Powered by Deep Web Technologies
Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:PlantParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Property Name PlantParasiticConsump Property Type Number Description Plant Parasitic Consumption (MWh). Pages using the property "PlantParasiticConsump" Showing 3 pages using this...

2

Property:WellFieldParasiticConsump | Open Energy Information  

Open Energy Info (EERE)

Name WellFieldParasiticConsump Property Type Number Description Well-Field Parasitic Consumption (MWh). Pages using the property "WellFieldParasiticConsump" Showing 2 pages using...

3

Progress In Electromagnetics Research B, Vol. 12, 259295, 2009 AN ESTIMATION OF SENSOR ENERGY CONSUMP-  

E-Print Network [OSTI]

Progress In Electromagnetics Research B, Vol. 12, 259­295, 2009 AN ESTIMATION OF SENSOR ENERGY University of Technology PO Box 218, Hawthorn, VIC 3122, Australia Abstract--A comprehensive energy model CONSUMP- TION M. N. Halgamuge, M. Zukerman, and K. Ramamohanarao ARC Special Research Center for Ultra

Halgamuge, Malka N.

4

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for...

5

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

6

Household Vehicles Energy Use Cover Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

7

Communications on energy Household energy conservation  

Science Journals Connector (OSTI)

This study assesses the influence of attitudinal and socio-economic factors on household energy conservation actions. A household interview survey in Regina, Saskatchewan found that respondents perceive an energy problem, although no association with energy conservation actions was determined. Two attitudinal and five socio-economic variables influence household energy conservation. Energy and monetary savings are available to households through energy conservation. Public awareness of household energy conservation through the media can reinforce existing energy conservation actions and encourage new actions.

Fred A. Curtis; P. Simpson-Housley; S. Drever

1984-01-01T23:59:59.000Z

8

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

9

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

vehicle aging have an additional but unknown effect on the MPG of individual vehicles. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 27 Of the...

10

Household vehicles energy consumption 1994  

SciTech Connect (OSTI)

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

11

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

Gasoline and Diesel Fuel Update (EIA)

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

12

Household vehicles energy consumption 1991  

SciTech Connect (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

13

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

14

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

15

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

16

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

17

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

18

Household energy consumption and expenditures 1993  

SciTech Connect (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

19

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

20

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

22

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

23

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

or More...... 23.1 15.2 197 12.3 10.7 13.0 1.3 12.8 13.0| 6.7 | Race of Householder | White... 135.3 89.5 1,429 89.2 73.9 89.2 9.1 87.5 89.1| 2.0...

24

Survey of Household Energy Use (SHEU)  

E-Print Network [OSTI]

Survey of Household Energy Use (SHEU) 2003 Detailed Statistical Report #12;To obtain additional copies of this or other free publications on energy efficiency, please contact: Energy Publications Office of Energy Efficiency Natural Resources Canada c/o St. Joseph Communications Order Processing Unit

25

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

methodology used to estimate these statistics relied on data from the 1990 Residential Energy Consumption Survey (RECS), the 1991 Residential Transportation Energy Consumption...

26

Household transitions to energy efficient lighting  

Science Journals Connector (OSTI)

Abstract New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The rebound effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on \\{ILs\\} accelerated the pace of transition to \\{CFLs\\} and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with \\{CFLs\\} or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions.

Bradford Mills; Joachim Schleich

2014-01-01T23:59:59.000Z

27

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

Neighborhood Program GETS Green Energy Training ServicesGJGEI Green Jobs, Green Energy Initiative CEWO Cleanincome households. The Green Energy Training Services (GETS)

Zimring, Mark

2012-01-01T23:59:59.000Z

28

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANALYSIS OF CEE HOUSEHOLD SURVEY ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR ® FOR 2012 TABLE OF CONTENTS Acknowledgements .................................................................................. ii Executive Summary ............................................................................ ES-1 Introduction ............................................................................................... 1 Methodology Overview ............................................................................. 2 Key Findings ............................................................................................. 5 Recognition .................................................................................................................. 5 Understanding ........................................................................................................... 12

29

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

C C Quality of the Data Appendix C Quality of the Data Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses under- coverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1991 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1991 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics published in this report such as total

30

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

31

Barriers to household investment in residential energy conservation: preliminary assessment  

SciTech Connect (OSTI)

A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

Hoffman, W.L.

1982-12-01T23:59:59.000Z

32

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

33

Projecting household energy consumption within a conditional demand framework  

SciTech Connect (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

34

Projecting household energy consumption within a conditional demand framework  

SciTech Connect (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

35

Household energy consumption and its demand elasticity in Thailand  

Science Journals Connector (OSTI)

This study concentrates on the analysis of energy consumption, expenditure on oil and LPG use in cars and aims to examine the elasticity effect of various types of oil consumption. By using the Deaton's analysis framework, the cross-sectional data of Thai households economic survey 2009 were used. By defining energy goods in the scope of automobile fuel, the results reflect the low importance of high-quality automobile fuel on all income level households. Thai households tend to vary the quality rather than the quantity of thermal energy. All income groups have a tendency to switch to lower quality fuel. Middle and high-middle households (Q3 and Q4) are the income groups with the greatest tendency to switch to lower-quality fuel when a surge in the price of oil price occurs. The poorest households (Q1) are normally insensitive to a change of energy expenditure in terms of quality and quantity. This finding illustrates the LPG price subsidy policy favours middle and high-middle income households. The price elasticity of energy quantity demand is negative in all income levels. High to middle income families are the most sensitive to changes in the price of energy.

Montchai Pinitjitsamut

2012-01-01T23:59:59.000Z

36

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

37

Water Related Energy Use in Households and Cities - an Australian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

38

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

39

Delivering Energy Efficiency to Middle Income Single Family Households  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Delivering Energy Efficiency to Middle Income Single Family Households Delivering Energy Efficiency to Middle Income Single Family Households Title Delivering Energy Efficiency to Middle Income Single Family Households Publication Type Report Year of Publication 2011 Authors Zimring, Mark, Merrian Borgeson, Ian M. Hoffman, Charles A. Goldman, Elizabeth Stuart, Annika Todd, and Megan A. Billingsley Pagination 102 Date Published 12/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The question posed in this report is: How can programs motivate these middle income single family households to seek out more comprehensive energy upgrades, and empower them to do so? Research methods included interviews with more than 35 program administrators, policy makers, researchers, and other experts; case studies of programs, based on interviews with staff and a review of program materials and data; and analysis of relevant data sources and existing research on demographics, the financial status of Americans, and the characteristics of middle income American households. While there is no 'silver bullet' to help these households overcome the range of barriers they face, this report describes outreach strategies, innovative program designs, and financing tools that show promise in increasing the attractiveness and accessibility of energy efficiency for this group. These strategies and tools should be seen as models that are currently being honed to build our knowledge and capacity to deliver energy improvements to middle income households. However, the strategies described in this report are probably not sufficient, in the absence of robust policy frameworks, to deliver these improvements at scale. Instead, these strategies must be paired with enabling and complementary policies to reach their full potential.

40

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

42

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATIONHOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's...

43

Energy demand of German households and saving potential  

Science Journals Connector (OSTI)

The implementation of the principles of sustainable development requires both using potentialities in saving resources and cutting down emissions (efficiency strategies) as well as more conscious patterns of behaviour of the actors involved (sufficiency strategies). Starting from the current situation of annual CO2 emissions of about 10 t and a sustainability goal of 1??2 t CO2 emissions per inhabitant and year, the question arises in how far households can contribute to achieve this goal. Therefore, in this paper, the environmental impacts of the energy demand of German households will be evaluated by means of describing its status quo and there from deriving saving potentials.

Anke Eber; Dominik Most; Otto Rentz; Thomas Lutzkendorf

2008-01-01T23:59:59.000Z

44

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATIONHOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W...

45

RECS Data Show Decreased Energy Consumption per Household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-01-01T23:59:59.000Z

46

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

47

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

48

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in...

49

Lifestyle change and energy use in Japan: Household equipment and energy consumption  

Science Journals Connector (OSTI)

Energy use in the Japanese residential sector has more than doubled (on a per-household basis) during the post-war period. Important factors contributing to the increase include changes in the types of housing built, heating, cooling, water-heating equipment, and other appliances. In this paper, the developments of household equipment and living conditions in Japan are described, from their 1950s state to the present. Trends in energy consumption by fuel types and end uses are reviewed over the same period. The past trends are combined with expectations for future developments in household equipment and quality, as well as with international comparisons of household-energy use, to predict further increases in household-energy consumption. The results indicate the importance of a renewed emphasis on energy efficiency in the residential sector.

Hidetoshi Nakagami

1996-01-01T23:59:59.000Z

50

Household Vehicles Energy Consumption 1994 - Appendix C  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction This appendix discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on these data. The first section discusses undercoverage of the vehicle stock in the residential sector. The second section discusses the effects of using July 1994 as a time reference for the survey. The remainder of this appendix discusses the treatment of sampling and nonsampling errors in the RTECS, the quality of specific data items such as the Vehicle Identification Number (VIN) and fuel prices, and poststratification procedures used in the 1994 RTECS. The quality of the data collection and the processing of the data affects the accuracy of estimates based on survey data. All the statistics

51

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

52

Greenhouse Gas Implications of Household Energy Technology in Kenya  

Science Journals Connector (OSTI)

Energy and Resources Group, University of California, Berkeley, California 94720-3050, Risk, Resource, and Environmental Management Division, Resources for the Future, 1616 P Street NW, Washington, D.C. 20036, and Goldman School of Public Policy, University of California, Berkeley, California 94720-7320 ... Household energy policy is further complicated because charcoal markets in many sub-Saharan African countries operate within a complex political economy that can be hard to characterize and still more difficult to regulate. ... While charcoal consumption carries a larger burden of GHG emissions than firewood use, it also has more potential to attract investment in GHG mitigation activities. ...

Rob Bailis; Majid Ezzati; Daniel M. Kammen

2003-04-01T23:59:59.000Z

53

How Do You Encourage Everyone in Your Household to Save Energy? |  

Broader source: Energy.gov (indexed) [DOE]

Everyone in Your Household to Save Energy? Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

54

How Do You Encourage Everyone in Your Household to Save Energy? |  

Broader source: Energy.gov (indexed) [DOE]

Do You Encourage Everyone in Your Household to Save Energy? Do You Encourage Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

55

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect (OSTI)

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

56

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect (OSTI)

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

57

Energy Policy 30 (2002) 815826 Evaluating the health benefits of transitions in household energy  

E-Print Network [OSTI]

as the primary source of domestic energy, has put preventive measures to reduce exposure to indoor air pollutionEnergy Policy 30 (2002) 815­826 Evaluating the health benefits of transitions in household energy for the Future, 1616 P Street NW, Washington, DC 20036, USA b Epidemiology and Burden of Disease Unit, Global

Kammen, Daniel M.

58

Drivers of U.S. Household Energy Consumption, 1980-2009  

U.S. Energy Information Administration (EIA) Indexed Site

Drivers of U.S. Household Energy Consumption, 1980-2009 February 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy...

59

Modelling useful energy demand system as derived from basic needs in the household sector  

Science Journals Connector (OSTI)

Inter-fuel substitution in the household sector depends on whether their target energy use is similar or not. To account ... for the effect of end-use application on energy demand, the concept of useful energy is...

Zahra A. Barkhordar; Yadollah Saboohi

2014-10-01T23:59:59.000Z

60

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Competition Helps Kids Learn About Energy and Save Their Households Some  

Broader source: Energy.gov (indexed) [DOE]

Competition Helps Kids Learn About Energy and Save Their Households Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm Addthis Students can register now to save energy and win prizes with the Home Energy Challenge. Students can register now to save energy and win prizes with the Home Energy Challenge. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Visit HomeEnergyChallenge.org to register for the competition. Third through eighth grade students and teachers will be excited to hear about a competition starting up for next school year that challenges students to learn about energy, develop techniques for saving energy, and

62

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect (OSTI)

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

63

Household Vehicles Energy Use: Latest Data and Trends - Table...  

Gasoline and Diesel Fuel Update (EIA)

... 32.8 17.2 307 13.4 16.1 14.2 2.0 21.3 14.1 Race of Householder White... 149.5 78.3 1,774 77.6...

64

Abstract--Numerous studies have shown that households' consumption is an important part of the total energy consumed  

E-Print Network [OSTI]

appropriate strategies of giving households' effective feedback on their energy consumption. This study, Energy efficiency. I. INTRODUCTION HE energy consumption of households in buildings attracts a lot in the housing sector. Energy consumption in buildings accounts for 39% of Sweden's total final energy

Beigl, Michael

65

Environmental and Resource Economics Household Energy Demand in Urban China: Accounting for regional prices and rapid  

E-Print Network [OSTI]

growth, China's energy consumption is rising at one of the fastest rates in the world, almost 8% per year over the period 2000-2010. Residential energy consumption has grown even faster than the national total . Although household energy consumption per capita is still low compared to the developed countries

66

Reforming Household Energy Markets: Some Welfare Effects in the United Catherine Waddams Price  

E-Print Network [OSTI]

Reforming Household Energy Markets: Some Welfare Effects in the United Kingdom by Catherine Waddams remain vulnerable. The implications of these findings for the future of energy markets both in the UK This paper summarises some early effects of deregulating the UK energy sector, focusing on the effects

Feigon, Brooke

67

Using Circuit-Level Power Measurements in Household Energy Management Systems  

E-Print Network [OSTI]

Using Circuit-Level Power Measurements in Household Energy Management Systems Alan Marchiori and Qi to accurately measure en- ergy usage in the home. Measuring energy usage is not dif- ficult, however we must decide what to measure. Whole- home energy measurement is cheap and easy to setup be- cause only one

Han, Qi "Chee"

68

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

SciTech Connect (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

69

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

C C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National Household Travel Survey (NHTS) data and to the interpretation of conclusions based on these data. In particular, the focus of our discussion is on the quality of specific data items, such as the fuel economy and fuel type, that were imputed to the NHTS via a cold-decking imputation procedure. This imputation procedure used vehicle-level information from the NHTSA Corporate Average Fuel Economy files for model year's 1978 through 2001. It is nearly impossible to quantify directly the quality of this imputation procedure because NHTS does not collect the necessary fuel economy information for comparison. At best, we have indirect evidence on the quality of our

70

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

the residential energy efficiency market is a potentialinstitutions (CDFIs) to market energy improvements. Solve aapproach to energy efficiency market development is

Zimring, Mark

2012-01-01T23:59:59.000Z

71

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

the residential energy efficiency market is a potentialinstitutions (CDFIs) to market energy improvements. Solve acan open significant markets for energy improvements among

Zimring, Mark

2014-01-01T23:59:59.000Z

72

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

rentalhousing/Energy_Efficiency_Project/COB_rebates_8.2.11.PDS/rentalhousing/Energy_Efficiency_Project/SmartRegs_Final_s residential energy efficiency loan program November 2010-

