goals DOE * Annual energy reduction goal of 2% from FY 2006 - FY 2015 * Reporting baseline changed from 1985 to 2003 * In 180 days, DOE issues guidelines * Retention of energy and water savings by agencies * DOE reports annually on progress to the President and Congress

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Summary of Major Energy Bill Provisions Affecting Federal Energy Managers  

Broader source: Energy.gov (indexed) [DOE]

of Major Energy Bill Provisions Affecting Federal Energy Managers of Major Energy Bill Provisions Affecting Federal Energy Managers Section Lead Agency Provisions 102. Energy management goals DOE * Annual energy reduction goal of 2% from FY 2006 - FY 2015 * Reporting baseline changed from 1985 to 2003 * In 180 days, DOE issues guidelines * Retention of energy and water savings by agencies * DOE reports annually on progress to the President and Congress

222

The effects of House Bill 72 on Texas Public Schools  

E-Print Network [OSTI]

for several years. In the 1985 legislative session, no changes were made to the funding provisions of House Bill 72. Despite the fact that a revenue shortage developed and many legislators wanted to curtail school funding to increase expenditures... unresponsive to economic growth. As a result, it is likely that new funds will be available for schools only if new taxes or tax increase are enacted (Joint Select Committee On Fiscal Policy, 1985). The deficiencies in House Bill 72 are likely to remain...

Reed, Rhonda Gail

2012-06-07T23:59:59.000Z

223

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

SciTech Connect (OSTI)

In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

224

Survey of Household Energy Use (SHEU)  

E-Print Network [OSTI]

Survey of Household Energy Use (SHEU) 2003 Detailed Statistical Report #12;To obtain additional copies of this or other free publications on energy efficiency, please contact: Energy Publications Office of Energy Efficiency Natural Resources Canada c/o St. Joseph Communications Order Processing Unit

225

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

226

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

227

Opportunities to reduce greenhouse gas emissions from households in Nigeria  

Science Journals Connector (OSTI)

Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas (GHG) emissions through its consumption...2) emissions from kerosene combustion for lighting

O. Adeoti; S. O. Osho

2012-02-01T23:59:59.000Z

228

Household Wealth in a Cross-Country Perspective  

Science Journals Connector (OSTI)

This paper provides a comparative analysis of household wealth in the United States, the United Kingdom, Japan, France, Germany, Spain, and Italy. ... wealth, looking at the instruments in which households invest...

Laura Bartiloro; Massimo Coletta…

2012-01-01T23:59:59.000Z

229

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANALYSIS OF CEE HOUSEHOLD SURVEY ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR ® FOR 2012 TABLE OF CONTENTS Acknowledgements .................................................................................. ii Executive Summary ............................................................................ ES-1 Introduction ............................................................................................... 1 Methodology Overview ............................................................................. 2 Key Findings ............................................................................................. 5 Recognition .................................................................................................................. 5 Understanding ........................................................................................................... 12

230

Wood furnance cuts fuel bills and wastes  

SciTech Connect (OSTI)

The use of a wood burning furnace instead of propane to heat the Saddlecraft manufacturing plant in Cherokee, North Carolina, is described. A chart shows gallons of propane usage in winter for five years. (MHR)

Not Available

1982-01-01T23:59:59.000Z

231

Home Prices and Household Callan Windsor, Jarkko Jskel and  

E-Print Network [OSTI]

Research Discussion Paper Home Prices and Household Spending Callan Windsor, Jarkko Jääskelä. ISSN 1320-7729 (Print) ISSN 1448-5109 (Online) #12;Home Prices and Household Spending Callan Windsor Abstract This paper explores the positive relationship between home prices and household spending

232

UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE  

E-Print Network [OSTI]

refers to these latent goods as transformed goods or T-goods. Leading researchers have explored this technique of incorporating characteristics. In this study, we revisit this technique by trying to uncover the basic wants behind the demand for gas..., distillate fuel oil, and the liquefied petroleum gases (LPG) by US households. To give some examples, electricity may be used for many basic wants such as lighting, cooking, and cooling. Similarly, without being exhaustive, gas may be used for heating...

Diallo, Ibrahima

2013-05-31T23:59:59.000Z

233

U.S. monthly oil production tops 8 million barrels per day for...  

U.S. Energy Information Administration (EIA) Indexed Site

Midwest households expected to see a 33% drop in propane heating bills this winter Midwest households that paid record-high prices for propane last winter to stay warm are expected...

234

Handling Frame Problems When Address-Based Sampling Is Used for In-Person Household Surveys  

Science Journals Connector (OSTI)

......use as the sampling frame for household surveys. This subset includes...However, around 90 percent of households with PO box addresses also have...recent growth, new construction, Hispanic households, non-English-speaking households......

Graham Kalton; Jennifer Kali; Richard Sigman

2014-09-01T23:59:59.000Z

235

NREL: Buildings Research - Utility Bill Calibration Test Cases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Bill Calibration Test Cases Utility Bill Calibration Test Cases The diagram below illustrates the utility bill calibration test cases in BESTEST-EX. In these cases, participants are given input ranges and synthetic utility bills. Software tools calibrate key model inputs using the utility bills and then predict energy savings for the different retrofit cases. Participant energy savings predictions using calibrated models are compared to NREL predictions using state-of-the-art building energy simulation programs. For self-testing, participants should not view reference results until after tested software results have been generated. This diagram provides an overview of the BESTEST-EX utility bill calibration case process. On the left side of the diagram is a box labeled "BESTEST-EX Document" with a list that contains two bulleted items. The first bullet reads "Defines a representative existing home and several retrofit measures." The second bullet reads "Provides input ranges for key model inputs." Underneath this list is an image of a house and to the right of the house is a listing of the measures: R-wall=4.5-6.2; ELA=137-216 in2 ; Tsat=60-75°F, etc. Underneath this grouping is another bullet that reads "Presents utility bills that were generated by: A) randomly selecting key model inputs within ranges (values remain hidden); B) running test cases with selected inputs in EnergyPlus, DOE2.1E, and SUNREL." Below this bullet is a bar graph showing energy savings on the y axis and retrofit measure on the x axis. Inside the graph area is text reading "Reference results remains hidden for utility bill calibration cases." An arrow labeled "Results" points horizontally to the right to the results box. From the top half of this box are two arrows that are labeled "Input Ranges" and "Utility Bills" and points horizontally to the right to another smaller box that is labeled "Audit Software Provider." Underneath this heading are three bullets: one reads "Creates model of existing home knowing input ranges from test," the next one reads "Calibrates model inputs using utility bills," and the third one reads "Predicts retrofit energy savings. Underneath these bullets is an image of a house; to the right of this is a bar graph showing energy savings on the y axis and retrofit measure on the x axis. From this box an arrow labeled "Results" points directly below

236

Tips: Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

237

E-Print Network 3.0 - assessing household solid Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Groundwater Contamination from Household Wastewater... 12;Glossary Household Wastewater Treatment These terms may help you make more accurate assessments......

238

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect (OSTI)

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

239

The Renewable Energy Guy: Q&A with TV's Bill Nye | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Renewable Energy Guy: Q&A with TV's Bill Nye The Renewable Energy Guy: Q&A with TV's Bill Nye The Renewable Energy Guy: Q&A with TV's Bill Nye June 10, 2010 - 11:42am Addthis Bill Nye currently hosts three television shows about science. | Photo courtesy of Bill Nye Bill Nye currently hosts three television shows about science. | Photo courtesy of Bill Nye Lindsay Gsell For years, Bill Nye entertained children on the educational television series "Bill Nye the Science Guy." Using wacky demonstrations, funny music videos and easy to digest lessons, Nye encouraged children to enjoy and appreciate science. The quirky Nye-a scientist, engineer, comedian, author, and inventor-now works to spread the message of renewable energy, and regularly takes on projects to "green" his own Californian home.

240

The Renewable Energy Guy: Q&A with TV's Bill Nye | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Renewable Energy Guy: Q&A with TV's Bill Nye The Renewable Energy Guy: Q&A with TV's Bill Nye The Renewable Energy Guy: Q&A with TV's Bill Nye June 10, 2010 - 11:42am Addthis Bill Nye currently hosts three television shows about science. | Photo courtesy of Bill Nye Bill Nye currently hosts three television shows about science. | Photo courtesy of Bill Nye Lindsay Gsell For years, Bill Nye entertained children on the educational television series "Bill Nye the Science Guy." Using wacky demonstrations, funny music videos and easy to digest lessons, Nye encouraged children to enjoy and appreciate science. The quirky Nye-a scientist, engineer, comedian, author, and inventor-now works to spread the message of renewable energy, and regularly takes on projects to "green" his own Californian home.

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Towards sustainable consumption: do green households have smaller ecological footprints?  

Science Journals Connector (OSTI)

The need for households in rich countries to develop more sustainable consumption patterns is high on the political agenda. An increased awareness of environmental issues among the general public is often presented as an important prerequisite for this change. This article describes how the study team compared the ecological footprints of ''green'' and ''ordinary'' households. These footprint calculations are based on a number of consumption categories that have severe environmental consequences, such as energy and material use in the home, and transport. The comparison is based on a survey of 404 households in the city of Stavanger, where 66 respondents were members of the Environmental Home Guard in Norway. The analysis suggests that, even if the green households have a smaller ecological footprint per household member, this is not caused by their participation in the Home Guard. It merely reflects the fact that green households are larger than ordinary households.

Erling Holden

2004-01-01T23:59:59.000Z

242

Assembly Bill No. 1613 CHAPTER 713  

E-Print Network [OSTI]

advance the efficiency of the state's use of natural gas by capturing unused waste heat, (B) to reduce wasteful consumption of energy through improved residential, commercial, institutional, industrial sizing, energy efficiency, and air pollution control requirements, but would authorize the 89 #12;PUC

243

Household transitions to energy efficient lighting  

Science Journals Connector (OSTI)

Abstract New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The ‘rebound’ effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on \\{ILs\\} accelerated the pace of transition to \\{CFLs\\} and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with \\{CFLs\\} or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions.

Bradford Mills; Joachim Schleich

2014-01-01T23:59:59.000Z

244

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

245

Secretary Bodman Promotes Energy Bill to Western Governors | Department of  

Broader source: Energy.gov (indexed) [DOE]

Promotes Energy Bill to Western Governors Promotes Energy Bill to Western Governors Secretary Bodman Promotes Energy Bill to Western Governors March 1, 2005 - 10:37am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman in a speech before the Western Governors Association today expressed the need for Congress to pass comprehensive energy legislation and highlighted the benefits of the proposal for the western United States. Secretary Bodman also discussed a number of important energy initiatives including: nuclear defense; scientific research; oil and gas exploration in Alaska; hydropower; the strengthening of our power grid; further development of renewable energy; hydrogen powered fuel-cell vehicles; and clean-coal power generation. "The energy challenges facing our country today are greater than they have

246

Home Energy Saver: Comparing Your Results to Your Utility Bill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparing The Results to The Home's Utility Bill Comparing The Results to The Home's Utility Bill Energy use varies widely, even among seemingly identical homes! This is because of differences in house design, appliances, lifestyles, and comfort requirements. If your Home Energy Saver results differ from your actual energy bills, be sure to first check that all your input values agree with how your home is actually designed and operated. If the total cost differs but energy use is the same, keep in mind that we use a single price for energy, while many utilities use complicated "tariff structures", where the price varies by the time of year and/or day, your level of consumption, or other factors. Any remaining differences are probably due to one or more of the factors below. After reviewing these factors, you may want to modify

247

Baltimore Vet Cuts Energy Bills With Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Vet Cuts Energy Bills With Solar Baltimore Vet Cuts Energy Bills With Solar Baltimore Vet Cuts Energy Bills With Solar October 28, 2010 - 5:09pm Addthis Baltimore resident Paul Bennett installed 14 solar panels such as these on his historic row home with the help of a state solar grant and federal tax credit through the Recovery Act. | Energy Department Photo | Baltimore resident Paul Bennett installed 14 solar panels such as these on his historic row home with the help of a state solar grant and federal tax credit through the Recovery Act. | Energy Department Photo | Stephen Graff Former Writer & editor for Energy Empowers, EERE On a 'green' mission last spring, a 62 year-old retiree living on a modest income in Baltimore found himself at the Solar and Wind Expo at the Timonium Fairgrounds in Maryland.

248

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

249

Transparent Prices for Municipal Water: Impact of Pricing and Billing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transparent Prices for Municipal Water: Impact of Pricing and Billing Transparent Prices for Municipal Water: Impact of Pricing and Billing Practices on Residential Water Use Speaker(s): Sylvestre Gaudin Date: November 29, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: John Busch Jr. Economic Research shows overwhelmingly that residential consumers do not pay much attention to price changes when they make decisions about water use. This weak price sensitivity is often attributed to the intrinsic nature of water as a necessity. However, a large part of water use is the result of choices that could easily be altered without affecting basic welfare. Economic theory points to at least two other reasons why consumers would not be responsive to price changes for water use: the fact that water bills constitute a small portion of their budgets, and the fact that price

250

Florida Residents See Energy Bill Reductions | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Florida Residents See Energy Bill Reductions Florida Residents See Energy Bill Reductions Florida Residents See Energy Bill Reductions January 27, 2010 - 3:42pm Addthis Indiantown, Florida, has a lot of small-town charm. Its 7,000 residents have acres of citrus groves but only one traffic light in the town. It might be small in size, but Indiantown Non-Profit Housing is making quite an impact across its region. This nonprofit weatherizes the homes of qualifying residents free of charge, and demand for its services is on the rise. "One of the best outcomes is that we can hire additional employees" says Director Donna Carman, referring to the $5.2 million in Recovery Act funds Indiantown Non-Profit Housing has received. The staff has more than doubled from five to 16, meaning that Floridians like 72-year-old Edith

251

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Household Income, 2005" 8 Water Heating Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Water Heating Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Number of Water Heaters" "1.",106.3,25.8,28,19.6,12.7,20.2,16,37.3 "2 or More",3.7,0.3,0.5,0.9,0.4,1.7,"Q",0.5 "Do Not Use Hot Water",1.1,0.6,0.3,"Q","N","Q",0.5,0.8

252

Spiral Rainbands in a Numerical Simulation of Hurricane Bill (2009). Part II: Propagation of Inner Rainbands  

Science Journals Connector (OSTI)

This is the second part of a study that examines spiral rainbands in a numerical simulation of Hurricane Bill (2009). This paper evaluates whether the propagation of inner rainbands in the Hurricane Bill simulation is consistent with previously ...

Yumin Moon; David S. Nolan

253

Maintenance Guide for Greenhouse Ventilation, Evaporative Cooling Heating Systems1  

E-Print Network [OSTI]

condensation in winter, reduced life and reliability of ventilation equipment, and high repair bills cooling and heating systems. VENTILATION SYSTEMS The operating efficiency of a ventilation fan can be pockets of stagnant air, inadequate cooling from evaporative cooling pads, high heating expenses, heavy

Watson, Craig A.

