Powered by Deep Web Technologies
Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

2

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

3

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

4

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

5

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

6

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

7

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

8

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

9

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

10

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

11

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

12

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

13

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

14

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

15

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

16

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Appendix A How the Survey Was Conducted Introduction The Residential Transportation Energy Consumption Survey (RTECS) was designed by the Energy Information Administration (EIA)...

17

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

18

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

19

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

20

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

22

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

23

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

24

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

25

Energy Consumption of Refrigerators in Ghana - Outcomes of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

26

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

27

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

28

Projecting household energy consumption within a conditional demand framework  

Science Conference Proceedings (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

29

Household and environmental characteristics related to household energy-consumption change: A human ecological approach  

Science Conference Proceedings (OSTI)

This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

Guerin, D.A.

1988-01-01T23:59:59.000Z

30

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

31

RECS data show decreased energy consumption per household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-06-06T23:59:59.000Z

32

Household Vehicles Energy Consumption 1994 - Appendix C  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses undercoverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1994 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1994 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics

33

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

34

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

35

Analysis of the energy requirement for household consumption.  

E-Print Network (OSTI)

??Humans in households use energy for their activities. This use is both direct, for example electricity and natural gas, but also indirect, for the production,… (more)

Vringer, Kees

2005-01-01T23:59:59.000Z

36

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

37

Table 1. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ho ...

38

Table 3. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ...

39

Residential energy consumption survey. Consumption patterns of household vehicles, supplement: January 1981-September 1981  

Science Conference Proceedings (OSTI)

Information on the fuel consumption characteristics on household vehicles in the 48 contiguous States and the District of Columbia is presented by monthly statistics of fuel consumption, expenditures, miles per gallon, and miles driven.

Not Available

1983-02-01T23:59:59.000Z

40

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

42

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Table CE1-4c. Total Energy Consumption in U.S. Households by Type of Housing Unit, 1997 ... where the end use is electric air-conditioning, ...

43

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

44

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

45

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households by Four Most Populated States, 1997 RSE Column Factor: Total U.S. Four Most Populated States

46

Table CE5-2c. Appliances Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE5-2c. Appliances1 Energy Consumption in U.S. Households by Year of Construction, 2001 RSE Column Factor: Total Year of Construction RSE Row

47

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

48

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

49

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

50

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

51

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

52

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

53

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

54

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

55

Residential energy consumption of low-income and elderly households: how non-discretionary is it  

SciTech Connect

The energy literature is replete with opinions that the poor and elderly have cut their residential energy consumption to a minimum. This paper challenges such conclusions through an analysis of data on a sample of 319 Decatur, Illinois homeowners. The data include utility bill histories and survey information on housing characteristics, energy-related behaviors, attitudes, and socio-economic and demographic characteristics. It shows that residential energy consumption per square foot of living space is significantly higher for the elderly and poor than for other groups of Decatur homeowners. By breaking energy use into seasonal components, the paper estimates consumption for various household uses. This information, combined with the survey data, suggests that both subgroups heat and cool their homes inefficiently, due in part to the conditions of their homes, but also due to energy-related behaviors. The public policy implications of the findings are discussed.

Brown, M.A.; Rollinson, P.A.

1984-01-01T23:59:59.000Z

56

Understanding and Improving Household Energy Consumption and Carbon Emissions Policies - A System Dynamics Approach  

E-Print Network (OSTI)

The purpose of this paper is to propose and demonstrate the application of system dynamics modeling approach to analyze and study the behavior the complex interrelationships among the different policies/interventions aimed at reducing household energy consumption and CO2 emissions (HECCE) based on the Climate Change Act of 2008 of the UK government. The paper uses the system dynamics as both the methodology and tool to model the policies/interventions regarding HECCE. The model so developed shows the complex interrelationships among the different policies/interventions variables and presents the basis for simulating the different scenarios of household energy consumption reduction strategies. The paper concludes that the model is capable of adding to the understanding of the complex system under which HECCE operate and improve it accordingly by studying the behavior of each policy/intervention over time. The outcomes of the research will help decision makers draw more realistic policies/interventions for household energy consumption which is critical to the CO2 emissions reductions agenda of the government.

Oladokun, M.; Motawa, I.; Banfill, P.

2012-01-01T23:59:59.000Z

57

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

Science Conference Proceedings (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

58

Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco  

E-Print Network (OSTI)

in household and per capita consumption of energy and water, and also at food, beverages, and tobacco, products invites several questions: Did per capita energy use increase from 1949 to 1973 due to bigger houses US primary energy consumption from 1949 to 2001 (Figure 1). In 1949, U.S. energy use per person stood

Diamond, Richard

59

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

60

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The 1997 Residential Energy Consumption Survey -- Two Decades  

U.S. Energy Information Administration (EIA)

1997 Residential Energy Consumption Survey presents two decades of changes in energy consumption related Household Characteristics

62

Household operational energy consumption in urban China : a multilevel analysis on Jinan  

E-Print Network (OSTI)

With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

Wang, Dong, M.C.P. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

63

Energy Spending and Vulnerable Households  

E-Print Network (OSTI)

 off than before. In particular large households with low  incomes seem to have been adversely affected by the new tariff structures since  they have comparably large energy expenditure (Bennet et al., 2002).    5. Vulnerable Households and Energy Spending  The...  tariffs can play an important part in the public debate  on  eradicating  fuel  poverty  and  helping  the  vulnerable  households.  Smart  metering  can  provide  consumers  with  information  on  the  actual  energy  consumption and might  lead  to...

Jamasb, Tooraj; Meier, Helena

2011-01-26T23:59:59.000Z

64

Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.  

SciTech Connect

Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

Poyer, D.A.; Teotia, A.P.S. [Argonne National Lab., IL (United States); Henderson, L. [Univ. of Baltimore, MD (United States)

1998-05-01T23:59:59.000Z

65

Residential Energy Usage by Origin of Householder  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Residential Home Page > Energy Usage by Origin of Householder. Consumption and Expenditures. NOTE: To View and/or Print PDF's ...

66

Promoting new patterns in household energy consumption with pervasive learning games  

Science Conference Proceedings (OSTI)

Engaging computer games can be used to change energy consumption patterns in the home. PowerAgent is a pervasive game for Java-enabled mobile phones that is designed to influence everyday activities and use of electricity in the domestic setting. PowerAgent ...

Magnus Bang; Anton Gustafsson; Cecilia Katzeff

2007-04-01T23:59:59.000Z

67

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

68

Table CE1-7c. Total Energy Consumption in U.S. Households by Four ...  

U.S. Energy Information Administration (EIA)

Other Appliances and Lighting ... It does include the small number of households where the fuel for central air-conditioning equipment was something other than ...

69

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network (OSTI)

Erik Hurst. 2004. “Consumption vs. Expenditure. ” National14: Attanasio, Orazio. 1999. “Consumption. ” In J.Taylor andThe Life-Cycle Model of Consumption and Saving. ” Journal of

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

70

A Glance at China’s Household Consumption  

SciTech Connect

Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

Shui, Bin

2009-10-22T23:59:59.000Z

71

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

72

Did Household Consumption Become More Volatile?  

E-Print Network (OSTI)

I show that after accounting for predictable variation arising from movements in real interest rates, preferences, income shocks, liquidity constraints and measurement errors, volatility of household consumption in the US increased between 1970 and 2004. For households headed by nonwhite and/or poorly educated individuals, this rise was significantly larger. This stands in sharp contrast with the dramatic fall in instability of the aggregate U.S. economy over the same period. Thus, while aggregate shocks affecting households fell over time, idiosyncratic shocks increased. This finding may lead to significant welfare implications.

Olga Gorbachev

2009-01-01T23:59:59.000Z

73

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

RECS data show decreased energy consumption per household. RECS 2009 — Release date: June 6, 2012. Total United States energy consumption in homes has remained ...

74

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

75

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network (OSTI)

home energy costs are electricity bills. 76% of energy coststo be paying their electricity bills directly, for instanceof the fact that electricity bills comprise almost three-

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

76

Table 2.4 Household Energy Consumption by Census Region, Selected ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... no data available. - Data for 1978-1984 are for April of year shown through March of following year; data

77

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

78

Essays on the effects of demographics on household consumption.  

E-Print Network (OSTI)

??My dissertation analyses the relationship between households' consumption behavior and changes in family demographic characteristics. The first paper studies consumption over the period of the… (more)

Stepanova, Ekaterina, 1977-

2006-01-01T23:59:59.000Z

79

Energy and household expenditure patterns  

Science Conference Proceedings (OSTI)

Since households account, either directly or indirectly, for two-thirds of the energy consumed in the US, changes in household activities will affect energy use. Expected changes in prices, personal income, and family spending over the next 20 years are looked at as well as the implications for energy consumption. The analysis shows that direct energy purchases will break with past trends, dropping from 2.6% to 0.2% annual growth for the rest of the century. Growth in spending on energy-using goods is also likely to slow down. The year 2000 will see a marked decrease in the growth of national energy consumption. 58 references, 3 figures, 35 tables.

Lareau, T.J.; Darmstadter, J.

1983-01-01T23:59:59.000Z

80

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... 1984: 20.66: 4.62: 8.51: 2.00: 35.79: 7.06: 6.63: 6.44: 1.09.58: 14.74: 2.31: 36.36.54: 39.21: 1987: 18.05: 5 ...

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household ï‚· California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average. ï‚· Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

82

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household ï‚· California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average. ï‚· Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

83

Figure 2. Energy Consumption of Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure 2 Figure 2. Energy Consumption of Vehicles, Selected Survey Years...

84

The Other Energy Crisis: Managing Urban Household Energy Use in Senegal  

E-Print Network (OSTI)

for 62 percent of national energy consumption, or over 1 .1energy consumption, and (2) residential, because of the dominant role that households play in national

Leitmann, Josef

1989-01-01T23:59:59.000Z

85

EIA Average Energy Consumption 2005  

U.S. Energy Information Administration (EIA)

Table US8. Average Consumption by Fuels Used, 2005 Physical Units per Household Fuels Used (physical units of consumption per household using the fuel)

86

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

87

Household Vehicles Energy Use Cover Page  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

88

Residential Energy Consumption for Water Heating (2005) Provides...  

Open Energy Info (EERE)

Residential Energy Consumption for Water Heating (2005) Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in...

89

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

90

Smoothing consumption across households and time : essays in development economics  

E-Print Network (OSTI)

This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

Kinnan, Cynthia Georgia

2010-01-01T23:59:59.000Z

91

Residential Energy Consumption - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The Residential Energy Consumption Survey provides national and regional information about U.S. households and their energy usage. The first survey was conducted in 1978.

92

Number, Energy Consumption, and Energy-Related Carbon ...  

U.S. Energy Information Administration (EIA)

Tabulation of changes in the number, energy consumption, and energy-related carbon emissions of U.S. households, 1980-1997.

93

The impact of rising energy prices on household energy consumption and expenditure patterns: The Persian Gulf crisis as a case example  

SciTech Connect

The Iraqi invasion of Kuwait and the subsequent war between Iraq and an international alliance led by the United States triggered immediate increases in world oil prices. Increases in world petroleum prices and in US petroleum imports resulted in higher petroleum prices for US customers. In this report, the effects of the Persian Gulf War and its aftermath are used to demonstrate the potential impacts of petroleum price changes on majority, black, and Hispanic households, as well as on poor and nonpoor households. The analysis is done by using the Minority Energy Assessment Model developed by Argonne National Laboratory for the US Department of Energy (DOE). The differential impacts of these price increases and fluctuations on poor and minority households raise significant issues for a variety of government agencies, including DOE. Although the Persian Gulf crisis is now over and world oil prices have returned to their prewar levels, the differential impacts of rising energy prices on poor and minority households as a result of any future crisis in the world oil market remains a significant long-term issue.

Henderson, L.J. (Baltimore Univ., MD (United States)); Poyer, D.A.; Teotia, A.P.S. (Argonne National Lab., IL (United States). Energy Systems Div.)

1992-09-01T23:59:59.000Z

94

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

95

Simulating household activities to lower consumption peaks: demonstration  

Science Conference Proceedings (OSTI)

Energy experts need fine-grained dynamics oriented tools to investigate household activities in order to improve power management in the residential sector. This paper presents the SMACH framework for modelling, simulating and analy- sis of household ... Keywords: agent-based modelling, energy, social simulation

Edouard Amouroux, Francois Sempé, Thomas Huraux, Nicolas Sabouret, Yvon Haradji

2013-05-01T23:59:59.000Z

96

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

97

The effect of household consumption patterns on energy use and greenhouse gas emissions: Comparison between Spain and Sweden.  

E-Print Network (OSTI)

??The purpose of this study is to provide a better understanding of the effect of increasing income on energy use and greenhouse gas (GHG) emissions… (more)

Cintas Sánchez, Olivia

2011-01-01T23:59:59.000Z

98

Profiling energy use in households and office spaces  

Science Conference Proceedings (OSTI)

Energy consumption is largely studied in the context of different environments, such as domestic, corporate, industrial, and public sectors. In this paper, we discuss two environments, households and office spaces, where people have an especially ...

Salman Taherian; Marcelo Pias; George Coulouris; Jon Crowcroft

2010-04-01T23:59:59.000Z

99

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

appliance, lighting, and heating and cooling usage in theseusage in rural households. Primary Energy Consumption (EJ) Appliance Cooking lighting

Zhou, Nan

2010-01-01T23:59:59.000Z

100

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

102

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

103

Table CE5-5.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-5.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household Demographics RSE Column Factor:

104

Model documentation: household model of energy  

Science Conference Proceedings (OSTI)

The Household Model of Energy is an econometric model, meaning that energy use is determined quantitatively with the use of economic variables such as fuel prices and income. HOME is also primarily a structural model, meaning that energy use is determined as the result of interactions of intermediate components such as the number of households, the end use fuel shares and the energy use per household. HOME forecasts energy consumption in all occupied residential structures (households) in the United States on an annual basis through 1990. The forecasts are made based upon a number of initial conditions in 1980, various estimated elasticities, various parameters and assumptions, and a set of forecasted fuel prices and income. In addition to the structural detail, HOME operates on a more disaggregated level. This includes four end-use services (space heating, water heating, air conditioning, and others), up to seven fuel/technology types (dependent upon the end use service), two housing types, four structure vintages, and four Census regions. When the model is run as a module in IFFS, a sharing scheme further disaggregates the model to 10 Federal regions.