Zimring, Mark

2012-01-01T23:59:59.000Z

73

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

Clean Energy Works Oregon Bill Payment History as a ProxyEnergy and Clean Energy Works Oregon (CEWO), also use utility bill repayment history

Zimring, Mark

2012-01-01T23:59:59.000Z

74

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

75

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a Common Household Fungus Reduce Oil Imports? a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

76

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

NASCSP). 2009. Weatherization Assistance Program Fundingof Energys Weatherization Assistance Program with State-2009. National Weatherization Assistance Program Training

Zimring, Mark

2012-01-01T23:59:59.000Z

77

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

Vermont Energy Investment Corporation NYSERDA New Yorkfor a case study on New Yorks energy efficiency programNew York, the New York State Energy Research and Development

Zimring, Mark

2012-01-01T23:59:59.000Z

78

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

and Renewable Energy (DOE EERE), Weatherization andand Roya Stanley (DOE EERE) for their support of thisfor Humanity International DOE EERE Department of Energy

Zimring, Mark

2012-01-01T23:59:59.000Z

79

Extending Efficiency Services to Underserved Households: NYSERDAs Assisted Home Performance with ENERGY STAR Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N April 4, 2012 Extending Efficiency Services to Underserved Households: NYSERDA's Assisted Home Performance with ENERGY STAR Program Since 2001, New York residents have completed over 39,000 energy upgrades through NYSERDA's Home Performance with ENERGY STAR (HPwES) initiative. Approximately one third of these projects have been completed through the Assisted HPwES track, which offers large incentives to middle income

80

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

energy assessments, title searches, and lien recordings. Theassessments, title searches, and lien recordings. Once INHP

Zimring, Mark

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

Energy Efficiency Programs. March 17, 2011. Available here:Efficiency Programs. March 17, 2011. Available here:

Zimring, Mark

2012-01-01T23:59:59.000Z

82

Space-Heating energy used by households in the residential sector.  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 The following 28 tables present detailed data describing the consumption of and expenditures for energy used by households in the residential sector. The data are presented at the national level, Census region and division levels, for climate zones and for the most populous States, as well as for other selected characteristics of households. This section provides assistance in reading the tables by explaining some of the headings for the categories of data. It also explains the use of the row and column factors to compute the relative standard error of the estimates given in the tables. Organization of the Tables The tables cover consumption and expenditures for six topical areas: Major Energy Source

83

The influence of energy audits on the energy efficiency investments of private owner-occupied households in the Netherlands  

Science Journals Connector (OSTI)

Abstract Energy audits are promoted as an effective tool to drive investment in energy efficiency measures in the residential sector. Despite operating in many countries for several decades details of the impact of audits are mixed. The aim of research presented here is to explore the role of audits on investment in energy efficiency measures by private owner-occupied householders in the Netherlands. Results showed that the main influence of the energy audit was to confirm information held by householders. A significant portion of audit recommendations was ignored, the main reason being that householders considered their dwellings to be adequately energy efficient. A comparison of audit recipients to non-recipients showed that audit recipients did not adopt, plan to adopt or invest in more energy efficiency measures than non-recipients. In fact non-recipients adopted more and invested more in measures. It is concluded that energy based renovation is driven by householder perception of comfort and acceptable outlay on energy bills and not necessarily to expert technical tailored information on the potential to reduce CO2 emissions and environmental impact. Results support arguments for minimum energy efficiency standards and performance based incentives.

Lorraine Murphy

2014-01-01T23:59:59.000Z

84

EIA - Appendix B: Estimation Methodologies of Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page If you have trouble viewing this page, contact the National Energy Informaiton Center at (202) 586-8800. Return to Energy Information Administration Home Page EIA Home > Transportation Home Page > Appendix B Estimation MethodologiesIntroduction Appendix B Estimation Methodologies Introduction Statistics concerning vehicle miles traveled (VMT), vehicle fuel efficiency (given in terms of miles per gallon (MPG)), vehicle fuel consumption, and vehicle fuel expenditures are presented in this report. The methodology used to estimate these statistics relied on data from the 1993 Residential Energy Consumption Survey (RECS), the 1994 Residential Transportation Energy Consumption Survey (RTECS), the U.S. Environmental Protection Agency (EPA) fuel efficiency test results, the U.S. Bureau of Labor Statistics (BLS) retail pump price series, and the Lundberg Survey, Inc., price series for 1994.

85

Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour  

Science Journals Connector (OSTI)

Abstract Household energy conservation has emerged as a major challenge and opportunity for researchers, practitioners and policymakers. Consumers also seem to be gaining greater awareness of the value and need for sustainable energy practices, particularly amid growing public concerns over greenhouse gas emissions and climate change. Yet even with adequate knowledge of how to save energy and a professed desire to do so, many consumers still fail to take noticeable steps towards energy efficiency and conservation. There is often a sizeable discrepancy between peoples self-reported knowledge, values, attitudes and intentions, and their observable behaviourexamples include the well-known knowledge-action gap and value-action gap. But neither is household energy consumption driven primarily by financial incentives and the rational pursuit of material interests. In fact, people sometimes respond in unexpected and undesirable ways to rewards and sanctions intended to shift consumers costbenefit calculus in favour of sustainable behaviours. Why is this so? Why is household energy consumption and conservation difficult to predict from either core values or material interests? By drawing on critical insights from behavioural economics and psychology, we illuminate the key cognitive biases and motivational factors that may explain why energy-related behaviour so often fails to align with either the personal values or material interests of consumers. Understanding these psychological phenomena can make household and community responses to public policy interventions less surprising, and in parallel, can help us design more cost-effective and mass-scalable behavioural solutions to encourage renewable and sustainable energy use among consumers.

Elisha R. Frederiks; Karen Stenner; Elizabeth V. Hobman

2015-01-01T23:59:59.000Z

86

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

87

A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan  

Science Journals Connector (OSTI)

In this paper, we appraise sustainable household consumption from a global perspective. Using per capita energy requirements as an indicator of environmental pressure, we focus on the importance of income growth in a cross-country analysis. Our analysis is supported by a detailed within-country analysis encompassing five countries, in which we assess the importance of various socioeconomic-demographic characteristics of household energy requirements. We bring together family expenditure survey data, inputoutput tables, and energy statistics in a multivariate analysis. Instead of a uniform Kuznet's curve, we find that the effect of increasing income varies considerably across countries, even when controlling for socioeconomic and demographic variations. The latter variables show similar influences, but differing importance across countries.

Manfred Lenzen; Mette Wier; Claude Cohen; Hitoshi Hayami; Shonali Pachauri; Roberto Schaeffer

2006-01-01T23:59:59.000Z

88

Household Vehicles Energy Use: Latest Data and Trends  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

2005-01-01T23:59:59.000Z

89

HOUSEHOLD SOLAR POWER SYSTEM.  

E-Print Network [OSTI]

?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power (more)

Jiang, He

2014-01-01T23:59:59.000Z

90

Rural household energy consumption and its implications for eco-environments in NW China: A case study  

Science Journals Connector (OSTI)

Abstract Rural household energy consumption plays an essential role in the daily life of farmers, especially in developing regions. In this paper, we present a study of household energy consumption in terms of energy sources and energy end uses, and analysis of technical and economic issues associated with the use of biomass and renewable energy and the replacement of fossil fuels. Results show that energy from biomass represents the largest share of total energy supply, and that 41.15% of total energy is consumed for home heating and cooking. The average cost of household energy is 1259 RMB ($US193.6) and this expense is no longer subsidized by the government. It takes less than one year to make a solar stove profitable and less than two years to pay back the household cost of biogas digesters. An 8m3 digester can produce as much energy as 500550kg of standard coal or 940kg of firewood, while a solar stove can generate 1.76נ103MJ heat each year. Moreover, it is estimated that in rural China the annual reduction of CO2 and SO2 emissions in 2020, due to the replacement of fossil fuel by biomass, will be 68.86נ106 and 54.37נ104 tons, respectively. Overall, the investigations and analyses have revealed that the structure of rural household energy consumption is undergoing a transformation from traditional low-efficiency biomass domination to integrated consumption of traditional and renewable energies. Renewable energy will significantly contribute to the sustainable development of rural households.

Hewen Niu; Yuanqing He; Umberto Desideri; Peidong Zhang; Hongyi Qin; Shijin Wang

2014-01-01T23:59:59.000Z

91

Energy efficiency in Norwegian households - identifying motivators and barriers with a focus group approach  

Science Journals Connector (OSTI)

This paper describes the theoretical background and results of a focus group study on determinants of energy related behaviour in Norwegian households. 70 Norwegians between 18 and 79 years of age participated in eight focus-groups in four Norwegian cities. The aim of the study was to identify behaviours that Norwegians consider relevant with respect to energy use, the main determinants of those behaviours, as well as barriers against and facilitators of energy efficiency. The most important behaviours from the participants' perspectives were heating, water heating, use of white ware and mobility. The main motivators named were minimising behavioural costs, value orientations, perceived consumer efficacy and social norms. The most important barriers were structural misfits, economic, effort, time consumption, low consumer efficacy and lack of relevant and trustworthy information. The most potent facilitators were economic incentives, gains in comfort, reduced effort, tailored practical information, individual feedback and legislative actions.

Christian A. Klöckner; Bertha M. Sopha; Ellen Matthies; Even Bjørnstad

2013-01-01T23:59:59.000Z

92

Understanding household energy consumption patterns: When West Is Best in Metro Manila  

Science Journals Connector (OSTI)

This paper addresses the topic of energy and development through a multi-disciplinary and systemic approach that combines environmental considerations with a social understanding of consumption. The focus is on electricity usage in the home and specifically lighting and cooling. Set in the urban mega-polis of Metro Manila, the Philippines, energy consumption is first placed in its biophysical perspective: the energy sources and electricity grid are presented, in relation to the Philippines as well as the region. The research findings then explore the social and cultural drivers behind household electricity consumption, revealing in several examples the strong influence of globalizationunderstood here as the flow of people, remittances, images and ideas. Policy recommendations are provided, based on the research results, with concluding remarks relevant to other similar contexts.

Marlyne D. Sahakian

2011-01-01T23:59:59.000Z

93

Residential energy consumption across different population groups : comparative analysis for latino and non-latino households in USA.  

SciTech Connect (OSTI)

Residential energy cost is an important part of the household budget and could vary significantly across different population groups in many countries. In the United States, many studies have analyzed household fuel consumption by fuel type, including electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG), and by geographic areas. Past research has also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, our research shows that residential energy demand by fuel type for Latinos, the fastest growing population group, has not been explained by economic and non-economic factors in any statistical model in public domain. The purpose of this paper was to discuss energy demand and expenditure patterns for Latino and non-Latino households in the United States as a case example of analyzing residential energy consumption across different population groups in a country. The linear expenditure system model developed by Stone and Geary is the basis of the statistical model developed to explain fuel consumption and expenditures for Latino households. For comparison, the models are also developed for non-Latino, black, and non-black households. These models estimate energy consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. Significant variations in the patterns of these fuels consumption for Latinos and non-Latinos are highlighted. The model methodology and results of this research should be useful to energy policymakers in government and industry, researches, and academicians who are concerned with economic and energy issues related to various population groups in their country.

Poyer, D. A.; Henderson, L.; Teotia, A. P. S.; Energy Systems; Univ. of Baltimore

1997-01-01T23:59:59.000Z

94

Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco  

E-Print Network [OSTI]

at 215 million Btu. The rate of consumption generally increased until the oil price shocks of the midChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages understand energy conservation policies, we take a brief look at the history in the US of consumption

95

Simulation of household in-home and transportation energy use : an integrated behavioral model for estimating energy consumption at the neighborhood scale  

E-Print Network [OSTI]

Household in-home activities and out-of-home transportation are two major sources of urban energy consumption. In light of China's rapid urbanization and income growth, changing lifestyles and consumer patterns - evident ...

Yu, Feifei, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

96

The comparative impact of the market penetration of energy-efficient measures: A sensitivity analysis of its impact on minority households  

SciTech Connect (OSTI)

A sensitivity study was made of the potential market penetration of residential energy efficiency as energy service ratio (ESR) improvements occurred in minority households, by age of house. The study followed a Minority Energy Assessment Model analysis of the National Energy Strategy projections of household energy consumption and prices, with majority, black, and Hispanic subgroup divisions. Electricity and total energy consumption and expenditure patterns were evaluated when the households` ESR improvement followed a logistic negative growth (i.e., market penetration) path. Earlier occurrence of ESR improvements meant greater discounted savings over the 22-year period.

Bozinovich, L.V.; Poyer, D.A.; Anderson, J.L.

1993-12-01T23:59:59.000Z

97

Can ambient persuasive technology persuade unconsciously?: using subliminal feedback to influence energy consumption ratings of household appliances  

Science Journals Connector (OSTI)

In this paper we explore a fundamental characteristic of Ambient Persuasive Technology: Can it persuade the user without receiving the user's conscious attention? In a task consisting of 90 trials, participants had to indicate which of three household ... Keywords: ambient persuasive technology, energy conservation behavior, human-technology interaction, persuasion, social feedback, subliminal feedback

Jaap Ham; Cees Midden; Femke Beute

2009-04-01T23:59:59.000Z

98

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect (OSTI)

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

99

Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.  

SciTech Connect (OSTI)

Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

Poyer, D.A.; Teotia, A.P.S. [Argonne National Lab., IL (United States); Henderson, L. [Univ. of Baltimore, MD (United States)

1998-05-01T23:59:59.000Z

100

The impact of rising energy prices on household energy consumption and expenditure patterns: The Persian Gulf crisis as a case example  

SciTech Connect (OSTI)

The Iraqi invasion of Kuwait and the subsequent war between Iraq and an international alliance led by the United States triggered immediate increases in world oil prices. Increases in world petroleum prices and in US petroleum imports resulted in higher petroleum prices for US customers. In this report, the effects of the Persian Gulf War and its aftermath are used to demonstrate the potential impacts of petroleum price changes on majority, black, and Hispanic households, as well as on poor and nonpoor households. The analysis is done by using the Minority Energy Assessment Model developed by Argonne National Laboratory for the US Department of Energy (DOE). The differential impacts of these price increases and fluctuations on poor and minority households raise significant issues for a variety of government agencies, including DOE. Although the Persian Gulf crisis is now over and world oil prices have returned to their prewar levels, the differential impacts of rising energy prices on poor and minority households as a result of any future crisis in the world oil market remains a significant long-term issue.

Henderson, L.J. (Baltimore Univ., MD (United States)); Poyer, D.A.; Teotia, A.P.S. (Argonne National Lab., IL (United States). Energy Systems Div.)