254

A Feasibility Study: Mining Daily Traces for Home Heating Control  

E-Print Network [OSTI]

savings as well as 14.9%­59.2% reduction in miss time. Keywords Energy, home heating, daily traces, prediction 1. INTRODUCTION Heating, ventilation and cooling (HVAC) contributes most to a home's energy bills, accounting for 48% of residential energy consumption in the U.S. and 61% in the U.K., 64% in Canada where

Whitehouse, Kamin

255

Rural household energy consumption and its implications for eco-environments in NW China: A case study  

Science Journals Connector (OSTI)

Abstract Rural household energy consumption plays an essential role in the daily life of farmers, especially in developing regions. In this paper, we present a study of household energy consumption in terms of energy sources and energy end uses, and analysis of technical and economic issues associated with the use of biomass and renewable energy and the replacement of fossil fuels. Results show that energy from biomass represents the largest share of total energy supply, and that 41.15% of total energy is consumed for home heating and cooking. The average cost of household energy is 1259 RMB ($US193.6) and this expense is no longer subsidized by the government. It takes less than one year to make a solar stove profitable and less than two years to pay back the household cost of biogas digesters. An 8 m3 digester can produce as much energy as 500–550 kg of standard coal or 940 kg of firewood, while a solar stove can generate 1.76 × 103 MJ heat each year. Moreover, it is estimated that in rural China the annual reduction of CO2 and SO2 emissions in 2020, due to the replacement of fossil fuel by biomass, will be 68.86 × 106 and 54.37 × 104 tons, respectively. Overall, the investigations and analyses have revealed that the structure of rural household energy consumption is undergoing a transformation from traditional low-efficiency biomass domination to integrated consumption of traditional and renewable energies. Renewable energy will significantly contribute to the sustainable development of rural households.

Hewen Niu; Yuanqing He; Umberto Desideri; Peidong Zhang; Hongyi Qin; Shijin Wang

2014-01-01T23:59:59.000Z

256

How sailfish use their bills to capture schooling prey  

Science Journals Connector (OSTI)

...Electrical Engineering and Computer Science, Lubeck University...their bill into sardine schools without eliciting an...to slash through the school with powerful lateral...were present around a school of prey) presumably...Carlsberg Foundation for a grant to J.F.S. Figure-1...

2014-01-01T23:59:59.000Z

257

Case Studies—Financing Energy Improvements on Utility Bills  

Broader source: Energy.gov [DOE]

Hosted by Technical Assistance Program (TAP), the State and Local Energy Efficiency Action Network (SEE Action), and Lawrence Berkeley National Laboratory's Electricity Market and Policy Group, this webinar was the second of a two-part webinar series focused on the new report, Financing Energy Improvements on Utility Bills: Market Updates and Key Program Design Considerations for Policymakers and Administrators.

258

Views of science clash in debate over NSF bill  

Science Journals Connector (OSTI)

...divided government. “What's most troubling in the bill is the questioning of scientists and of science,” says Michael Lubell, head of the Washington, D.C., office of the American Physical Society. “There seems to be a growing desire by some...

Jeffrey Mervis

2014-05-30T23:59:59.000Z

259

Inconclusive Experiment with Rats By Bill Menke, December 1, 2013  

E-Print Network [OSTI]

Inconclusive Experiment with Rats By Bill Menke, December 1, 2013 The New York Times recently of genetically-modified corn. The Times article says: The editor of the journal, Food and Chemical Toxicology the paper's main result, that rats fed genetically-modified, herbicide-resistant corn have a higher incident

Menke, William

260

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

Neighborhood Program GETS – Green Energy Training ServicesGJGEI – Green Jobs, Green Energy Initiative CEWO – Cleanincome households. The Green Energy Training Services (GETS)

Zimring, Mark

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Barriers to household investment in residential energy conservation: preliminary assessment  

SciTech Connect (OSTI)

A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

Hoffman, W.L.

1982-12-01T23:59:59.000Z

262

Economic theory and women's household status: The case of Japan  

Science Journals Connector (OSTI)

Economic development disadvantages wives. Conventional microeconomic theory predicts this. As household incomes rise, wives have incentives to specialize in intangible household production. This may raise total household production according to the theory of comparative advantage, but disproportionately favors husbands in distribution of the gains according to the marginal productivity theory of distribution. Wives may become better off in absolute terms but more dependent financially on their husbands and lose power within the household. Historically, Japanese gender roles became highly specialized and wives’ legal status declined, although other Meiji-era features protected wives. Policies to improve women's status should address the precise economic problem involved.

Barbara J. Redman

2008-01-01T23:59:59.000Z

263

Confronting earthquake risk in Japan—are private households underinsured?  

Science Journals Connector (OSTI)

Despite the fact that Japan is an earthquake-prone country and Japanese ... risk averse, less than half of Japanese households are insured against earthquake risk. Based on...

Franz Waldenberger

2013-03-01T23:59:59.000Z

264

Salmon consumption at the household level in Japan.  

E-Print Network [OSTI]

??The primary purpose of this study is to investigate the salmon demand of Japanese households. The specific goals are to illuminate the substitutional relationship between… (more)

Kikuchi, Akihiro

1987-01-01T23:59:59.000Z

265

Consumer perspectives on household hazardous waste management in Japan  

Science Journals Connector (OSTI)

We give an overview of the management systems of household hazardous waste (HHW) in Japan and discuss the management systems and their...

Misuzu Asari; Shin-ichi Sakai

2011-02-01T23:59:59.000Z

266

The value of a broad mind: some natural history meanderings of Bill Hamilton *  

E-Print Network [OSTI]

The value of a broad mind: some natural history meanderings of Bill Hamilton * DAVID HUGHES) that to write a paper with Bill Hamilton admitted one to a small circle, the honour of inclusion in which history meanderings of Bill Hamilton. Such curiosity may be justified, as my own work (on peculiar

Amrhein, Valentin

267

Purchasing a New Energy-Efficient Central Heating System | Department of  

Broader source: Energy.gov (indexed) [DOE]

Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more this winter, on average, than last year, and those using propane can expect to pay $188 more. Households heating primarily with electricity can expect to pay an average of $89 more. That's a lot of money resulting solely from rising heating expenses. You may long for the "good old days," but when it comes to heating systems,

268

Purchasing a New Energy-Efficient Central Heating System | Department of  

Broader source: Energy.gov (indexed) [DOE]

Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more this winter, on average, than last year, and those using propane can expect to pay $188 more. Households heating primarily with electricity can expect to pay an average of $89 more. That's a lot of money resulting solely from rising heating expenses. You may long for the "good old days," but when it comes to heating systems,

269

Intra-Household Inequality in Transitional Russia Ekaterina Kalugina  

E-Print Network [OSTI]

1 Intra-Household Inequality in Transitional Russia Ekaterina Kalugina Natalia Radtchenko Catherine and satisfaction. Using two different subjective questions of the Russian data RLMS (Russia Longitudinal Monitoring and social changes in Russia, we investigate the dynamics of household behavior. Keywords: subjective data

Paris-Sud XI, Université de

270

Controlling Households' Drilling Fever in France: an economic modeling approach  

E-Print Network [OSTI]

to generate environmental benefits through reducing water use, has produced economic incentives for households; France; households; domestic boreholes; tube well; water pricing. Author-produced version Fourth World negative environmental impact of water price increase in the drinking water sector. Using primary data

Boyer, Edmond

271

Assimilation and differences between the settlement patterns of individual immigrants and immigrant households  

Science Journals Connector (OSTI)

...delineate directions for future household-scale investigations of...Categorization: Individuals or Households? The concentration on the...individual bodies. Of course, household structure and geographic context...children compared with non-Hispanic white children hinge on such...

Mark Ellis; Richard Wright

2005-01-01T23:59:59.000Z

272

Efficient Use of Commercial Lists in U.S. Household Sampling  

Science Journals Connector (OSTI)

......educational attainment, Hispanic ethnicity, household income, and home tenure...on the two persons in the household as well as the Hispanic ethnicity status of the head of household (assuming that the Hispanic ethnicity status of persons......

Richard Valliant; Frost Hubbard; Sunghee Lee; Chiungwen Chang

2014-06-01T23:59:59.000Z

273

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network [OSTI]

=2 Senior h =3 Table 17: Japan household income distributionto 2005 Japan Census (millions of households)). CHAPTER 5.same shifts of household dynamics as Japan (i.e. lower birth

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

274

Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions  

Science Journals Connector (OSTI)

...ineffective in reducing household energy consumption. Mass media...10 years. The changes in household behavior outlined above result...European Union countries and Japan, where the household sector is less energy intensive. Analyses similar...

Thomas Dietz; Gerald T. Gardner; Jonathan Gilligan; Paul C. Stern; Michael P. Vandenbergh

2009-01-01T23:59:59.000Z

275

Water Heating | OpenEI  

Open Energy Info (EERE)

Water Heating Water Heating Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB) application/vnd.ms-excel icon 2005_Avg.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 69.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2005 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote

276

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

277

"Table HC7.10 Home Appliances Usage Indicators by Household...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"...

278

E-Print Network 3.0 - acute household accidental Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating the health benefits of transitions in household energy Summary: ; Household energy; Indoor air pollution; Intervention assessment; Kenya 1. Introduction Acute...

279

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network [OSTI]

of household refrigerators and freezers 2 . Therefore, thesales of the refrigerators and freezers are about 20.6for household refrigerators and freezers has been updated

Lin, Jiang

2006-01-01T23:59:59.000Z

280

Modeling households’ decisions on reconstruction of houses damaged by earthquakes––Japanese case study  

Science Journals Connector (OSTI)

In this study, households’ decisions on reconstruction of damaged houses were modeled, using questionnaire data in Japan. Characteristics of households’ decisions were investigated using parameter estimation resu...

H. Sakakibara; H. Murakami; S. Esaki; D. Mori; H. Nakata

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

This Week In Petroleum Printer-Friendly Version  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

16, 2011 Next Release: February 24, 2011 What can the groundhog tell you about your heating bills? Winter heating oil expenditures for the average household in the Northeast are...

282

Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems  

Science Journals Connector (OSTI)

Abstract In recent years the global photovoltaic (PV) market has expanded rapidly due to a sharp decline in PV prices and increased attention to the importance of sustainable energy. Northern Chile has one of the highest irradiance levels in the world as well as one the highest electricity rates in Latin America. Because of these conditions, Chile is one of very few countries where several PV projects are being developed without government subsidies and consequently, the PV industry is experiencing rapid growth. This paper reviews the opportunity to take advantage of these market conditions within the residential sector, modeling PV arrays across 10 cities in Chile. A detailed modeling of PV systems is performed to achieve an accurate analysis of energy production and electricity cost, using local resource data, optimal array orientation and inclination, and production losses. A review of how Net Metering and Net Billing affect the value of the PV production is applied and a comparison using levelized cost of electricity (LCOE) is conducted. Net Metering is found to be a better policy choice to promote PV systems than Net Billing because energy injected into the electrical network is paid at the complete retail rate. However, in developed countries this kind of policy is unlikely to be supported because of it?s economic unfeasibility. Under a Net Billing scheme a consumer will see an advantage when energy is recorded over longer time intervals and when installing a system with smaller capacity relative to household electricity consumption. This prevents excess generation from being injected into the network which would be bought by the utility at lower prices than the retail rate. Payback periods are found to be low, between 6 years in northern areas with high retail rates and 13 years in other areas with lower radiation and retail rates.

David Watts; Marcelo F. Valdés; Danilo Jara; Andrea Watson

2015-01-01T23:59:59.000Z

283

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

284

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total........................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Cooling Equipment.......................... 17.8 5.4 5.3 2.7 2.5 2.0 Have Cooling Equipment...................................... 93.3 24.6 29.6 15.7 13.4 10.0 Use Cooling Equipment....................................... 91.4 24.0 29.1 15.5 13.2 9.7 Have Equipment But Do Not Use it...................... 1.9 0.6 0.5 Q 0.2 0.4 Type of Air-Conditioning Equipment 1, 2 Central System................................................... 65.9 15.3 22.6 10.7 9.9 7.3 Without a Heat Pump....................................... 53.5 12.5 17.9 8.7 8.2 6.3 With a Heat Pump............................................ 12.3

285

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

286

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

287

Smoothing consumption across households and time : essays in development economics  

E-Print Network [OSTI]

This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

Kinnan, Cynthia Georgia

2010-01-01T23:59:59.000Z

288

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

in gallons, of this household's storage tank(s)? Enter the capacity for the two largest tanks (if there is more than one) in the boxes below. If the capacity is not known, write...

289

Fact #614: March 15, 2010 Average Age of Household Vehicles  

Broader source: Energy.gov [DOE]

The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first...

290

Table 2. Percent of Households with Vehicles, Selected Survey...  

U.S. Energy Information Administration (EIA) Indexed Site

or More","NA","NA",93.75,96.42857143,91.27516779,97.46835443 "Race of Householder1" " White",88.61111111,"NA",91.54929577,91.68704156,90.27093596,92.77845777 " Black...

291

Fact #748: October 8, 2012 Components of Household Expenditures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but then declined until about 2004 when gasoline and motor oil expenditures began to rise again. The share of household expenditures on gasoline and oil was exactly the same...

292

Householder Symposium on Numerical Linear Algebra June 1721, 2002  

E-Print Network [OSTI]

for discussions. This year's symposium is held at Peebles Hotel Hydro in the small town of Peebles (populationHouseholder Symposium on Numerical Linear Algebra June 17­21, 2002 Peebles Hotel Hydro, Scotland

Higham, Nicholas J.

293

The impact of retirement on household consumption in Japan  

Science Journals Connector (OSTI)

Using monthly data from the Japanese Family Income and Expenditure Survey, we examine the impact of retirement on household consumption. We find little evidence of an immediate change in consumption at retirement, on average, in Japan. However, we find a decrease in consumption at retirement for low income households that is concentrated in food and work-related consumption. The availability of substantial retirement bonuses to a large share of Japanese retirees may help smooth consumption at retirement. We find that those households that are more likely to receive such bonuses experience a short-run consumption increase at retirement. However, among households that are less likely to receive a retirement bonus, we find that consumption decreases at retirement.

Melvin Stephens Jr.; Takashi Unayama

2012-01-01T23:59:59.000Z

294

On-Bill Repayment: A Proposal to Increase Investment in Texas  

E-Print Network [OSTI]

ON-BILL REPAYMENT: A Proposal to Increase Investment in Texas CATEE October 11, 2012 EDF PROPOSAL: ON-BILL REPAYMENT ? Private financing for qualifying Energy Efficiency and Renewable Energy projects ? Loan is repaid on utility bill... ? Industrial ? Public 4 BENEFITS OF OBR No direct costs to taxpayers or ratepayers Creates jobs Provides low cost capital to consumer Accelerates clean energy investments and emissions reductions and increases reliability of service Scalable...

Copithorne, B.