Holte, J.A.

1984-02-01T23:59:59.000Z

105

Econometric analysis of energy use in urban households  

SciTech Connect

This article analyzes the pattern of energy carrier consumption in the residential sector of Bangalore, a major city in south India. A 1,000-household survey was used to study the type of energy carrier used by households in different income groups for different end-uses, such as cooking, water heating, and lighting. The dependence of income on the carrier utilized is established using a carrier dependence index. Using regression analysis, the index analyses the impact of different explanatory variables such as family income, family size, and price of energy carrier on consumption. The results show that income plays an important role not only in the selection of an energy carrier but also on the quantity of consumption per household. Also, a source-service matrix is prepared for Bangalore`s residential sector, which shows the disaggregation of energy consumption by the type of energy carrier and end-use.

Reddy, B.S. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-05-01T23:59:59.000Z

106

Household energy in South Asia  

Science Conference Proceedings (OSTI)

This research study on the use of energy in South Asis (India, Pakistan, Sri Lanka and Bangladesh) was sponsored by the Food and Agriculture Organization of the UN, the International Bank for Reconstruction and Development (the World Bank), and the Directorate-General for Development of the Commission of the European Communities. The aim of this book is to improve the understanding of household energy and its linkages, by reviewing the data resources on household energy use, supply, prices and other relevant factors that exist in South Asia.

Leach, G.

1987-01-01T23:59:59.000Z

107

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network (OSTI)

2004, "Household Energy Consumption Reported o n A National2006, "Household Energy consumption Reported i n a Nationalconsumption for different uses i n housing and energy usage analysis based on national

2006-01-01T23:59:59.000Z

108

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

all comparisons reported in the text are statistically significant, based on a standard test made at the 0.05 significance level. No adjustments were made for simultaneous...

109

Section J: HOUSEHOLD CHARACTERISTICS  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 42 Section J: HOUSEHOLD ...

110

Consumption & Efficiency - Data - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Find statistics on energy consumption and efficiency across all fuel sources. + EXPAND ALL Residential Energy Consumption Survey Data Household characteristics Release Date: March 28, 2011 Survey data for occupied primary housing units. Residential Energy Consumption Survey (RECS)

111

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

112

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

113

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

114

Residential Energy Consumption Survey: Quality Profile  

SciTech Connect

The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

NONE

1996-03-01T23:59:59.000Z

115

2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

116

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

117

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

118

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

119

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

120

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy efficiency and how it is measured, measurement, summaries of formal user meetings on energy efficiency data and measurement, as well as analysis of greenhouse gas emissions as related to energy use and energy efficiency. At the site you will find links to other sources of information, and via a listserv all interested analysts can share ideas, data, and ask for assistance on methodological problems associated with energy use, energy efficiency, and greenhouse gas issues. Contact: Behjat.Hojjati@eia.doe.gov

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

122

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

123

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

124

Essays on the Consumption and Investment Decisions of Households in the Presence of Housing and Human Capital  

E-Print Network (OSTI)

2 Housing and the Consumption Allocation of Households:of Indivisibility on Housing Consumption Volatility . 2.5and consumption allocation . . . . . . . . . . . . . . .

Betermier, Sebastien

2010-01-01T23:59:59.000Z

125

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

126

The household energy transition in India and China Shonali Pachauri a,, Leiwen Jiang b  

E-Print Network (OSTI)

household surveys. The two countries differ sharply in several respects. Residential energy consumption of national primary energy consumption statistics shows clearly that both India and China are countries energy consumption remains low in both countries, particularly in India. Average energy use is low

127

UK Energy Consumption by Sector The energy consumption data consists...  

Open Energy Info (EERE)

Consumption by Sector The energy consumption data consists of five spreadsheets: "overall data tables" plus energy consumption data for each of the following...

128

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

129

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

comparison between electricity consumption and behavioralK. 2013. “Domestic energy consumption-What role do comfort,residential electricity consumptionEnergy Policy, 42(2012)

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

130

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

131

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

132

Energy-consumption modelling  

SciTech Connect

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

133

Residential energy consumption survey: housing characteristics 1984  

SciTech Connect

Data collected in the 1984 Residential Energy Consumption Survey (RECS), the sixth national survey of households and their fuel suppliers, provides baseline information on how households use energy. Households living in all types of housing units - single-family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public. The housing characteristics this report describes include fuels and the uses they are put to in the home; appliances; square footage of floorspace; heating (and cooling) equipment; thermal characteristics of housing structures; conservation features and measures taken; the consumption of wood; temperatures indoors; and regional weather. These data are tabulated in sets, first showing counts of households and then showing percentages. Results showed: Fewer households are changing their main heating fuel. More households are air conditioned than before. Some 50% of air-conditioned homes now use central systems. The three appliances considered essential are the refrigerator, the range, and the television set. At least 98% of US homes have at least one television set; but automatic dishwashers are still not prevalent. Few households use the budget plans tht are available from their utility companies to ease the payment burden of seasonal surges in fuel bills. The most common type of heating equipment in the United States is the natural-gas forced-air furnace. About 40% ofthose furnaces are at least 15 years old. The oldest water heaters are those that use fuel oil. The most common conservation feature in 1984 is ceiling or attic insulation - 80% of homes report having this item. Relatively few households claimed tax credits in 1984 for energy-conservation improvements.

Not Available

1986-10-08T23:59:59.000Z

134

Table 4. LPG Consumption and Expeditures in U.S. Households by End ...  

U.S. Energy Information Administration (EIA)

Table 4. LPG Consumption and Expeditures in U.S. Households by End Uses and Census Region, 2001 RSE Column Factor: Total U.S. Census Region RSE Row

135

Residential Energy Consumption Survey: housing characteristics, 1982  

Science Conference Proceedings (OSTI)

Data in this report cover fuels and their use in the home, appliances, square footage of floor space, heating equipment, thermal characteristics of the housing unit, conservation activities, wood consumption, indoor temperatures, and weather. The 1982 survey included a number of questions on the reasons households make energy conservation improvements to their homes. Results of these questions are presented. Discussion also highlights data pertaining to: trends in home heating fuels, trends in conservation improvements, and characteristics of households whose energy costs are included in their rent.

Thompson, W.

1984-08-01T23:59:59.000Z

136

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

137

Residential energy use and conservation actions: analysis of disaggregate household data  

Science Conference Proceedings (OSTI)

The Energy Information Administration recently published data they collected from the National Interim Energy Consumption Survey (NIECS). NIECS includes detailed information on 4081 individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances therein, recent conservation actions taken by the household, and fuel consumption and cost for the April 1978 to March 1979 one-year period. This data set provides a new and valuable resource for analysis. The NIECS data on household energy consumption - total energy use, electricity use, and use of the primary space heating fuel, are summarized and analyzed. The regression equations constructed explain roughly half the variation in energy use among households. These equations contain ten or fewer independent variables, the most important of which are fuel price, year house was built, floor area, and heating degree days. Regression equations were developed that estimate the energy saving achieved by each household based on their recent retrofit actions. These equations predict 20 to 40% of the variation among households. Total annual energy use is the most important determinant of retrofit energy saving; other significant variables include age of household head, household income, year house was built, housing tenure, and proxies for the cost of heating and air conditioning the house.

Hirst, E.; Goeltz, R.; Carney, J.

1981-03-01T23:59:59.000Z

138

Table CE3-6.1u. Electric Air-Conditioning Energy Consumption and ...  

U.S. Energy Information Administration (EIA)

Table CE3-6.1u. Electric Air-Conditioning Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

139

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

140

Table CE5-6.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-6.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Urban household energy use in Thailand  

SciTech Connect

Changes in household fuel and electricity use that accompany urbanization in Third World countries bear large economic and environmental costs. The processes driving the fuel transition, and the policy mechanisms by which it can be influenced, need to be better understood for the sake of forecasting and planning, especially in the case of electricity demand. This study examines patterns of household fuel use and electrical appliance utilization in Bangkok, Chieng Mai and Ayutthaya, Thailand, based on the results of a household energy survey. Survey data are statistically analyzed using a variety of multiple regression techniques to evaluate the relative influence of various household and fuel characteristics on fuel and appliance choice. Results suggest that changes to the value of women's time in urban households, as women become increasingly active in the labor force, have a major influence on patterns of household energy use. The use of the home for small-scale commercial activities, particularly food preparation, also has a significant influence on fuel choice. In general, household income does not prove to be an important factor in fuel and appliance selection in these cities, although income is closely related to total electricity use. The electricity use of individual household appliances is also analyzed using statistical techniques as well as limited direct metering. The technology of appliance production in Thailand is evaluated through interviews with manufacturers and comparisons of product performance. These data are used to develop policy recommendations for improving the efficiency of electrical appliances in Thailand by relying principally on the dynamism of the consumer goods market, rather than direct regulation. The annual electricity savings from the recommended program for fostering rapid adoption of efficient technologies are estimated to reach 1800 GWh by the year 2005 for urban households alone.

Tyler, S.R.

1992-01-01T23:59:59.000Z

142

Residential energy consumption: An analysis-of-variance study  

SciTech Connect

In this report, tests of statistical significance of five sets of variables with household energy consumption (at the point of end-use) are described. Five models, in sequence, were empirically estimated and tested for statistical significance by using the Residential Energy Consumption Survey of the US Department of Energy, Energy Information Administration. Each model incorporated additional information, embodied in a set of variables not previously specified in the energy demand system. The variable sets were generally labeled as economic variables, weather variables, household-structure variables, end-use variables, and housing-type variables. The tests of statistical significance showed each of the variable sets to be highly significant in explaining the overall variance in energy consumption. The findings imply that the contemporaneous interaction of different types of variables, and not just one exclusive set of variables, determines the level of household energy consumption.

Poyer, D.A.

1992-01-01T23:59:59.000Z

143

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 1, National data  

Science Conference Proceedings (OSTI)

This report presents data collected in the 1984 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration (EIA). The 1984 RECS was the sixth national survey of US households and their energy suppliers. The purpose of these surveys is to provide baseline information on how households use energy. Households in all types of housing units - single family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public in published reports such as this one and on public-use data tapes. The report presents data on the US consumption and expenditures for residential use of these ''major fuels'' - natural gas, electricity, fuel oil, kerosene, and liquefied petroleum gas (LPG) - from April 1984 through March 1985. These data are presented in tables in the Detailed Statistics section of this report. Except for kerosene and wood fuel, the consumption and expenditures data are based on actual household bills obtained, with the permission of the household, from the companies supplying energy to the household. Purchases of kerosene are based on respondent reports because records of ''cash and carry'' purchases of kerosene for individual households are usually unavailable. Data on the consumption of wood fuel (Table 27) covers the 12-month period ending November 1984 and are based on respondent recall of the amount of wood burned during the 12-month period. Both the kerosene and wood consumption data are subject to memory errors and other reporting errors. This report does not cover household use of motor fuel, which is reported separately.

Not Available

1987-03-04T23:59:59.000Z

144

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

145

Predicting summer energy consumption from homeowners attitudes  

SciTech Connect

Two surveys examined the relationship between homeowners attitudes toward energy use and their actual summer electric consumption. In Survey 1, 56 couples filled out questionnaires concerning their energy attitudes. A factor analysis of their responses revealed four factors: comfort and health concerns, effort to conserve and monetary savings, role of the individual, and legitimacy of the energy crisis. The factors were entered into a multiple regression analysis to predict actual summer electric consumption. The attitudinal factors together significantly accounted for 55% of the variance in summer electric consumption. The comfort and health factor by itself explained 30% of the consumption variance. Survey 2, consisting of 69 couples, was conducted to elaborate the meaning of the factors. The results of the factor analysis of Survey 2 revealed six factors: comfort, health, individual's role, belief in science, legitimacy of the energy crisis, and effort to conserve. An overall regression analysis showed that the factors significantly explained nearly 60% of the summer consumption variance. The comfort factor was again the best predictor of summer electric consumption, accounting for 42% of the variance. It was concluded that attitudes about one's comfort are significantly related to household energy consumption (primarily air conditioning). The implications for energy conservation campaigns were discussed. 10 references, 3 tables.

Seligman, C.; Kriss, M.; Darley, J.M.; Fazio, R.H.; Becker, L.J.; Pryor, J.B.

1979-01-01T23:59:59.000Z

146

Comparative analysis of energy data bases for household residential and transportation energy use  

SciTech Connect

Survey data bases covering household residential and transportation energy use were reviewed from the perspective of energy policy analysts and data base users. Twenty-three surveys, taken from 1972 to 1985, collected information on household energy consumption and expenditures, energy-using capital stock, and conservation activities. Ten of the surveys covered residential energy use only, including that for space heating and cooling, cooking, water heating, and appliances. Six surveys covered energy use only for household travel in personal vehicles. Seven surveys included data on both of these household energy sectors. Complete energy use data for a household in one year can be estimated only for 1983, using two surveys (one residential and one transportation) taken in the same households. The last nine surveys of the 23 were recent (1983--1985). Review of those nine was based on published materials only. The large-scale surveys generally had less-comprehensive data, while the comprehensive surveys were based on small samples. The surveys were timely and useful for analyzing four types of energy policies: economic regulation, environmental regulation, federal energy production, and direct regulation of energy consumption or production. Future surveys of energy use, such as those of residential energy consumption, should try to link their energy-use questions to large surveys, such as the American Housing Survey, to allow more accurate analysis of comparative impacts of energy policies among population categories of interest (e.g., minority/majority, metropolitan/nonmetropolitan area, census regions, and income class). 78 refs., 9 figs., 29 tabs.

Teotia, A.; Klein, Y.; LaBelle, S.