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings  

Science Journals Connector (OSTI)

Abstract In Stockholm, 472 multi-family buildings with 7554 dwellings has been selected by stratified random sampling. Information about building characteristics and property management was gathered from each property owners. Energy use for space heating was collected from the utility company. Perceived thermal comfort, household and personal factors were assessed by a standardized self-administered questionnaire, answered by one adult person in each dwelling, and a proportion of each factor was calculated for each building. Statistical analysis was performed by multiple linear regression models with control for relevant factors all at the same time in the model. Energy use for heating was significantly related to the building age, type of building and ventilation, length of time since the last heating adjustment, ownership form, proportion of females, and proportion of occupants expressing thermal discomfort. How beneficial energy efficiency measures will be may depend on the relationship between energy use and factors related to the building and the property maintenance together with household and personal factors, as all these factors interact with each other. The results show that greater focus should be on real estate management and maintenance and also a need for research with a gender perspective on energy use for space heating.

Karin Engvall; Erik Lampa; Per Levin; Per Wickman; Egil fverholm

2014-01-01T23:59:59.000Z

102

UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE  

E-Print Network [OSTI]

refers to these latent goods as transformed goods or T-goods. Leading researchers have explored this technique of incorporating characteristics. In this study, we revisit this technique by trying to uncover the basic wants behind the demand for gas..., distillate fuel oil, and the liquefied petroleum gases (LPG) by US households. To give some examples, electricity may be used for many basic wants such as lighting, cooking, and cooling. Similarly, without being exhaustive, gas may be used for heating...

Diallo, Ibrahima

2013-05-31T23:59:59.000Z

103

Energy-efficient urban traffic management: a microscopic simulation-based approach  

E-Print Network [OSTI]

consump- tion metrics, and does so within a tight computational budget. It outperforms traditional Introduction The International Energy Agency (IEA, 2012) has estimated that over 50% of oil use worldwide

Entekhabi, Dara

104

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect (OSTI)

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-08-01T23:59:59.000Z

105

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect (OSTI)

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-01-01T23:59:59.000Z

106

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households  

E-Print Network [OSTI]

Financing Home Energy Upgrades in New York Since 2001, New2009. Administered by the New York State Energy Research andA Diverse Energy Upgrade Platform in New York The new GJGNY

Zimring, Mark

2011-01-01T23:59:59.000Z

107

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

Residential Energy Consumption Survey (RECS), U.S. Energyod for estimating field energy consumption of US residentialconsumption surveydetailed tables. Residential Energy Con- sumption Survey (RECS), U.S.

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

108

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network [OSTI]

of Cold Weather and High Energy Costs on the Health of Low-and NBER April 2005 Home energy costs comprise a significant1. Introduction Home energy costs comprise a significant

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

109

Drivers of U.S. Household Energy Consumption, 1980-2009  

Reports and Publications (EIA)

In 2012, the residential sector accounted for 21% of total primary energy consumption and about 20% of carbon dioxide emissions in the United States (computed from EIA 2013). Because of the impacts of residential sector energy use on the environment and the economy, this study was undertaken to help provide a better understanding of the factors affecting energy consumption in this sector. The analysis is based on the U.S. Energy Information Administration's (EIA) residential energy consumption surveys (RECS) 1980-2009.

2015-01-01T23:59:59.000Z

110

Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries  

Science Journals Connector (OSTI)

Abstract The absence of clean cooking facilities and electricity means billions of rural people are deprived of much needed socioeconomic development. Livestock residues (dung) and solar radiation are two renewable energy resources that are abundantly available in rural areas of developing countries. Although it is not feasible for these two resources separately to meet both thermal (cooking) and electricity demands, hybrid applications have not been given due attention. To facilitate integrating these two resources in rural energy planning, and to promote their dissemination through hybrid applications, it is necessary to evaluate their economic merits, and assess their ability to deal with the demands. In this paper, we examine the techno-economic performance of hybrid applications of these two resources by applying a simulation technique using the HOMER tool, and by giving derived cost-saving equations. We also quantify the monetary savings from replacing traditional fuels, and perform a sensitivity analysis on a number of variables (e.g. dung cost, fuelwood cost) to see how they affect the performance of different energy supply alternatives. Furthermore, we examine the practical applicability of the biogas system in the households through a structured survey of 72 ongoing household biogas plants. This study finds that households that have between three and six cattle can potentially meet their cooking and electricity loads through a hybrid implementation of biogas and solar PV (Photovoltaic) system. By replacing conventional fuels households can achieve savings that are more than the total annualized costs incurred for installing new services.

Md. Mizanur Rahman; Mohammad Mahmodul Hasan; Jukka V. Paatero; Risto Lahdelma

2014-01-01T23:59:59.000Z

111

Household operational energy consumption in urban China : a multilevel analysis on Jinan  

E-Print Network [OSTI]

With decades of economic growth and socio-economic transformation, China's residential sector has seen rapid expansion in energy consumption, and is now the second largest energy consuming sector in the country. Faced with ...

Wang, Dong, M.C.P. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

112

Retrofitting the domestic built environment: investigating household perspectives towards energy efficiency technologies and behaviour  

E-Print Network [OSTI]

Company Obligation EEPfH Energy Efficiency Partnership for Homes EPC Energy Performance Certificate EPSRC Engineering & Physical Science Research Council ERDF European Regional Development Fund FDR False discovery rate FIT Feed-in Tariff GHG Greenhouse has...

Pelenur, Marcos

2014-03-04T23:59:59.000Z

113

E-Print Network 3.0 - acute household accidental Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating the health benefits of transitions in household energy Summary: ; Household energy; Indoor air pollution; Intervention assessment; Kenya 1. Introduction Acute...

114

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network [OSTI]

EnergyEfficiencyPotentialStudy. TechnicalReportEnergyEfficiency PotentialStudy. TechnicalReportEnergyEfficiency RenewableEnergyTechnologies Transportation AssessmentofHouseholdCarbonFootprintReductionPotentialsisthefinalreport

Masanet, Eric

2010-01-01T23:59:59.000Z

115

Retrofitting the domestic built environment: investigating household perspectives towards energy efficiency technologies and behaviour.  

E-Print Network [OSTI]

??Retrofitting the UK domestic built environment presents an excellent opportunity to improve its energy performance. However, retrofitting homes is a complex challenge conflated by multiple (more)

Pelenur, Marcos

2014-01-01T23:59:59.000Z

116

Automated Demand Response Approaches to Household Energy Management in a Smart Grid Environment.  

E-Print Network [OSTI]

??The advancement of renewable energy technologies and the deregulation of theelectricity market have seen the emergence of Demand response (DR) programs. Demand response is a (more)

Adika, Christopher Otieno

2014-01-01T23:59:59.000Z

117

Household actions can provide a behavioral wedge to rapidly reduce US carbon emissions  

Science Journals Connector (OSTI)

...ineffective in reducing household energy consumption. Mass media...10 years. The changes in household behavior outlined above result...European Union countries and Japan, where the household sector is less energy intensive. Analyses similar...

Thomas Dietz; Gerald T. Gardner; Jonathan Gilligan; Paul C. Stern; Michael P. Vandenbergh

2009-01-01T23:59:59.000Z

118

Understanding and Improving Household Energy Consumption and Carbon Emissions Policies - A System Dynamics Approach  

E-Print Network [OSTI]

? scale?. This covers any energy generation that is decentralized. Micro-generation technologies may take the form of solar photovoltaic (PV), micro-wind turbines, micro-hydro or even micro-combined heat and power (CHP). Micro-generation provides energy...

Oladokun, M.; Motawa, I.; Banfill, P.

2012-01-01T23:59:59.000Z

119

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

2001 Residential Energy Consumption Survey (RECS 2001; USenergy consumption of residential furnaces and boilers in U.S.US Department of Energy (2001). Residential energy consump- tion survey: household energy consumption

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

120

Retailers : a possible stepping stone for promoting energy efficiency in household appliances  

Science Journals Connector (OSTI)

The public support of energy efficiency generally targets manufacturers (support to R&D policies) and consumers (information campaign). This practice leaves out the retailers, who often have an essential role ...

Michel Colombier; Sophie Attali

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A cross-cultural analysis of household energy use behaviour in Japan and Norway  

Science Journals Connector (OSTI)

In this paper we compare and contrast the results of ethnographic investigations of energy use behaviour in Fukuoka, Japan and Oslo, Norway. These studies show significant differences in end use patterns for space heating, lighting and hot water use. We discuss how these patterns are related to cultural and economic factors. Our findings show that while energy intensive space heating and lighting habits have become an integral part of the presentation of the Norwegian home, Japanese space heat and light habits are more disciplined and less culturally significant. In Japan, the bathing routine is extremely important to the Japanese lifestyle and at the same time very energy intensive. Other energy intensive patterns are identified which do not have the same cultural significance, such as lax temperature setback in Norway and dish washing practices in Japan. The policy implications of these findings are discussed.

Harold Wilhite; Hidetoshi Nakagami; Takashi Masuda; Yukiko Yamaga; Hiroshi Haneda

1996-01-01T23:59:59.000Z

122

Control of household refrigerators. Part 2: Alternate control approaches for improving temperature performance and reducing energy use  

SciTech Connect (OSTI)

In Part 1 it was shown that conventional control of household refrigerators is achieved by regulating the distribution of air in the freezer compartment to all other parts of the plant. In Part 2 three alternative approaches to the conventional control of a top-mount refrigerator are presented: variable temperature bandwidths, uncoupled compressor and evaporator fan, and the combination of these two. These allowed the plant to achieve near-ideal control with respect to improved temperature performance in each compartment. Automatic airflow dampers were used with the dual controllers to independently regulate refrigerator compartment temperature. Plant performance was simulated using a model that computes the refrigerant and airflow systems behavior. Together, these alternate configurations and approaches define new control algorithms that reveal the plant's optimal control model for improving performance and energy usage relative to conventional controllers. Results based on model simulations are dependent upon the model's accuracy and validity. However, the model validation studies cited here, though limited in scope, do show agreement between simulation and experimental data for the ambient temperatures and thermal load conditions considered. This suggests that these model results are reasonable, and representative of actual plant behavior under these conditions and configurations for a top-mount style refrigerator plant.

Graviss, K.J.; Collins, R.L.

1999-07-01T23:59:59.000Z

123

An Energy-Flow Model for Self-Powered Routers and its Application for Energy-Aware Routing  

E-Print Network [OSTI]

of electrical energy. Depen- dence on renewable energy sources and variable power consump- tion make energy trend estimation we develop an energy flow model that accounts for communication and energy, network devices are self-powered, i.e., powered by energy harvested from renewable sources such as wind

Belding-Royer, Elizabeth M.

124

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Household Tables Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC2-6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC2-7a. Household Characteristics by Four Most Populated States, Million U.S. Households, 2001 2

125

EIA - Household Transportation report: Household Vehicles Energy...  

Gasoline and Diesel Fuel Update (EIA)

all comparisons reported in the text are statistically significant, based on a standard test made at the 0.05 significance level. These tests were made using the actual RSE's...

126

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

127

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

128

Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings  

E-Print Network [OSTI]

- tems 1 Introduction In EU countries, primary energy consumption in build- ings represents about 40Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings R. Alcal´a DECSAI 18071 ­ Granada, Spain e-mail: A.Gonzalez@decsai.ugr.es Abstract In EU countries, primary energy consump

Casillas Barranquero, Jorge

129

Households and Pension  

Science Journals Connector (OSTI)

This chapter deals with two economic issues. First, we examine Japans household structure. In the previous chapter ( Chapter 10 ...), we recognized the importance of the ...

Mitsuhiko Iyoda

2010-01-01T23:59:59.000Z

130

Towards sustainable consumption: do green households have smaller ecological footprints?  

Science Journals Connector (OSTI)

The need for households in rich countries to develop more sustainable consumption patterns is high on the political agenda. An increased awareness of environmental issues among the general public is often presented as an important prerequisite for this change. This article describes how the study team compared the ecological footprints of ''green'' and ''ordinary'' households. These footprint calculations are based on a number of consumption categories that have severe environmental consequences, such as energy and material use in the home, and transport. The comparison is based on a survey of 404 households in the city of Stavanger, where 66 respondents were members of the Environmental Home Guard in Norway. The analysis suggests that, even if the green households have a smaller ecological footprint per household member, this is not caused by their participation in the Home Guard. It merely reflects the fact that green households are larger than ordinary households.

Erling Holden

2004-01-01T23:59:59.000Z

131

5490 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 11, NOVEMBER 2009 Minimum-Energy All-to-All Multicasting in  

E-Print Network [OSTI]

conservation in such a network thus is of paramount importance, and energy efficient operations are critical conservation, energy consump- tion optimization, all-to-all multicasting. I. INTRODUCTION IN recent years. Energy conservation in such a network thus is of paramount importance, and energy efficient operations

Liang, Weifa

132

The Household Pie  

Science Journals Connector (OSTI)

The discussion of theoretical, conceptual, and methodological concerns in the last three chapters has set the stage for an examination of the total effort that households devote to domestic and market activiti...

Sarah Fenstermaker Berk

1985-01-01T23:59:59.000Z

133

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

134

housingunit_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Tables Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 4 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 4 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 2001 4

135

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Home Office Equipment Tables Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 1 HC7-6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 1 HC7-7a. Home Office Equipment by Four Most Populated States, Million U.S. Households, 2001 1

136

Household portfolios in Japan  

Science Journals Connector (OSTI)

I provide a detailed description and in-depth analysis of household portfolios in Japan. (1) It is shown that the share of equities in financial wealth and the stock market participation of Japanese households decreased throughout the 1990s. (2) Using survey data, age-related variations in the share of stocks in financial wealth are analyzed. The equity share and stock market participation increase with age among young households, peaking when people reach their 50s, and then stabilizing. However, the share of equities conditional on ownership exhibits no significant age-related pattern, implying that age-related patterns are primarily explained by the decision to hold stocks. A similar mechanism operates to that found in previous studies of Western countries. (3) Owner-occupied housing has a significantly positive effect on stock market participation and on the share of stocks in financial wealth.

Tokuo Iwaisako

2009-01-01T23:59:59.000Z

137

Annual Energy Review 2007 - June 2008  

Gasoline and Diesel Fuel Update (EIA)

data on total energy production, consump- data on total energy production, consump- tion, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, international energy, as well as financial and environ- ment indicators; and data unit conversion tables. Publication of this report is required under Public Law 95-91 (Department of Energy Organization Act), Section 205(c), and is in keeping with responsibilities given to the EIA under Section 205(a)(2), which states: "The Administrator shall be responsible for carrying out a central, comprehensive, and unified energy data and information program which will collect, evaluate, assemble, analyze, and disseminate data and information...." Important Notes About The Data The AER is intended for use by Members of Congress, Federal and State agencies,

138

"Keeping Up" or "Keeping Afloat"? : how American households accumulate wealth  

E-Print Network [OSTI]

having a Black or Hispanic household head, and experiencingBlack households, Hispanic households, poor households, etc.that Black- and Hispanic- headed households appear to be at

Lundy, Jeffrey Dalton

2012-01-01T23:59:59.000Z

139

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage  

E-Print Network [OSTI]

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

Shenoy, Prashant

140

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network [OSTI]

be damaged when corrosive chemicals are put down the drain. Burning hazardous wastes simply distributes themHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any

de Lijser, Peter

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Non-CFC vacuum alternatives for the energy-efficient insulation of household refrigerators: Design and use  

SciTech Connect (OSTI)

Energy efficiency, environmental issues, and market incentives all encourage government and industry to continue work on thin-profile vacuum insulations for domestic refrigerators and freezers (R/Fs). Vacuum insulations promise significant improvement in thermal savings over current insulations; the technical objective of one design is an R-value of better than 10 (hr-ft{sup 2}-F/Btu) in 0.1 in. thickness. If performance is improved by a factor of 10 over that of CFC-blown insulating foams, the new insulations (made without CFCs or other potentially troublesome fill gases) will change the design and improve the efficiency of refrigerators. Such changes will meet the conservation, regulatory, and market drivers now strong in developed countries and likely to increase in developing countries. Prototypes of various designs have been tested in the laboratory and in factories, and results to date confirm the good thermal performance of these thin-profile alternatives. The next step is to resolve issues of reliability and cost effectiveness. 34 refs., 4 figs.