2012-01-01T23:59:59.000Z

295

Energy efficiency in Norwegian households - identifying motivators and barriers with a focus group approach  

Science Journals Connector (OSTI)

This paper describes the theoretical background and results of a focus group study on determinants of energy related behaviour in Norwegian households. 70 Norwegians between 18 and 79 years of age participated in eight focus-groups in four Norwegian cities. The aim of the study was to identify behaviours that Norwegians consider relevant with respect to energy use, the main determinants of those behaviours, as well as barriers against and facilitators of energy efficiency. The most important behaviours from the participants' perspectives were heating, water heating, use of white ware and mobility. The main motivators named were minimising behavioural costs, value orientations, perceived consumer efficacy and social norms. The most important barriers were structural misfits, economic, effort, time consumption, low consumer efficacy and lack of relevant and trustworthy information. The most potent facilitators were economic incentives, gains in comfort, reduced effort, tailored practical information, individual feedback and legislative actions.

Christian A. Klöckner; Bertha M. Sopha; Ellen Matthies; Even Bjørnstad

2013-01-01T23:59:59.000Z

296

Bill Gates and Deputy Secretary Poneman Discuss the Energy Technology Landscape  

Broader source: Energy.gov [DOE]

Bill Gates and Deputy Secretary of Energy Daniel Poneman discuss the future of energy technology during the twenty-second Plenary Meeting of the Nuclear Suppliers Group.

297

Household energy consumption and its demand elasticity in Thailand  

Science Journals Connector (OSTI)

This study concentrates on the analysis of energy consumption, expenditure on oil and LPG use in cars and aims to examine the elasticity effect of various types of oil consumption. By using the Deaton's analysis framework, the cross-sectional data of Thai households economic survey 2009 were used. By defining energy goods in the scope of automobile fuel, the results reflect the low importance of high-quality automobile fuel on all income level households. Thai households tend to vary the quality rather than the quantity of thermal energy. All income groups have a tendency to switch to lower quality fuel. Middle and high-middle households (Q3 and Q4) are the income groups with the greatest tendency to switch to lower-quality fuel when a surge in the price of oil price occurs. The poorest households (Q1) are normally insensitive to a change of energy expenditure in terms of quality and quantity. This finding illustrates the LPG price subsidy policy favours middle and high-middle income households. The price elasticity of energy quantity demand is negative in all income levels. High to middle income families are the most sensitive to changes in the price of energy.

Montchai Pinitjitsamut

2012-01-01T23:59:59.000Z

298

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

299

Transferring 2001 National Household Travel Survey  

SciTech Connect (OSTI)

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

300

U.S. SOLAR ENERGY HEATS UP  

Science Journals Connector (OSTI)

U.S. SOLAR ENERGY HEATS UP ... The solar incentives now last for eight more years and allow businesses, residents, and utilities to deduct from their federal tax bills 30% of the cost of a solar energy system. ... Previously, utilities could not directly get the federal break, and benefits for home owners who wanted rooftop solar panels were capped at $2,000 for a system likely to cost $25,000 to $35,000. ...

JEFF JOHNSON

2008-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Delivering Energy Efficiency to Middle Income Single Family Households  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivering Energy Efficiency to Middle Income Single Family Households Delivering Energy Efficiency to Middle Income Single Family Households Title Delivering Energy Efficiency to Middle Income Single Family Households Publication Type Report Year of Publication 2011 Authors Zimring, Mark, Merrian Borgeson, Ian M. Hoffman, Charles A. Goldman, Elizabeth Stuart, Annika Todd, and Megan A. Billingsley Pagination 102 Date Published 12/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The question posed in this report is: How can programs motivate these middle income single family households to seek out more comprehensive energy upgrades, and empower them to do so? Research methods included interviews with more than 35 program administrators, policy makers, researchers, and other experts; case studies of programs, based on interviews with staff and a review of program materials and data; and analysis of relevant data sources and existing research on demographics, the financial status of Americans, and the characteristics of middle income American households. While there is no 'silver bullet' to help these households overcome the range of barriers they face, this report describes outreach strategies, innovative program designs, and financing tools that show promise in increasing the attractiveness and accessibility of energy efficiency for this group. These strategies and tools should be seen as models that are currently being honed to build our knowledge and capacity to deliver energy improvements to middle income households. However, the strategies described in this report are probably not sufficient, in the absence of robust policy frameworks, to deliver these improvements at scale. Instead, these strategies must be paired with enabling and complementary policies to reach their full potential.

302

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

303

SmartCharge: cutting the electricity bill in smart homes with energy storage  

Science Journals Connector (OSTI)

Market-based electricity pricing provides consumers an opportunity to lower their electric bill by shifting consumption to low price periods. In this paper, we explore how to lower electric bills without requiring consumer involvement using an intelligent ... Keywords: battery, electricity, energy, grid

Aditya Mishra; David Irwin; Prashant Shenoy; Jim Kurose; Ting Zhu

2012-05-01T23:59:59.000Z

304

Money for Research, Not Energy Bills: Finding Energy and Cost Savings in  

E-Print Network [OSTI]

LBNL-4282E Money for Research, Not Energy Bills: Finding Energy and Cost Savings in High by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its of California. #12;1 Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High

305

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage  

E-Print Network [OSTI]

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

Shenoy, Prashant

306

Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You |  

Broader source: Energy.gov (indexed) [DOE]

Tricks to Stop Your Energy Bill from Haunting You Tricks to Stop Your Energy Bill from Haunting You Energy Efficiency Tricks to Stop Your Energy Bill from Haunting You October 21, 2013 - 2:07pm Addthis This Halloween, keep ghosts and goblins at bay -- while saving energy and money -- with these home energy efficiency tricks. | Infographic by Sarah Gerrity, Energy Department. This Halloween, keep ghosts and goblins at bay -- while saving energy and money -- with these home energy efficiency tricks. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs What are the key facts? The typical American family spends at least $2,000 a year on their home energy bills. Families can save up to 20-30 percent on their energy bills by

307

Bodman Statement on House Passage of Energy Bill | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

House Passage of Energy Bill House Passage of Energy Bill Bodman Statement on House Passage of Energy Bill April 21, 2005 - 10:57am Addthis Washington, DC - Energy Secretary Samuel W. Bodman released the following statement today regarding House passage of energy legislation: "I congratulate the House of Representatives for passing comprehensive energy legislation. This bill will put us on a path to affordable and reliable supplies of energy in the future by improving energy efficiency; increasing domestic energy supplies; diversifying our energy sources to include more renewable energy sources; and modernizing our energy delivery system. For the good of American families, the American economy and America's national security, I call on the Senate to pass energy legislation and get a bill to the President's desk by this summer."

308

Bill Richardson Sworn in as Secretary of Energy | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Bill Richardson Sworn in as Secretary of Energy | National Nuclear Security Bill Richardson Sworn in as Secretary of Energy | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Bill Richardson Sworn in as Secretary of Energy Bill Richardson Sworn in as Secretary of Energy August 18, 1998 Washington, DC Bill Richardson Sworn in as Secretary of Energy

309

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

310

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

311

Water Related Energy Use in Households and Cities - an Australian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

312

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

313

An exploratory study of Spanish households' WEEE disposal behaviour  

Science Journals Connector (OSTI)

This paper presents the findings of an exploratory study based on a survey of 1,537 households in Spain. The questionnaire included 23 key questions regarding the number of appliances in use, previous appliances lifetimes, reasons for buying each new appliance and end-of-life handling of discarded appliances. The distribution of the households along a number of relevant factors was analysed and a prototypical household was identified. A non-parametric analysis of the duration of each type of appliance has also been carried out and it was found that television sets are the most durable of the appliances considered. Survival rates for irons fall more rapidly than for microwaves. Moreover, television sets are the most durable of the appliances considered. Replacement rates of personal computers rapidly increase after approximately six to eight years. Finally, a statistical analysis of the respondents motivations for recycling the appliances considered in this study was carried out.

Ester Gutiérrez; Belarmino Adenso-Díaz; Sebastián Lozano; Plácido Moreno

2011-01-01T23:59:59.000Z

314

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

315

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

316

Participants: William Naughton, COHMED Bill Sherman, NE HLRW Task Force  

Broader source: Energy.gov (indexed) [DOE]

conference call May 27, 1998 conference call May 27, 1998 Participants: William Naughton, COHMED Bill Sherman, NE HLRW Task Force Bob Fronczak, AAR Mike Butler, UETC Ray English, DOE-NR George Ruberg, UETC Kevin Blackwell, FRA Markus Popa, DOE-RW Sandy Covi, UP The Rail Topic Group is currently in a transitional mode, moving simultaneously toward closure of the two rail information matrices, Comparison of CVSA Recommended National Procedures and Out-Of-Service Criteria for the Enhanced Safety Inspection of Commercial Highway Vehicles Transporting Transuranics, Spent Nuclear Fuel, and High Level Waste to Rail Inspection Standards, and Rail and Highway Regulations Relative to the Transportation of Radioactive Materials and their Applicability to States, Tribes, Shippers, and Carriers, (both

317

"2012 Average Monthly Bill- Residential"  

U.S. Energy Information Administration (EIA) Indexed Site

Residential" Residential" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",6203726,634.13095,15.713593,99.644755 "Connecticut",1454651,730.85302,17.343298,126.75402 "Maine",703770,530.56349,14.658797,77.774225 "Massachusetts",2699141,627.15845,14.912724,93.52641 "New Hampshire",601697,614.81776,16.070168,98.802249 "Rhode Island",435448,597.34783,14.404061,86.042344 "Vermont",309019,565.03618,17.006075,96.090478 "Middle Atlantic",15727423,700.63673,15.272654,107.00582

318

On Bill Financing: SDG&E/SoCalGas  

Broader source: Energy.gov (indexed) [DOE]

2 San Diego Gas and Electric Co. and Southern California Gas Company. All copyright and trademark rights reserved. 2 San Diego Gas and Electric Co. and Southern California Gas Company. All copyright and trademark rights reserved. On Bill Financing: SDG&E / SoCalGas Frank Spasaro May 6, 2011 US - China Energy Efficiency Forum OVERVIEW of SDG&E / Southern California Gas * Covers most of the southern parts of California: * 24, 000 square miles * Over 24 million residents * 1.4 million electric meters * 6.65 million gas meters (850k + 5.8 million) California's Energy Action Plan II * In 2005, the CPUC and CEC'S EAP II declared: "[The} goal is for California's energy to be adequate, affordable, technologically advanced, and environmentally sound...[C]ost effective

319

"2012 Average Monthly Bill- Industrial"  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial" Industrial" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Number of Customers","Average Monthly Consumption (kWh)","Average Price (cents/kWh)","Average Monthly Bill (Dollar and cents)" "New England",34164,67854.037,11.83487,8030.4373 "Connecticut",4647,63947.063,12.672933,8103.9685 "Maine",2780,90741.457,7.9819499,7242.9376 "Massachusetts",21145,66710.826,12.566635,8383.3057 "New Hampshire",3444,47247.217,11.83228,5590.423 "Rhode Island",1927,39935.911,10.676724,4263.8471 "Vermont",221,536044.12,9.9796777,53495.475 "Middle Atlantic",45836,126368.14,7.4903534,9465.42 "New Jersey",12729,50817.89,10.516509,5344.2677

320

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

322

Energy demand of German households and saving potential  

Science Journals Connector (OSTI)

The implementation of the principles of sustainable development requires both using potentialities in saving resources and cutting down emissions (efficiency strategies) as well as more conscious patterns of behaviour of the actors involved (sufficiency strategies). Starting from the current situation of annual CO2 emissions of about 10 t and a sustainability goal of 1â??2 t CO2 emissions per inhabitant and year, the question arises in how far households can contribute to achieve this goal. Therefore, in this paper, the environmental impacts of the energy demand of German households will be evaluated by means of describing its status quo and there from deriving saving potentials.

Anke Eber; Dominik Most; Otto Rentz; Thomas Lutzkendorf

2008-01-01T23:59:59.000Z

323

Household solid waste characteristics and management in Chittagong, Bangladesh  

SciTech Connect (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p < 0.05), education level (r{sub xy} = 0.244, p < 0.05) and monthly income (r{sub xy} = 0.671, p < 0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

324

New Jersey: Reducing Energy Bills for Camden's Families | Department...  

Energy Savers [EERE]

system. Technicians inject airborne particles into the HVAC (heating, ventilation and air conditioning) duct system. Before the injections, technicians block furnaces, fans,...

325

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

326

The Travel Behavior of Immigrants and Race/Ethnicity Groups: An Analysis of the 2001 National Household Transportation Survey  

E-Print Network [OSTI]

the average household size for Hispanic respondents isper year, while households of black and Hispanic respondentsHispanic” versus “settled” and native born residents. Vehicle ownership is highly correlated with mode choice as households

Handy, Susan L; Tal, Gil

2005-01-01T23:59:59.000Z

327

Household Vehicles Energy Use: Latest Data and Trends - Table...  

Gasoline and Diesel Fuel Update (EIA)

... 32.8 17.2 307 13.4 16.1 14.2 2.0 21.3 14.1 Race of Householder White... 149.5 78.3 1,774 77.6...

328

THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD  

E-Print Network [OSTI]

energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas.46]. The cost of these devices was also statistically significant. Keywords: electricity use; energy efficiency the Canadian Industrial Energy End Use Data and Analysis (CIEEDAC) for their financial support made possible

329

Household Segmentation in Food Insecurity and Soil Improving Practices in Ghana  

E-Print Network [OSTI]

secure household, and households farming medium quality soil increase the probability of adopting soil improving practices. Application of chemical fertilizers, commercial seeds, and pesticides, along with operating under a seasonal lease tenure...

Nata, Jifar T

2013-08-09T23:59:59.000Z

330

Logistic regression models for predicting trip reporting accuracy in GPS-enhanced household travel surveys  

E-Print Network [OSTI]

This thesis presents a methodology for conducting logistic regression modeling of trip and household information obtained from household travel surveys and vehicle trip information obtained from global positioning systems (GPS) to better understand...

Forrest, Timothy Lee

2007-04-25T23:59:59.000Z

331

Fact #747: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure  

Broader source: Energy.gov [DOE]

Except for housing, transportation was the largest single expenditure for the average American household in 2010. The average household spends more on transportation in a year than on food. Vehicle...

332

Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles  

Broader source: Energy.gov [DOE]

Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of...

333

Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles  

Broader source: Energy.gov [DOE]

When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles...

334

A Comparison of Household Budget Allocation Patterns Between Hispanic Americans and Non-Hispanic White Americans  

Science Journals Connector (OSTI)

The budget allocation patterns of Hispanic versus non-Hispanic White households are examined. Annual household expenditure data from 1980 to 1992 are ... Index (1990). The sample includes 588 Hispanic and 8,444 n...

Jessie X. Fan; Virginia Solis Zuiker

1998-06-01T23:59:59.000Z

335

The household production function approach to valuing climate: the case of Japan  

Science Journals Connector (OSTI)

In fact ours is not the first attempt to use the household production function technique empirically to estimate the ... climate and the impact of climate change on households. But our analysis uses repeated cros...