1988-11-01T23:59:59.000Z

147

Essays on health care consumption and household finance  

E-Print Network (OSTI)

This thesis explores how health insurance affects the decisions that individuals make. The first chapter studies the effect of insurance on health care consumption. Nearly 10 percent of teenagers become ineligible for their ...

Gross, Tal (Tal A.)

2009-01-01T23:59:59.000Z

148

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

149

Household energy handbook: an interim guide and reference manual. World Bank technical paper  

SciTech Connect

A standard framework for measuring and assessing technical information on the household energy sector in developing countries is needed. The handbook is intended as a first step toward creating such a framework. Chapter I discusses energy terms and principles underlying the energy units, definitions, and calculations presented in the following chapters. Chapter II describes household consumption patterns and their relationship to income, location, and household-size variables. Chapter III evaluates energy end uses and the technologies that provide cooking, lighting, refrigeration, and space-heating services. Chapter IV examines household energy resources and supplies, focusing on traditional biomass fuels. Finally, Chapter V demonstrates simple assessment methods and presents case studies to illustrate how household energy data can be used in different types of assessments.

Leach, G.; Gowen, M.

1987-01-01T23:59:59.000Z

150

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

151

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

152

Competition Helps Kids Learn About Energy and Save Their Households...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm...

153

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

What's new in our home energy use? What's new in our home energy use? RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from over 12,000 U.S. households. This report highlights findings from the survey, with details presented in the Household Energy Characteristics tables. How we use energy in our homes has changed substantially over the past three decades. Over this period U.S. homes on average have become larger, have fewer occupants, and are more energy-efficient. In 2005, energy use per household was 95 million British thermal units (Btu) of energy compared with 138 million Btu per household in 1978, a drop of 31 percent. Did You Know? Over 50 million U.S. homes have three or more televisions.

154

2009 Energy Consumption Per Person  

Energy.gov (U.S. Department of Energy (DOE))

Per capita energy consumption across all sectors of the economy. Click on a state for more information.

155

Electrical appliance energy consumption control methods and ...  

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy ...

156

Psychological strategies to reduce energy consumption: first annual progress report  

SciTech Connect

A multidisciplinary program composed of a mix of physical and social scientists is studying the behavior of occupants as well as the engineering aspects of household energy consumption. A study of the Twin Rivers, New Jersey area examined and tested psychological strategies for helping people achieve significant reductions in their residential energy consumption. The results show that homeowners are motivated by cost and other pressures provided by daily feedback on their actual energy consumption. Four feedback experiments suggest that feedback helps homeowners to reduce their energy consumption, but the optimal nature of the feedback system has yet to be identified. The project also included research on thermostat control and on attitudes.

Seligman, C.; Darley, J.M.; Becker, L.J.

1976-01-01T23:59:59.000Z

157

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... An Assessment of EIA's Building Consumption Data. ... Commercial Buildings - CBECS. Manufacturing - MECS.

158

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

159

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

160

DOE/EIA-0193/P PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

193/P 193/P PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY OFFICE OF THE CONSUMPTION DATA SYSTEM OFFICE OF PROGRAM DEVELOPMENT ENERGY INFORMATION ADMINISTRATION AUGUST 1, 1979 PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY Attached is the first report of the Office of the Consumption Data System, Office of Program Development, Energy Information Administration, presenting preliminary data from the National Interim Energy Consumption Survey (NIECS). The focus of this report is the conservation activities performed by households since January 1977, and the status of households with respect to insulation, storm windows, and other energy conserving characteristics. These tables are from preliminary data files.

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYSIS OF CEE HOUSEHOLD SURVEY ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR ® FOR 2012 TABLE OF CONTENTS Acknowledgements .................................................................................. ii Executive Summary ............................................................................ ES-1 Introduction ............................................................................................... 1 Methodology Overview ............................................................................. 2 Key Findings ............................................................................................. 5 Recognition .................................................................................................................. 5 Understanding ........................................................................................................... 12

162

Feasibility of an appliance energy testing and labeling program for Sri Lanka  

E-Print Network (OSTI)

household and national residential energy consumption. Thishousehold and national residential energy consumption. Fansand national residential energy consumption. Electric Pumps

Biermayer, Peter; Busch, John; Hakim, Sajid; Turiel, Issac; du Pont, Peter; Stone, Chris

2000-01-01T23:59:59.000Z

163

Pacific Northwest Residential Energy Consumption Survey : Sample Selection Activities.  

Science Conference Proceedings (OSTI)

The primary purpose of the 1983 Pacific Northwest Residential Energy Consumption Survey is to obtain a comprehensive data base regarding household energy usage patterns incorporating not only general behavioral indicators of usage (e.g., temperature at which the dwelling is maintained at different times of day during the months of the year in which heating systems are activated or conservation measures effected) but also those characteristics lying further beyond the realm of immediate influence of the household dwellers which directly effect energy consumption (e.g., housing and household characteristics including square footage, number of floors or levels, the number and characteristics of the appliances in the household and household demographics/composition). The data base to be assembled as part of this research effort is also to include households' actual level of energy use for two major fuels (i.e., electricity and natural gas) obtained, with the consent of respondents, from their servicing utility(ies). Two samples have been incorporated in the study. The primary sample - the Regional Sample - will generate a large and comprehensive data base from a representative cross-section of individual households in the Pacific Northwest. A second, Supplementary Sample was incorporated in the survey design to ensure that a sufficient number of households not participating in qualified loan or grant programs, but comparable to participant households on a number of key descriptive characteristics, were included in the assessment. Inclusion of such households in the assessment will permit a formal evaluation of the loan/grant programs to be accomplished. Sampling procedures are described thoroughly.

Louis Harris and Associates

1983-08-03T23:59:59.000Z

164

World energy consumption  

Science Conference Proceedings (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

165

Towards sustainable household energy use in the Netherlands, Int  

E-Print Network (OSTI)

Abstract: Households consume direct energy, using natural gas, heating oil, gasoline and electricity, and consume indirect energy, the energy related to the production of goods and the delivery of services for the households. Past trends and present-day household energy use (direct and indirect) are analysed and described. A comparison of these findings with objectives concerning ecological sustainability demonstrates that present-day household energy use is not sustainable. A scenario towards sustainable household energy use is designed containing far-reaching measures with regard to direct energy use. Scenario evaluation shows a substantial reduction of direct energy use; however, this is not enough to meet the sustainability objectiv es. Based on these results, the possibilities and the limitations are discussed to enable households to make their direct and indirect energy use sustainable on the long run.

Jack Van Der Wal; Henri C. Moll

2001-01-01T23:59:59.000Z

166

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

167

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

168

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

169

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network (OSTI)

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTIONENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

170

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Maps by energy source and topic, includes ... Total United States energy consumption in homes has remained relatively stable for many years as increased energy ...

171

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Heating and cooling no longer majority of U.S. home energy use. Source: U.S. Energy Information Administration, Residential Energy Consumption Survey.

172

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

173

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

may not sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Form EIA-871A of the 2003 Commercial Buildings Energy Consumption Survey....

174

U.S. Climate Zones-Households - - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

175

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

176

Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

177

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

EIA household energy use data now includes detail on 16 States EIA household energy use data now includes detail on 16 States RECS 2009 - Release date: March 28, 2011 EIA is releasing new benchmark estimates for home energy use for the year 2009 that include detailed data for 16 States, 12 more than in past EIA residential energy surveys. EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census Regions and nine Divisions. In 1997, EIA produced additional tabulations for the four most populous States (California, New York, Texas, and Florida). A threefold increase in the number of households included in the 2009 RECS offers more accuracy and coverage for understanding energy usage for all estimated States, Regions and Divisions.

178

Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz  

Science Conference Proceedings (OSTI)

This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

Figueroa, M.J.; Sathaye, J.

1993-08-01T23:59:59.000Z

179

Energy consumption of building 39  

E-Print Network (OSTI)

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

180

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SUPPLEMENTAL ENERGY-RELATED DATA FOR THE 2001 NATIONAL HOUSEHOLD ...  

U.S. Energy Information Administration (EIA)

... vehicle manufacturer, vehicle model, vehicle model year, and vehicle type – several ENERGY INFORMATION ADMINISTRATION/2001 NATIONAL HOUSEHOLD TRAVEL SURVEY K-23 ...

182

U.S. households are incorporating energy–efficient features ...  

U.S. Energy Information Administration (EIA)

... area of increased efficiency: about 60% of households use at least some energy-efficient compact fluorescent (CFL) or light-emitting diode (LED) ...

183

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › 2009 RECS Features Heating and cooling no longer majority of U.S. home energy use March 7, 2013 Newer U.S. homes are 30% larger but consume about as much energy as older homes February 12, 2013 Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy demand April 19, 2012 Did you know that air conditioning is in nearly 100 million U.S. homes? August 19, 2011 See more > graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years

184

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

185

Space-Heating energy used by households in the residential sector.  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 The following 28 tables present detailed data describing the consumption of and expenditures for energy used by households in the residential sector. The data are presented at the national level, Census region and division levels, for climate zones and for the most populous States, as well as for other selected characteristics of households. This section provides assistance in reading the tables by explaining some of the headings for the categories of data. It also explains the use of the row and column factors to compute the relative standard error of the estimates given in the tables. Organization of the Tables The tables cover consumption and expenditures for six topical areas: Major Energy Source

186

DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption  

Gasoline and Diesel Fuel Update (EIA)

sample custom-designed to meet the analytic objectives for surveys of residential energy use; sample as many as 5,500 households; provide 2-day personal training sessions...

187

Barriers to household investment in residential energy conservation: preliminary assessment  

Science Conference Proceedings (OSTI)

A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

Hoffman, W.L.

1982-12-01T23:59:59.000Z

188

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

189

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Share of energy used by appliances and consumer electronics increases in Share of energy used by appliances and consumer electronics increases in U.S. homes RECS 2009 - Release date: March 28, 2011 Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17 percent to 31 percent, growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31 percent. Federal energy efficiency standards have greatly reduced consumption for home heating Total energy use in all U.S. homes occupied as primary residences decreased slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the

190

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C31A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption...

191

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C25A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption...

192

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C32A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption...

193

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C10A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption...

194

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C30A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption...

195

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C35A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption...

196

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary ...

197

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

198

Reduces a processor's energy consumption  

E-Print Network (OSTI)

). Clearly, this is energy inefficient and wasteful of energy. 2 More precisely, the faster that a processor decide that energy is being wasted and will decrease the frequency/voltage level. Translation: LowerReduces a processor's energy consumption by up to 70% Diminishes greenhouse gas emissions Improves

199

2009 Energy Consumption Per Person | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption...

200

Table CE3-4c. Electric Air-Conditioning Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

Table CE3-4c. Electric Air-Conditioning Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total Type of Housing Unit

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table CE3-1c. Electric Air-Conditioning Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

Table CE3-1c. Electric Air-Conditioning Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row

202

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

203

Nationwide Survey on Household Energy Use  

U.S. Energy Information Administration (EIA)

4 ~ Apartment in house or building divided into 2, 3, or 4 apartments ... of your family (living in your household). Include income from all sources--before taxes

204

Energy consumption and usage characteristics from field measurements of residential dishwashers, clothes washers and clothes dryers  

SciTech Connect

The measured energy consumption and usage characteristics for household dishwashers, clothes washers, and clothes dryers for ten townhouses at Twin Rivers, N.J., are presented. Whenever the dishwashers and/or clothes washers were in use, the energy consumption, water consumption, frequency of usage, and water temperature were measured by a data acquisition system. The electrical energy of electric clothes dryers and the gas consumption of gas clothes dryers were measured, as well as their frequency and duration of use, and exhaust temperature. Typical household usage patterns of these major appliances are included.

Chang, Y.L.; Grot, R.A.

1980-10-01T23:59:59.000Z

205

Monitoring Energy Consumption of Smartphones  

E-Print Network (OSTI)

With the rapid development of new and innovative applications for mobile devices like smartphones, advances in battery technology have not kept pace with rapidly growing energy demands. Thus energy consumption has become a more and more important issue of mobile devices. To meet the requirements of saving energy, it is critical to monitor and analyze the energy consumption of applications on smartphones. For this purpose, we develop a smart energy monitoring system called SEMO for smartphones using Android operating system. It can profile mobile applications with battery usage information, which is vital for both developers and users.

Ding, Fangwei; Zhang, Wei; Zhao, Xuhai; Ma, Chengchuan

2012-01-01T23:59:59.000Z

206

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

207

Residential Energy Consumption Survey (RECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... For example, the average energy expenditure for a New Jersey household was $3,065, ...

208

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

... video - Keeping Our Homes Warm, released November 2, 2012. Energy consumption per home has steadily declined over the last three decades ...

209

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report › Weekly Natural Gas ... Total United States energy consumption in homes has remained relatively ...

210

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

211

Residential Energy Consumption Survey (RECS) - Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating and cooling no longer majority of U.S. home energy use Pie chart of energy consumption in homes by end uses Source: U.S. Energy Information Administration, Residential...

212

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... State Energy Data System: Noncombustible Renewable Energy for 2011 ...

213

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › Other End Use Surveys Commercial Buildings - CBECS Manufacturing - MECS Transportation About the RECS EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage

214

Patterns of rural household energy use: a study in the White Nile province - the Sudan  

Science Conference Proceedings (OSTI)

The study investigates rural household domestic energy consumption patterns in a semiarid area of the Sudan. It describes the socioeconomic and evironmental context of energy use, provides an estimation of local woody biomass production and evaluates ecological impacts of increased energy demand on the local resource base. It is based on findings derived from field surveys, a systematic questionnaire and participant observations. Findings indicate that households procure traditional fuels by self-collection and purchases. Household members spent on average 20% of their working time gathering fuels. Generally per caput and total annual expenditure and consumption of domestic fuels are determined by household size, physical availability, storage, prices, income, conservation, substitution and competition among fuel resource uses. Households spend on average 16% of their annual income on traditional fuels. Aggregation of fuels on heat equivalent basis and calculation of their contribution shows that on average firewood provides 63%, charcoal 20.7%, dung 10.4%, crop residues 3.4% and kerosene/diesel 2.5% of the total demand for domestic purposes. Estimated total household woodfuel demand exceeds woody biomass available from the local forests. This demand is presently satisfied by a net depletion of the local forests and purchases from other areas. Degradation of the resource base is further exacerbated by development of irrigation along the White Nile River, increasing livestock numbers (overgrazing) and forest clearance for rainfed cultivation. The most promising relevant and appropriate strategies to alleviate rural household domestic energy problems include: conservation of the existing forest, augmentation through village woodlots and community forestry programmes and improvements in end-use (stoves) and conversion (wood to charcoal) technologies.