Potter, T.F.; Benson, D.K.

1991-01-01T23:59:59.000Z

142

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning Tables Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC4-6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC4-7a. Air Conditioning by Four Most Populated States, Million U.S. Households, 2001 2 HC4-8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 2

143

Income inequality and carbon dioxide emissions: The case of Chinese urban households  

Science Journals Connector (OSTI)

This paper draws on Chinese survey data to investigate variations in carbon dioxide emissions across households with different income levels. Rich households generate more emissions per capita than poor households via both their direct energy consumption and their higher expenditure on goods and services that use energy as an intermediate input. An econometric analysis confirms a positive relationship between emissions and income and establishes a slightly increasing marginal propensity to emit (MPE) over the relevant income range. The redistribution of income from rich to poor households is therefore shown to reduce aggregate household emissions, suggesting that the twin pursuits of reducing inequality and emissions can be achieved in tandem.

Jane Golley; Xin Meng

2012-01-01T23:59:59.000Z

144

Household Vehicles Energy Consumption 1991  

Gasoline and Diesel Fuel Update (EIA)

all comparisons reported in the text are statistically significant, based on a standard test made at the 0.05 significance level. No adjustments were made for simultaneous...

145

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Protection Agency (EPA) certification files (CERT files) containing laboratory test results of MPG. When the vehicle characteristic was missing from the questionnaire, but...

146

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Christy Hall 202-586-1068 chall@eia.doe.gov Public Use Data, Computer Nanno Smith 202-586-5841 nsmith@eia.doe.gov Systems Design Detailed Statistical Tables Vicky...

147

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Household Characteristics by Household Income, 3a. Household Characteristics by Household Income, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Household Size 1 Person ....................................... 28.2 9.7 -- -- -- 6.5 11.3 5.7 2 Persons ...................................... 35.1 4.3 -- -- -- 2.0 7.8 5.8 3 Persons ...................................... 17.0 -- 3.3 -- -- 2.2 5.2 7.3 4 Persons ...................................... 15.6 -- 2.2 -- -- -- 4.3 8.1 5 Persons ...................................... 7.1

148

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Household Characteristics by Midwest Census Region, 0a. Household Characteristics by Midwest Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 24.5 17.1 7.4 NE Household Size 1 Person ...................................................... 28.2 6.7 4.7 2.0 6.2 2 Persons .................................................... 35.1 8.0 5.4 2.6 5.0 3 Persons .................................................... 17.0 3.8 2.7 1.1 7.9 4 Persons .................................................... 15.6 3.5 2.5 1.0 8.1 5 Persons .................................................... 7.1 1.7

149

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by West Census Region, 2a. Household Characteristics by West Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.8 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Household Size 1 Person ...................................................... 28.2 5.6 1.8 3.8 5.4 2 Persons .................................................... 35.1 7.3 1.9 5.5 4.9 3 Persons .................................................... 17.0 3.5 0.9 2.6 7.6 4 Persons .................................................... 15.6 3.5 1.1 2.4 6.4 5 Persons .................................................... 7.1 2.0 0.6 1.4 9.7 6 or More Persons

150

Asset Pricing with Countercyclical Household Consumption Risk  

E-Print Network [OSTI]

1 Asset Pricing with Countercyclical Household Consumption Risk George M. Constantinides that shocks to household consumption growth are negatively skewed, persistent, and countercyclical and play that drives the conditional cross-sectional moments of household consumption growth. The estimated model

Sadeh, Norman M.

151

More efficient household electricity use  

SciTech Connect (OSTI)

The energy efficiency of electric appliances has increased markedly in OECD countries, according to data provided by utilities, appliance associations, appliance manufacturers, and independent analyses of each country we reviewed (US, Sweden, Norway, Holland, Japan, Germany, UK). These improvements have, in part, offset increases in electricity demand due to increasing saturation of appliances. However, we see evidence that the efficiency of new devices has hit a temporary plateau: Appliances sold in 1988, while far more efficient than similar ones sold in the early 1970s, may not be significantly more efficient than those sold in 1987. The reason for this plateau, according to manufacturers we interviewed, is that the simple energy-saving features have been incorporated; more sophisticated efficiency improvements are economically justified by five to ten year paybacks, but unattractive to consumers in most countries who appear to demand paybacks of less than three years. Manufacturers see features other than efficiency --- such as number of storage compartments and automatic ice-makers --- as more likely to boost sales, market share, or profits. If this efficiency plateau'' proves lasting, then electricity use for appliance could begin to grow again as larger and more fancy models appear in households. 38 refs., 10 figs., 1 tab.

Schipper, L.; Hawk, D.V.

1989-12-01T23:59:59.000Z

152

THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD  

E-Print Network [OSTI]

energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas.46]. The cost of these devices was also statistically significant. Keywords: electricity use; energy efficiency the Canadian Industrial Energy End Use Data and Analysis (CIEEDAC) for their financial support made possible

153

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Air Conditioning by Household Income, 3a. Air Conditioning by Household Income, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.9 1.5 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 12.3 17.4 21.5 31.7 9.6 23.4 3.9 Air Conditioners Not Used ............ 2.1 0.4 0.7 0.5 0.5 0.4 0.9 20.8 Households Using Electric Air-Conditioning 2 .......................... 80.8 11.9 16.7 21.0 31.2 9.1 22.6 3.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 6.2 10.7 15.2 25.3 4.5 12.4 5.3 Without a Heat Pump .................. 46.2 4.9 9.1 12.1 20.1 3.6 10.4 6.1 With a Heat Pump

154

Household equipment of Canadians -- features of the 1993 stock and the 1994 and 1995 purchases: Analysis report  

SciTech Connect (OSTI)

This report reviews the results of three surveys that collected information on household equipment: The 1994 and 1995 Household Equipment Surveys and the 1993 Survey of Household Energy Use. The goal of the report is to highlight the features of energy-consuming equipment bought by Canadian households in 1994 and 1995 in comparison to those owned by households in 1993. Results are presented by type of equipment: Refrigerators, stoves, dishwashers, freezers, automatic washers, automatic dryers, air conditioning systems, heating systems, and water heaters. Appendices include information on survey methodology and a copy of the survey questionnaire.

Not Available

1997-01-01T23:59:59.000Z

155

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect (OSTI)

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

156

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Household Characteristics by Type of Owner-Occupied Housing Unit, 5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.3 0.4 2.0 2.9 1.3 Total Owner-Occupied Units ....... 72.7 63.2 2.1 1.8 5.7 6.7 Household Size 1 Person ....................................... 15.8 12.5 0.8 0.9 1.6 10.3 2 Persons ...................................... 25.9 23.4 0.5 0.5 1.5 10.1 3 Persons ...................................... 11.6 9.6 0.5 Q 1.3 12.1 4 Persons ...................................... 11.8 10.9 Q Q 0.7 15.7 5 Persons ...................................... 5.1 4.5 Q Q 0.4 24.2 6 or More Persons

157

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Household Characteristics by South Census Region, 1a. Household Characteristics by South Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.5 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Household Size 1 Person ...................................................... 28.2 9.9 5.0 1.8 3.1 6.3 2 Persons .................................................... 35.1 13.0 6.7 2.5 3.8 4.2 3 Persons .................................................... 17.0 6.6 3.7 1.2 1.7 8.8 4 Persons .................................................... 15.6 6.0 3.3 0.8 1.9 10.7 5 Persons ....................................................

158

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Household Characteristics by Urban/Rural Location, 8a. Household Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Household Size 1 Person ...................................................... 28.2 14.6 5.3 4.8 3.6 6.4 2 Persons .................................................... 35.1 15.7 5.7 6.9 6.8 5.4 3 Persons .................................................... 17.0 7.6 2.8 3.5 3.1 7.2 4 Persons .................................................... 15.6 6.8 2.3 4.1 2.4 8.1 5 Persons .................................................... 7.1 3.1 1.3 1.3 1.4 12.3 6 or More Persons

159

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Household Characteristics by Climate Zone, a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Household Size 1 Person ....................................... 28.2 2.5 8.1 6.5 4.8 6.2 9.9 2 Persons ...................................... 35.1 3.1 9.4 8.2 6.5 7.9 8.7 3 Persons ...................................... 17.0 1.3 4.3 4.0 3.3 4.1 10.7 4 Persons ...................................... 15.6 1.4 3.9 3.4 3.4 3.5 10.5 5 Persons ......................................

160

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Household Characteristics by Type of Rented Housing Unit, 6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total Rented Units ........................ 34.3 10.5 7.4 15.2 1.1 6.9 Household Size 1 Person ....................................... 12.3 2.5 2.6 7.0 0.3 10.0 2 Persons ...................................... 9.2 2.5 2.5 4.1 Q 11.8 3 Persons ...................................... 5.4 2.0 1.1 2.0 0.4 13.9 4 Persons ...................................... 3.8 1.6 0.7 1.4 Q 17.7 5 Persons ...................................... 2.0 0.9 0.4 0.6 Q 24.1 6 or More Persons ........................

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Home Office Equipment by Household Income, 3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7 10.7 38.8 3.2 Personal Computers 2 ................... 60.0 3.7 8.7 16.0 31.6 3.7 17.4 4.6 Number of Desktop PCs 1 .................................................. 45.1 2.8 7.1 12.8 22.4 2.8 13.6 5.1 2 or more .................................... 9.1 0.6 0.7 1.7 6.2 0.6 2.2 13.0 Number of Laptop PCs

162

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by Year of Construction, 2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons ...................................... 35.1 4.8 6.2 6.6 4.5 5.3 7.8 5.8 3 Persons ...................................... 17.0 2.5 3.3 2.9 2.3 1.9 4.1 8.4 4 Persons ...................................... 15.6 3.4 2.8 2.3 1.9 1.8 3.4 9.6 5 Persons ...................................... 7.1 1.6 1.2 1.3 0.6 0.7 1.6 14.3 6 or More Persons

163

Characteristics RSE Column Factor: Households with Children Households...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 6.1 0.8 2.7 2.6 Q Q Q Q Q Q Q 23.2 Race of Householder White ... 54.8 14.4 27.6 12.8 83.7 3.2 6.7 7.2...

164

Physical activity of adults in households with and without children  

E-Print Network [OSTI]

whites, fewer Hispanics, and higher household incomes thanWhites, fewer Hispanics, and higher household incomes thanWhites, fewer Hispanics, and higher household incomes than

Candelaria, Jeanette Irene

2010-01-01T23:59:59.000Z

165

Household environmental monitoring a strategy to help homeowners reduce their environmental impact  

Science Journals Connector (OSTI)

A group of 20 households was established to study whether we can motivate environmentally sustainable behaviour by providing homeowners with a clear picture of their impact, tangible reasons for improvement, and tailored solutions to follow. Reports for each household compared heating fuel, electricity, water, vehicle fuel/waste generation within the group and recommended cost-effective measures to reduce consumption. On average, 26% of the recommended measures were implemented, resulting in an estimated greenhouse gas reduction of about 2 tonnes per household. Wide variations were found between households, demonstrating the potential to reduce environmental impact through lifestyle, conservation, and energy conscious retrofits.

Jane Thompson; Magda Goemans; Peter C. Goemans; Andrzej Wisniowski

2008-01-01T23:59:59.000Z

166

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Space Heating by Household Income, 3a. Space Heating by Household Income, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Heat Home ..................................... 106.0 18.4 22.7 26.8 38.1 14.6 33.4 3.3 Do Not Heat Home ........................ 1.0 0.3 Q 0.3 0.3 0.3 0.4 23.4 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 35.0 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q 0.2 0.3 22.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 18.4 22.7

167

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Appliances by Household Income, 3a. Appliances by Household Income, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.8 1.6 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2 1 ................................................ 95.2 17.3 21.1 24.8 32.0 13.8 31.1 3.4 2 or More .................................. 6.5 0.8 0.9 1.3 3.6 0.6 1.5 13.1 Most Used Oven ........................ 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2

168

The World Distribution of Household Wealth  

E-Print Network [OSTI]

Japan is not a remote prospect. In summary, it is clear that householdJapan Korea, South New Zealand Norway Spain Sweden Switzerland United Kingdom United States Year Unit share of top 2002 household

DAVIES, JAMES B; Shorrocks, Anthony; Sandstrom, Susanna; WOLFF, EDWARD N

2007-01-01T23:59:59.000Z

169

Trip rate comparison of workplace and household surveys  

E-Print Network [OSTI]

Available vs. Trip Rate) 14 El Paso Household Survey (Household Income vs. Trip Rate) . 15 El Paso Workplace Survey (Household Income vs. Trip Rate) . 52 52 53 53 54 54 16 BPA Household Survey (Household Size vs. Trip Rate) . . 17 BPA Workplace... Survey (Household Size vs. Trip Rate) . . 56 56 18 BPA Household Survey (No. of Employees vs. Trip Rate) . . 19 BPA Workplace Survey (No. of Employees vs. Trip Rate) . . 20 BPA Household Survey (Vehicles Available vs. Trip Rate) . . 21 BPA Workplace...

Endres, Stephen Michael

2012-06-07T23:59:59.000Z

170

Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data  

Science Journals Connector (OSTI)

Abstract Currently there is a strong policy commitment in European Union (EU) and Organisation for Economic Co-operation and Development (OECD) countries to increase the energy efficiency of residential buildings, and it is widely assumed that this will naturally and automatically reduce domestic energy consumption. However, other factors such as fuel prices, wages, attitudes and lifestyles also influence energy consumption. This paper calculates broad-brush rebound effects based on changes in energy efficiency and energy consumption in each of the 28EU countries plus Norway, for the years 20002011. In doing so, it tests how well the assumption of energy efficiency leading to energy reduction stands up to scrutiny in these lands. It uses the EUs Odyssee database for efficiency and consumption figures and a commonly employed econometric definition of the rebound effect as an energy-efficiency elasticity. Most older EU lands show rebound effects in the expected range of 050%. However, the range for newer EU countries is 100550%, suggesting that energy efficiency increases are not a good predictor of energy consumption. A more in-depth look at one country, Germany, suggests these results underestimate the rebound effect significantly. This also identifies research needs for specific energy consumption determinants in each country, to find more precisely what is driving consumption levels.