David Maddison; Katrin Rehdanz; Daiju Narita

2013-01-01T23:59:59.000Z

336

Water Heating Standing Technical Committee Presentation  

Broader source: Energy.gov (indexed) [DOE]

Standing Technical Committee Standing Technical Committee Water Heating Residential Energy Efficiency Stakeholder's Meeting February 29, 2012 - Austin, Texas 2 STC Chairman Responsibilities * To maintain the Water Heating Strategic Plan (living document) * To work with stakeholders to identify research activities that resolve gaps & barriers towards achieving Water Heating Strategic Goals * To work with stakeholders to prioritize gaps leading to future BA research efforts * To serve as a collection point for BA research activities and outside research * To facilitate collaboration among BA researchers and the marketplace 3 Water Heating as a Significant End Use According to DOE RECS data, residential water heating represents 20% of the energy delivered to U.S. households. 4 Water Heating Strategic Goals

337

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

338

A life cycle approach to the management of household food waste - A Swedish full-scale case study  

SciTech Connect (OSTI)

Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.

Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden); Cour Jansen, J. la [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden)

2011-08-15T23:59:59.000Z

339

Frequency and longitudinal trends of household care product use Rebecca E. Moran a  

E-Print Network [OSTI]

SUPERB Indoor environment d-limonene a b s t r a c t The use of household cleaning products and air, frequencies of use of eight types of household cleaning products and air fresheners and the performance. Introduction Household care products, such as cleaning products and air fresheners, are frequently used

Leistikow, Bruce N.

340

A Statistical Model to Assess Indirect CO2 Emissions of the UAE Residential Sector  

E-Print Network [OSTI]

. Determination of household energy using ?fingerprints? from energy billing data. Energy Research 10(4), pp: 393?405. [5] Snakin JPA, 2000. An engineering model for heating energy and emission assessment The case of North Karelia, Finland. Applied Energy...

Radhi, H.; Fikry, F.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SoCalGas - Non-Residential On-Bill Financing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On-Bill Financing Program On-Bill Financing Program SoCalGas - Non-Residential On-Bill Financing Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Program Info State California Program Type Utility Loan Program Rebate Amount General Minimum Loan Amount: $5,000/meter minimum Non-Institutional Customers: up to $100,000/meter with 5 year max payback Taxpayer Funded Institutions: up to $250,000/meter with 10 year max payback State of California: up to $1,000,000 with 10 year max payback Provider Southern California Gas Company The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying

342

Planning Bill Nye The Science Guy's Climate Research Lab at Chabot Space  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning Bill Nye The Science Guy's Climate Research Lab at Chabot Space Planning Bill Nye The Science Guy's Climate Research Lab at Chabot Space and Science Center Speaker(s): Andrew Anway David Bloom Date: September 24, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Allan Chen Sometime in 2009, the Chabot Space and Science Center hopes to debut a new museum exhibition tentatively titled Bill Nye The Science Guy's Climate Research Lab, subtitle, Mission Possible: Reduce the CO2. The interactive show is anchored by science educator Bill Nye the Science Guy, is aimed towards children and families. It will explain the basic science behind climate change, and its potential effects on humans and the rest of the biosphere, while exploring some ways of reducing greenhouse gas emissions, both what we can do now, and advanced technologies that may someday play a

343

SCE - Non-Residential On-Bill Financing Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On-Bill Financing Program On-Bill Financing Program SCE - Non-Residential On-Bill Financing Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Other Maximum Rebate Taxpayer Funded Institutions: up to $250,000/meter with 5 year max payback Non-Institutional Customers: up to $100,000/meter with 5 year max payback State of California: up to $1,000,000 with 10 year max payback Program Info Start Date 8/2/2010 State California Program Type Utility Loan Program Rebate Amount 5,000 minimum Provider Business Programs The SoCalGas On-Bill Financing (OBF) program offers qualified business customers 0% financing from $5,000 to $100,000 per meter for qualifying

344

VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy |  

Broader source: Energy.gov (indexed) [DOE]

VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy VIDEO: Bill Gates and Secretary Chu Chat on the Future of Energy March 5, 2012 - 1:24pm Addthis Secretary Chu sits down with Microsoft Founder and Chairman Bill Gates at the 2012 ARPA-E Energy Innovation Summit. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Last week, attendees at the 2012 ARPA-E Energy Innovation Summit heard from a variety of leaders from across the research, business and government sectors who spoke at the conference of nearly 2,400. These speakers, along with the startup companies and innovators in attendance, converged outside of Washington, D.C., to offer their take on how America can tackle our energy challenges. One of the top-level highlights from the Summit included this fireside chat

345

Iowa Shade Trees Bring Energy Bills Down, Beauty Up | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Shade Trees Bring Energy Bills Down, Beauty Up Shade Trees Bring Energy Bills Down, Beauty Up Iowa Shade Trees Bring Energy Bills Down, Beauty Up November 10, 2010 - 9:00am Addthis Volunteers from the Waverly Trees Forever group are planting windbreak trees on the north side of the mobile home court. Waverly experienced record flooding in 2008. | Photo Courtesy of Trees Forever Volunteers from the Waverly Trees Forever group are planting windbreak trees on the north side of the mobile home court. Waverly experienced record flooding in 2008. | Photo Courtesy of Trees Forever Lindsay Gsell What are the key facts? Iowa non-profit will plant 2,500 trees to encourage energy efficiency Using nearly $160,000 in State Energy Program funding through the Recovery Act Large shade trees can lower cooling bills by up to 30 percent

346

Iowa Shade Trees Bring Energy Bills Down, Beauty Up | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Iowa Shade Trees Bring Energy Bills Down, Beauty Up Iowa Shade Trees Bring Energy Bills Down, Beauty Up Iowa Shade Trees Bring Energy Bills Down, Beauty Up November 10, 2010 - 9:00am Addthis Volunteers from the Waverly Trees Forever group are planting windbreak trees on the north side of the mobile home court. Waverly experienced record flooding in 2008. | Photo Courtesy of Trees Forever Volunteers from the Waverly Trees Forever group are planting windbreak trees on the north side of the mobile home court. Waverly experienced record flooding in 2008. | Photo Courtesy of Trees Forever Lindsay Gsell What are the key facts? Iowa non-profit will plant 2,500 trees to encourage energy efficiency Using nearly $160,000 in State Energy Program funding through the Recovery Act Large shade trees can lower cooling bills by up to 30 percent

347

ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred  

Broader source: Energy.gov (indexed) [DOE]

Announces 2012 Energy Innovation Summit Featuring Bill Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott ARPA-E Announces 2012 Energy Innovation Summit Featuring Bill Gates, Fred Smith and Lee Scott September 9, 2011 - 9:25am Addthis New York, NY - The U.S. Department of Energy's Advanced Research Projects Agency - Energy (ARPA-E) Director, Arun Majumdar, announced yesterday that the Agency will hold its third annual ARPA-E Energy Innovation Summit from February 27 - 29, 2012 at the Gaylord Convention Center just outside Washington, D.C. Bill Gates, founder and chairman of Microsoft; Fred Smith, chairman, president and CEO of FedEx; and Lee Scott, former CEO of Wal-Mart; will join Secretary Chu and Director Majumdar as distinguished keynote speakers. "After two successful Summits, I'm excited to once again bring some of

348

Differentially Private Billing with Rebates George Danezis 1 , Markulf Kohlweiss 1 , and Alfredo Rial 2  

E-Print Network [OSTI]

Differentially Private Billing with Rebates George Danezis 1 , Markulf Kohlweiss 1 , and Alfredo they require and even get a rebate for the additional funds they used to protect their privacy. Throughout

349

DOE WINDExchange Webinar: Rural Energy for America Program 2014 Farm Bill  

Broader source: Energy.gov [DOE]

In February, Congress passed a new Farm Bill that includes an Energy Title. The Rural Energy for America Program (REAP) provides grants and loan guarantees to farmers, ranchers, and rural small...

350

Live Webcast on the 2014 Farm Bill's Renewable Energy for America Program  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webcast titled “The 2014 Farm Bill's Renewable Energy for America Program” on May 21, 2014, from 3:00 to 4:00 p.m. Eastern Standard Time.

351

Analysis of Five Selected Tax Provisions of the Conference Energy Bill of 2003  

Reports and Publications (EIA)

This special report was undertaken at the January 29, 2004, request of Senator John Sununu to perform an assessment of five specific tax provisions of the Conference Energy Bill of 2003.

2004-01-01T23:59:59.000Z

352

Impacts of House Bill 56 on the Construction Economy in Alabama  

E-Print Network [OSTI]

bill, and its impact on the construction economy in Alabama. The study utilized construction employment rates, construction GDP, and construction spending as the major indices detailing the “health” of the construction economy in Alabama. This research...

Bilbo, David; Escamilla, Edelmiro; Bigelow, Ben F.; Garcia, Jose

353

The Impact of Rate Design and Net Metering on the Bill Savings from  

Open Energy Info (EERE)

Impact of Rate Design and Net Metering on the Bill Savings from Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Impact of Rate Design and Net Metering on the Bill Savings from Distributed Photovoltaics (PV) for Residential Customers in California Focus Area: Renewable Energy Topics: Best Practices Website: eetd.lbl.gov/ea/emp/reports/lbnl-3276e.pdf Equivalent URI: cleanenergysolutions.org/content/impact-rate-design-and-net-metering-b Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report analyzes the bill savings from photovoltaic (PV) deployment for residential customers of California's two largest electric utilities -

354

Bill Watkins listens to all the whales in the North Pacific Ocean  

Science Journals Connector (OSTI)

In the early 1990s portions of the Navy’s classified underwater listening systems (IUSS) were made available for research. Bill Watkins had long been familiar with this system and eagerly went to work listening to whales in the North Pacific Ocean. A decade later the work that Bill Watkins has amassed and its impact on marine mammal research is truly remarkable. Each month Bill’s team produces a summary of hundreds if not thousands of whale calls detected and localized using the Navy’s listening arrays. These data have pinpointed seasonal centers of vocal activity in unexpected places leading to changes in our strategies for monitoring several populations of endangered large whales. Bill has tracked the migratory paths of blue fin and humpback whales and has charted the shifts in migratory timing caused by climatic phenomena such as ENSO. Bill has taken a complex technology created for other purposes and crafted a process to get it to deliver simple clear and unclassified information for an entire ocean: we have not yet plumbed the limits of what we can do with this information.

2001-01-01T23:59:59.000Z

355

Income inequality and carbon dioxide emissions: The case of Chinese urban households  

Science Journals Connector (OSTI)

This paper draws on Chinese survey data to investigate variations in carbon dioxide emissions across households with different income levels. Rich households generate more emissions per capita than poor households via both their direct energy consumption and their higher expenditure on goods and services that use energy as an intermediate input. An econometric analysis confirms a positive relationship between emissions and income and establishes a slightly increasing marginal propensity to emit (MPE) over the relevant income range. The redistribution of income from rich to poor households is therefore shown to reduce aggregate household emissions, suggesting that the twin pursuits of reducing inequality and emissions can be achieved in tandem.

Jane Golley; Xin Meng

2012-01-01T23:59:59.000Z

356

Union Power Cooperative - Residential Energy Efficient Heat Pump Loan  

Broader source: Energy.gov (indexed) [DOE]

Union Power Cooperative - Residential Energy Efficient Heat Pump Union Power Cooperative - Residential Energy Efficient Heat Pump Loan Program Union Power Cooperative - Residential Energy Efficient Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate $7,500 Program Info State North Carolina Program Type Utility Loan Program Rebate Amount up to $7,500 Provider Union Power Cooperative Union Power Cooperative offers low interest loans to help its residential customers finance new, energy-efficient heat pumps. Interest rates, currently at 9%, will be fixed for the term of the loan. Loans can be up to $7,500 over five years. Customers pay back the loan with payments on monthly electric bills. There is a one time loan filing fee of $42. Contact

357

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

358

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

359

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

360

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" 1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and States" "East North Central",17.9,2251,1869,1281,892,741,508 "Illinois",4.8,2186,1911,1451,860,752,571 "Michigan",3.8,1954,1559,962,729,582,359 "Wisconsin",2.3,2605,2091,1258,1105,887,534

362

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Average Square Footage of West Homes, by Housing Characteristics, 2009" 3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States" "Mountain",7.9,1928,1695,1105,723,635,415 "Mountain North",3.9,2107,1858,912,776,684,336 "Colorado",1.9,2082,1832,722,896,788,311 "Idaho, Montana, Utah, Wyoming",2,2130,1883,1093,691,610,354

363

Long-term behaviour of baled household waste  

Science Journals Connector (OSTI)

This study was carried out at the laboratory scale (approximately 15 l) and using real baled waste of industrial dimensions (about 1 m3), in order to assess the long-term behaviour of baled household waste. The laboratory assays were carried out with real household waste which was fractioned on site, reconstituted in the laboratory and then compacted into 15 l airtight containers (unless stated otherwise). These containers were incubated under different experimental conditions at a constant temperature (28°C). Three assays were conducted over 34 months and two others over 27 months. For the assays incubated in conditions simulating those of real baled waste (confined medium, with no aeration or water flow), a very low microbial activity was observed. The assay incubated in the same conditions but with slight aeration during the first three months in order to simulate imperfectly airtight wrapping, revealed biodegradation which started in a significant manner after 800 days of incubation. The evolution of two real wrapped bales each containing 900 kg of household waste was monitored over 8 months. These bales were produced industrially, one in July 97 and the other in July 98 at the incinerator plant at Agde (France). The bales were then stored outside at the laboratory location and their evolution was monitored mainly by biogas analysis and temperature measurement. No methane formation was observed, revealing the absence of anaerobic biodegradation, thus confirming the laboratory assays.

Fabian Robles-Mart??nez; Rémy Gourdon

2000-01-01T23:59:59.000Z

364

The Inverted Block Rate:The Inverted Block Rate: An Alternative to Flat Rate BillingAn Alternative to Flat Rate Billing  

E-Print Network [OSTI]

The Inverted Block Rate:The Inverted Block Rate: An Alternative to Flat Rate BillingAn Alternative;Inverted Block RateInverted Block Rate 22 IntroductionIntroduction ·· Modern societies rely on electrical collectionMetering and Rate Models facilitate collection #12;Inverted Block RateInverted Block Rate 33 Rate

Hughes, Larry

365

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Dentz, J.; Henderson, H.; Varshney, K.

2014-09-01T23:59:59.000Z

366

Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)  

SciTech Connect (OSTI)

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

Not Available

2014-11-01T23:59:59.000Z

367

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

368

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

369

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409,"HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

SciTech Connect (OSTI)

This paper revises and extends EPRI report EA-3409, ''Household Appliance Choice: Revision of REEPS Behavioral Models.'' That paper reported the results of an econometric study of major appliance choice in new residential construction. Errors appeared in two tables of that report. We offer revised versions of those tables, and a brief analysis of the consequences and significance of the errors. The present paper also proposes several possible extensions and re-specifications of the models examined by EPRI. Some of these are judged to be highly successful; they both satisfy economic intuition more completely than the original specification and produce a better quality fit to the dependent variable. We feel that inclusion of these modifications produces a more useful set of coefficients for economic modeling than the original specification. This paper focuses on EPRI's models of residential space heating technology choice. That choice was modeled as a nested logit structure, with consumers choosing whether to have central air conditioning or not, and, given that choice, what kind of space heating system to have. The model included five space heating alternatives with central cooling (gas, oil, and electric forced-air; heat pumps; and electric baseboard) and eight alternatives without it (gas, oil, and electric forced-air; gas and oil boilers and non-central systems; and electric baseboard heat). The structure of the nested logit model is shown in Figure 1.