Abdu, A.S.E.

1985-01-01T23:59:59.000Z

215

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network (OSTI)

2008 Standby Power Consumption Report”, March. http://of measurement for the power consumption of audio, video andand Low Power Mode Energy Consumption”, Energy Efficiency in

Park, Won Young

2011-01-01T23:59:59.000Z

216

Modelling the Energy Demand of Households in a Combined  

E-Print Network (OSTI)

. Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004; Hondroyiannis, 2004) and passenger cars (Meyer et al., 2007). Some recent studies cover the whole residential

Steininger, Karl W.

217

The comparative impact of the market penetration of energy-efficient measures: A sensitivity analysis of its impact on minority households  

SciTech Connect

A sensitivity study was made of the potential market penetration of residential energy efficiency as energy service ratio (ESR) improvements occurred in minority households, by age of house. The study followed a Minority Energy Assessment Model analysis of the National Energy Strategy projections of household energy consumption and prices, with majority, black, and Hispanic subgroup divisions. Electricity and total energy consumption and expenditure patterns were evaluated when the households` ESR improvement followed a logistic negative growth (i.e., market penetration) path. Earlier occurrence of ESR improvements meant greater discounted savings over the 22-year period.

Bozinovich, L.V.; Poyer, D.A.; Anderson, J.L.

1993-12-01T23:59:59.000Z

218

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

219

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

How does EIA estimate energy consumption and end uses in U.S. homes? How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage patterns, and household demographics. This information is combined with data from energy suppliers to these homes to estimate energy costs and usage for heating, cooling, appliances and other end uses â€" information critical to meeting future energy demand and improving efficiency and building design. RECS uses a multi-stage area probability design to select sample methodology figure A multi-stage area probability design ensures the selection

220

Manufacturing Consumption of Energy 1991--Combined Consumption and Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

< < Welcome to the U.S. Energy Information Administration's Manufacturing Web Site. If you are having trouble, call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of Energy 1991 (Combined Consumption and Fuel Switching) Overview Full Report Tables & Spreadsheets This report presents national-level estimates about energy use and consumption in the manufacturing sector as well as manufacturers' fuel-switching capability. Contact: Stephanie.battle@eia.doe.gov Stephanie Battle Director, Energy Consumption Division Phone: (202) 586-7237 Fax: (202) 586-0018 URL: http://www.eia.gov/emeu/mecs/mecs91/consumption/mecs1a.html File Last Modified: May 25, 1996

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


222

Household Electricity Usage Form - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

2005 Residential Energy Consumption Survey. Sponsored by the Energy Information Administration . U.S. Department of Energy . Washington, DC 20585 . Form EIA-457E ...

223

White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)  

E-Print Network (OSTI)

Household induction cooktops Standby mode energy consumptionmode energy consumption Wh Standby mode energy consumptionwarm energy consumption Wh Standby mode energy consumption

Zhou, Nan

2013-01-01T23:59:59.000Z

224

Residential Energy Consumption Survey (RECS) - Energy Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

225

Approaches for Monitoring and Reduction of Energy Consumption in the Home  

E-Print Network (OSTI)

By now, energy consumption in the home or even for single devices has not been monitored widely, except for billing and accounting reasons. Consumers are not able to track individual load profiles, therefore positive or negative trends in consumption were not noticed immediately. This work is based on the importance of direct feedback and its savings potential in terms of energy consumption: If you can’t measure it, you can’t improve it. We compare various monitoring approaches such as metering on device level, smart meters and non intrusive load monitoring of electrical devices. Furthermore, the In a world of highly developed countries and emerging economics, energy supply plays a major role. In a modern household, hardly any device runs without electricity. Load profiles are the overlay of a household’s energy demand. Consumers are not able to keep track of individual energy consumption. The basic idea of this work is: If you

Faculty Of Informatics; Tobias Hochwallner; Lukas Lang

2009-01-01T23:59:59.000Z

226

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

227

Use of electricity billing data to determine household energy use fingerprints  

Science Conference Proceedings (OSTI)

Ways to analyze billing data are discussed. The starting point for these analyses is a method developed at Princeton University. Their Scorekeeping model permits decomposition of total household energy use into its weather- and nonweather-sensitive elements; the weather-sensitive portion is assumed proportional to heating degree days. The Scorekeeping model also allows one to compute weather-adjusted energy consumption for each household based on its billing data and model parameters; this is the model's estimate of annual consumption under long-run weather conditions. The methods discussed here extend the Scorekeeping results to identify additional characteristics of household energy use. In particular, the methods classify households in terms of the intensity with which the particular fuel is used for space heating (primary heating fuel vs supplemental heating fuel vs no heating at all with the fuel). In addition, households that use the particular fuel for air conditioning are identified. In essence, the billing data and model results are used to determine household energy use fingerprints. The billing data and model results can also be used to identify and correct anomalous bills. The automated method discussed here identifies anomalously high or low utility bills, which are then dropped before re-estimation of the Scorekeeping model parameters. Alternatively, a pair of bills may be combined if one is very high and a temporally adjacent bill is very low. The Scorekeeping model is then re-estimated after the two bills are combined into one. The methods permit careful examination and analysis of changes in energy use from one year to another.

Hirst, E.; Goeltz, R.; White, D.

1984-08-01T23:59:59.000Z

228

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Data Center Energy Consumption Trends to someone by E-mail Share Federal Energy Management Program: Data Center Energy Consumption Trends on Facebook Tweet about Federal Energy Management Program: Data Center Energy Consumption Trends on Twitter Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Google Bookmark Federal Energy Management Program: Data Center Energy Consumption Trends on Delicious Rank Federal Energy Management Program: Data Center Energy Consumption Trends on Digg Find More places to share Federal Energy Management Program: Data Center Energy Consumption Trends on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Water Efficiency Data Center Energy Efficiency Energy Consumption Trends

229

Renewable Energy Consumption for Nonelectric Use by Energy Use...  

Open Energy Info (EERE)

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 This dataset provides annual renewable energy consumption (in quadrillion Btu)...

230

Historical Renewable Energy Consumption by Energy Use Sector...  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Provides annual renewable energy consumption by source and end use between 1989 and 2008....

231

TV Energy Consumption Trends and Energy-Efficiency Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

TV Energy Consumption Trends and Energy-Efficiency Improvement Options Title TV Energy Consumption Trends and Energy-Efficiency Improvement Options Publication Type Report LBNL...

232

Household Preferences for Supporting Renewable Energy, and Barriers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Household Preferences for Supporting Renewable Energy, and Barriers to Green Power Demand Speaker(s): Ryan Wiser Date: May 9, 2002 - 12:00pm Location: Bldg. 90 Nearly 40% of the...

233

A Theoretical Basis for Household Energy Conservation UsingProduct...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Theoretical Basis for Household Energy Conservation Using Product-Integrated Feedback Speaker(s): Teddy McCalley Date: October 11, 2002 - 12:00pm Location: Bldg. 90 Seminar Host...

234

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

235

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network (OSTI)

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

236

Household energy handbook: an interim guide and reference manual. World Bank technical paper. Manuel d'energie domestique: memento et guide interimaire  

Science Conference Proceedings (OSTI)

A standard framework for measuring and assessing technical information on the household energy sources in developing countries is needed. This handbook is intended as a first step toward creating such a framework. Chapter 1 discusses energy terms and principals underlying the energy units, definitions, and calculations presented in the following chapters. Chapter 2 describes household consumption patterns and their relationship to income, location and household use variables. Chapter 3 evaluates energy end-uses and the technologies that provide cooking, lighting, refrigeration, and space heating services. Chapter 4 examines household energy resources and supplies, focusing on traditional biomass fuels. Finally, Chapter 5 demonstrates simple assessment methods and presents case studies to illustrate how household energy data can be used in different types of assessments.

Leach, G.; Gowen, M.

1989-01-01T23:59:59.000Z

237

Building and occupant characteristics as determinants of residential energy consumption  

Science Conference Proceedings (OSTI)

The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation.

Nieves, L.A.; Nieves, A.L.

1981-10-01T23:59:59.000Z

238

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

239

Water Related Energy Use in Households and Cities - an Australian  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

240

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C12A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of...

242

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major...

243

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Next CBECS will be conducted in 2007 Table C29A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas...

244

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1...

245

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C28A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas...

246

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Next CBECS will be conducted in 2007 Table C27A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas...

247

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C9A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3...

248

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C11A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of...

249

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Released: Dec 2006 Next CBECS will be conducted in 2007 Table C5A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of...

250

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

251

National Interim Energy-Consumption Survey. Part VI. Energy assessment  

Science Conference Proceedings (OSTI)

The goal of energy assessment of the housing unit is to obtain physical information which can be combined with other survey results to give a more complete picture of the residential environment. A limited pretest of an energy assessment procedure was carried out in April-June 1979 with a subsample of 44 households that had been originally interviewed in the National Interim Energy Consumption Survey. In order to gain experience under a variety of environmental conditions, the pretest sites included locations in the Northeast, North Central, and South regions. As developed for the pretest, the energy assessment was a 90-minute inspection of the housing unit by a trained technician. Data collected during the inspection included square footage of the unit; age, make, and characteristics of appliances; insulation characteristics, characteristics of siting and apertures; and detailed information on the heating and cooling systems in the unit. The report describes the data collection procedures for the pretest.

Not Available

1981-01-01T23:59:59.000Z

252

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

253

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

254

ELECTRICITY CONSUMPTION TO INFORM DATA-DRIVEN ENERGY EFFICIENCY  

E-Print Network (OSTI)

Abstract. Effective demand-side energy efficiency policies are needed to reduce residential electricity consumption and its harmful effects on the environment. The first step to devise such polices is to quantify the potential for energy efficiency by analyzing the factors that impact consumption. This paper proposes a novel approach to analyze large data sets of residential electricity consumption to derive insights for policy making and energy efficiency programming. In this method, underlying behavioral determinants that impact residential electricity consumption are identified using Factor Analysis. A distinction is made between long-term and short-term determinants of consumption by developing separate models for daily maximum and daily minimum consumption and analyzing their differences. Finally, the set of determinants are ranked by their impact on electricity consumption, using a stepwise regression model. This approach is then applied on a large data set of smart meter data and household information as a case example. The results of the models show that weather, location, floor area, and number of refrigerators are the most significant determinants of daily minimum (or idle) electricity consumption in residential buildings,

Amir Kavousian; Ram Rajagopal; Martin Fischer; Amir Kavousian; Ram Rajagopal; Martin Fischer

2012-01-01T23:59:59.000Z

255

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, ...

256

Table CT1. Energy Consumption Estimates for Major Energy Sources ...  

U.S. Energy Information Administration (EIA)

R A D O. U.S. Energy Information Administration State Energy Data 2011: Consumption 89 Table CT6. Industrial Sector Energy Consumption Estimates, Selected Years, 1960 ...

257

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, and electricity ...

258

Table CT1. Energy Consumption Estimates for Major Energy ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration State Energy Data 2011: Consumption 365 Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, North ...

259

Modelling Energy Consumption in China  

E-Print Network (OSTI)

Energy consumption in China has attracted considerable research interest since the middle 1990s. This is largely prompted by the environmental ramifications of the extensive use of fossil fuels in the country to propel two decades of high economic growth. Since the late 1980s, there has been an increasing awareness on the part of the Chinese government of the imperative for the balance of economic growth and environmental protection. The government has since taken various measures ranging from encouraging energy-saving practice, controlling waste discharges to financing R & D programs on improving energy efficiency. Against this backdrop has seen a constant decline of the energy intensity of the economy, measured as the ratio of total energy consumed in standard coal equivalent to the real GDP since 1989. Using the 1987 and 1997 input-output tables for China, the present study examines the impact of technical and structural changes in the economy on industry fuel consumption over the 10-year period. Technical changes are reflected in changes in direct input-output coefficients, which capture the technical evolvement of intermediate production processes. Structural changes refer to shifts in the pattern of final demand for energy, including the import and export composition of various fuels. Six fuels are included in the study, namely, coal, oil, natural gas, electricity, petroleum and coke and gas, which cover all of the energy types available in the input-output tables. It is found that the predominant force of falling energy intensity was changes in direct energy input requirements in various industries. Such changes were responsible for a reduction in the consumption of four of the six fuels per unit of total output. Structural changes were not conducive for improv...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

260

Delivering Energy Efficiency to Middle Income Single Family Households  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivering Energy Efficiency to Middle Income Single Family Households Delivering Energy Efficiency to Middle Income Single Family Households Title Delivering Energy Efficiency to Middle Income Single Family Households Publication Type Report Year of Publication 2011 Authors Zimring, Mark, Merrian Borgeson, Ian M. Hoffman, Charles A. Goldman, Elizabeth Stuart, Annika Todd, and Megan A. Billingsley Pagination 102 Date Published 12/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The question posed in this report is: How can programs motivate these middle income single family households to seek out more comprehensive energy upgrades, and empower them to do so? Research methods included interviews with more than 35 program administrators, policy makers, researchers, and other experts; case studies of programs, based on interviews with staff and a review of program materials and data; and analysis of relevant data sources and existing research on demographics, the financial status of Americans, and the characteristics of middle income American households. While there is no 'silver bullet' to help these households overcome the range of barriers they face, this report describes outreach strategies, innovative program designs, and financing tools that show promise in increasing the attractiveness and accessibility of energy efficiency for this group. These strategies and tools should be seen as models that are currently being honed to build our knowledge and capacity to deliver energy improvements to middle income households. However, the strategies described in this report are probably not sufficient, in the absence of robust policy frameworks, to deliver these improvements at scale. Instead, these strategies must be paired with enabling and complementary policies to reach their full potential.