Ray Galvin

2014-01-01T23:59:59.000Z

171

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

172

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Home Office Equipment by Northeast Census Region, 9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9 7.7 3.3 3.1 Number of Desktop PCs 1 ................................................................ 45.1 8.7 6.2 2.5 3.7 2 or more ................................................... 9.1 1.4 0.9 0.5 12.9 Number of Laptop PCs 1 ................................................................

173

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Home Office Equipment by Midwest Census Region, 0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0 14.1 9.9 4.2 3.7 Number of Desktop PCs 1 ................................................................ 45.1 10.4 7.2 3.2 3.7 2 or more ................................................... 9.1 2.3 1.6 0.7 10.1 Number of Laptop PCs 1 ................................................................

174

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Air Conditioning by Midwest Census Region, 0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 20.2 13.4 6.7 2.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 14.3 9.5 4.8 3.8 Without a Heat Pump ................................ 46.2 13.6 9.0 4.6 3.9 With a Heat Pump .....................................

175

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Air Conditioning by Urban/Rural Location, 8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4 18.6 13.3 4.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 ............................ 57.5 23.6 8.6 15.8 9.4 5.1 Without a Heat Pump ................................ 46.2 19.3 7.4 13.1 6.4 6.3 With a Heat Pump ..................................... 11.3 4.4

176

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Air Conditioning by Type of Owner-Occupied Housing Unit, 5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using Electric Air-Conditioning 1 .......................... 58.2 57.6 6.3 11.8 5.1 5.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 44.7 43.6 3.2 7.1 3.5 7.0 Without a Heat Pump .................. 35.6 35.0 2.4 6.1 2.7 7.7 With a Heat Pump .......................

177

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Air Conditioning by Type of Rented Housing Unit, 6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning 1 .......................... 22.5 57.6 6.3 11.8 5.1 6.2 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 12.7 43.6 3.2 7.1 3.5 8.5 Without a Heat Pump .................. 10.6 35.0 2.4 6.1 2.7 9.3 With a Heat Pump ....................... 2.2 8.6 0.8 1.0

178

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons .................................................... 17.0 1.1 2.0 1.2 1.2 9.5 4 Persons .................................................... 15.6 0.8 1.9 1.3 0.9 11.2 5 Persons .................................................... 7.1 0.4 1.1 0.4 0.5 19.8 6 or More Persons ....................................... 4.0 0.4 0.9 0.4 0.1 16.4 2001 Household Income Category

179

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Air Conditioning by South Census Region, 1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 36.9 19.0 6.4 11.5 1.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 30.4 16.1 5.0 9.2 2.8 Without a Heat Pump ................................ 46.2 22.1 10.4 3.4 8.3 5.6 With a Heat Pump

180

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Air Conditioning by Northeast Census Region, 9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1 ........................................ 80.8 14.2 11.1 3.2 3.4 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 5.7 4.9 0.8 8.9 Without a Heat Pump ................................ 46.2 5.2 4.5 0.7 9.2 With a Heat Pump .....................................

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Air Conditioning by Year of Construction, 2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2 .......................... 80.8 13.4 15.8 14.2 10.1 10.2 17.1 4.7 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 12.6 13.7 11.0 7.1 6.6 6.4 5.9 Without a Heat Pump .................. 46.2 10.1 10.4 8.0 6.1 5.9 5.7 7.0 With a Heat Pump ....................... 11.3 2.5 3.3

182

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Air Conditioning by Type of Housing Unit, 4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1 .......................... 80.8 57.6 6.3 11.8 5.1 4.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 57.5 43.6 3.2 7.1 3.5 6.7 Without a Heat Pump .................. 46.2 35.0 2.4 6.1 2.7 7.7 With a Heat Pump ....................... 11.3 8.6 0.8 1.0 0.8 19.7 Room Air-Conditioning

183

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

184

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

from household energy consumption i n Japan increased b y 20is that household energy consumption i n Japan has notfrom a l l households i n Japan, through 2050 (with energy-

2006-01-01T23:59:59.000Z

185

Metering Campaign on All Cooking End-Uses in 100 Households  

Science Journals Connector (OSTI)

This paper presents the findings of an experimental study performed in 100 French households on the end-use power demand and energy consumption of domestic appliances focusing on cooking appliances [1].

Olivier Sidler

2001-01-01T23:59:59.000Z

186

Chemical Characterization and Source Apportionment of Household Fine Particulate Matter in Rural, Peri-urban, and Urban West Africa  

Science Journals Connector (OSTI)

In addition to households own fuel, HAP in urban households is affected by the extent of biomass use in the neighborhood, and by traffic-related sources. ... The elemental concentrations of the samples were quantified by energy dispersive X-ray fluorescence (ED-XRF) using a Shimadzu EDX-700HS spectrometer (Shimadzu Corp., Japan) at the Institute of Astronomy, Geophysics and Atmospheric Science, University of Sao Paulo, Brazil. ...

Zheng Zhou; Kathie L. Dionisio; Thiago G. Verissimo; Americo S. Kerr; Brent Coull; Stephen Howie; Raphael E. Arku; Petros Koutrakis; John D. Spengler; Kimberly Fornace; Allison F. Hughes; Jose Vallarino; Samuel Agyei-Mensah; Majid Ezzati

2013-12-18T23:59:59.000Z

187

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Home Office Equipment by Year of Construction, 2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2 ................... 60.0 11.0 11.6 10.3 7.2 7.8 12.0 5.3 Number of Desktop PCs 1 .................................................. 45.1 8.0 9.0 7.7 5.3 6.1 9.1 5.8 2 or more .................................... 9.1 1.8 1.6 2.0 1.1 1.0 1.6 11.8 Number of Laptop PCs 1 ..................................................

188

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 1.3 3.9 6.2 5.7 6.7 Without a Heat Pump ................................ 46.2 1.2 3.2 5.5 3.8 8.1 With a Heat Pump ..................................... 11.3 Q 0.8 0.6 1.9 14.7 Room Air-Conditioning ................................ 23.3 3.4 1.2 1.2 0.3 13.6 1 Unit

189

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Home Office Equipment by South Census Region, 1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1 ................................. 60.0 20.7 11.7 3.2 5.8 4.0 Number of Desktop PCs 1 ................................................................ 45.1 15.5 8.6 2.6 4.3 4.9 2 or more ................................................... 9.1 3.1 2.0 0.4 0.7 9.6 Number of Laptop PCs

190

Electricity Prices for Households - EIA  

Gasoline and Diesel Fuel Update (EIA)

Households for Selected Countries1 Households for Selected Countries1 (U.S. Dollars per Kilowatthour) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA 0.023 NA NA Australia 0.091 0.092 0.094 0.098 NA NA NA NA NA Austria 0.144 0.154 0.152 0.163 0.158 0.158 0.178 0.201 NA Barbados NA NA NA NA NA NA NA NA NA Belgium NA NA NA NA NA NA NA NA NA Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA 0.145 0.171 NA Canada 0.067 0.069 0.070 0.071 0.076 0.078 NA NA NA Chile NA NA NA NA NA NA 0.140 0.195 NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 0.075 0.071 0.074 0.076 0.079 0.079 0.080 0.086 NA Colombia NA NA NA NA NA NA 0.111 0.135 NA

191

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Home Office Equipment by Climate Zone, a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0 21.5 7.8 Personal Computers 2 ................... 60.0 5.7 16.7 13.1 12.1 12.6 7.4 Number of Desktop PCs 1 .................................................. 45.1 4.2 12.8 9.6 8.8 9.6 7.8 2 or more .................................... 9.1 0.8 2.4 2.3 2.0 1.7 12.1 Number of Laptop PCs 1 ..................................................

192

Development of the household sample for furnace and boilerlife-cycle cost analysis  

SciTech Connect (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

193

What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System  

Science Journals Connector (OSTI)

......to seven households over a period...edition of the Energy Efficiency Action Plan...Consumption. Energy Efficiency in Household Appliances...Council on energy efficiency and repealing...Standards-Households in the informations......

Tobias Schwartz; Gunnar Stevens; Timo Jakobi; Sebastian Denef; Leonardo Ramirez; Volker Wulf; Dave Randall

2014-04-01T23:59:59.000Z

194

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Appliances by Northeast Census Region, 9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1 .............................................................. 95.2 18.2 13.3 4.9 1.1 2 or More ................................................. 6.5 1.4 1.1 0.3 11.7 Most Used Oven ...................................... 101.7 19.6 14.5 5.2 1.1 Electric .....................................................

195

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Space Heating by South Census Region, 1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home ....................................... 1.0 Q Q Q Q 20.1 No Heating Equipment ................................ 0.5 Q Q Q Q 39.8 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q Q 39.0 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0

196

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Space Heating by Northeast Census Region, 9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No Heating Equipment ................................ 0.5 Q Q Q 39.5 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.7 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 20.1 14.7 5.4 NE Natural Gas .................................................

197

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Space Heating by Midwest Census Region, 0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No Heating Equipment ................................ 0.5 Q Q Q 39.2 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.4 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 24.5 17.1 7.4 NE Natural Gas

198

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by West Census Region, 2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment ................................ 0.5 0.4 Q 0.4 18.1 Have Equipment But Do Not Use It ............................................... 0.4 0.2 Q 0.2 27.5 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 22.6 6.7 15.9 NE Natural Gas .................................................

199

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by West Census Region, 2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1 .............................................................. 95.2 20.9 6.4 14.5 1.1 2 or More ................................................. 6.5 1.2 0.2 1.0 14.6 Most Used Oven ...................................... 101.7 22.1 6.6 15.5 1.1 Electric .....................................................

200

Standby electricity consumption and saving potentials of Turkish households  

Science Journals Connector (OSTI)

Abstract The share of the residential sector currently accounts for about 25% of the national electricity consumption in Turkey. Due to increase in household income levels and decrease in the costs of appliances; significant increases in appliance ownerships and residential electricity consumption levels have been observed in recent years. Most domestic appliances continue consuming electricity when they are not performing their primary functions, i.e. at standby mode, which can constitute up 15% of the total household electricity consumption in some countries. Although the demand in Turkish residential electricity consumption is increasing, there are limited studies on the components of the residential electricity consumption and no studies specifically examining the extent and effects of standby electricity consumption using a surveying/measurement methodology. Thus, determining the share of standby electricity consumption in total home electricity use and the ways of reducing it are important issues in residential energy conservation strategies. In this study, surveys and standby power measurements are conducted at 260 households in Ankara, Turkey, to determine the amount, share, and saving potentials of the standby electricity consumption of Turkish homes. The survey is designed to gather information on the appliance properties, lights, electricity consumption behavior, economic and demographics of the occupants, and electricity bills. A total of 1746 appliances with standby power are measured in the surveyed homes. Using the survey and standby power measurements data, the standby, active, and lighting end-use electricity consumptions of the surveyed homes are determined. The average Turkish household standby power and standby electricity consumption are estimated as 22W and 95kWh/yr, respectively. It was also found that the standby electricity consumption constitutes 4% of the total electricity consumption in Turkish homes. Two scenarios are then applied to the surveyed homes to determine the potentials in reducing standby electricity consumption of the households.

Mustafa Cagri Sahin; Merih Aydinalp Koksal

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Household Response To Dynamic Pricing Of Electricity: A Survey...  

Open Energy Info (EERE)

Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

202

Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps  

Science Journals Connector (OSTI)

(3) Lighting is another component of this household energy challenge, with millions of households still relying on simple liquid-fueled lamps, but little is known of the associated environmental and health impacts. ... For laboratory tests, CO2 and CO concentrations were measured in real-time with a Li-COR 6252 (Li-COR Biosciences, Lincoln, NE) and Horiba AIA-220 (Horiba, Kyoto, Japan) nondispersive infrared (NDIR) analyzer, respectively. ...

Nicholas L. Lam; Yanju Chen; Cheryl Weyant; Chandra Venkataraman; Pankaj Sadavarte; Michael A. Johnson; Kirk R. Smith; Benjamin T. Brem; Joseph Arineitwe; Justin E. Ellis; Tami C. Bond

2012-11-19T23:59:59.000Z

203

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

for a period of 1 year. VMT was calculated using (1) a regression method developed by Oak Ridge National Laboratories, Center for Transportation Analysis (2) two odometer...

204

Household Vehicles Energy Use: Latest Data & Trends  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

a NHTS sample vehicle having the following attributes: Volkswagen, Sirocco, 1990, Automobile. Toggling of model years, by a single year increase followed by a single year...

205

Household Vehicles Energy Consumption 1994 - Appendix C  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Protection Agency (EPA) certification files (CERT files) containing laboratory test results of MPG. When the vehicle characteristic was missing from the questionnaire, but...

206

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

80, 85, 86, 88, and 600 and 10 CFR Part 474. GREET MODEL Of course, there are other conversion factors available, depending on the various fuel-specific factors. For the...

207

Environmental Communication Aimed at Household Energy Conservation  

Science Journals Connector (OSTI)

The first commitment period of the Kyoto Protocol started in 2008. Japan is required to cut down on greenhouse...2) emissions in Japan have been showing a tendency to increase ... report of the Ministry of the En...

Chizuru Nishio

2010-01-01T23:59:59.000Z

208

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Appliances by Climate Zone, a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven .............................................. 101.7 9.1 27.9 23.1 19.4 22.2 7.8 1 ................................................... 95.2 8.7 26.0 21.6 17.7 21.2 7.9 2 or More ..................................... 6.5 0.4 1.9 1.5 1.7 1.0 14.7 Most Used Oven ........................... 101.7 9.1 27.9 23.1 19.4 22.2

209

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Appliances by Type of Housing Unit, 4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1 ................................................ 95.2 63.7 8.9 16.2 6.3 4.3 2 or More .................................. 6.5 5.4 0.4 0.4 0.2 15.9 Most Used Oven ........................ 101.7 69.1 9.4 16.7 6.6 4.3 Electric ...................................... 63.0 43.3 5.2 10.9 3.6

210

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Space Heating by Urban/Rural Location, 8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating Equipment ................................ 0.5 0.4 0.1 Q 0.1 33.2 Have Equipment But Do Not Use It ............................................... 0.4 0.3 Q Q Q 30.2 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 49.1 18.0 21.2 17.8 4.3 Natural Gas

211

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Space Heating by Type of Owner-Occupied Housing Unit, 5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.4 1.9 3.0 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Heat Home ..................................... 72.4 63.0 2.0 1.7 5.7 6.7 Do Not Heat Home ........................ 0.4 0.2 Q Q Q 46.2 No Heating Equipment .................. 0.3 0.2 Q Q Q 39.0 Have Equipment But Do Not Use It ................................ Q Q Q Q Q NF Main Heating Fuel and Equipment (Have and Use Equipment) ............ 72.4 63.0 2.0 1.7 5.7 6.7 Natural Gas

212

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by Year of Construction, 2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................ 1.0 Q Q Q 0.2 0.3 Q 23.2 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 30.3 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q Q Q 37.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Natural Gas ...................................