Wood, D.J.; Ruderman, H.; McMahon, J. E.

1989-05-01T23:59:59.000Z

370

The Impact of Rate Design and Net Metering on the Bill Savings from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of Rate Design and Net Metering on the Bill Savings from The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California Title The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Darghouth, Naïm, Galen L. Barbose, and Ryan H. Wiser Pagination 62 Date Published 04/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, electricity rate design, energy analysis and environmental impacts department, net metering, photovoltaics Abstract Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption.1 Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). Though net metering has played an important role in jump-starting the PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the bill-savings value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings benefits of PV varies under net metering, and how the bill savings under net metering compares to savings associated with other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE).3 The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state. We focus on these two utilities, both because we had ready access to a sample of load data for their residential customers, and because their service territories are the largest markets for residential PV in the country.

371

Warm homes: Drivers of the demand for heating in the residential sector in New Zealand  

Science Journals Connector (OSTI)

New Zealand houses are large, often poorly constructed and heated, by OECD standards, and consequently are colder and damper indoors than recommended by the World Health Organisation. This affects both the energy consumption and the health of households. The traditional New Zealand household pattern of only heating one room of the house has been unchanged for decades, although there has been substantial market penetration of unflued gas heaters and more recently heat pumps. This paper describes the residential sector and the results of two community-based trials of housing and heating interventions that have been designed to measure the impact of (1) retrofitting insulation and (2) replacing unflued gas heaters and electric resistance heaters with heat pumps, wood pellet burners and flued gas heaters. The paper describes findings on the rebound effect or ‘take-back’—the extent to which households take the gains from insulation and heating improvements as comfort (higher temperatures) rather than energy savings, and compares energy-saving patterns with those suggested by an earlier study. Findings on these aspects of household space heating are discussed in the context of the New Zealand government's policy drive for a more sustainable energy system, and the implications for climate change policy.

Philippa Howden-Chapman; Helen Viggers; Ralph Chapman; Des O’Dea; Sarah Free; Kimberley O’Sullivan

2009-01-01T23:59:59.000Z

372

Solar Water Heating Requirement for New Residential Construction |  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Requirement for New Residential Construction Water Heating Requirement for New Residential Construction Solar Water Heating Requirement for New Residential Construction < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Hawaii Program Type Building Energy Code Provider Hawaii Department of Business, Economic Development, and Tourism In June 2008, Hawaii enacted legislation, [http://www.capitol.hawaii.gov/session2008/bills/SB644_CD1_.htm SB 644], with the intent to require solar water-heating (SWH) systems to be installed on all single-family new home construction, with a few exceptions. This legislation had several errors that were corrected by legislation passed during the 2009 legislative session. In June 2009, HB 1464 was signed by the governor and addressed the errors in the previous

373

Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 5, 1: January 5, 2004 Number of Household Vehicles has Grown Significantly to someone by E-mail Share Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Facebook Tweet about Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Twitter Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Google Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Delicious Rank Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Digg Find More places to share Vehicle Technologies Office: Fact #301:

374

Short-Term Energy Outlook Supplement: Summer 2013 Outlook for Residential Electric Bills  

U.S. Energy Information Administration (EIA) Indexed Site

Summer 2013 Outlook for Residential Summer 2013 Outlook for Residential Electric Bills June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: Summer 2013 Outlook for Residential Electric Bills i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. June 2013 U.S. Energy Information Administration | STEO Supplement: Summer 2013 Outlook for Residential Electric Bills 1

375

Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and  

Broader source: Energy.gov (indexed) [DOE]

Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and America's Top Energy Thought Leaders Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and America's Top Energy Thought Leaders February 28, 2012 - 7:02am Addthis Washington D.C. - This week, the Advanced Research Projects Agency - Energy (ARPA-E) is hosting its third annual Energy Innovation Summit, which is designed to unite key players from all sectors of America's energy innovation community to share ideas for how to lead the world in the development of next generation clean energy technologies, develop our nation's energy resources, and build an American economy that lasts. Tomorrow's full agenda with speakers is below. For specific press requests, please contact Keri Fulton at keri.fulton@hq.doe.gov.

376

Microsoft PowerPoint - 03.2010_Metering Billing MDM America.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

METERING BILLING/MDM AMERICA METERING BILLING/MDM AMERICA Back-up Generation Sources (BUGS) Prepared by Steve Pullins March 9, 2010 Metering, Billing/MDM America - San Diego, CA This material is based upon work supported by the Department of Energy under Award Number DE- Department of Energy under Award Number DE AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents

377

Energy Secretary Bodman's Statement on House Passage of the Energy Bill |  

Broader source: Energy.gov (indexed) [DOE]

Bodman's Statement on House Passage of the Energy Bodman's Statement on House Passage of the Energy Bill Energy Secretary Bodman's Statement on House Passage of the Energy Bill July 28, 2005 - 2:29pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today released the following statement regarding House passage of the Energy Policy Act of 2005: "Ensuring America's future energy security has been a priority for President Bush since his early days in office, and I commend the House of Representatives, particularly Chairman Barton and Ranking Member Dingell, for their efforts on this broad-based legislation that helps achieve that goal. Because of the hard work and thoughtful approach that went into crafting this bipartisan legislation, the House has passed a bill that will reduce energy demand, increase energy supplies, and update our aging energy

378

New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp  

Broader source: Energy.gov (indexed) [DOE]

Independent Analysis Confirms Climate Bill Costs About a Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day New Independent Analysis Confirms Climate Bill Costs About a Postage Stamp a Day August 4, 2009 - 12:00am Addthis Washington, D.C. - A new analysis by the independent, non-partisan Energy Information Agency confirms findings by earlier reports from the Congressional Budget Office and the Environmental Protection Agency that the Waxman-Markey energy and climate legislation will cost Americans roughly the same as a postage stamp a day. The EIA analysis projects an increased cost of about $83 (adjusted for inflation) by 2030 -- or roughly 23 cents a day. Energy Secretary Steven Chu made the following statement: "This new, independent and highly respected analysis confirms the findings

379

Energy Secretary Bodman Heads to West Virginia to Promote Energy Bill |  

Broader source: Energy.gov (indexed) [DOE]

Heads to West Virginia to Promote Energy Heads to West Virginia to Promote Energy Bill Energy Secretary Bodman Heads to West Virginia to Promote Energy Bill July 7, 2005 - 2:00pm Addthis Secretary Promotes Energizing America for Energy Security BELLE, WV - Secretary of Energy Samuel W. Bodman today traveled to West Virginia to urge the Congress to pass comprehensive energy legislation that is now before them. The bill reflects many of the principles of President Bush's national energy policy including the diversification of America's energy supply to include more alternative and renewable sources; encouraging energy efficiency and conservation; promoting more domestic production in environmentally responsible ways; and modernizing our electricity delivery system to minimize the risk of blackouts. President

380

Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and  

Broader source: Energy.gov (indexed) [DOE]

Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and America's Top Energy Thought Leaders Day Two of 2012 ARPA-E Summit Will Feature Bill Gates, Secretary Chu and America's Top Energy Thought Leaders February 28, 2012 - 7:02am Addthis Washington D.C. - This week, the Advanced Research Projects Agency - Energy (ARPA-E) is hosting its third annual Energy Innovation Summit, which is designed to unite key players from all sectors of America's energy innovation community to share ideas for how to lead the world in the development of next generation clean energy technologies, develop our nation's energy resources, and build an American economy that lasts. Tomorrow's full agenda with speakers is below. For specific press requests, please contact Keri Fulton at keri.fulton@hq.doe.gov.

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New Infographic and Projects to Keep Your Energy Bills Out of Hot Water |  

Broader source: Energy.gov (indexed) [DOE]

Infographic and Projects to Keep Your Energy Bills Out of Hot Infographic and Projects to Keep Your Energy Bills Out of Hot Water New Infographic and Projects to Keep Your Energy Bills Out of Hot Water April 19, 2013 - 3:21pm Addthis New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a high-resolution version of the infographic. | Infographic by Sarah Gerrity. New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a high-resolution version of the infographic. | Infographic by Sarah Gerrity. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

382

How to Save on Energy Bills When Buying a New Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How to Save on Energy Bills When Buying a New Home How to Save on Energy Bills When Buying a New Home How to Save on Energy Bills When Buying a New Home June 26, 2013 - 2:09pm Addthis When considering a new home, keep energy efficiency in mind. | Photo courtesy of Warren Gretz, NREL 08742 When considering a new home, keep energy efficiency in mind. | Photo courtesy of Warren Gretz, NREL 08742 This chart shows how much energy a typical appliance uses per year and its corresponding cost based on national averages. For example, a refrigerator uses almost five times the electricity the average television uses. This chart shows how much energy a typical appliance uses per year and its corresponding cost based on national averages. For example, a refrigerator uses almost five times the electricity the average television uses.

383

VP 100: Smart Meters Will Help Customers Avoid High Electric Bills |  

Broader source: Energy.gov (indexed) [DOE]

Smart Meters Will Help Customers Avoid High Electric Bills Smart Meters Will Help Customers Avoid High Electric Bills VP 100: Smart Meters Will Help Customers Avoid High Electric Bills October 4, 2010 - 3:00pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Kevin Craft What are the key facts? EPB will install approximately 170,000 smart meters and 1,500 automated switches. They have the potential to provide a $300 million value to EPB and customers over a ten-year period. "Last winter I received a call from my son saying he had a $400 electric

384

VP 100: Smart Meters Will Help Customers Avoid High Electric Bills |  

Broader source: Energy.gov (indexed) [DOE]

VP 100: Smart Meters Will Help Customers Avoid High Electric Bills VP 100: Smart Meters Will Help Customers Avoid High Electric Bills VP 100: Smart Meters Will Help Customers Avoid High Electric Bills October 4, 2010 - 3:00pm Addthis An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB An employee installs a smart meter as part of a smart grid initiative by EPB. The project is supporting 390 jobs in the Chattanooga area. | Photo courtesy of EPB Kevin Craft What are the key facts? EPB will install approximately 170,000 smart meters and 1,500 automated switches. They have the potential to provide a $300 million value to EPB and customers over a ten-year period. "Last winter I received a call from my son saying he had a $400 electric

385

How to Save on Energy Bills When Buying a New Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How to Save on Energy Bills When Buying a New Home How to Save on Energy Bills When Buying a New Home How to Save on Energy Bills When Buying a New Home June 26, 2013 - 2:09pm Addthis When considering a new home, keep energy efficiency in mind. | Photo courtesy of Warren Gretz, NREL 08742 When considering a new home, keep energy efficiency in mind. | Photo courtesy of Warren Gretz, NREL 08742 This chart shows how much energy a typical appliance uses per year and its corresponding cost based on national averages. For example, a refrigerator uses almost five times the electricity the average television uses. This chart shows how much energy a typical appliance uses per year and its corresponding cost based on national averages. For example, a refrigerator uses almost five times the electricity the average television uses.

386

Day Three of 2012 ARPA-E Summit Will Feature President Bill Clinton, ARPA-E  

Broader source: Energy.gov (indexed) [DOE]

Day Three of 2012 ARPA-E Summit Will Feature President Bill Day Three of 2012 ARPA-E Summit Will Feature President Bill Clinton, ARPA-E Director Majumdar, and America's Top Energy Thought Leaders Day Three of 2012 ARPA-E Summit Will Feature President Bill Clinton, ARPA-E Director Majumdar, and America's Top Energy Thought Leaders February 29, 2012 - 6:59am Addthis Washington D.C. - This week, the Advanced Research Projects Agency - Energy (ARPA-E) is hosting its third annual Energy Innovation Summit. With over 2,400 registered attendees, the Summit is designed to unite key players from all sectors of America's energy innovation community to share ideas for how to lead the world in the development of next generation clean energy technologies, develop our nation's energy resources, and build an American economy that lasts.

387

Indoor Secondary Pollutants from Household Product Emissions in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indoor Secondary Pollutants from Household Product Emissions in the Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Title Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Publication Type Journal Article LBNL Report Number LBNL-58785 Year of Publication 2006 Authors Destaillats, Hugo, Melissa M. Lunden, Brett C. Singer, Beverly K. Coleman, Alfred T. Hodgson, Charles J. Weschler, and William W. Nazaroff Journal Environmental Science and Technology Volume 40 Start Page Chapter Pagination 4421-4428 Abstract Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 × 105 molecules cm-3 were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1 - 25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products

388

Greenhouse Gas Implications of Household Energy Technology in Kenya  

Science Journals Connector (OSTI)

Energy and Resources Group, University of California, Berkeley, California 94720-3050, Risk, Resource, and Environmental Management Division, Resources for the Future, 1616 P Street NW, Washington, D.C. 20036, and Goldman School of Public Policy, University of California, Berkeley, California 94720-7320 ... Household energy policy is further complicated because charcoal markets in many sub-Saharan African countries operate within a complex political economy that can be hard to characterize and still more difficult to regulate. ... While charcoal consumption carries a larger burden of GHG emissions than firewood use, it also has more potential to attract investment in GHG mitigation activities. ...

Rob Bailis; Majid Ezzati; Daniel M. Kammen

2003-04-01T23:59:59.000Z

389

Enhanced naphthenic refrigeration oils for household refrigerator systems  

SciTech Connect (OSTI)

Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R. [Witco Corp., Oakland, NJ (United States); Barbour, C.B. [Americold, Cullman, AL (United States)

1997-12-31T23:59:59.000Z

390

Energy Efficiency & On-Bill Financing for Samll Business & Residential  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Energy Efficiency & On-Bill Financing For Small Businesses & Residential Presentation for: The Second US-China Energy Efficiency Forum Berkeley, California 05/06/2011 May 5-6, 2011|Lawrence Berkeley National Laboratory, Berkeley, California Connecticut Energy Efficiency Fund (CEEF) Connecticut's Energy Efficiency Programs are funded by a Charge on Customer's electric bills. The Programs are designed to help customers manage their energy usage and cost. May 5-6, 2011|Lawrence Berkeley National Laboratory, Berkeley, California Small Business Objective  PROVIDE > COST-EFFECTIVE, turn-key CONSERVATION and LOAD MANAGEMENT SERVICES to SMALL C&I CUSTOMERS.  What qualifies as a SMALL BUSINESS?

391

Table HC6.10 Home Appliances Usage Indicators by Number of Household...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

392

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation Policy  

E-Print Network [OSTI]

Differences in 10 Household Automobile Ownership Rates:hauseltoldr lacking automobiles were mmit like! ) to be leftWithout 3 Access to an Automobile. Top Ten Metropolitan

Raphael, S; Berube, A; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

393

Assessing the Environmental Costs and Benefits of Households Electricity Consumption Management.  