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

State Residential Energy Consumption Shares  

Gasoline and Diesel Fuel Update (EIA)

This next slide shows what fuels are used in the residential market. When a This next slide shows what fuels are used in the residential market. When a energy supply event happens, particularly severe winter weather, it is this sector that the government becomes most concerned about. As you can see, natural gas is very important to the residential sector not only in DC, MD and VA but in the United States as well. DC residents use more natural gas for home heating than do MD and VA. While residents use heating oil in all three states, this fuel plays an important role in MD and VA. Note: kerosene is included in the distillate category because it is an important fuel to rural households in MD and VA. MD and VA rely more on electricity than DC. Both MD and VA use propane as well. While there are some similarities in this chart, it is interesting to note

262

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Annual state-level estimates of consumption for hydroelectric power, wind, geothermal, and solar energy. Annual Energy Outlook 2013.

263

All Consumption Tables - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a

264

The welfare effects of raising household energy prices in Poland  

Science Conference Proceedings (OSTI)

We examine the welfare effects from increasing household energy prices in Poland. Subsidizing household energy prices, common in the transition economies, is shown to be highly regressive. The wealthy spend a larger portion of their income on energy and consume more energy in absolute terms. We therefore rule out the oft-used social welfare argument for delaying household energy price increases. Raising prices, while targeting relief to the poor through a social assistance program is the first-best response. However, if governments want to ease the adjustment, several options are open, including: in-kind transfers to the poor, vouchers, in-cash transfers, and lifeline pricing for electricity. Our simulations show that if raising prices to efficient levels is not politically feasible at present and social assistance targeting is sufficiently weak, it may be socially better to use lifeline pricing and a large price increase than an overall, but smaller, price increase.

Freund, C.L. [Columbia Univ., New York, NY (United States); Wallich, C.I. [World Bank, Washington, DC (United States)

1996-06-01T23:59:59.000Z

265

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1997 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous 1997 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing Characteristics Consumption & Expenditures Microdata Methodology Housing Characteristics Tables Table Titles (Released: February 2004) Entire Section Percents Tables: HC1 Housing Unit Characteristics, Million U.S. Households PDF PDF NOTE: As of 10/31/01, numbers in the "Housing Units" TABLES section for stub item: "Number of Floors in Apartment Buildings" were REVISED. These numbers will differ from the numbers in the published report. Tables: HC2 Household Characteristics, Million U.S. Households PDF PDF Tables: HC3 Space Heating, Million U.S. Households PDF PDF Tables: HC4 Air-Conditioning, Million U.S. Households PDF PDF Tables: HC5 Appliances, Million U.S. Households PDF PDF

266

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

3 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous 3 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing Characteristics Consumption & Expenditures Microdata Methodology Housing Characteristics Tables Topical Sections Entire Section All Detailed Tables PDF Tables: HC1 Household Characteristics, Million U.S. Households Presents data relating to location, type, ownership, age, size, construction, and householder demographic and income characteristics. PDF Tables: HC2 Space Heating, Million U.S. Households Presents data describing the types of heating fuel and equipment used for main and secondary heating purposes. PDF Tables: HC3 Air-Conditioning, Million U.S. Households Presents data describing selected household characteristics including location, number of rooms and area cooled and air-conditioning usage. PDF

267

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › 2009 RECS Features Heating and cooling no longer majority of U.S. home energy use March 7, 2013 Newer U.S. homes are 30% larger but consume about as much energy as older homes February 12, 2013 Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy demand April 19, 2012 Did you know that air conditioning is in nearly 100 million U.S. homes? August 19, 2011 See more > graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years

268

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

U.S. Energy Information Administration (EIA) Indexed Site

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › 2009 RECS Features Heating and cooling no longer majority of U.S. home energy use March 7, 2013 Newer U.S. homes are 30% larger but consume about as much energy as older homes February 12, 2013 Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy demand April 19, 2012 Did you know that air conditioning is in nearly 100 million U.S. homes? August 19, 2011 See more > graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years

269

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

2 2 Year Built (1) Prior to 1950 74.5 114.9 46.8 24% 1950 to 1969 66.0 96.6 38.1 23% 1970 to 1979 59.4 83.4 33.5 15% 1980 to 1989 51.9 81.4 32.3 14% 1990 to 1999 48.2 94.4 33.7 16% 2000 to 2005 44.7 94.7 34.3 8% Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Vintage Per Square Per Household Per Household

270

Residential Energy Consumption for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

for Water Heating (2005) for Water Heating (2005) Dataset Summary Description Provides total and average annual residential energy consumption for water heating in U.S. households in 2005, measured in both physical units and Btus. The data is presented for numerous categories including: Census Region and Climate Zone; Housing Unit Characteristics (type, year of construction, size, income, race, age); and Water Heater and Water-using Appliance Characteristics (size, age, frequency of use, EnergyStar rating). Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (5 years ago) Keywords Energy Consumption Residential Water Heating Data application/vnd.ms-excel icon 2005_Consumption.for_.Water_.Heating.Phys_.Units_EIA.Sep_.2008.xls (xls, 67.6 KiB)

271

U.S. Residential Housing Primary Energy Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1c Glossary U.S. Resident ...

272

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

273

State energy data report 1992: Consumption estimates  

SciTech Connect

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

274

Energy Consumption and Expenditures RECS 2001  

U.S. Energy Information Administration (EIA)

Water Heating. Space Heating. Appliances. Air-Conditioning. About the Data. Tables: Total Energy Consumption in U.S ...

275

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 2, Regional data. [Contains glossary  

SciTech Connect

Included here are data at the Census region and division level on consumption of and expenditures for the major fuels used in residential households - electricity, natural gas, fuel oil/kerosene, and liquefied petroleum gas (LPG). Data are also presented on wood consumption. Section 1 of this report contains data on the average amount of energy consumed per household for space heating in 1984 and the corresponding expenditures. Sections 2 through 7 summarize the energy consumption and expenditure patterns. Appendices A through D contain information on how the survey was conducted, estimates of the size of the housing unit in square feet and the quality of the data. Procedures for calculating relative standard errors (RSE) are located in Appendix C, Quality of the Data. Procedures for estimating the end-use statistics are located in Appendix D. Census and weather maps, and related publications are located in Appendices E through G.

Not Available

1987-05-13T23:59:59.000Z

276

Building and occupant characteristics as determinants of residential energy consumption  

Science Conference Proceedings (OSTI)

The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

Nieves, L.A.; Nieves, A.L.

1981-10-01T23:59:59.000Z

277

DOE/EIA-0207/3 Residential Energy Consumption Survey: Conservation  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Residential Energy Consumption Survey: Conservation February 1980 U.S. Department of Energy Energy Information Adminstration Assistant Administrater for Program Development Other NEICS Reports Preliminary Conservation Tables from the National Interim Energy Consumption Survey, August 1979, DOE/EIA-0193/P Characteristics of the Housing Stocks and Households: Preliminary Findings from the National Interim Energy Consumption Survey, October 1979, DOETllA-0199/P The above reports are available from the following address; U.S. Department of Energy Technical Information Center Attn:; EIA Coordinator P.O. Box 62 Oak Ridge, TN 37830 Residential Energy Consumption Survey; Characteristics of the Housing Stock and Households, DOE/EIA-0207/2, GPO Stock No,, 061-003-00093-2; $4.25

278

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

279

Energy-related attitude/belief variables in conventional econometric equations: An empirical approach applied to residential energy consumption. Doctoral thesis  

Science Conference Proceedings (OSTI)

The study analyzes a subsample of 523 households from the 1975 Lifestyles and Household Energy Use Survey conducted for the Washington Center for Metropolitan Studies. The study explores the empirical relationship between a set of four Energy-Related Attitude/Belief (ERAB) variables, household electricity and natural gas consumption, and three Energy-Related Discrete Choice (ERDC) variables. Using principal components factor analysis, the ERAB variables were constructed from a portion of the survey responses dealing with what households felt should be done to handle current or future energy shortages. A key finding of the study is that in the context of a conventional econometric specification of electricity and natural gas consumption, ERAB variables are statistically significant, although less significant than conventional explanatory variables for household energy consumption.

Wetzel, B.M.

1988-10-01T23:59:59.000Z

280

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

The impact of increasing home size on energy demand The impact of increasing home size on energy demand RECS 2009 - Release date: April 19, 2012 Homes built since 1990 are on average 27% larger than homes built in earlier decades, a significant trend because most energy end-uses are correlated with the size of the home. As square footage increases, the burden on heating and cooling equipment rises, lighting requirements increase, and the likelihood that the household uses more than one refrigerator increases. Square footage typically stays fixed over the life of a home and it is a characteristic that is expensive, even impractical to alter to reduce energy consumption. According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and State. The report covers the period from 2006 through 2010.

2012-12-11T23:59:59.000Z

282

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network (OSTI)

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

283

Historical Renewable Energy Consumption by Energy Use Sector and Energy  

Open Energy Info (EERE)

Historical Renewable Energy Consumption by Energy Use Sector and Energy Historical Renewable Energy Consumption by Energy Use Sector and Energy Source, 1989-2008 Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset

284

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

285

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents (OSTI)

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

286

Consumption & Efficiency - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

A video about changes in home heating in the United States. Annual Energy Review Consumption Statistics. Released September 27, 2012. A report of annual energy ...

287

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

288

Residential Energy Consumption Survey data show decreased ...  

U.S. Energy Information Administration (EIA)

Total U.S. energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the ...

289

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

290

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

291

Residential Energy Consumption Survey (RECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2001 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous 2001 RECS Survey Data 2009 | 2005 | 2001 | 1997 | 1993 | Previous Housing Characteristics Consumption & Expenditures Microdata Methodology Housing Characteristics Tables + EXPAND ALL Tables HC1: Housing Unit Characteristics, Million U.S. Households PDF (all tables) Climate Zone PDF Year of Construction PDF Household Income PDF Type of Owner-Occupied Housing Unit PDF Four Most Populated States PDF Urban/Rural Location PDF Northeast Census Region PDF Midwest Census Region PDF South Census Region PDF West Census Region PDF Tables HC2: Household Characteristics, Million U.S. Households PDF (all tables) Climate Zone PDF Year of Construction PDF Household Income PDF Type of Housing Unit PDF Type of Owner-Occupied Housing Unit PDF Type of Rented Housing Unit PDF

292

Analysis of ultimate energy consumption by sector in Islamic republic of Iran  

Science Conference Proceedings (OSTI)

Total ultimate energy consumption in Iran was 1033.32 MBOE in 2006, and increased at an average annual rate of 6% in 1996-2006. Household and commercial sector has been the main consumer sector (418.47 MBOE) and the fastest-growing sector (7.2%) that ... Keywords: Iran, agricultural sector, energy audits, energy consumption, industrial sector, residential and commercial sector, transportation sector

B. Farahmandpour; I. Nasseri; H. Houri Jafari

2008-02-01T23:59:59.000Z

293

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

F (2005) - Household Natural Gas Usage Form F (2005) - Household Natural Gas Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Natural Gas Usage Form Service Address: If the customer account number is not shown above, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and provide the requested information for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions. Use the enclosed self-addressed envelope and return the completed form to:

294

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

G (2005) - Household Fuel Oil or Kerosene Usage Form G (2005) - Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Fuel Oil or Kerosene Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions.

295

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

D (2005) - Household Propane (Bottled Gas or LPG) Usage Form D (2005) - Household Propane (Bottled Gas or LPG) Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Propane (Bottled Gas or LPG) Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality

296

Table 1. Consumption and Expenditures in U.S. Households, 1997  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station. (5) ...

297

Assessing the Environmental Costs and Benefits of Households Electricity Consumption Management.  

E-Print Network (OSTI)

?? In this study the environmental costs and benefits of smart metering technology systems installed in households in Norway have been assessed. Smart metering technology… (more)

Segtnan, Ida Lund

2011-01-01T23:59:59.000Z

298

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

299

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

300

annual energy consumption | OpenEI  

Open Energy Info (EERE)

energy consumption energy consumption Dataset Summary Description Provides annual renewable energy consumption by source and end use between 1989 and 2008. This data was published and compiled by the Energy Information Administration. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords annual energy consumption consumption EIA renewable energy Data application/vnd.ms-excel icon historical_renewable_energy_consumption_by_sector_and_energy_source_1989-2008.xls (xls, 41 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 1989-2008 License License Creative Commons CCZero Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

  and  0.024  for  district heating However, as income is not observed its effect cannot be analysed.  Wu et al. (2004) examine the demand for space heating in Armenia, Moldova, and  Kyrgyz  Republic  using  household  survey  data.  In  these  countries...  and in some regions incomes are not sufficient to  afford space heating from district heating systems making these systems unviable.  We  analyse  electricity,  gas  and  overall  energy  spending  for  a  large  sample  of  households  in  Great  Britain.  We  discern  inflection  points  and  discuss...

Jamasb, Tooraj; Meier, H

302

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

303

Modelling Office Energy Consumption: An Agent Based  

E-Print Network (OSTI)

Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang, Peer-Olaf Siebers, Uwe · Overall Project Background · Office Energy Consumption · Case Study · Simulation Experiments · Conclusions #12;Overall Project Background · EPSRC funded City Energy Future Project ­ Under Energy & Complexity

Aickelin, Uwe

304

Consumption & Efficiency | U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Consumption and efficiency analysis & projections. Annual Energy Outlook 2013 Reference Case: consumption by sector projections; energy intensity projections

305

Answers to Frequently Asked Questions About the Household Bottled ...  

U.S. Energy Information Administration (EIA)

Form EIA-457D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

306

Table 1. Household Characteristics by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

307

Answers to Frequently Asked Questions About the Household ...  

U.S. Energy Information Administration (EIA)

Form EIA-457E (2001) – Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

308

Residential Energy Consumption Survey Results: Total Energy Consumptio...  