213

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Appliances by Type of Owner-Occupied Housing Unit, 5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ........................................... 68.3 59.1 2.0 1.7 5.4 7.0 1 ................................................ 62.9 54.1 2.0 1.6 5.2 7.1 2 or More .................................. 5.4 5.0 Q Q 0.2 22.1 Most Used Oven ........................ 68.3 59.1 2.0 1.7 5.4 7.0 Electric ......................................

214

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Space Heating by Type of Housing Unit, 4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No Heating Equipment .................. 0.5 0.2 Q 0.3 Q 24.2 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 28.1 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 73.4 9.4 16.4 6.8 4.5 Natural Gas ...................................

215

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by Year of Construction, 2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1 ................................................ 95.2 13.1 16.3 16.6 12.1 12.7 24.3 4.4 2 or More .................................. 6.5 1.2 0.9 1.1 0.7 1.0 1.6 14.8 Most Used Oven ........................ 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 Electric ......................................

216

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Space Heating by Type of Rented Housing Unit, 6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home ........................ 0.6 Q Q 0.5 Q 21.4 No Heating Equipment .................. 0.2 Q Q Q Q 84.5 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 36.4 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 33.7 10.4 7.4 14.8 1.1 6.9 Natural Gas ...................................

217

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

218

A comparative evaluation of household preferences for solar photovoltaic standalone and mini-grid system: An empirical study in a costal village of Indian Sundarban  

Science Journals Connector (OSTI)

Solar PhotoVoltaic (SPV) based systems have been widely accepted technology for rural electrification in developing countries. The standalone SPV home lighting system has increasingly been popular among rural households, while SPV mini-grid supply system is being promoted for rural electrification schemes. This study uses data from household survey to explore the impact of household characteristics on the preference for electrical energy from SPV systems. Econometric evidence shows heterogeneity in behavioural pattern for these two SPV systems. The flexibility in use and cost of systems might explain this difference. Household characteristics such as monthly household income, household size, occupational status of household head, number of room and type of house significantly influence households decision for SPV standalone home lighting systems. For SPV mini-grid supply households income and monthly expenditure on kerosene are significant predictors. The result reported in this paper might be a valuable input for policy makers to frame right policy mix with regard to provide subsidy on rural electrification programmes.

Amit K. Bhandari; Chinmoy Jana

2010-01-01T23:59:59.000Z

219

Nevada: Kingston Creek Hydro Project Powers 100 Households  

Broader source: Energy.gov [DOE]

Hydropower project produces enough electricity to annually power nearly 100 typical American households.

220

Green Computing Wanted: Electricity Consumptions in the IT Industry and by Household Computers in Five Major Chinese Cities  

Science Journals Connector (OSTI)

Exhausted energy consumption becomes a world-wide issue nowadays. Computing contributes a large portion of energy consumption. The concept of green computing has been popularized. Along with the rapid development of China, energy issue becomes more and ... Keywords: energy/electricity consumption, IT industry, household computers, energy efficiency, green computing

Luyang Wang; Tao Wang

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Environmental attitudes and household consumption: an ambiguous relationship  

Science Journals Connector (OSTI)

This article analyses the relationship between environmental attitudes and energy use in the home and for transport by Norwegian households. Quantitative surveys were used to find statistical correlations, and qualitative analyses to reveal mechanisms that influence the ability to behave in an environmentally friendly way. Three theses about attitudes, mechanisms and household consumption are presented. Firstly, a desire to project an environmentally friendly image has little influence on energy use in the home and for transport. Secondly, a sense of powerlessness prevents people from translating positive environmental attitudes into low energy use in the home and for everyday transport. Thirdly, a desire to self-indulge prevents people from translating positive environmental attitudes into low energy use for long distance leisure travel. These results have important implications for environmental policy. Public information and awareness campaigns can give consumers information on how to behave in an environmentally responsible way, but tend only to influence categories of consumption with little environmental impact. Structural change can be used to mitigate the effect of the sense of powerlessness and encourage environmentally friendly behaviour, but the desire to self-indulge is much more difficult to deal with.

Erling Holden; Kristin Linnerud

2010-01-01T23:59:59.000Z

222

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

223

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

224

Drivers of Future Energy Demand  

Gasoline and Diesel Fuel Update (EIA)

trends - Household income migration urbanization * Policy: China Energy Outlook - Air pollution - Climate change 4 (1) Industrial energy intensity: The energy intensity of...

225

Enhanced naphthenic refrigeration oils for household refrigerator systems  

SciTech Connect (OSTI)

Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R. [Witco Corp., Oakland, NJ (United States); Barbour, C.B. [Americold, Cullman, AL (United States)

1997-12-31T23:59:59.000Z

226

Table 5.17. U.S. Number of Households by Vehicle Fuel Expenditures...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5.17. U.S. Number of Households by Vehicle Fuel Expenditures, 1994 (Continued) (Million Households) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: All...

227

Using census aggregates to proxy for household characteristics: an application to vehicle ownership  

E-Print Network [OSTI]

Instead, Asian and Hispanic households were undersampled byhousehold Age of the householder/Average age of residents Hispanichousehold Age of the householder/Average age of residents Hispanic

Adjemian, Michael; Williams, Jeffrey

2009-01-01T23:59:59.000Z

228

Transferring 2001 National Household Travel Survey  

SciTech Connect (OSTI)

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

229

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

230

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

231

Opportunities to reduce greenhouse gas emissions from households in Nigeria  

Science Journals Connector (OSTI)

Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas (GHG) emissions through its consumption...2) emissions from kerosene combustion for lighting

O. Adeoti; S. O. Osho

2012-02-01T23:59:59.000Z

232

Household Wealth in a Cross-Country Perspective  

Science Journals Connector (OSTI)

This paper provides a comparative analysis of household wealth in the United States, the United Kingdom, Japan, France, Germany, Spain, and Italy. ... wealth, looking at the instruments in which households invest...

Laura Bartiloro; Massimo Coletta

2012-01-01T23:59:59.000Z

233

Control of household refrigerators. Part 1: Modeling temperature control performance  

SciTech Connect (OSTI)

Commercial household refrigerators use simple, cost-effective, temperature controllers to obtain acceptable control. A manually adjusted airflow damper regulates the freezer compartment temperature while a thermostat controls operation of the compressor and evaporator fan to regulate refrigerator compartment temperature. Dual compartment temperature control can be achieved with automatic airflow dampers that function independently of the compressor and evaporator fan thermostat, resulting in improved temperature control quality and energy consumption. Under dual control, freezer temperature is controlled by the thermostat while the damper controls refrigerator temperature by regulating airflow circulation. A simulation model is presented that analyzes a household refrigerator configured with a conventional thermostat and both manual and automatic dampers. The model provides a new paradigm for investigating refrigerator systems and temperature control performance relative to the extensive verification testing that is typically done by manufacturers. The effects of each type of control and damper configuration are compared with respect to energy usage, control quality, and ambient temperature shift criteria. The results indicate that the appropriate control configuration can have significant effects and can improve plant performance.

Graviss, K.J.; Collins, R.L.

1999-07-01T23:59:59.000Z

234

Home Prices and Household Callan Windsor, Jarkko Jskel and  

E-Print Network [OSTI]

Research Discussion Paper Home Prices and Household Spending Callan Windsor, Jarkko Jääskelä. ISSN 1320-7729 (Print) ISSN 1448-5109 (Online) #12;Home Prices and Household Spending Callan Windsor Abstract This paper explores the positive relationship between home prices and household spending

235

Handling Frame Problems When Address-Based Sampling Is Used for In-Person Household Surveys  

Science Journals Connector (OSTI)

......use as the sampling frame for household surveys. This subset includes...However, around 90 percent of households with PO box addresses also have...recent growth, new construction, Hispanic households, non-English-speaking households......

Graham Kalton; Jennifer Kali; Richard Sigman

2014-09-01T23:59:59.000Z

236

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

Japan by 2020. 12 of 17 Because of their large share in household energyJapan in 2000 which was 4560 kWh/household (IEEJ, 2003). In developed countries, the energy

Zhou, Nan

2010-01-01T23:59:59.000Z

237

E-Print Network 3.0 - assessing household solid Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Groundwater Contamination from Household Wastewater... 12;Glossary Household Wastewater Treatment These terms may help you make more accurate assessments......

238

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households  

Science Journals Connector (OSTI)

Greenhouse Gas Emissions from the Consumption of Electric and Electronic Equipment by Norwegian Households ... Conventional wisdom holds that large appliances, in particular washers, dryers, refrigerators and freezers, dominate residential energy consumption apart from heat, hot water and light. ... (16) It excludes lighting, all professional equipment, space heating, hot water, garden or car equipment, fire alarms, and air conditioning. ...

Edgar G. Hertwich; Charlotte Roux

2011-08-30T23:59:59.000Z

239

Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets  

E-Print Network [OSTI]

Stranded Vehicles: How Gasoline Taxes Change the Value of Households' Vehicle Assets Meghan Busse pollution caused by the burning of fossil fuels. Argu- ments against energy taxes, and gasoline taxes more incidence of the tax. We study the effect of a gasoline tax using changes in vehicle values. We construct

Rothman, Daniel

240

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book [EERE]

Program Definitions DOE Weatherization: Department of Energy's Weatherization Assistance Program DOE Weatherization Eligible Households: Households with incomes at or below 125% of the Federal poverty level, which varies by family size; however, a State may instead elect to use the LIHEAP income standard if its State LIHEAP income standard is at least 125% of the Federal poverty level. Data listed in this chapter include previously weatherized units. DOE Weatherization Eligible Households are a subset of Federally Eligible Households. DOE Weatherization Recipient Households: Households that have received weatherization under DOE Weatherization funding. Federally Eligible Households: Households with incomes below the Federal maximum standard of 150% to 200% of the poverty

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

and Energy Use in Japan: Household Equipment and EnergyHousehold (Electrified), 1999-2000 Average standby power (W/home) Austria Belgium Canada Denmark Finland France Germany Iceland Ireland Italy Japan

McNeil, Michael A

2008-01-01T23:59:59.000Z

242

An economic assessment of the impact of two crude oil price scenarios on households  

SciTech Connect (OSTI)

The impact of two possible future crude oil price scenarios -- high and low price cases -- is assessed for three population groups: majority (non-Hispanic and nonblack), black, and Hispanic. The two price scenarios were taken from the energy security'' report published by the US Department of Energy in 1987. Effects of the two crude oil price scenarios for the 1986--95 period are measured for energy demand and composition and for share of income spent on energy by the three population groups at both the national and census-region levels. The effects on blacks are marginally more adverse than on majority householders, while effects on Hispanics are about the same as those on the majority. Little change is seen in percentage of income spent on energy over the forecast period. Both Hispanic and black households would spend a larger share of their incomes on energy than would majority households. The relatively adverse effects in the higher price scenario shift from the South and West Census regions to the Northeast and Midwest. 24 refs., 7 figs., 22 tabs.

Poyer, D.A.; Teotia, A.P.S.; Hemphill, R.C.; Hill, L.G.; Marinelli, J.L.; Rose, K.J.; Santini, D.J.

1990-02-01T23:59:59.000Z

243

Economic theory and women's household status: The case of Japan  

Science Journals Connector (OSTI)

Economic development disadvantages wives. Conventional microeconomic theory predicts this. As household incomes rise, wives have incentives to specialize in intangible household production. This may raise total household production according to the theory of comparative advantage, but disproportionately favors husbands in distribution of the gains according to the marginal productivity theory of distribution. Wives may become better off in absolute terms but more dependent financially on their husbands and lose power within the household. Historically, Japanese gender roles became highly specialized and wives legal status declined, although other Meiji-era features protected wives. Policies to improve women's status should address the precise economic problem involved.

Barbara J. Redman

2008-01-01T23:59:59.000Z

244

Confronting earthquake risk in Japanare private households underinsured?  

Science Journals Connector (OSTI)

Despite the fact that Japan is an earthquake-prone country and Japanese ... risk averse, less than half of Japanese households are insured against earthquake risk. Based on...

Franz Waldenberger

2013-03-01T23:59:59.000Z

245

Salmon consumption at the household level in Japan.  

E-Print Network [OSTI]

??The primary purpose of this study is to investigate the salmon demand of Japanese households. The specific goals are to illuminate the substitutional relationship between (more)

Kikuchi, Akihiro

1987-01-01T23:59:59.000Z

246

Consumer perspectives on household hazardous waste management in Japan  

Science Journals Connector (OSTI)

We give an overview of the management systems of household hazardous waste (HHW) in Japan and discuss the management systems and their...

Misuzu Asari; Shin-ichi Sakai

2011-02-01T23:59:59.000Z

247

Household Response To Dynamic Pricing Of Electricity: A Survey Of The  

Open Energy Info (EERE)

Household Response To Dynamic Pricing Of Electricity: A Survey Of The Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Focus Area: Crosscutting Topics: Market Analysis Website: www.hks.harvard.edu/hepg/Papers/2009/The%20Power%20of%20Experimentatio Equivalent URI: cleanenergysolutions.org/content/household-response-dynamic-pricing-el Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Mandates/Targets,Cost Recovery/Allocation,Enabling Legislation" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

248

Northern Virginia Residents Improve Their Homes' Energy With...  

Broader source: Energy.gov (indexed) [DOE]

Boost The Northern Virginia Home Energy Makeover Contest logo. The Local Energy Alliance Program (LEAP) awarded energy efficiency funding to three households as part of the...

249

Space Heating Scenarios for Ontario: a Demonstration of the Statistics Canada Household Model  

Science Journals Connector (OSTI)

ABSTRACT This paper describes the analytical and simulation capabilities of the currently implemented version of the household model developed by the Structural Analysis Division, Statistics Canada. The household model, as described in A Design Framework for Long Term Energy Economic Analysis of Dwelling Related Demand [1], is a simulation framework and related data base of the Canadian housing stocks, residential construction, and end-use energy consumption in the residential sector. The purpose of the model is to provide an analytical tool for evaluating a variety of residential energy conservation strategies including insulation retrofitting and the introduction of new building standards, the possibilities for fuel substitution afforded by equipment retrofitting, and the impact of new technologies for space conditioning with respect to impacts on residential energy requirements and construction materials over time. The simulation results for Ontario that are presented in the paper are for demonstration purposes only and do not constitute a forecast. The choice of Ontario was arbitrary; similar calculations can be performed for other provinces, for Canada as a whole, and for selected subprovincial regions. At the time of preparation of this paper, the population and household formation block at the national level, the housing stock block, and the space heating part of the space conditioning block are implemented. Therefore simulation results are limited to these areas.