E-Print Network [OSTI]

?? In this study the environmental costs and benefits of smart metering technology systems installed in households in Norway have been assessed. Smart metering technology… (more)

Segtnan, Ida Lund

2011-01-01T23:59:59.000Z

394

Wealth: Determinants of Savings Net Worth and Housing Net Worth of Pre-Retired Households  

Science Journals Connector (OSTI)

The objectives of this study are to determine effects of household members' characteristics, financial resources, and attitude ... Subsamples of White respondents, Black respondents, and Hispanic respondents were...

Satomi Wakita; Vicki Schram Fitzsimmons…

2000-12-01T23:59:59.000Z

395

Minority and poor households: patterns of travel and transportation fuel use  

SciTech Connect (OSTI)

This report documents the travel behavior and transportation fuel use of minority and poor households in the US, using information from numerous national-level sources. The resulting data base reveals distinctive patterns of household vehicle availability and use, travel, and fuel use and enables us to relate observed differences between population groups to differences in their demographic characteristics and in the attributes of their household vehicles. When income and residence location are controlled, black (and to a lesser extent, Hispanic and poor) households have fewer vehicles regularly available than do comparable white or nonpoor households; moreover, these vehicles are older and larger and thus have significantly lower fuel economy. The net result is that average black, Hispanic, and poor households travel fewer miles per year but use more fuel than do average white and nonpoor households. Certain other findings - notably, that of significant racial differences in vehicle availability and use by low-income households - challenge the conventional wisdom that such racial variations arise solely because of differences in income and residence location. Results of the study suggest important differences - primarily in the yearly fluctuation of income - between black and white low-income households even when residence location is controlled. These variables are not captured by cross-sectional data sets (either the national surveys used in our analysis or the local data sets that are widely used for urban transportation planning).

Millar, M.; Morrison, R.; Vyas, A.

1986-05-01T23:59:59.000Z

396

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect (OSTI)

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

397

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect (OSTI)

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

398

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |  

Broader source: Energy.gov (indexed) [DOE]

for Northeast Home Heating Oil Reserve for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S. households that use heating oil to heat their homes, 69% reside in the Northeast. The Northeast Home Heating Oil Reserve was established by the Energy Policy Act of 2000 to provide an emergency buffer that can supplement commercial fuel supplies in the event of an actual or imminent severe supply disruption. The Reserve can provide supplemental supplies for

399

Minority participation in new energy technologies: A case example of electric heat pumps  

SciTech Connect (OSTI)

Primarily because of technological improvements and sharp increases in energy prices after the energy crises of the 1970s, the sale of residential electric heat pumps rose ninefold from 1970 to 1983. However, growth has been uneven with respect to black, Hispanic, and white households, even after one controls for income and geography. This paper analyzes the growth in heat pump sales; estimates heat pump market share by key segments; and compares patterns of heat pump ownership by black, Hispanic, and white households. A discrete choice model was used to project the demand for heat pumps by black, Hispanic, and white households for new single-family and multifamily homes, which account for a major share of heat pump shipments to the residential sector. The study is based on several data sources, including the 1980 Census, the 1980 Annual Housing Survey, and the 1980 to 1981 Residential Energy Consumption Survey. Given the availability of consumer survey data, this model can easily be adapted to analyze the participation of different ethnic households in the growth of other new energy technologies.

Teotia, A.P.S.; Raju, P.S.; Karvelas, D.; Anderson, J.

1987-01-01T23:59:59.000Z

400

Control of household refrigerators. Part 1: Modeling temperature control performance  

SciTech Connect (OSTI)

Commercial household refrigerators use simple, cost-effective, temperature controllers to obtain acceptable control. A manually adjusted airflow damper regulates the freezer compartment temperature while a thermostat controls operation of the compressor and evaporator fan to regulate refrigerator compartment temperature. Dual compartment temperature control can be achieved with automatic airflow dampers that function independently of the compressor and evaporator fan thermostat, resulting in improved temperature control quality and energy consumption. Under dual control, freezer temperature is controlled by the thermostat while the damper controls refrigerator temperature by regulating airflow circulation. A simulation model is presented that analyzes a household refrigerator configured with a conventional thermostat and both manual and automatic dampers. The model provides a new paradigm for investigating refrigerator systems and temperature control performance relative to the extensive verification testing that is typically done by manufacturers. The effects of each type of control and damper configuration are compared with respect to energy usage, control quality, and ambient temperature shift criteria. The results indicate that the appropriate control configuration can have significant effects and can improve plant performance.

Graviss, K.J.; Collins, R.L.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Environmental attitudes and household consumption: an ambiguous relationship  

Science Journals Connector (OSTI)

This article analyses the relationship between environmental attitudes and energy use in the home and for transport by Norwegian households. Quantitative surveys were used to find statistical correlations, and qualitative analyses to reveal mechanisms that influence the ability to behave in an environmentally friendly way. Three theses about attitudes, mechanisms and household consumption are presented. Firstly, a desire to project an environmentally friendly image has little influence on energy use in the home and for transport. Secondly, a sense of powerlessness prevents people from translating positive environmental attitudes into low energy use in the home and for everyday transport. Thirdly, a desire to self-indulge prevents people from translating positive environmental attitudes into low energy use for long distance leisure travel. These results have important implications for environmental policy. Public information and awareness campaigns can give consumers information on how to behave in an environmentally responsible way, but tend only to influence categories of consumption with little environmental impact. Structural change can be used to mitigate the effect of the sense of powerlessness and encourage environmentally friendly behaviour, but the desire to self-indulge is much more difficult to deal with.

Erling Holden; Kristin Linnerud

2010-01-01T23:59:59.000Z

402

Household demand and willingness to pay for hybrid vehicles  

Science Journals Connector (OSTI)

Abstract This paper quantitatively evaluates consumers' willingness to pay for hybrid vehicles by estimating the demand of hybrid vehicles in the U.S. market. Using micro-level data on consumer purchases of hybrid and non-hybrid vehicles from National Household Travel Survey 2009, this paper formulates a mixed logit model of consumers' vehicle choices. Parameter estimates are then used to evaluate consumers' willingness to pay for hybrids. Results suggest that households' willingness to pay for hybrids ranges from $963 to $1718 for different income groups, which is significantly lower than the average price premium (over $5000) of hybrid vehicles, even when taking the fuel costs savings of hybrid vehicles into consideration. The differences reveal that although the market has shown increasing interest in hybrid vehicles, consumers' valuation of the hybrid feature is still not high enough to compensate for the price premium when they make new purchases. Policy simulations are conducted to examine the effects of raising federal tax incentives on the purchase of hybrid vehicles.

Yizao Liu

2014-01-01T23:59:59.000Z

403

Question of the Week: How Do You Reduce Your Water Heating Costs |  

Broader source: Energy.gov (indexed) [DOE]

Reduce Your Water Heating Costs Reduce Your Water Heating Costs Question of the Week: How Do You Reduce Your Water Heating Costs February 19, 2009 - 1:39pm Addthis Water heating can account for a significant portion of your energy costs. Purchasing a new ENERGY STAR® water heater is just one way to save on your water heating bills. The Energy Savers Tips site lists other strategies you can use to cut your water heating costs. How do you reduce your water heating costs? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Question of the Week: How Do You Reduce Your Water Heating Costs Energy Savers Guide: Tips on Saving Money and Energy at Home How Do You Save on Lighting Costs? Question of the Week: How Do You Reduce Your Water Heating Costs

404

Microsoft PowerPoint - Bill Segal.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inertia Welding Inertia Welding Applications Inertia Welding Inertia Welding Applications Applications It is possible, by using proper procedures and with proper inertia/friction welding equipment, to generate repeatable full strength weld applications. It is possible, by using proper It is possible, by using proper procedures and with proper procedures and with proper inertia/friction welding equipment, inertia/friction welding equipment, to generate repeatable full to generate repeatable full strength weld applications. strength weld applications. Bend and pressure tests show the strength of Inertia Welded transitions. Bi-metal fittings used in pressure vessels, vacuum and heat pipe systems. Stainless steel to aluminum in cryogenic applications. Ordinance applications call for unique

405

U.S. gasoline prices at its lowest since February 2011 (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

Winter heating bills for natural gas to increase, heating oil costs to decline Winter heating bills for natural gas to increase, heating oil costs to decline U.S. households that use natural gas, electricity or propane to stay warm are expected to pay more this winter in heating bills compared to last year, while bills for heating oil users will decline slightly from last winter. The U.S. Energy Information Administration's updated winter forecast expects heating bills will be 11 percent higher for homes that heat with natural gas. Propane users in the Midwest, where propane is used more than in any other region of the country, will see their heating costs rise 10 percent. Propane users in the Northeast are expected to see a 6 percent increase, an improvement from the 11% increase EIA initially forecast for this winter.

406

Energy Department Invests to Save on Heating, Cooling and Lighting |  

Broader source: Energy.gov (indexed) [DOE]

to Save on Heating, Cooling and Lighting to Save on Heating, Cooling and Lighting Energy Department Invests to Save on Heating, Cooling and Lighting August 14, 2013 - 1:39pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to reduce energy bills for American families and businesses and reduce greenhouse gas emissions, the Energy Department today announced 12 projects to develop innovative heating, cooling and insulation technologies as well as open source energy efficiency software to help homes and commercial buildings save energy and money. These projects will receive an approximately $11 million Energy Department investment, matched by about $1 million in private sector funding. "Energy efficient technologies - from improved heating and cooling

407

Retail Electronic Payments Systems for Value Transfers in the Developing World Bill Maurer  

E-Print Network [OSTI]

Retail Electronic Payments Systems for Value Transfers in the Developing World Bill Maurer of existing retail electronic payment systems; and those that remain outside of national banking and financial institutions and involve new technologies for retail payments. · Payment and communication technologies from

Brody, James P.

408

Bill Goodwine California Institute of Technology Motion Planning for Legged Robots  

E-Print Network [OSTI]

that the main point of this work is the development of a general theory. #12;Bill Goodwine California Institute the trajectory generation problem is not so easy. For the car, there are only two inputs, but four states that we] For stratified systems, because of the need to lift legs off of the ground, we choose to extend the approach

Goodwine, Bill

409

BILLS IMPORTANT TO THOSE INTERESTED IN GLOBAL WARMING League of Women Voters, Washington  

E-Print Network [OSTI]

to operate as a hybrid or a fuel cell, natural gas, propane, hydrogen or electricity. The problem with HB1467 for Alternative Vehicles, Fuel & Equipment. HB 1467 Providing incentives for the purchase of hybrid and fuel cell hybrid cars, the bill should be amended to provide incentives for purchasing vehicles with a fuel

410

NetBill: An Internet Commerce System Optimized for Network Delivered Services  

E-Print Network [OSTI]

NetBill: An Internet Commerce System Optimized for Network Delivered Services Marvin Sirbu J. D for commerce in information goods and other network delivered services. It has very low transaction costs. Of special interest is our new certified delivery mechanism which delivers information goods if and only

Tygar, Doug

411

June 28, 2005 Senate Passes Energy Bill in Prelude to Talks With House  

E-Print Network [OSTI]

and gas production, wind and solar energy, energy-efficient appliances and hybrid cars. The measure, Republican of New Mexico, the chairman of the Energy and Natural Resources Committee. But the adoptionJune 28, 2005 Senate Passes Energy Bill in Prelude to Talks With House By CARL HULSE WASHINGTON

412

The University of Tennessee Health Science Center Clinical Trial Billing Procedure  

E-Print Network [OSTI]

personnel engaged in clinical trial financial operations (budgeting, billing, etc.) will be required of these documents. (3) sends the Request to Conduct Research Form to the applicable facility(ies), if required, and Study Site/Services Agreement to Finance & Operations, if required, prior to any participants receiving

Cui, Yan

413

Forest Products Marketing Workshop / Novi Sad / 3 6 April 2006 DAVID BILLS CBE FICFOR  

E-Print Network [OSTI]

Forest Products Marketing Workshop / Novi Sad / 3 ­ 6 April 2006 DAVID BILLS CBE FICFOR Marketing Campaigns Reflections & Lessons Serbia UNECE 5/4/2006 #12;Forest Products Marketing Workshop / Novi Sad / 3 ­ 6 April 2006 Marketing Campaigns · Australia (1988-1994) Promotion of the Forest Industry

414

Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing  

E-Print Network [OSTI]

Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which. Availability of affordable and sustainable electrical energy has been the key to prosperity and continued socio

Pedram, Massoud

415

Cooperative Extension of Schoharie County Slashes Energy Bills by $2,400 per Year  

E-Print Network [OSTI]

Association, understood that an energy audit would save the organization money and reduce energy consumption knew that another would definitely allow us to update our energy conservation plan and would definitelyCooperative Extension of Schoharie County Slashes Energy Bills by $2,400 per Year Audit

Keinan, Alon

416

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones,  

E-Print Network [OSTI]

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones The counterflow pipeline architecture [12] consists of two interacting pipelines in which data items flow in op. The maximum total throughput of the chip, which is the sum of the throughputs of the two pipelines, varies

Harris, David Money

417

Senate Bill No. 76 An act to amend the heading of Chapter 14 (commencing with Section  

E-Print Network [OSTI]

for hydrogen fuels for use in internal combustion engines and fuel cells in motor vehicles until a standards standards for hydrogen fuels for use in internal combustion engines and fuel cells in motor vehicles to these provisions, unless specified requirements are met. This bill would add hydrogen fuels to these provisions

418

Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves $730 Million on Energy Bills  

Office of Energy Efficiency and Renewable Energy (EERE)

Building on President Obama’s Climate Action Plan and the Administration’s Better Buildings Initiative, the Energy Department announced today that the Department’s Better Buildings Neighborhood Program has helped more than 40 state and local governments upgrade more than 100,000 buildings and save families and businesses over $730 million on utility bills.

419

Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE  

E-Print Network [OSTI]

BUSINESS Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE Advocate staff process to make wood-plastic composites has found a new application in the oil and gas business to turn used plastic motor oil containers and wood waste into a strong composite material that can be used

420

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nevada: Kingston Creek Hydro Project Powers 100 Households |...  

Energy Savers [EERE]

in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Geothermal Energy Growth Continues, Industry Survey Reports Project Overview Positive Impact...

422

Using Multiple Household Food Inventories to Measure Food Availability in the Home  

E-Print Network [OSTI]

-home assessment included an audio recorded interview on food habits and beliefs. Complete data were collected from all 9 women (32.8 y +/- 6.0; 3 married; 4 +/- 1.6 adults/children in household; 4 SNAP; 6 food insecure) and their households. Weekly grocery...

Sisk, Cheree L.

2010-10-12T23:59:59.000Z

423

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network [OSTI]

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

424

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation Policy  

E-Print Network [OSTI]

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation's aftermath concerned the size and composition of the area's populations that lacked access to an automobile for all U.S. metropolitan areas that reside in a household without access to an automobile. Finally, we

Sekhon, Jasjeet S.