Open Energy Info (EERE)

Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005)

309

Data Collection Forms - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Technical Information > Data Collection Forms: Data ...

310

EIA Renewable Energy- The Role of Renewable Energy Consumption in ...  

U.S. Energy Information Administration (EIA)

Pie graph and bar graph showing the percentage of renewable energy consumption in the Nation's overall energy supply

311

Household Vehicles Energy Use: Latest Data and Trends - Table A04  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Transportation Surveys > Household Vehicles Energy ... U.S. Vehicles by Model ... Office of Coal, Nuclear, Electric, and Alternate ...

312

A Green Solution To Energy Consumption  

Science Conference Proceedings (OSTI)

Presentation Title, MAX HT® Bayer Sodalite Scale Inhibiter: A Green Solution To Energy Consumption. Author(s), Morris E. Lewellyn, Alan Rothenberg, Calvin ...

313

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

314

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

315

Renewable Energy Consumption and Electricity Preliminary ...  

U.S. Energy Information Administration (EIA)

Renewable Energy Consumption and Electricity Preliminary Statistics 2010 June 2011 ... and Job Creation Act of 2010 (H.R. 4853) was signed in December

316

Residential Energy Consumption Survey (RECS) 2009 Technical ...  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey (RECS) Using the 2009 microdata file to compute estimates and standard errors (RSEs) February 2013 Independent Statistics & Analysis

317

California Energy Commission - Electricity Consumption by Planning...  

Open Energy Info (EERE)

Planning Area (1990-2009) Electricity consumption data from the California Energy Commission by planning area for Commercial, Residential, Ag & Water Pump, Streetlight,...

318

Homeowners energy conservation and consumption behavior: wood users and non/low wood users  

SciTech Connect

Relationships among energy expenditure, energy consumption, energy-budget share, energy managerial practices, housing, and household-membership factors for non/low wood-user and high wood-user households were examined to explain substitution of fuelwood for primary fuels. Data were from a nationwide representative sample of 1599 homeowners collected by the Department of Energy in 1982-1983 Residential Energy Conservation Survey. In three multivariate regression models, different dependent variables - energy expenditure, energy consumption, and energy budget share, were used. The same independent variables - housing factors, household energy managerial practices, and household membership factors, were used in the three models. Finally, in a fourth model, discriminant analysis with the dichotomous criterion variable of non/low or high wood users and significant variables from the multivariate regressions models were used to explain 34% of the variance. The amount of space heated, their appliance use, whether they had teenage children, and if they were single-earner households were significant explanatory variables in all four models.

Urich, J.R.

1986-01-01T23:59:59.000Z

319

Energy consumption metrics of MIT buildings  

E-Print Network (OSTI)

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

320

TECHNICAL DOCUMENTATION Commercial Buildings Energy Consumption Survey  

Reports and Publications (EIA)

This is the technical documentation for the public use data set based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), the national sample survey of commercial buildings and their energy suppliers conducted by the Energy Information Administration.

Information Center

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity ...

322

State energy data report 1993: Consumption estimates  

SciTech Connect

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1995-07-01T23:59:59.000Z

323

State Energy Data Report, 1991: Consumption estimates  

DOE Green Energy (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

Not Available

1993-05-01T23:59:59.000Z

324

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Jan-98 Jan-02 Constant 2005 per barrel Official Price of Saudi Light Refiner Acquisition Cost of Imported Crude Oil (RAC) Source: Energy Information Administration. Iran-Iraq War...

325

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

326

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

327

Model of home heating and calculation of rates of return to household energy conservation investment  

Science Conference Proceedings (OSTI)

This study attempts to find out if households' investments on energy conservation yield expected returns. It first builds a home-heating regression model, then uses the results of the model to calculate the rates of return for households' investments on the energy conservation. The home heating model includes housing characteristics, economic and demographic variables, appliance related variables, and regional dummy variables. Housing characteristic variables are modeled according to the specific physical relationship between the house and its heating requirement. Data from the Residential Energy Consumption Survey (RECS) of 1980-1981 is used for the empirical testing of the model. The model is estimated for single-detached family houses separately for three major home-heating fuel types: electricity, natural gas and fuel oil. Four scenarios are used to calculate rates of return for each household. The results show in the Northern areas the rates of return in most of the cases are a lot higher than market interest rates. In the Western and Southern areas, with few exceptions, the rates of return are lower than market interest rates. The variation of heating degree days and energy prices can affect the rates of return up to 20 percentage points.

Hsueh, L.M.

1984-01-01T23:59:59.000Z

328

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 141 68 117 8,634 4,165 8,376 16.3 16.3 14.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 17 7 12 696 439 857 24.1 15.7 14.0 5,001 to 10,000 .............................. 12 5 15 865 451 868 13.8 12.1 17.7 10,001 to 25,000 ............................ 16 12 16 1,493 933 1,405 11.0 13.0 11.5

329

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ................................ 162 538 343 17,509 32,945 19,727 9.2 16.3 17.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 24 54 38 2,072 2,767 1,640 11.4 19.4 23.0 5,001 to 10,000 .............................. 16 41 29 1,919 3,154 1,572 8.2 13.0 18.4 10,001 to 25,000 ............................ 28 69 45 3,201 5,610 3,683 8.7 12.3 12.2

330

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 580 986 471 12,407 22,762 13,304 46.8 43.3 35.4 Building Floorspace (Square Feet) 1,001 to 5,000 ............................... 86 103 61 1,245 1,271 659 69.0 81.0 92.1 5,001 to 10,000 ............................. 57 101 60 1,154 1,932 883 49.4 52.3 67.6 10,001 to 25,000 ........................... 105 174 65 2,452 3,390 1,982 42.6 51.2 32.7

331

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 41 131 168 3,430 10,469 12,202 12.0 12.5 13.8 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 5 9 20 369 662 921 12.9 13.9 21.9 5,001 to 10,000 .............................. 3 8 9 360 768 877 8.4 10.4 10.8 10,001 to 25,000 ............................ Q 16 24 674 1,420 2,113 Q 11.6 11.2

332

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using Fuel Oil (million square feet) Fuel Oil Energy Intensity (gallons/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 1,302 172 107 64 6,464 2,909 4,663 2,230 0.20 0.06 0.02 Q Building Floorspace (Square Feet) 1,001 to 10,000 ............................ 381 Q Q Q 763 Q 274 Q 0.50 Q 0.10 Q 10,001 to 100,000 ........................ 404 63 Q Q 1,806 648 985 351 0.22 0.10 Q Q Over 100,000 ............................... 517 21 45 Q 3,894 2,055 3,404 1,780 0.13 0.01 0.01 Q

333

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 85 364 550 1,861 8,301 10,356 45.4 43.8 53.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q 42 69 Q 427 741 Q 98.4 92.9 5,001 to 10,000 .............................. Q 32 49 Q 518 743 Q 62.1 65.5 10,001 to 25,000 ............................ Q 47 102 Q 952 1,860 Q 49.7 54.6

334

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 178 238 104 3,788 7,286 2,521 47.0 32.7 41.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 27 11 346 360 218 66.6 75.8 51.9 5,001 to 10,000 .............................. 14 36 Q 321 662 Q 45.1 53.8 Q 10,001 to 25,000 ............................ 31 33 Q 796 1,102 604 39.5 29.9 Q

335

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 201 412 431 13,124 31,858 25,200 15.3 12.9 17.1 Principal Building Activity Education ....................................... 9 55 45 806 5,378 3,687 11.1 10.2 12.2 Food Sales ..................................... 36 24 Q 747 467 Q 48.8 51.1 Q

336

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

337

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 454 715 356 378 134 8,486 14,122 8,970 11,796 5,098 53.5 50.6 39.7 32.0 26.3 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 57 84 35 58 16 666 1,015 427 832 234 84.8 83.1 81.9 69.6 66.6 5,001 to 10,000 ........................... 50 57 33 61 17 666 1,030 639 1,243 392 75.2 54.9 51.2 49.2 44.0

338

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

339

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings .............................. 137 254 189 261 202 11,300 18,549 12,374 17,064 10,894 12.1 13.7 15.3 15.3 18.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 19 27 14 32 23 1,210 1,631 923 1,811 903 15.7 16.4 15.0 17.8 25.8 5,001 to 10,000 ........................... 12 18 15 27 14 1,175 1,639 1,062 1,855 914 10.2 10.9 14.3 14.3 15.5

340

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 172 234 452 185 13,899 17,725 26,017 12,541 12.4 13.2 17.4 14.7 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 14 30 52 19 1,031 1,742 2,410 1,296 13.5 17.4 21.5 14.6 5,001 to 10,000 .............................. 11 17 37 21 1,128 1,558 2,640 1,319 9.8 10.8 14.0 15.8 10,001 to 25,000 ............................ 22 33 59 28 2,094 3,317 4,746 2,338 10.4 10.0 12.5 12.1

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings ................................ 448 728 511 350 10,162 14,144 15,260 8,907 44.1 51.5 33.5 39.3 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 50 92 68 40 547 1,086 912 629 90.6 84.6 74.5 63.7 5,001 to 10,000 .............................. 39 63 69 46 661 1,064 1,439 806 59.2 59.4 48.1 57.4 10,001 to 25,000 ............................ 58 133 81 70 1,293 2,656 2,332 1,542 45.2 50.1 34.7 45.7

342

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 1A. Natural Gas Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ................................ 467 882 688 7,144 21,928 19,401 65.4 40.2 35.5 Principal Building Activity Education ....................................... Q 137 101 419 3,629 2,997 53.9 37.6 33.7 Food Sales ..................................... 16 Q Q 339 Q Q 46.6 Q Q

343

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of Buildings Using Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feet/square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 168 185 165 5,453 3,263 5,644 30.9 56.6 29.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 29 18 Q 334 266 363 87.9 68.5 60.2 5,001 to 10,000 .............................. 25 Q Q 545 291 514 45.6 62.7 54.4 10,001 to 25,000 ............................ 20 45 26 626 699 844 32.1 63.9 30.6

344

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 66 254 57 5,523 13,837 3,546 12.0 18.3 16.2 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 10 28 7 821 1,233 481 12.4 22.4 15.4 5,001 to 10,000 .............................. 7 20 5 681 1,389 386 10.8 14.4 13.3 10,001 to 25,000 ............................ 9 31 12 1,204 2,411 842 7.8 12.8 14.1

345

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

346

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

347

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

348

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

349

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

350

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

351

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

352

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

353

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

354

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

355

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

356

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

357

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

O V E M E U R T E C S N H T S S U R V E Y 2 0 0 1 I N D E X . H T M L The Energy Information Administration, the independent statistical and analytical administration...

358

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

359

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

360

State energy data report 1994: Consumption estimates  

Science Conference Proceedings (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

362

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

363

State energy data report 1996: Consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

364

Energy conservation for household refrigerators and water heaters  

Science Conference Proceedings (OSTI)

An energy conservation arrangement for household refrigerators and water heaters, in which the source of cold water to the hot water heater is divided and part is caused to flow through and be warmed in the condenser of the refrigerator. The warmed water is then further heated in the oil cooling loop of the refrigerator compressor, and proceeds then to the top of the hot water tank.

Speicher, T. L.

1984-12-11T23:59:59.000Z

365

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Steel Industry Analysis Brief Change Topic: Steel | Chemical Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago.1 The U.S. steel industry (including iron production) relies significantly on natural gas and coal coke and breeze for fuel, and is one of the largest

366

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

367

Compiler Support for Reducing Leakage Energy Consumption  

Science Conference Proceedings (OSTI)

Current trends indicate that leakage energy consumption will be an important concern in upcoming process technologies. In this paper, we propose a compiler-based leakage energy optimization strategy. Our strategy is built upon a data-flow analysis that ...

W. Zhang; M. Kandemir; N. Vijaykrishnan; M. J. Irwin; V. De

2003-03-01T23:59:59.000Z

368

Reducing the Energy Consumption of Networked Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing the Energy Consumption of Networked Devices Speaker(s): Ken Christensen Date: July 19, 2005 - 12:00pm Location: 90-4133 When Personal Computers are networked, energy...

369

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The major energy sources in the United States are petroleum (oil), natural ... To compare or aggregate energy consumption across different energy sources like oil, ...

370

EIA - Appendix B: Estimation Methodologies of Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page EIA Home > Transportation Home Page > Appendix B Estimation MethodologiesIntroduction Appendix B Estimation Methodologies Introduction Statistics concerning vehicle miles traveled (VMT), vehicle fuel efficiency (given in terms of miles per gallon (MPG)), vehicle fuel consumption, and vehicle fuel expenditures are presented in this report. The methodology used to estimate these statistics relied on data from the 1993 Residential Energy Consumption Survey (RECS), the 1994 Residential Transportation Energy Consumption Survey (RTECS), the U.S. Environmental Protection Agency (EPA) fuel efficiency test results, the U.S. Bureau of Labor Statistics (BLS) retail pump price series, and the Lundberg Survey, Inc., price series for 1994.

371

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot...

372

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of...

373

Residential energy-consumption survey: housing characteristics, 1981  

SciTech Connect

Data in this report cover fuels and their use in the home, appliances, square footage of floor space, heating equipment, thermal characteristics of the housing unit, conservation activities, and consumption of wood. Collected for the first time are data related to indoor temperatures and the use of air conditioning. A unique feature of the 1981 survey is an increased sampling of low-income households funded by the Social Security Administration to provide them information for the Low-Income Home Energy Assistance Program. Discussion highlights data pertaining to these topics: changes in home heating fuel, secondary heating, indoor temperatures, features of new homes, use of air conditioning, use of solar collectors, and wood consumption.

Thompson, W.

1983-08-01T23:59:59.000Z

374

U.S. Residential Housing Weather Adjusted Site Energy Consumption ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1b Glossary U.S. Residential Housing Weather Adjusted ...

375

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

376

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

377

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

378

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

379

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

380

Leaking electricity: Standby and off-mode power consumption in consumer electronics and household appliances  

Science Conference Proceedings (OSTI)

This report assesses ``leaking`` electricity from consumer electronics and small household appliances when they are in standby mode or turned off, and examines the impacts of these losses. The report identifies trends in relevant product industries and gives technical and policy options for reducing standby and off-mode power loss.