R.H.H. Moll; K.H. Dickinson

1982-01-01T23:59:59.000Z

250

Inefficient subsidy in Nigerian oil sector; implications for revenue generation and household welfare in Nigeria  

Science Journals Connector (OSTI)

Subsidy exists when consumers are assisted by the government to pay less than the prevailing market price of a given commodity. In respect of fuel subsidy, it means that consumers would pay below the market price per litre of petroleum product. This paper is aim at analysing the effects of the increase in energy prices on the social welfare of Nigerian households and comparing the consequences with the condition in which in concurrence with increase in energy prices, the government undertakes transfer payments to Nigerian households in order to protect their social welfare status. An analytical reasoning model was adopted and within the framework of this model the effects of increase in energy price on social welfare is discussed. Decrease in energy subsidies and a shift towards market prices will result in a lower budget deficit for the government and powerfully harness one of the main causes of inflation. However, if the elimination of subsidies be accompanied by transfer payments to households, the result is increase in the government budget deficit which in its turn will enhance inflation thus very negatively affecting social welfare.

Benjamin Anabori Mmadu; David Chuks Akan

2013-01-01T23:59:59.000Z

251

Intra-Household Inequality in Transitional Russia Ekaterina Kalugina  

E-Print Network [OSTI]

1 Intra-Household Inequality in Transitional Russia Ekaterina Kalugina Natalia Radtchenko Catherine and satisfaction. Using two different subjective questions of the Russian data RLMS (Russia Longitudinal Monitoring and social changes in Russia, we investigate the dynamics of household behavior. Keywords: subjective data

Paris-Sud XI, Université de

252

Controlling Households' Drilling Fever in France: an economic modeling approach  

E-Print Network [OSTI]

to generate environmental benefits through reducing water use, has produced economic incentives for households; France; households; domestic boreholes; tube well; water pricing. Author-produced version Fourth World negative environmental impact of water price increase in the drinking water sector. Using primary data

Boyer, Edmond

253

Assimilation and differences between the settlement patterns of individual immigrants and immigrant households  

Science Journals Connector (OSTI)

...delineate directions for future household-scale investigations of...Categorization: Individuals or Households? The concentration on the...individual bodies. Of course, household structure and geographic context...children compared with non-Hispanic white children hinge on such...

Mark Ellis; Richard Wright

2005-01-01T23:59:59.000Z

254

Efficient Use of Commercial Lists in U.S. Household Sampling  

Science Journals Connector (OSTI)

......educational attainment, Hispanic ethnicity, household income, and home tenure...on the two persons in the household as well as the Hispanic ethnicity status of the head of household (assuming that the Hispanic ethnicity status of persons......

Richard Valliant; Frost Hubbard; Sunghee Lee; Chiungwen Chang

2014-06-01T23:59:59.000Z

255

A theoretical and simulation-based examination of household vehicle choice through an adoption perspective  

E-Print Network [OSTI]

=2 Senior h =3 Table 17: Japan household income distributionto 2005 Japan Census (millions of households)). CHAPTER 5.same shifts of household dynamics as Japan (i.e. lower birth

Liu, Jenny Hsing-I

2010-01-01T23:59:59.000Z

256

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

Japan by 2020. Because of their large share in household energyJapan in 2000 which was 4560 kWh/household (IEEJ, 2003). In developed countries, the energy

Zhou, Nan

2010-01-01T23:59:59.000Z

257

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

Energy Source Demand per Household Coal, Oil, Gas, Heat, Electricity Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japan

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

258

"Table HC7.10 Home Appliances Usage Indicators by Household...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"...

259

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network [OSTI]

of household refrigerators and freezers 2 . Therefore, thesales of the refrigerators and freezers are about 20.6for household refrigerators and freezers has been updated

Lin, Jiang

2006-01-01T23:59:59.000Z

260

Modeling households decisions on reconstruction of houses damaged by earthquakesJapanese case study  

Science Journals Connector (OSTI)

In this study, households decisions on reconstruction of damaged houses were modeled, using questionnaire data in Japan. Characteristics of households decisions were investigated using parameter estimation resu...

H. Sakakibara; H. Murakami; S. Esaki; D. Mori; H. Nakata

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of household refrigerators for different testing standards  

SciTech Connect (OSTI)

This study highlights the salient differences among various testing standards for household refrigerator-freezers and proposes a methodology for predicting the performance of a single evaporator-based vapor-compression refrigeration system (either refrigerator or freezer) from one test standard (where the test data are available-the reference case) to another (the alternative case). The standards studied during this investigation include the Australian-New Zealand Standard (ANZS), the International Standard (ISO), the American National Standard (ANSI), the Japanese Industrial Standard (JIS), and the Chinese National Standard (CNS). A simple analysis in conjunction with the BICYCLE model (Bansal and Rice 1993) is used to calculate the energy consumption of two refrigerator cabinets from the reference case to the alternative cases. The proposed analysis includes the effect of door openings (as required by the JIS) as well as defrost heaters. The analytical results are found to agree reasonably well with the experimental observations for translating energy consumption information from one standard to another.

Bansal, P.K. [Univ. of Auckland (New Zealand). Dept. of Mechanical Engineering; McGill, I. [Fischer and Paykel Ltd., Auckland (New Zealand)

1995-08-01T23:59:59.000Z

262

Household electricity consumption and CO2 emissions in the Netherlands: A model-based analysis  

Science Journals Connector (OSTI)

Abstract Twenty percent of the total energy consumption in the Netherlands comes from household electricity consumption. This comes from household electric appliances whose number has grown in recent years. The paper explores the effect of smart meter introduction, appliance efficiency and consumer behaviour on reducing electricity consumption in the Netherlands. It does so by combining two perspectives: a sociotechnical approach and a bottom up simulation approach. The range of scenarios explored through simulation in the paper provides an understanding of the interplay between efficiency, smart meter diffusion and consumer behaviour. The results show their effect on electricity consumption and suggest that further effort is required to control and reduce it. Insights from the paper suggest that future studies should disaggregate with respect to a number of factors.

George Papachristos

2015-01-01T23:59:59.000Z

263

Smoothing consumption across households and time : essays in development economics  

E-Print Network [OSTI]

This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

Kinnan, Cynthia Georgia

2010-01-01T23:59:59.000Z

264

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

in gallons, of this household's storage tank(s)? Enter the capacity for the two largest tanks (if there is more than one) in the boxes below. If the capacity is not known, write...

265

Fact #614: March 15, 2010 Average Age of Household Vehicles  

Broader source: Energy.gov [DOE]

The average age of household vehicles has increased from 6.6 years in 1977 to 9.2 years in 2009. Pickup trucks have the oldest average age in every year listed. Sport utility vehicles (SUVs), first...

266

Table 2. Percent of Households with Vehicles, Selected Survey...  

U.S. Energy Information Administration (EIA) Indexed Site

or More","NA","NA",93.75,96.42857143,91.27516779,97.46835443 "Race of Householder1" " White",88.61111111,"NA",91.54929577,91.68704156,90.27093596,92.77845777 " Black...

267

Fact #748: October 8, 2012 Components of Household Expenditures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

but then declined until about 2004 when gasoline and motor oil expenditures began to rise again. The share of household expenditures on gasoline and oil was exactly the same...

268

Householder Symposium on Numerical Linear Algebra June 1721, 2002  

E-Print Network [OSTI]

for discussions. This year's symposium is held at Peebles Hotel Hydro in the small town of Peebles (populationHouseholder Symposium on Numerical Linear Algebra June 17­21, 2002 Peebles Hotel Hydro, Scotland

Higham, Nicholas J.

269

The impact of retirement on household consumption in Japan  

Science Journals Connector (OSTI)

Using monthly data from the Japanese Family Income and Expenditure Survey, we examine the impact of retirement on household consumption. We find little evidence of an immediate change in consumption at retirement, on average, in Japan. However, we find a decrease in consumption at retirement for low income households that is concentrated in food and work-related consumption. The availability of substantial retirement bonuses to a large share of Japanese retirees may help smooth consumption at retirement. We find that those households that are more likely to receive such bonuses experience a short-run consumption increase at retirement. However, among households that are less likely to receive a retirement bonus, we find that consumption decreases at retirement.

Melvin Stephens Jr.; Takashi Unayama

2012-01-01T23:59:59.000Z

270

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network [OSTI]

efficiencymeasuresapplicabletohomeenergy, commercialsectorelectricityandnaturalgas,industrial

Masanet, Eric

2010-01-01T23:59:59.000Z

271

Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries  

E-Print Network [OSTI]

,000 households in ten EU countries and Norway. Knowledge of energy consumption and energy-efficient technology1 Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes of measures of household energy use behavior are estimated using a unique dataset of approximately 5

Paris-Sud XI, Université de

272

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

was for 15% of total primary energy consumption to come fromis on domestic primary energy consumption, for most of thisdoes not include primary energy consumption by households

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

273

Energy Impacts of Effective Range Hood Use for all U.S. Residential Cooking  

E-Print Network [OSTI]

impact on source energy and cost based on state specifichouse average annual energy and cost savings, relative toof household source energy and cost of range hood use in

Logue, Jennifer M

2014-01-01T23:59:59.000Z

274

Innovative System and Method for Monitoring Energy Efficiency in Buildings  

Science Journals Connector (OSTI)

Improving energy efficiency (EE) in buildings may significantly reduce...@lisee, for achieving energy efficiency in buildings (households, officies, campus, data centers, etc. ... devices, locally estimating indo...

Grazia Fattoruso; Saverio De Vito; Ciro Di Palma; Girolamo Di Francia

2014-01-01T23:59:59.000Z

275

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

666,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.737358...

276

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

086,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.737365...

277

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network [OSTI]

DOE)(2008b). IndustrialAssessmentCentersDatabase. ofEnergysIndustrialAssessmentCenter(IAC) database(

Masanet, Eric

2010-01-01T23:59:59.000Z

278

Increased energy prices: energy savings and equity aspects. Final report  

SciTech Connect (OSTI)

A mathematical model has been developed which approximates the reduction in a household's total energy consumption in response to higher energy prices and different rebate schemes. This model is based on the assumption that energy consumption is a function of a household's real income, prices of different commodities and energy intensities. The amount of energy saved and the change in real expenditure of a household has been calculated for four tax rates; 50%, 100%, 224% and 400%, and five rebate schemes; one regressive, two progressive, one income distribution preserving and the flat per capita rebate. The results indicate that, for a given tax rate, the choice of rebate scheme does not significantly affect the amount of energy conserved by the households. However, the effect of different rebate schemes on a household's real expenditure could be dramatically different.

Herendeen, R.A.

1983-06-01T23:59:59.000Z

279

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

280

Lincoln Electric System (Residential)- Sustainable Energy Program  

Broader source: Energy.gov [DOE]

Lincoln Electric System (LES) offers several rebates to residential customers who are interested in upgrading to energy efficient household equipment. The program includes rebates for insulation...

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

LEDSGP/benefits | Open Energy Information  

Open Energy Info (EERE)

Topics include Housing, Urban Transport, Household Energy in Developing Countries, Health-Care Facilities, and Occupational Health. Health Indicators for Sustainable...

282

Placing barriers to industrial energy efficiency in a social context: a discussion of lifestyle categorisation  

Science Journals Connector (OSTI)

This paper compares how analyses of energy use and efficiency have developed in households and industrial small- and medium-sized enterprises ... earlier studies that use lifestyle categories in examining household

Jenny Palm

2009-08-01T23:59:59.000Z

283

The effects of energy efficiency and environmental labels on appliance choice in SouthKorea  

Science Journals Connector (OSTI)

This paper investigates the effects of energy efficiency and environmental labels on households choice of appliances, using a discrete ... on appliance choice. This paper found that households showed a positive ...

Gicheol Jeong; Yeunjoong Kim

2014-10-01T23:59:59.000Z

284

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book [EERE]

0 2005 Average Energy Expenditures per Household Member and per Square Foot, by Weatherization Eligibility (2010) Members Hhold Hhold Total U.S. Households 780 2.6 0.86 Federally...

285

Advances in Household Appliances- A Review  

SciTech Connect (OSTI)

An overview of options and potential barriers and risks for reducing the energy consumption, peak demand, and emissions for seven key energy consuming residential products (refrigerator-freezers, dishwashers, clothes washers, clothes dryers, electric ovens, gas ovens and microwave ovens) is presented. The paper primarily concentrates on the potential energy savings from the use of advanced technologies in appliances for the U.S. market. The significance and usefulness of each technology was evaluated in order to prioritize the R&D needs to improve energy efficiency of appliances in view of energy savings, cost, and complexity. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Although significant energy savings may be achieved, one of the major barriers in most cases is high first cost. One way of addressing this issue and promoting the introduction of new technologies is to level the playing field for all manufacturers by establishing Minimum Energy Performance Standards (MEPS) which are not cost prohibitive and promoting energy efficient products through incentives to both manufacturers and consumers.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2011-01-01T23:59:59.000Z

286

2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

288

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs  

E-Print Network [OSTI]

energy labels for household clothes washers include the United States, Canada, Korea, the European Union, Australia and New Zealand, Japan,

Fridley, David

2010-01-01T23:59:59.000Z

289

An exploratory study of Spanish households' WEEE disposal behaviour  

Science Journals Connector (OSTI)

This paper presents the findings of an exploratory study based on a survey of 1,537 households in Spain. The questionnaire included 23 key questions regarding the number of appliances in use, previous appliances lifetimes, reasons for buying each new appliance and end-of-life handling of discarded appliances. The distribution of the households along a number of relevant factors was analysed and a prototypical household was identified. A non-parametric analysis of the duration of each type of appliance has also been carried out and it was found that television sets are the most durable of the appliances considered. Survival rates for irons fall more rapidly than for microwaves. Moreover, television sets are the most durable of the appliances considered. Replacement rates of personal computers rapidly increase after approximately six to eight years. Finally, a statistical analysis of the respondents motivations for recycling the appliances considered in this study was carried out.

Ester Gutiérrez; Belarmino Adenso-Díaz; Sebastián Lozano; Plácido Moreno

2011-01-01T23:59:59.000Z

290

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

291

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

most non-Weatherization Assistance Program (WAP) energythe federal Weatherization Assistance Program may have thefrom the Weatherization Assistance Program (WAP) due to the

Zimring, Mark

2014-01-01T23:59:59.000Z

292

Modelling the Energy Demand of Households in a Combined  

E-Print Network [OSTI]

by the European Emissions Trading System (EU ETS) the many drivers and partly mobile emissions sources

Steininger, Karl W.

293

Special Topics on Energy Use in Household Transportation  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04112000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)...

294

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

system CFL Compact Fluorescent Light Bulb IAQ Indoor Airdiscount compact fluorescent light bulbs (CFLs) or providediscount compact fluorescent light bulbs (CFLs) or provide

Zimring, Mark

2012-01-01T23:59:59.000Z

295

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division. Key Assumptions The historical input data used to develop the HEM version for the AEO2003 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2003 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS).