425

The Driving Internal Beliefs of Household Internet Adoption among Jordanians and the Role of Cultural Values  

Science Journals Connector (OSTI)

The purpose of this study is to develop and validate a comprehensive model for the determinants of household Internet adoption through identifying the driving internal beliefs of individuals and the effect of cultural values on behavioral intention to ... Keywords: Hofstede's Cultural Dimensions, Household Internet Adoption, Internal Beliefs, Micro Cultural Level, Perceived Risks, Technology Acceptance Model

Amin A. Shaqrah; Khaled Saleh Al Omoush; Raed Musbah Alqirem

2011-01-01T23:59:59.000Z

426

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit  

Science Journals Connector (OSTI)

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit ... Chinese anthracite and bituminous coals produce different amounts of emissions when burned in a fire pit that simulates common rural household use of these fuels. ... Here we present emissions from burning 15 different fuels in a laboratory system designed to mimic the fire pits used in Xuan Wei County, China. ...

Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

2008-02-21T23:59:59.000Z

427

Journal: Ecological Applications1 Carbon, nitrogen, and phosphorus fluxes in household ecosystems in the3  

E-Print Network [OSTI]

#12;1 Journal: Ecological Applications1 2 Carbon, nitrogen, and phosphorus fluxes in household Resources Center, Saint Paul, MN 551089 3 University of Minnesota, Department of Ecology, Evolution with several29 components of household activities including air and motor vehicle travel, food consumption,30

Minnesota, University of

428

Flame Retardant Transfers from U.S. Households (Dust and Laundry Wastewater) to the Aquatic Environment  

Science Journals Connector (OSTI)

Analytes were ionized by APPI; dopant (acetone) was introduced (150 ?L/min) by a liquid chromatography pump (LC-20AD, Shimadzu Corporation, Kyoto, Japan). ... We collected repeat dust samples from 292 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 to 2007 and during 2010) using household vacuum cleaners and measured 22 PBDEs using high resoln. ...

Erika D. Schreder; Mark J. La Guardia

2014-09-17T23:59:59.000Z

429

Passive sampling methods to determine household and personal care product use  

E-Print Network [OSTI]

Passive sampling methods to determine household and personal care product use DEBORAH H. BENNETTa, cleaning products, passive sampling, SUPERB, longitudinal. Introduction Personal care and household care products, such as cleaning products and pesticides, are frequently used in most house- holds although

Leistikow, Bruce N.

430

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

C C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National Household Travel Survey (NHTS) data and to the interpretation of conclusions based on these data. In particular, the focus of our discussion is on the quality of specific data items, such as the fuel economy and fuel type, that were imputed to the NHTS via a cold-decking imputation procedure. This imputation procedure used vehicle-level information from the NHTSA Corporate Average Fuel Economy files for model year's 1978 through 2001. It is nearly impossible to quantify directly the quality of this imputation procedure because NHTS does not collect the necessary fuel economy information for comparison. At best, we have indirect evidence on the quality of our

431

How Do You Encourage Everyone in Your Household to Save Energy? |  

Broader source: Energy.gov (indexed) [DOE]

Everyone in Your Household to Save Energy? Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

432

How Do You Encourage Everyone in Your Household to Save Energy? |  

Broader source: Energy.gov (indexed) [DOE]

Do You Encourage Everyone in Your Household to Save Energy? Do You Encourage Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

433

Modeling household adoption of earthquake hazard adjustments: a longitudinal panel study of Southern California and Western Washington residents  

E-Print Network [OSTI]

This research, aimed at advancing the theory of environmental hazard adjustment processes by contrasting households from three cities in a high seismic hazard area with households from three other cities in a moderate seismic hazard area...

Arlikatti, Sudha S

2006-10-30T23:59:59.000Z

434

2014 Virginia Polytechnic Institute and State University BSE-158NP Household Water Quality in Loudoun County, Virginia  

E-Print Network [OSTI]

2014 Virginia Polytechnic Institute and State University BSE-158NP Household Water Quality in Loudoun County, Virginia OCTOBER 2013 VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM Erin Ling, Water Quality Extension Associate, and Brian Benham, Extension Specialist and Professor

Liskiewicz, Maciej

435

2014 Virginia Polytechnic Institute and State University BSE-151NP Household Water Quality in Albemarle County, Virginia  

E-Print Network [OSTI]

2014 Virginia Polytechnic Institute and State University BSE-151NP Household Water Quality in Albemarle County, Virginia APRIL 2013 VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM Erin Ling, Water Quality Extension Associate, and Brian Benham, Extension Specialist and Professor

Liskiewicz, Maciej

436

2014 Virginia Polytechnic Institute and State University BSE-162NP Household Water Quality in Pittsylvania County, Virginia  

E-Print Network [OSTI]

2014 Virginia Polytechnic Institute and State University BSE-162NP Household Water Quality in Pittsylvania County, Virginia OCTOBER 2013 VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM Erin Ling, Water Quality Extension Associate, and Brian Benham, Extension Specialist and Professor

Liskiewicz, Maciej

437

Community Rating, Cross Subsidies and Underinsurance: Why so many Households in Japan do not Purchase Earthquake Insurance  

Science Journals Connector (OSTI)

Japan is famous for its earthquakes. According to ... survey, however, only 20% of Japanese households purchased an earthquake insurance policy in 2005. Why do so many households in Japan not purchase earthquake ...

Michio Naoi; Miki Seko; Kazuto Sumita

2010-05-01T23:59:59.000Z

438

Heat Stroke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stress, from exertion or hot environments, places stress, from exertion or hot environments, places workers at risk for illnesses such as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body becomes unable to control its temperature, and can cause death or permanent disability. Symptoms ■ High body temperature ■ Confusion ■ Loss of coordination ■ Hot, dry skin or profuse sweating ■ Throbbing headache ■ Seizures, coma First Aid ■ Request immediate medical assistance. ■ Move the worker to a cool, shaded area. ■ Remove excess clothing and apply cool water to their body. Heat Exhaustion The body's response to an excessive loss of water and salt, usually through sweating. Symptoms ■ Rapid heart beat ■ Heavy sweating ■ Extreme weakness or fatigue ■

439

Micro-generation for UK Households: Thermodynamic and Related Analysis.  

E-Print Network [OSTI]

??Micro- generation is the small-scale and localised provision of heat or electricity. Micro-generators have the potential to reduce greenhouse-gas emissions and enhance energy security by… (more)

Allen, Stephen R

2009-01-01T23:59:59.000Z

440

Portland Community College Celebrates Commissioning of Combined Heat and  

Broader source: Energy.gov (indexed) [DOE]

Portland Community College Celebrates Commissioning of Combined Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System October 3, 2011 - 4:43pm Addthis U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help Portland Community College save on its energy bills and help achieve its energy efficiency and sustainability goals. Students at the College will also learn about the fuel cell technology used in the project as part of a comprehensive alternative energy curriculum offered by the school. "The benefits of a combined heat and power fuel cell system, coupled with

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bill Klemm Y-12 National Security Complex July 10 2012 SB Summit.pdf  

Broader source: Energy.gov (indexed) [DOE]

BILL KLEMM BILL KLEMM SR. VP AND DEPUTY GENERAL MANAGER Y-12 NATIONAL SECURITY COMPLEX Y-12's Missions * Deterrence-produce, maintain and protect essential materials and components for U.S. nuclear arsenal * Naval Reactors-provide highly-enriched uranium for naval fuel * Nuclear Nonproliferation-reduce the threat of terrorism Y-12 Today * FY2011 spending - approximately $1 billion * Approx. 8,000 employees (including 4,600 B&W Y-12, 540 WSI, 80 federal staff and 2,350 subcontractors) * 66% of business partners are small businesses * >$1.5 billion subcontracted to small businesses since 2001 Mentor Protégé, $12.9M Large Business, $181.4M Other Small Business, $154.2M Small Business, 77,463 Large Business, 11,769 Procurement Activity - FY2011 Subcontract Awards

442

2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates  

ScienceCinema (OSTI)

The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called 'Fireside Chat' that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas about how small businesses and innovators can overcome the challenges that face many startups.

Chu, Steven (U.S. Department of Energy Secretary); Gates, Bill (Microsoft, Chairman); Podesta, John (Center for American Progress, Chair and Counselor)

2012-03-21T23:59:59.000Z

443

A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs  

Science Journals Connector (OSTI)

...Kitadani Formation of Fukui Prefecture, Japan. J. Vert. Paleontol. 23, 166-175...Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs. | Levnesovia...Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place...

2009-01-01T23:59:59.000Z

444

CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?  

E-Print Network [OSTI]

CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?· Julie how household consumption responds to changes in home energy outlays over the course of the year. We specify Euler equations describing nondurable and food consumption and then rely on changes in energy

Sadoulet, Elisabeth

445

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

446

The PASS Research Team Carol Atkinson-Palombo, Anthony Brazel, Megha Budruk, Bill Edwards, Pat Gober, Corinna Gries,  

E-Print Network [OSTI]

for the Summer of 2005. Respondent demographics include: Ethnicity: 73% White, 19% Hispanic, 8% Other; Household significant variation along ethnic lines. Almost 60 percent of Hispanic respondents reported a household are examined, and findings reveal differences in exposure among Anglo and Hispanic respondents. Hispanics

Hall, Sharon J.

447

Arkansan Worker Cuts Bills After Auto Job Layoff | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arkansan Worker Cuts Bills After Auto Job Layoff Arkansan Worker Cuts Bills After Auto Job Layoff Arkansan Worker Cuts Bills After Auto Job Layoff November 24, 2009 - 3:34pm Addthis Joshua DeLung The wind used to howl around the doors and through the attic of Thomas Lee's house. It's an older brick home with poor insulation located just outside the city limits of Tyronza, Ark. The furnace never seemed to kick off in the winter, and keeping his family warm was a constant battle, Thomas says, one that cost him close to $100 extra each month in the winter. Thomas is 51 years old and lives with his wife and two teenage sons. When his two-bedroom home was weatherized in August, the 15-year U.S. Navy veteran experienced the effects of the Recovery Act first-hand when he could really use it. After his 13-year auto manufacturing job, where he was most recently a

448

Arkansan Worker Cuts Bills After Auto Job Layoff | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arkansan Worker Cuts Bills After Auto Job Layoff Arkansan Worker Cuts Bills After Auto Job Layoff Arkansan Worker Cuts Bills After Auto Job Layoff November 24, 2009 - 3:34pm Addthis Joshua DeLung The wind used to howl around the doors and through the attic of Thomas Lee's house. It's an older brick home with poor insulation located just outside the city limits of Tyronza, Ark. The furnace never seemed to kick off in the winter, and keeping his family warm was a constant battle, Thomas says, one that cost him close to $100 extra each month in the winter. Thomas is 51 years old and lives with his wife and two teenage sons. When his two-bedroom home was weatherized in August, the 15-year U.S. Navy veteran experienced the effects of the Recovery Act first-hand when he could really use it. After his 13-year auto manufacturing job, where he was most recently a

449

The impact of alternative farm policy proposals for the 1990 Farm Bill on representative beef cattle ranches in Texas  

E-Print Network [OSTI]

THE IMPACT OF ALTERNATIVE FARM POLICY PROPOSALS FOR THE 1990 FARM BILL ON REPRESENTATIVE BEEF CATTLE RANCHES IN TEXAS A Thesis by DAVID ALLEN HARTMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfdlrnent... of the requirement for the degree of MASTER OF SCIENCE AUGUST 1990 Major Subject: Agricultural Economics THE IMPACT OF ALTERNATIVE FARM POLICY PROPOSALS FOR THE 1990 FARM BILL ON REPRESENTATIVE BEEF CATTLE RANCHES IN TEXAS A Thesis by DAVID ALLEN HARTMAN...

Hartman, David Allen

2012-06-07T23:59:59.000Z

450

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

451

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

452

Analysis of household refrigerators for different testing standards  

SciTech Connect (OSTI)

This study highlights the salient differences among various testing standards for household refrigerator-freezers and proposes a methodology for predicting the performance of a single evaporator-based vapor-compression refrigeration system (either refrigerator or freezer) from one test standard (where the test data are available-the reference case) to another (the alternative case). The standards studied during this investigation include the Australian-New Zealand Standard (ANZS), the International Standard (ISO), the American National Standard (ANSI), the Japanese Industrial Standard (JIS), and the Chinese National Standard (CNS). A simple analysis in conjunction with the BICYCLE model (Bansal and Rice 1993) is used to calculate the energy consumption of two refrigerator cabinets from the reference case to the alternative cases. The proposed analysis includes the effect of door openings (as required by the JIS) as well as defrost heaters. The analytical results are found to agree reasonably well with the experimental observations for translating energy consumption information from one standard to another.

Bansal, P.K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering; McGill, I. [Fischer and Paykel Ltd., Auckland (New Zealand)

1995-08-01T23:59:59.000Z

453

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

454

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

455

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

456

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu…

2014-01-01T23:59:59.000Z

457

Metering Campaign on All Cooking End-Uses in 100 Households  

Science Journals Connector (OSTI)

This paper presents the findings of an experimental study performed in 100 French households on the end-use power demand and energy consumption of domestic appliances focusing on cooking appliances [1].

Olivier Sidler

2001-01-01T23:59:59.000Z

458

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network [OSTI]

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

459

9 - Chinese healthcare system reforms and household saving patterns: some stylised facts  

Science Journals Connector (OSTI)

Abstract: This chapter aims to evaluate the relationship between one of the recent healthcare reforms in the People’s Republic of China and household decisions both in terms of out-of-pocket expenditure and saving. Evidence on the results achieved by reforms of the health insurance sector in terms of reducing out-of-pocket medical expenditure is still uncertain and contradictory, and very little is known about the effect of these measures on the consumption and saving behaviour of the Chinese population. To shed light on this issue we use data collected by Chinese Household Income Project surveys (CHIPs), through a series of questionnaire-based interviews conducted in urban areas in 1995 and 2002. Our descriptive analysis suggests that there is a positive relationship between public health insurance coverage and household saving. This empirical evidence suggests that public insurance coverage is ineffective as a source of protection against income losses and might induce households to save more.

Vincenzo Atella; Agar Brugiavini; Hao Chen; Noemi Pace

2014-01-01T23:59:59.000Z

460

Household technology adoption in a global marketplace: Incorporating the role of espoused cultural values  

Science Journals Connector (OSTI)

While MATH and the extended MATH have done an excellent job in explaining household technology adoption, there is still room for advancing our understanding of this phenomenon in light of the complexities embo...

Xiaojun Zhang; Likoebe M. Maruping

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Distributional Impacts of Carbon Pricing: A General Equilibrium Approach with Micro-Data for Households  

E-Print Network [OSTI]

Many policies to limit greenhouse gas emissions have at their core efforts to put a price on carbon emissions. Carbon pricing impacts households both by raising the cost of carbon intensive products and by changing factor ...

Rausch, Sebastian

462

Fact #748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010  

Broader source: Energy.gov [DOE]

The overall share of annual household expenditures for transportation was lower in 2010 than it was in 1984, reaching its lowest point in 2009 at 15.5%. In the early to mid-1980s when oil prices...

463

Essays on Price Dynamics, Welfare Analysis, Household Food Insecurity in Mexico  

E-Print Network [OSTI]

prices, and determinants of household food insecurity are discussed and presented in three separate essays. In the first essay, the dynamic information flows among prices of important agricultural commodities in the United States (U.S.) and Mexico...