Thorne, J.; Suozzo, M.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

How much of world energy consumption and electricity generation is ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy consumption is from ...

382

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

383

Residential energy consumption and expenditures by end use for 1978, 1980, and 1981  

Science Conference Proceedings (OSTI)

The end-use estimates of the average household consumption and expenditures are statistical estimates based on the 1978, 1980, and 1981 Residential Enery Consumption Surveys (RECS) conducted by the Energy Information Administration (EIA) rather than on metered observations. The end-use estimates were obtained by developing a set of equations that predict the percentage of energy used for each broad end-use category. The equations were applied separately to each household and to each fuel. The resulting household end-use estimates were averaged to produce estimates of the average end-use consumption and expenditures on a national and regional basis. The accuracy and potential biases of these end-use estimates vary depending on the fuel type, on the year of the survey, and on the type of end use. The figures and tables presented show the amount and the type of energy cosumed, plus the cost of this energy. National averages are given as well as averages for various categories including region, size and age of dwelling, number of heating degree-days, and income. Some of the significant findings; energy trends by end use for all fuels used in the home for 1978, 1980, and 1981; and electricity consumption and expenditures and natural gas consumption and expenditures are discussed.

Johnson, M.

1984-12-01T23:59:59.000Z

384

Energy consumption and expenditure projections by population group on the basis on the annual energy outlook 2000 forecast.  

SciTech Connect

The changes in the patterns of energy use and expenditures by population group are analyzed by using the 1993 and 1997 Residential Energy Consumption Surveys. Historically, these patterns have differed among non-Hispanic White households, non-Hispanic Black households, and Hispanic households. Patterns of energy use and expenditures are influenced by geographic and metropolitan location, the composition of housing stock, economic and demographic status, and the composition of energy use by end-use category. As a consequence, as energy-related factors change across groups, patterns of energy use and expenditures also change. Over time, with changes in the composition of these factors by population group and their variable influences on energy use, the impact on energy use and expenditures has varied across these population groups.

Poyer, D. A.; Decision and Information Sciences

2001-05-31T23:59:59.000Z

385

Estimates of US biomass energy consumption 1992  

DOE Green Energy (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

386

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity Energy Intensity (kWh/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................... 155 447 288 17,163 28,766 17,378 9.0 15.5 16.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 23 52 37 2,049 2,668 1,628 11.3 19.6 23.0 5,001 to 10,000 .............................. 15 35 27 1,859 2,854 1,484 8.1 12.2 18.1 10,001 to 25,000 ............................ 27 55 37 3,141 4,907 3,322 8.5 11.3 11.2

387

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

388

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

changes differ from one appliance to another. Referencespeople activities, appliances use, and electric consumption.of use of the three appliances studied. However, variations

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

389

Energy Consumption Issues on Mobile Network Systems  

Science Conference Proceedings (OSTI)

This paper describes energy consumption demographic data in operating real mobile networks. We examine published data from NTT DoCoMo, which is the largest mobile telecommunication operator in Japan and operating nation-wide 3G networks, and identify ... Keywords: Moble Network, Power Consumption, Battery, CO2, Green Network

Minoru Etoh; Tomoyuki Ohya; Yuji Nakayama

2008-07-01T23:59:59.000Z

390

EIA - Household Transportation report: Household Vehicles ...  

U.S. Energy Information Administration (EIA)

This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of ...

391

Household Energy Consumption and Expenditures 1993 -- Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Fax: (202) 586-0018 URL: http:www.eia.govemeurecs1d.html If you are having any technical problems with this site, please contact the EIA Webmaster at wmaster@eia.doe.gov...

392

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

1 1 Type (1) Single-Family: 55.4 106.6 39.4 80.5% Detached 55.0 108.4 39.8 73.9% Attached 60.5 89.3 36.1 6.6% Multi-Family: 78.3 64.1 29.7 14.9% 2 to 4 units 94.3 85.0 35.2 6.3% 5 or more units 69.8 54.4 26.7 8.6% Mobile Homes 74.6 70.4 28.5 4.6% All Housing Types 58.7 95.0 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008. 2005 Residential Delivered Energy Consumption Intensities, by Housing Type

393

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › ResidentialAvailable formats PDF Modeling Distributed Generation in the Buildings Sectors Released: August 29, 2013 This report focuses on how EIA models residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook. State Fact Sheets on Household Energy Use

394

State energy data report 1995 - consumption estimates  

Science Conference Proceedings (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1997-12-01T23:59:59.000Z

395

UN Alcohol Energy Data: Consumption by Other Consumers The Energy  

Open Energy Info (EERE)

Other Consumers The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

396

Floorspace, Energy Consumption, and Energy-Related Carbon ...  

U.S. Energy Information Administration (EIA)

Tabulation of changes in the amount of floorspace, energy consumption, and energy-related carbon emissions of U.S. commercial buildings, 1979-1995.

397

Figure 66. Change in delivered energy consumption for energy ...  

U.S. Energy Information Administration (EIA)

Change in delivered energy consumption for energy-intensive industries in three cases, 2011-2040 ... Iron and steel Bulk chemicals Glass Paper products Food products

398

California Energy Commission - Electricity Consumption by County  

Open Energy Info (EERE)

County (2006-2009) Electricity consumption data from the California Energy Commission sorted by County for Residential and Non-residential from 2006 to 2009.


...

399

Illinois energy consumption 1963-1977  

SciTech Connect

This report contains current and historical Illinois energy consumption data by consuming sector and fuel type. It also contains detailed description of mapping techniques used in developing the data.

Hill, L.; Biermann, W.

1979-06-01T23:59:59.000Z

400

OpenEI - Renewable Energy Consumption  

Open Energy Info (EERE)

Jul 2011 18:05:28 +0000 Meredith1219 758 at http:en.openei.orgdatasets EIA Data: 2009 United States Renewable Energy Consumption by Sector and Source http:en.openei.org...

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

breakdown of the energy consumption of the CSE mixed- useFigure 3.7: The energy consumption of HVAC during ourSpring 2011 tests - Energy consumption for electricity and

Balaji, Bharathan

2011-01-01T23:59:59.000Z

402

Table 1a. U.S. Commercial Buildings Site Energy Consumption b  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Commercial Buildings Energy Intensities > Table 1a

403

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary ...

404

Study on optimal train movement for minimum energy consumption.  

E-Print Network (OSTI)

?? The presented thesis project is a study on train energy consumption calculation and optimal train driving strategies for minimum energy consumption. This study is… (more)

Gkortzas, Panagiotis

2013-01-01T23:59:59.000Z

405

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

406

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.  Figures in this table...

407

California Energy Commission - Natural Gas Consumption by Utility  

Open Energy Info (EERE)

California Energy Commission - Natural Gas Consumption by Utility (1990-2009) California Energy Commission natural gas consumption data by Utility company for Commercial,...

408

Consumption  

E-Print Network (OSTI)

www.eia.gov Annual Energy Outlook 2013 projections to 2040 • Growth in energy production outstrips consumption growth • Crude oil production rises sharply over the next decade • Motor gasoline consumption reflects more stringent fuel economy standards • The U.S. becomes a net exporter of natural gas in the early 2020s • U.S. energy-related carbon dioxide emissions remain below their 2005 level through 2040

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski; Adam Sieminski; Adam Sieminski

2013-01-01T23:59:59.000Z

409

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

410

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Air conditioning in nearly 100 million U.S. homes Air conditioning in nearly 100 million U.S. homes RECS 2009 - Release date: August 19, 2011 line chart:air conditioning in U.S. figure dataExcept in the temperate climate regions along the West coast, air conditioners (AC) are now standard equipment in most U.S. homes (Figure 1). As recently as 1993, only 68% of all occupied housing units had AC. The latest results from the 2009 Residential Energy Consumption Survey (RECS) show that 87 percent of U.S. households are now equipped with AC. This growth occurred among all housing types and in every Census region. Wider use has coincided with much improved energy efficiency standards for AC equipment, a population shift to hotter and more humid regions, and a housing boom during which average housing sizes increased.

411

Video game console usage and national energy consumption: Results from a field-metering study  

E-Print Network (OSTI)

console usage and national energy consumption: Results fromNational Energy Consumption .Discussion National Energy Consumption Under the assumption

Desroches, Louis-Benoit

2013-01-01T23:59:59.000Z

412

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

commercial). National Energy Consumption Estimates We usedsection entitled “National Energy Consumption Estimates”).section entitled “National Energy Consumption Estimates”).

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

413

Figure 1.6 State-Level Energy Consumption Estimates and Estimated ...  

U.S. Energy Information Administration (EIA)

Figure 1.6 State-Level Energy Consumption Estimates and Estimated Consumption per Capita, 2010 Consumption Consumption per Capita

414

DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption  

Gasoline and Diesel Fuel Update (EIA)

/HRIf /HRIf Residential Energy Consumption Survey. Consumption and Expenditures, April 1981 Through March 1982 an Part I: National Data Energy Information Administration Washington, D.C. (202) 20fr02 'O'Q 'uoifkjjUSBM ujiuud juaoiujeAog 'S'n siuawnooQ jo luapuaiuuadns - 0088-292 (202) 98S02 '0'Q 8f 0-d I 6ujp|ing uoiieflSjUjiup v UOIIBUJJOJU | ABjau 3 02-13 'jaiuao UOIJBUJJOJUI XBjaug IBUO!;BN noA pasopua s; uujoi japjo uy 'MO|aq jeadde sjaqoinu auoydajaj PUB sassajppv 'OI3N 9>4i oi papajip aq pinoqs X6jaue uo suotjsenQ '(OIBN) J9»ueo aqjeiMJO^ui ASjaug (BUOIJEN s,vi3 QMi JO OdO 941 UUGJJ peuiBiqo eq ABOI suoijBonqnd (vi3) UO!JBJ;S!UILUPV UOIIBUUJO|U| XBjeug jaiflo PUB SJMJ p ssBiiojnd PUB UOIIBLUJO^JI 6uuepjQ (Od9) 90IWO Bujjuud luetuujaAOQ -g'n 'sjuaiunooa p juapuaiuuedng aqt LUOJI aiqB||BAB si uoHBOjiqnd sjt|i

415

Energy consumption of building 39; Energy consumption of building thirty-nine.  

E-Print Network (OSTI)

??The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further… (more)

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

416

Performance Evaluation of Energy Consumption in MANETs  

E-Print Network (OSTI)

The mobility of nodes in MANET may result in dynamic topology with high rate of link breakage and network partitions leading to interruption in communication and packet loss. Many routing protocols have been proposed in the literature with different characteristics and properties. The routing protocols suffer from various overheads causing energy loss which is further aggravated by link breaks. The present work concentrate on the energy consumption issues of routing protocols. We have evaluated the performance of DSDV, DSR and AODV routing protocols with respect to energy consumption indicating their usage of node’s energy.

Ashish Kumar; M. Q. Rafiq; Kamal Bansal

2012-01-01T23:59:59.000Z

417

Appliance Energy Consumption in Australia | Open Energy Information  

Open Energy Info (EERE)

Appliance Energy Consumption in Australia Appliance Energy Consumption in Australia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Energy Consumption in Australia Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.energyrating.gov.au/resources/program-publications/?viewPublicatio Equivalent URI: cleanenergysolutions.org/content/appliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling The document sets out the equations necessary to calculate the star rating index for appliances that carry an energy label in Australia. Equations for new air conditioner and refrigerator algorithms from April 2010 are included. Televisions, which have carried a mandatory energy label from

418

Energy Consumption of Die Casting Operations  

SciTech Connect

Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

Jerald Brevick; clark Mount-Campbell; Carroll Mobley

2004-03-15T23:59:59.000Z

419

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

420

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,Residential Energy Consumption Survey, Human and Socialfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network (OSTI)

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

422

Methodology and Estimation of the Welfare Impact of Energy Reforms on Households in Azerbaijan.  

E-Print Network (OSTI)

??ABSTRACT Title of Dissertation: METHODOLOGY AND ESTIMATION OF THE WELFARE IMPACT OF ENERGY REFORMS ON HOUSEHOLDS IN AZERBAIJAN Irina Klytchnikova, Doctor of Philosophy, 2006 Dissertation… (more)

Klytchnikova, Irina

2006-01-01T23:59:59.000Z

423

The impact of physical planning policy on household energy use and greenhouse emissions .  

E-Print Network (OSTI)

??This thesis investigates the impact of physical planning policy on combined transport and dwelling-related energy use by households. Separate analyses and reviews are conducted into… (more)

Rickwood, Peter

424

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

425

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

426

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

427

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

428

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

429

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

430

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWhsquare foot)...

431

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

432

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings Using Electricity (million square feet) Electricity...

433

How Do You Encourage Everyone in Your Household to Save Energy? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Encourage Everyone in Your Household to Save Energy? Do You Encourage Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

434

How Do You Encourage Everyone in Your Household to Save Energy? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Everyone in Your Household to Save Energy? Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

435

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

at the extent to which manufacturers exercised their ability to choose the mix of energy sources at their discretion. Nonswitchable Minimum Requirements Generally, a...

436

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

establishments within a stratum would also be homogeneous with respect to the quantities, types, and shares of energy consumed as fuels and for nonfuel purposes. Also, the weight...

437

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

with Other Series Appendix D Comparability of MECS Estimates with Other Series The Energy Information Administration (EIA) collects data from two distinct sources that, in...

438

Federal Energy Management Program: Data Center Energy Consumption Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumption Trends Consumption Trends Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

439

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy Consumption Survey (MECS) Data Released › Graph showing total U.S. manufacturing energy consumption for all purposes has declined 17 percent from 2002 to 2010. Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010, March 19, 2013. First Estimates from 2010 Manufacturing Energy Consumption Survey (MECS) Released ›

440

US SoAtl GA Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

US SoAtl GA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

GA GA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US SoAtl GA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US SoAtl GA Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 $1,800 US SoAtl GA Expenditures dollars ELECTRICITY ONLY average per household * Site energy consumption (89.5 million Btu) and energy expenditures per household ($2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to other states in the South. * Forty-five percent of homes in Georgia were built since 1990, a characteristic typically associated with lower per household consumption. Georgia homes,

442

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

443

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. Energy use in homes, commercial buildings, ...

444

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector ... Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased ...

445

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: March 28, 2012.

446

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

447

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A-Z Index A B C D E F G H I J K L M ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity of ...

448

Monitoring and Management of Refinery Energy Consumption  

E-Print Network (OSTI)

Since 1972, the U.S. refining industry has made much progress in reducing energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and manage the daily use of energy. Setting up an energy auditing system will tell management how well each unit in the refinery is being operated and can be used as a valuable tool in reducing energy costs. An example of an energy monitorirg and management system is discussed and illustrated with examples.

Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

1986-06-01T23:59:59.000Z

449

State Energy Data System Consumption Estimates Technical Notes  

U.S. Energy Information Administration (EIA)

as street lighting and public services; and the Manufacturing Energy Consumption Survey covers only manufacturing establishments,

450

Renewable energy consumption and economic efficiency: Evidence from European countries  

Science Conference Proceedings (OSTI)

This paper examines the relationship between renewable energy consumption and economic efficiency. For this reason

2013-01-01T23:59:59.000Z

451

The Impact of Distributed Programming Abstractions on Application Energy Consumption  

E-Print Network (OSTI)

The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon measure and analyze the impact of distributed programming abstractions on application energy consumption future efforts in creating energy efficient distributed programming abstractions. Keywords: energy

Ryder, Barbara G.

452

Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico  

SciTech Connect

Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

Delgado Otoniel, Buenrostro [Instituto De Investigaciones Agricolas y Forestales, Universidad Michoacana De San Nicolas De Hidalgo, Av. San Juanito Itzicuaro S/N, Col. San Juanito Itzicuaro, C.P. 58330, Morelia-Aeropuerto, Michoacan (Mexico)], E-mail: otonielb@zeus.umich.mx; Liliana, Marquez-Benavides; Gaona Francelia, Pinette [Instituto De Investigaciones Agricolas y Forestales, Universidad Michoacana De San Nicolas De Hidalgo, Av. San Juanito Itzicuaro S/N, Col. San Juanito Itzicuaro, C.P. 58330, Morelia-Aeropuerto, Michoacan (Mexico)

2008-07-01T23:59:59.000Z

453

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

454

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... New 2010 Manufacturing Energy Consumption Survey (MECS) ...

455

Measuring energy consumption of a database cluster  

E-Print Network (OSTI)

Abstract: Energy consumption of database servers is a growing concern for companies as it is a critical part of a data center’s cost. To address the rising cost and the waste of energy, a new paradigm called GreenIT arose. Hardware and software developers are aiming at more energy-efficient systems. To improve the energy footprint of database servers, we developed a cluster of small-scale nodes, that can be dynamically powered dependent on the workload. This demo shows the measurement framework we set up to measure hardware components as well as an entire cluster of nodes. We’ll exhibit the measurement devices for components and servers and show the system’s behavior under varying workloads. Attendees will be able to adjust workloads and experience their impact on energy consumption. 1

Volker Hudlet; Daniel Schall; Ag Dbis; Tu Kaiserslautern

2011-01-01T23:59:59.000Z

456

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-08-01T23:59:59.000Z

457

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-01-01T23:59:59.000Z

458

2001 Consumption and Expenditures -- Electric Air-Conditioning ...  

U.S. Energy Information Administration (EIA)

CE3-1c. Electric Air-Conditioning Energy Consumption in U.S. Households by Climate Zone, 2001 : 2: CE3-2c. ...

459

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

460

Using occupancy to reduce energy consumption of buildings  

E-Print Network (OSTI)

Figure 4.4: Power consumption of a desktop PC + 3 LCDChapter 2 Trends in Building Consumption 2.1 UCSD as abreakdown of the energy consumption of the CSE mixed- use

Balaji, Bharathan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

462

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

463

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

464

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

465

Minneapolis residential energy consumption. Final report  

SciTech Connect

This report deals with residential energy consumption in single - family, townhouse, low - rise, and high - rise structures in Minnapolis, Minn., with the year 1957 chosen as a typical weather year for the area. Design and structural features considered important in defining the residences were structural parameters (construction details, dimensions, and materials), energy consumption parameters (heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels), and lifestyle parameters (thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated using a time - response computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The heating load was significantly higher than the cooling load for single - family and townhouse residences, as would be expected for the cold Minneapolis climate. Due to increased internal heat generation, low - rise and high - rise cooling and heating loads were similar in magnitude. Energy - conserving modifications involving both structural and comfort control system changes resulted in the following: single - family residences consumed 47 percent, townhouse residences consumed 52 percent, low - rise residences consumed 53 percent, and high - rise residences consumed 34 percent of the primary energy required by the characteristic residence. Supporting data, layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-11-01T23:59:59.000Z

466

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

467

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

Consumption per Capita: Energy Expenditures 1: Energy ... 2009. 94,559,407 [R] 308 : 1,061,220 [R] ... 2 Carbon dioxide emissions from energy consumption. See Table 11.1.

468

Modelling of Turkey's net energy consumption using artificial neural network  

Science Conference Proceedings (OSTI)

The main goal of this study is to develop the equations for forecasting net energy consumption (NEC) using artificial neural network (ANN) technique in order to determine the future level of the energy consumption in Turkey. Two different models ... Keywords: Turkey, artificial neural networks, energy forecasting, energy sources, estimation, gross generation, net energy consumption

Adnan Sozen; Erol Arcaklioglu; Mehmet Ozkaymak

2005-04-01T23:59:59.000Z

469

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

470

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, ... particularly for space heating, ...

471

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

472

Electrical energy consumption control apparatuses and electrical energy consumption control methods  

DOE Patents (OSTI)

Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

Hammerstrom, Donald J.

2012-09-04T23:59:59.000Z

473

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ................................ 3,533 0.10 3.9 0.11 1.11 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,177 0.41 1.4 0.48 1.18 5,001 to 10,000 .............................. 2,573 0.36 3.0 0.42 1.17 10,001 to 25,000 ............................ 3,045 0.19 3.6 0.23 1.18 25,001 to 50,000 ............................ 5,184 0.14 5.6 0.15 1.09 50,001 to 100,000 .......................... 8,508 0.11 9.3 0.12 1.10 100,001 to 200,000 ........................ 12,639 0.09 13.1 0.09 1.03

474

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWh/square foot) 25th Per- centile Median 75th Per- centile per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) All Buildings ................................ 226 14.9 3.8 8.8 18.1 17.9 1.18 0.079 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 48 17.8 3.8 9.0 20.0 4.4 1.63 0.092 5,001 to 10,000 .............................. 96 12.9 4.0 8.2 15.5 9.2 1.23 0.096 10,001 to 25,000 ............................ 178 11.4 3.1 7.2 15.0 15.2 0.97 0.086

475

Data Center Energy Consumption Trends | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Areas » Data Center Energy Efficiency » Data Center Program Areas » Data Center Energy Efficiency » Data Center Energy Consumption Trends Data Center Energy Consumption Trends October 8, 2013 - 10:09am Addthis Data centers can consume up to 100 times more energy than a standard office building. Often, less than 15% of original source energy is used for the information technology equipment within a data center. Figure 1 outlines typical data center energy consumption ratios. An illustration that features a graphic of a coal container representing 100 units of coal. This enters a graphic of a power plant, where those 100 units of coal are turned into 35 units of energy. The 35 units of energy are distributed by power lines, represented by a graphic of power lines, where 33 units are delivered to a pie chart representing data typical data center energy end use. The data center pie chart features 48% representing server load and computing operation consumption; 43% representing cooling equipment consumption; and 9% representing power conversion and distribution consumption.

476

Map Data: State Consumption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumption Map Data: State Consumption stateconsumptionpc2009.csv More Documents & Publications Map Data: Renewable Production Map Data: State Spending...

477

Los angeles residential energy consumption. Final report  

SciTech Connect

Heating and cooling energy requirements were determined for characteristic single - family, townhouse, low - rise, and high - rise residences in Los Angeles, Calif. Using 1951 as a typical weather year for the area, heating and cooling energy requirements were determined for modified versions of these characteristic residences after both structural and comfort control modifications had been incorporated. Parameters of concern were structural (construction details, dimensions, and materials), energy consumption (heating and cooling equipment, types of fuel and energy used, and appliances and their energy consumption levels), and lifestyle (thermostat set points, relative humidity points, type and number of appliances, daily profile of appliance use, and use of ventilation fans). Annual heating and cooling loads and resultant energy requirements were calculated with the aid of a computer program. This program included subroutines for determining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The cooling load for the single - family residence was moderately larger than the heating load. Due to increased internal heat generation, the cooling load for the remaining residences was much larger than the heating load. Energy - conserving modifications resulted in the following: single - family residences required 55 percent, townhouse residences required 57 percent, low - rise residences required 55 percent, and high - rise residences required 82 percent of the primary energy consumed by the characteristic structure. Supporting data, illustrative layouts of the residences, and a list of references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-09-01T23:59:59.000Z

478

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

479

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... State Energy Data System ... routinely uses feedback from customers and outside experts to help improve its programs ...

480

Competition Helps Kids Learn About Energy and Save Their Households Some  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm Addthis Students can register now to save energy and win prizes with the Home Energy Challenge. Students can register now to save energy and win prizes with the Home Energy Challenge. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Visit HomeEnergyChallenge.org to register for the competition. Third through eighth grade students and teachers will be excited to hear about a competition starting up for next school year that challenges students to learn about energy, develop techniques for saving energy, and

Note: This page contains sample records for the topic "household energy consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

482

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

483

How much of world energy consumption and electricity ...  

U.S. Energy Information Administration (EIA)

How much of world energy consumption and electricity generation is from renewable energy? EIA estimates that about 10% of world marketed energy ...

484

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

485

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

486

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Estimation of Energy End-use Consumption Estimation of Energy End-use Consumption 2003 CBECS The energy end-use consumption tables for 2003 (Detailed Tables E1-E11 and E1A-E11A) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, personal computers, office equipment (including servers), and other uses. Although details vary by energy source (Table 1), there are four basic steps in the end-use estimation process: Regressions of monthly consumption on degree-days to establish reference temperatures for the engineering models, Engineering modeling by end use, Cross-sectional regressions to calibrate the engineering estimates and account for additional energy uses, and

487

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand BtuSF)...

488

Atlanta residential energy consumption. Final report  

SciTech Connect

Energy consumption in Atlanta, Ga., was analyzed for single - family, townhouse, low - rise, and high - rise structures for 1955, which was selected as a typical weather year. A two - step procedure was employed in calculating energy requirements. In the first step, hourly heating and cooling loads were determined for each dwelling unit. In the second step, monthly and annual energy required to meet heating and cooling loads was calculated using specific heating, cooling, and ventilation systems. Design and structural features considered important in defining the residential structures were construction details and materials, heating and cooling equipment, types of fuels and energy used, and appliances and their energy consumption levels. Lifestyle parameters incorporated in the analysis included thermostat set points, relative humidity set points, type and number of appliances, daily profile of appliance use, and use of ventilation fans. The computer program for determining heating and cooling loads, or heat delivery / removal requirements, for each residence involved subroutines for ascertaining hourly load contributions throughout the year due to conduction, convection, air infiltration, radiation, and internal heat gain. The low - rise type of structure had a cooling load that was more than twice as large as the heating load. The other structures had cooling loads about 1.5 times as large as heating loads. Energy - conserving modifications, involving both structural and comfort control system changes, resulted in the following: single - family and townhouse residences achieved a 32 - percent annual heating load reduction and a 16 - percent cooling load reduction through structural modifications; and low - rise and high - rise residences achieved a 43 - percent reduction in primary energy consumption. Supporting data, illustrative layouts of the residences, and references are included.

Reed, J.E.; Barber, J.E.; White, B.

1976-08-01T23:59:59.000Z

489

1997 Survey Methods -- Residential Energy Consumption Survey ...  

U.S. Energy Information Administration (EIA)

... of local sources of information, such as building-permit-issuing agencies, ... The FSA is interested in households living below the poverty level. ...

490

Residential Energy Consumption and Expenditures -- Detailed Tables ...  

U.S. Energy Information Administration (EIA)

Categories of Data in the Table Rows. The row categories classify data by specific features of the households. The following, listed in alphabetical order, are ...

491

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

492

Data Collection Forms - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Residential Buildings Energy Consumption Survey ... Household Fuel Oil Usage EIA ... Specific questions on this product ...

493

Residential Energy Consumption Survey (RECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... 25% of households living in mobile homes consumed less than 6,059 kWh and 75% consumed more than that amount. ...

494

Modeling Energy Consumption of Residential Furnaces and Boilers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Residential Furnaces and Boilers in U.S. homes Title Modeling Energy Consumption of Residential Furnaces and Boilers in U.S. homes Publication Type Report...

495

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... State Energy Data System ...

496

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 0 Region (1) Northeast 73.5 122.2 47.7 24% New England 77.0 129.4 55.3 7% Middle Atlantic 72.2 119.7 45.3 17% Midwest 58.9 113.5 46.0 28% East North Central 61.1 117.7 47.3 20% West North Central 54.0 104.1 42.9 8% South 51.5 79.8 31.6 31% South Atlantic 47.4 76.1 30.4 16% East South Central 56.6 87.3 36.1 6% West South Central 56.6 82.4 31.4 9% West 56.6 77.4 28.1 18% Mountain 54.4 89.8 33.7 6% Pacific 58.0 71.8 25.7 11% U.S. Average 58.7 94.9 37.0 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet.

497

End use energy consumption data base: transportation sector  

SciTech Connect

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

498

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, ...

499

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Units & Calculators ... 2012. Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, ...

500

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

A video about changes in home heating in the United States. Annual Energy Review Consumption Statistics. Released September 27, ...