Magana Lemus, David

2013-09-20T23:59:59.000Z

464

Race, median household income, and primary Grade IV glioma treatment patterns  

Science Journals Connector (OSTI)

...behaviors among a population of Hispanic origin. Daisy Gonzalez 1...population subgroups, including Hispanics. Objective: This study assessed...population-based sample of Hispanic women in PR. Methods: This...complex sampling design of households in the San Juan Metropolitan...

Jill S. Barnholtz-Sloan; Vonetta L. Williams; Marc Chamberlain; and Andrew E. Sloan

2006-04-15T23:59:59.000Z

465

Household structure and labor force participation of black, hispanic, and white mothers  

Science Journals Connector (OSTI)

This paper investigates whether the inclusion of nonnuclear adults in a household facilitates the labor force participation of single and married mothers. Results based on a sample of extended and nuclear hous...

Marta Tienda; Jennifer Glass

1985-08-01T23:59:59.000Z

466

Drivers of U.S. Household Energy Consumption, 1980-2009  

U.S. Energy Information Administration (EIA) Indexed Site

Drivers of U.S. Household Energy Consumption, 1980-2009 February 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy...

467

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network [OSTI]

market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles”, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

Sheng, Hongyan

1999-01-01T23:59:59.000Z

468

The effect of household characteristics on saving behaviour and the theory of savings in Japan  

Science Journals Connector (OSTI)

The purpose of this paper is to estimate the household saving functions based on cross-section data which contain fruitful informations of individual observations. The paper also attempts to test various theor...

T. Suruga; T. Tachibanaki

1991-01-01T23:59:59.000Z

469

The Relationship Between Life Satisfaction Among Wives and Financial Preparedness of Households in Japan  

Science Journals Connector (OSTI)

The wealth gap between the rich and poor is widening and contributing to Japan’s shrinking middle class. This study examined ... future and life satisfaction and their association with household financial prepare...

Yoko Mimura

2014-02-01T23:59:59.000Z

470

Modelling useful energy demand system as derived from basic needs in the household sector  

Science Journals Connector (OSTI)

Inter-fuel substitution in the household sector depends on whether their target energy use is similar or not. To account ... for the effect of end-use application on energy demand, the concept of useful energy is...

Zahra A. Barkhordar; Yadollah Saboohi

2014-10-01T23:59:59.000Z

471

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Square Footage of South Homes, by Housing Characteristics, 2009" 2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and States" "South Atlantic",22.2,1944,1687,1596,771,668,633 "Virginia",3,2227,1977,1802,855,759,692 "Georgia",3.5,2304,1983,1906,855,736,707 "Florida",7,1668,1432,1509,690,593,625 "DC, DE, MD, WV",3.4,2218,1831,1440,864,713,561

472

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" 4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census Region" "Northeast",12.7,2843,2150,1237,1009,763,439 "Midwest",19.2,2721,2249,1664,1019,842,624 "South",29.7,2232,1945,1843,828,722,684 "West",16.9,2100,1712,1009,725,591,348 "Urban and Rural3"

473

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" 0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and States" "New England",5.5,2232,1680,625,903,680,253 "Massachusetts",2.5,2076,1556,676,850,637,277 "CT, ME, NH, RI, VT",3,2360,1781,583,946,714,234 "Mid-Atlantic",15.3,2080,1657,1028,813,647,402

474

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" 5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region" "Northeast",7.6,991,897,408,471,426,194 "Midwest",5.6,957,857,518,521,466,282 "South",8.4,924,846,819,462,423,410 "West",6.5,843,606,329,374,269,146 "Urban and Rural3" "Urban",26.9,927,803,531,450,390,258

475

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" 6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region" "Northeast",0.5,1030,968,711,524,492,362 "Midwest",1.1,1090,1069,595,400,392,218 "South",3.9,1128,1008,894,423,378,335 "West",1.4,995,867,466,369,322,173 "Urban and Rural3" "Urban",3.5,1002,919,684,396,364,271

476

,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" 9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region" "Northeast",20.8,2121,1663,921,836,656,363 "Midwest",25.9,2272,1898,1372,912,762,551 "South",42.1,1867,1637,1549,732,642,607 "West",24.8,1708,1374,800,628,506,294 "Urban and Rural3" "Urban",88.1,1857,1546,1148,728,607,450

477

A Mixed Nordic Experience: Implementing Competitive Retail Electricity Markets for Household Customers  

SciTech Connect (OSTI)

Although the Nordic countries were among the first to develop competition in the electricity industry, it took a long time to make retail competition work. In Norway and Sweden a considerable number of households are actively using the market but very few households are active in Finland and Denmark. One problem has been institutional barriers involving metering, limited unbundling of distribution and supply, and limited access to reliable information on contracts and prices. (author)

Olsen, Ole Jess; Johnsen, Tor Arnt; Lewis, Philip

2006-11-15T23:59:59.000Z

478

The Determinants of Homeonwership in Presence of Shocks Experienced by Mexican Households  

E-Print Network [OSTI]

that households? experience and government income support programs influence homeownership in Mexico. A secondary objective is to determine how socio-demographic variables influence homeownership in Mexico. Based on the Random Utility Model, logit models... of Direct Rural Support of Mexico (PROGRESA) and the Program of Direct Rural Support of Mexico (PROCAMPO), appear to be increasing iii homeownership. These social welfare programs provide cash transfers to households. For whatever reason, PROGRESA...

Lopez Cabrera, Jesus Antonio 1977-

2012-11-05T23:59:59.000Z

479

Applications of demand analysis for the dairy industry using household scanner data  

E-Print Network [OSTI]

Education 7 10 Martial Status 5 11 Male Head Occupation 12 12 Female Head Occupation 12 13 Household Composition 8 14 Race 4 15 Hispanic Origin 2 16 Region 4 17 Scantrack Market Identifier 53 18 Projection Factor 1... classified as either Hispanic or not Hispanic, with 18% being Hispanic and 82% not Hispanic. Since female household heads are considered primary to making food purchase decisions some key statistics about this demographic variable are included. Of all...

Stockton, Matthew C.

2005-02-17T23:59:59.000Z

480

Arsenic Removal from Groundwater by Household Sand Filters:? Comparative Field Study, Model Calculations, and Health Benefits  

Science Journals Connector (OSTI)

Arsenic Removal from Groundwater by Household Sand Filters:? Comparative Field Study, Model Calculations, and Health Benefits ... Simultaneously, raw groundwater from the same households and additional 31 tubewells was sampled to investigate arsenic coprecipitation with hydrous ferric iron from solution, i.e., without contact to sand surfaces. ... Concentra tions of total Fe, Mn, Na, K, Mg, and Ca were quantified by atomic absorption spectroscopy (Shimadzu AA-6800, Kyoto, Japan). ...

Michael Berg; Samuel Luzi; Pham Thi Kim Trang; Pham Hung Viet; Walter Giger; Doris Stüben

2006-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "household heating bills" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NeighborWorks On-Bill Option Simplifies Loan Payments in Vermont...  

Energy Savers [EERE]

finance a new heat pump hot water heater, weatherization improvements, and two air source heat pumps for heating and cooling each floor of their Rutland, Vermont, home. "Like many...

482

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

483

Econometric model of the joint production and consumption of residential space heat  

SciTech Connect (OSTI)

This study models the production and comsumption of residential space heat, a nonmarket good. Production reflects capital investment decisions of households; consumption reflects final demand decisions given the existing capital stock. In the model, the production relationship is represented by a translog cost equation and an anergy factor share equation. Consumption is represented by a log-linear demand equation. This system of three equations - cost, fuel share, and final demand - is estimated simultaneously. Results are presented for two cross-sections of households surveyed in 1973 and 1981. Estimates of own-price and cross-price elasticities of factor demand are of the correct sign, and less than one in magnitude. The price elasticity of final demand is about -0.4; the income elasticity of final demand is less than 0.1. Short-run and long-run elasticities of demand for energy are about -0.3 and -0.6, respectively. These results suggest that price-induced decreases in the use of energy for space heat are attributable equally to changes in final demand and to energy conservation, the substitution of capital for energy in the production of space heat. The model is used to simulate the behavior of poor and nonpoor households during a period of rising energy prices. This simulation illustrates the greater impact of rising prices on poor households.

Klein, Y.L.

1985-12-01T23:59:59.000Z

484

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

North Carolina North Carolina Program Type Utility Loan Program Rebate Amount Single Unit: 10,000 Multiple and Advanced Units: up to 12,500 The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

485

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virginia Virginia Program Type Utility Loan Program Rebate Amount Single Unit: 10,000 Multiple and Advanced Units: up to 12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

486

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Tennessee Program Type Utility Loan Program Rebate Amount Single Unit: 10,000 Multiple and Advanced Units: up to 12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

487

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Kentucky Program Type Utility Loan Program Rebate Amount Single Unit: up to $10,000 Multiple and Advanced Units: up to $12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

488

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Georgia Georgia Program Type Utility Loan Program Rebate Amount Single Unit: up to 10,000 Multiple and Advanced Units: up to 12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

489

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Alabama Alabama Program Type Utility Loan Program Rebate Amount Single Unit: up to $10,000 Multiple and Advanced Units: up to $12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

490

TVA Partner Utilities - Energy Right Heat Pump Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Mississippi Mississippi Program Type Utility Loan Program Rebate Amount Single Unit: up to $10,000 Multiple and Advanced Units: up to $12,500 Provider Tennessee Valley Authority The Tennessee Valley Authority (TVA) ''energy right'' Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation, performance, and weatherization standards ensure the appropriate sizing of equipment and operation of the system. TVA maintains a Quality Contractor Network (QCN) from which customers can choose an installer. Through a third-party lender, TVA provides financing for residential heat pumps with repayment on the customer's electric bill and a term of up to 10 years. The programs are independently administered by local power companies served by TVA.

491

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

SciTech Connect (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

492

Evaluation of the soft measures' effects on ambient water quality improvement and household and industry economies  

Science Journals Connector (OSTI)

Abstract Various ecological footprint calculators, carbon footprint calculators and water footprint calculators have been developed in recent years. The basic concepts of ecological behaviour record notebooks and of carbon dioxide emission calculators have been developed since the late 20th century. The first carbon dioxide emission calculator was developed in 1991. Likewise, water pollutant discharge calculators have been developed to estimate the effects of soft measures introduced into households to reduce pollutant discharge since 2004. The soft measures which have been developed in Japan may consist of a wider framework, household sustainable consumption, which has been developed in Europe, and can be referred to cleaner consumption. In this research, summarisation of the short history of ecological behaviour record notebooks and ecological footprint calculators in Japan since the 1980s was conducted, and the soft measures in households to reduce pollutant discharge were evaluated for their effects on ambient water quality improvement as well as household and industry economies. Effects of the soft measures on related industry economies were investigated using an Input–Output Table analysis and the effects of the imported goods were evaluated with an import effect matrix, which was developed in this research. The effects of the soft measures on household expenditures were estimated to be a decrease by 2.5% or USD 285 person?1 year?1 in 2003–2006. The results show that the soft measures positively affect the chemical fibre industry and significantly affect the detergent industry. Analysis of the import effect matrix proved that the six industries were tightly related through extensive amounts of imported goods. The soft measures in households may lead to household sustainable consumption and thus reduce disadvantageous human impacts on water environments. The effects of the measures introduced to improve the environment should be qualitatively and quantitatively evaluated to avoid redundant concerns and discord between the environment and the economy, which may be worried when the relationship is not well understood.

Yoshiaki Tsuzuki

2014-01-01T23:59:59.000Z

493

Development of a Methane Premixed Catalytic Burner for Household Applications  

Science Journals Connector (OSTI)

The catalytic combustion of methane is currently investigated in a variety of international research programs, thanks to its numerous potential applications (e.g., boilers, process heaters, reciprocating engines, gas-turbine cycles, etc.). ... At low surface heat powers (Q) and excesses of air (Ea), the combustion mostly occurs in a thin layer within the permeable panel (radiant or flameless regime, Figure 1b); the burner outlet surface (burner deck) reaches temperatures varying from 700 to 900 °C, depending on both Q and Ea values, and glows flamelessly. ... The goal is to assemble a boiler capable of coping with variable hot water requests:? from about 2?3 kW (160?240 kW/m2) for apartment heating up to 25 kW (2000 kW/m2) for sanitary purposes, so as to produce hot water with time delays compatible with the users' comfort. ...

Isotta Cerri; Guido Saracco; Francesco Geobaldo; Vito Specchia

2000-01-04T23:59:59.000Z

494

Summary Impacts of Modeled Provisions of the 2003 Conference Energy Bill  

Gasoline and Diesel Fuel Update (EIA)

2 2 Summary Impacts of Modeled Provisions of the 2003 Conference Energy Bill February 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

495

Analysis of Five Selected Tax Provisions of the Conference Energy Bill of 2003  

Gasoline and Diesel Fuel Update (EIA)

1 1 Analysis of Five Selected Tax Provisions of the Conference Energy Bill of 2003 February 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor.

496

Greenhouse gas emissions from home composting of organic household waste  

SciTech Connect (OSTI)

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

497

[BILLING CODE]  

Broader source: Energy.gov (indexed) [DOE]

[6450-01-P] [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Parts 433 [Docket No.: EERE-2011-BT-STD-0055] RIN 1904-AC60 Energy Efficiency Design Standards for New Federal Commercial and Multi-Family High-Rise Residential Buildings (Final Rule) AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy ACTION: Finding of No Significant Impact. SUMMARY: Section 305(a) of the Energy Conservation and Production Act (ECPA) requires that DOE establish by rule Federal building energy efficiency standards for all Federal commercial and multi-family high-rise residential buildings. EPCA requires the U.S. Department of Energy (DOE) to establish by rule revised Federal building energy efficiency performance standards. (42 U.S.C. 6834(a)(3)(A)) The Final Rule updates the

498

Bill Vogel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vogel Vogel Director of Apparent Inc, Founder of Trilliant Inc. Apparent Inc. and Trilliant Inc. This speaker was a visiting speaker who delivered a talk or talks on the date(s) shown at the links below. This speaker is not otherwise associated with Lawrence Berkeley National Laboratory, unless specifically identified as a Berkeley Lab staff member. In addition to serving on Apparent's board, Mr. William Vogel is a serial entrepreneur in renewables, smart grid and demand response. He was the founder and CEO of Trilliant Inc., a network that integrates real-time distribution networks with smart metering, demand response and customer information management. Trilliant is owned by a consortium of investors of which include ABB, GE, Mission Point Capital and Vantage Point

499

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based

500

Savings Project: Lower Water Heating Temperature | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lower Water Heating Temperature Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings $12-$30 annually for each 10ºF reduction Time to Complete 2 hours Overall Cost $0 Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Turning down your water heater temperature can save energy and money. | Photo courtesy of iStockphoto.com/BanksPhotos Although some manufacturers set water heater thermostats at 140ºF, most households usually only require them to be set at 120ºF, which also slows mineral buildup and corrosion in your water heater and pipes. Water heated at 140ºF also poses a safety hazard-scalding. Savings resulting from turning down your water heater temperature are based