296

Household solid waste characteristics and management in Chittagong, Bangladesh  

SciTech Connect (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p < 0.05), education level (r{sub xy} = 0.244, p < 0.05) and monthly income (r{sub xy} = 0.671, p < 0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

297

Saving Money on Your Energy-Saving Upgrades | Department of Energy  

Energy Savers [EERE]

of the energy-saving household investments that qualify include high-efficiency central air conditioners, heat pumps, furnaces, and boilers that meet the standards listed on the...

298

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

In the IEO2007 reference case, natural gas consumption in the non-OECD countries grows In the IEO2007 reference case, natural gas consumption in the non-OECD countries grows more than twice as fast as in the OECD countries. Production increases in the non-OECD region account for more than 90 percent of the growth in world production from 2004 to 2030. Consumption of natural gas worldwide increases from 100 trillion cubic feet in 2004 to 163 trillion cubic feet in 2030 in the IEO2007 reference case (Figure 40). By energy source, the projected increase in natural gas consump- tion is second only to coal. Natural gas remains a key fuel in the electric power and industrial sectors. In the power sector, natural gas is an attractive choice for new generating plants because of its relative fuel efficiency. Natural gas also burns more cleanly than coal or petro- leum products, and as more governments begin imple- menting national or

299

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

SciTech Connect (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

300

The Travel Behavior of Immigrants and Race/Ethnicity Groups: An Analysis of the 2001 National Household Transportation Survey  

E-Print Network [OSTI]

the average household size for Hispanic respondents isper year, while households of black and Hispanic respondentsHispanic versus settled and native born residents. Vehicle ownership is highly correlated with mode choice as households

Handy, Susan L; Tal, Gil

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Minority energy assessment report  

SciTech Connect (OSTI)

The purpose of this research is to project household energy consumption, energy expenditure, and energy expenditure as share of income for five population groups from 1991 to 2009. The approach uses the Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory for the US Department of Energy's Office of Minority Economic Impact. The MEAM provides a framework that can be used to forecast regional energy consumption and energy expenditure for majority, black, Hispanic, poor, and nonpoor households. The forecasts of key macroeconomic and energy variables used as exogenous variables in the MEAM were obtained from the Data Resources, Inc., Macromodel and Energy Model. Generally, the projections of household energy consumption, expenditure, and energy expenditure as share of income vary across population groups and census regions.

Teotia, A.P.S.; Poyer, D.A.; Lampley, L.; Anderson, J.L.

1992-12-01T23:59:59.000Z

302

Household Segmentation in Food Insecurity and Soil Improving Practices in Ghana  

E-Print Network [OSTI]

secure household, and households farming medium quality soil increase the probability of adopting soil improving practices. Application of chemical fertilizers, commercial seeds, and pesticides, along with operating under a seasonal lease tenure...

Nata, Jifar T

2013-08-09T23:59:59.000Z

303

Logistic regression models for predicting trip reporting accuracy in GPS-enhanced household travel surveys  

E-Print Network [OSTI]

This thesis presents a methodology for conducting logistic regression modeling of trip and household information obtained from household travel surveys and vehicle trip information obtained from global positioning systems (GPS) to better understand...

Forrest, Timothy Lee

2007-04-25T23:59:59.000Z

304

Fact #747: October 1, 2012 Behind Housing, Transportation is the Top Household Expenditure  

Broader source: Energy.gov [DOE]

Except for housing, transportation was the largest single expenditure for the average American household in 2010. The average household spends more on transportation in a year than on food. Vehicle...

305

Fact #727: May 14, 2012 Nearly Twenty Percent of Households Own Three or More Vehicles  

Broader source: Energy.gov [DOE]

Household vehicle ownership has changed over the last six decades. In 1960, over twenty percent of households did not own a vehicle, but by 2010, that number fell to less than 10%. The number of...

306

Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles  

Broader source: Energy.gov [DOE]

When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles...

307

A Comparison of Household Budget Allocation Patterns Between Hispanic Americans and Non-Hispanic White Americans  

Science Journals Connector (OSTI)

The budget allocation patterns of Hispanic versus non-Hispanic White households are examined. Annual household expenditure data from 1980 to 1992 are ... Index (1990). The sample includes 588 Hispanic and 8,444 n...

Jessie X. Fan; Virginia Solis Zuiker

1998-06-01T23:59:59.000Z

308

The household production function approach to valuing climate: the case of Japan  

Science Journals Connector (OSTI)

In fact ours is not the first attempt to use the household production function technique empirically to estimate the ... climate and the impact of climate change on households. But our analysis uses repeated cros...

David Maddison; Katrin Rehdanz; Daiju Narita

2013-01-01T23:59:59.000Z

309

Frequency and longitudinal trends of household care product use Rebecca E. Moran a  

E-Print Network [OSTI]

SUPERB Indoor environment d-limonene a b s t r a c t The use of household cleaning products and air, frequencies of use of eight types of household cleaning products and air fresheners and the performance. Introduction Household care products, such as cleaning products and air fresheners, are frequently used

Leistikow, Bruce N.

310

Potential of Drastic Improvement of Energy Efficiency in Japan  

Science Journals Connector (OSTI)

Introduction of effective policy measures to improve energy efficiency not only for industry sector but for household and commercial sector etc. should be explored...

Seiji Ikkatai; Haruki Tsuchiya

2012-01-01T23:59:59.000Z

311

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

312

An Analysis of the Price Elasticity of Demand for Household Appliances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of the Price Elasticity of Demand for Analysis of the Price Elasticity of Demand for Household Appliances Larry Dale and K. Sydny Fujita February 2008 Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

313

EREV and BEV Economic Viability vs. Household Retail Electric Pricing Strategies: Two Charges a Day?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EREV and BEV Economic Viability vs. EREV and BEV Economic Viability vs. Household Retail Electric Pricing Strategies: Two Charges a Day? By Dan Santini Argonne National Laboratory dsantini@anl.gov Remarks are attributable only to the author; not to Argonne or U.S. Department of Energy NAATBatt Conference: The Impact of PEVs on T&D Systems: Challenges and Solutions Dec. 7, 2010 The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly,

314

Residential Clean Energy Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Clean Energy Grant Program Residential Clean Energy Grant Program Residential Clean Energy Grant Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $1,000 (flat per installation/household incentive) SWH: $500 (flat per installation/household incentive) Program Info Funding Source Strategic Energy Investment Fund (SEIF) Start Date 01/01/2005 Expiration Date When funds are exhausted; annual budget subject to appropriation State Maryland Program Type State Rebate Program Rebate Amount PV: $1,000 (flat per installation/household incentive) SWH: $500 (flat per installation/household incentive) Provider Maryland Energy Administration Maryland's Residential Clean Energy Grant Program, administered by the

315

Recovery and separation of high-value plastics from discarded household appliances  

SciTech Connect (OSTI)

Argonne National Laboratory is conducting research to develop a cost- effective and environmentally acceptable process for the separation of high-value plastics from discarded household appliances. The process under development has separated individual high purity (greater than 99.5%) acrylonitrile-butadiene-styrene (ABS) and high- impact polystyrene (HIPS) from commingled plastics generated by appliance-shredding and metal-recovery operations. The process consists of size-reduction steps for the commingled plastics, followed by a series of gravity-separation techniques to separate plastic materials of different densities. Individual plastics of similar densities, such as ABS and HIPS, are further separated by using a chemical solution. By controlling the surface tension, the density, and the temperature of the chemical solution we are able to selectively float/separate plastics that have different surface energies. This separation technique has proven to be highly effective in recovering high-purity plastics materials from discarded household appliances. A conceptual design of a continuous process to recover high-value plastics from discarded appliances is also discussed. In addition to plastics separation research, Argonne National Laboratory is conducting research to develop cost-effective techniques for improving the mechanical properties of plastics recovered from appliances.

Karvelas, D.E.; Jody, B.J.; Poykala, J.A. Jr.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Systems Div.; Arman, B. [Argonne National Lab., IL (United States). Energy Systems Div.]|[Praxair, Inc., Tarrytown, NY (United States)

1996-03-01T23:59:59.000Z

316

A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003  

E-Print Network [OSTI]

Household energy consumption Sprawl Compact living Energy impact We explore the energy intensity of sprawl versus compact living by analyzing the total energy requirements of U.S. households for the year 2003. The methods used are based on previous studies on energy cost of living. Total energy requirement

Vermont, University of

317

Long-term behaviour of baled household waste  

Science Journals Connector (OSTI)

This study was carried out at the laboratory scale (approximately 15 l) and using real baled waste of industrial dimensions (about 1 m3), in order to assess the long-term behaviour of baled household waste. The laboratory assays were carried out with real household waste which was fractioned on site, reconstituted in the laboratory and then compacted into 15 l airtight containers (unless stated otherwise). These containers were incubated under different experimental conditions at a constant temperature (28C). Three assays were conducted over 34 months and two others over 27 months. For the assays incubated in conditions simulating those of real baled waste (confined medium, with no aeration or water flow), a very low microbial activity was observed. The assay incubated in the same conditions but with slight aeration during the first three months in order to simulate imperfectly airtight wrapping, revealed biodegradation which started in a significant manner after 800 days of incubation. The evolution of two real wrapped bales each containing 900 kg of household waste was monitored over 8 months. These bales were produced industrially, one in July 97 and the other in July 98 at the incinerator plant at Agde (France). The bales were then stored outside at the laboratory location and their evolution was monitored mainly by biogas analysis and temperature measurement. No methane formation was observed, revealing the absence of anaerobic biodegradation, thus confirming the laboratory assays.

Fabian Robles-Mart??nez; Rmy Gourdon

2000-01-01T23:59:59.000Z

318

Smart Power Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of advanced appliances, home automation, Testing of advanced appliances, home automation, HVAC, and energy management systems * Research on various new distribution scenarios such as household DC systems, Residential scale generation and storage integrated with the home energy managements systems * Electric vehicle integration * Hardware-in-the-loop modeling for the characterization of household loads and generation

319

Government Energy News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en U.S. Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save Consumers Billions http://energy.gov/articles/us-energy-department-pay-television-industry-and-energy-efficiency-groups-announce-set-top energy-department-pay-television-industry-and-energy-efficiency-groups-announce-set-top" class="title-link">U.S. Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save

320

Energy-Efficiency-Related Conference Papers and Workshop Summarys  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Energy Efficiency > Home > Households, Buildings & Industry > Energy Efficiency > Conference Papers Conference Papers Page Last Modified: September 2007 The Growth in Electricity Demand in U.S. Households, 1981-2001: Implications for Carbon Emissions Presented at the 25th Annual North American Conference, United States Association for Energy Economics, affiliated with the International Association for Energy Economics, September 18, 2005 Two Decades of U.S. Household Trends in Energy-Intensity Indicators: A Look at the Underlying Factors Presented at the 28th Annual International Association for Energy Economics, International Conference, affiliated with the United States Association for Energy Economics , June 3, 2005 Trends in the Use of Natural Gas in U.S. Households, 1987 to 2001

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A life cycle approach to the management of household food waste - A Swedish full-scale case study  

SciTech Connect (OSTI)

Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.

Bernstad, A., E-mail: anna.bernstad@chemeng.lth.se [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden); Cour Jansen, J. la [Department of Chemical Engineering, Box 124, Faculty of Engineering (LTH), Lund University, S-221 00 Lund (Sweden)

2011-08-15T23:59:59.000Z

322

Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: January 5, 1: January 5, 2004 Number of Household Vehicles has Grown Significantly to someone by E-mail Share Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Facebook Tweet about Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Twitter Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Google Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Delicious Rank Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Digg Find More places to share Vehicle Technologies Office: Fact #301:

323

Indoor Secondary Pollutants from Household Product Emissions in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indoor Secondary Pollutants from Household Product Emissions in the Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Title Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Publication Type Journal Article LBNL Report Number LBNL-58785 Year of Publication 2006 Authors Destaillats, Hugo, Melissa M. Lunden, Brett C. Singer, Beverly K. Coleman, Alfred T. Hodgson, Charles J. Weschler, and William W. Nazaroff Journal Environmental Science and Technology Volume 40 Start Page Chapter Pagination 4421-4428 Abstract Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 × 105 molecules cm-3 were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1 - 25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products

324

Looking for free riding: energy efficiency incentives and Italian homeowners  

Science Journals Connector (OSTI)

We examine the effect of energy efficiency incentives on household energy efficiency home improvements. Starting in February 2007, ... purchase and installation costs of certain types of energy efficiency renovat...

Anna Alberini; Andrea Bigano; Marco Boeri

2014-08-01T23:59:59.000Z

325

Table HC6.10 Home Appliances Usage Indicators by Number of Household...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Home Appliances Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4...

326

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation Policy  

E-Print Network [OSTI]

Differences in 10 Household Automobile Ownership Rates:hauseltoldr lacking automobiles were mmit like! ) to be leftWithout 3 Access to an Automobile. Top Ten Metropolitan

Raphael, S; Berube, A; Deakin, Elizabeth

2006-01-01T23:59:59.000Z

327

Assessing the Environmental Costs and Benefits of Households Electricity Consumption Management.  

E-Print Network [OSTI]

?? In this study the environmental costs and benefits of smart metering technology systems installed in households in Norway have been assessed. Smart metering technology (more)

Segtnan, Ida Lund

2011-01-01T23:59:59.000Z

328

Wealth: Determinants of Savings Net Worth and Housing Net Worth of Pre-Retired Households  

Science Journals Connector (OSTI)

The objectives of this study are to determine effects of household members' characteristics, financial resources, and attitude ... Subsamples of White respondents, Black respondents, and Hispanic respondents were...

Satomi Wakita; Vicki Schram Fitzsimmons

2000-12-01T23:59:59.000Z

329

Minority and poor households: patterns of travel and transportation fuel use  

SciTech Connect (OSTI)

This report documents the travel behavior and transportation fuel use of minority and poor households in the US, using information from numerous national-level sources. The resulting data base reveals distinctive patterns of household vehicle availability and use, travel, and fuel use and enables us to relate observed differences between population groups to differences in their demographic characteristics and in the attributes of their household vehicles. When income and residence location are controlled, black (and to a lesser extent, Hispanic and poor) households have fewer vehicles regularly available than do comparable white or nonpoor households; moreover, these vehicles are older and larger and thus have significantly lower fuel economy. The net result is that average black, Hispanic, and poor households travel fewer miles per year but use more fuel than do average white and nonpoor households. Certain other findings - notably, that of significant racial differences in vehicle availability and use by low-income households - challenge the conventional wisdom that such racial variations arise solely because of differences in income and residence location. Results of the study suggest important differences - primarily in the yearly fluctuation of income - between black and white low-income households even when residence location is controlled. These variables are not captured by cross-sectional data sets (either the national surveys used in our analysis or the local data sets that are widely used for urban transportation planning).

Millar, M.; Morrison, R.; Vyas, A.

1986-05-01T23:59:59.000Z

330

2/21/2014 Downsizing Wind Energyfor Your Phone | Glacial EnergyBlog -Commercial Electric Savings, Electric Provider, Electric Supplier http://blog.glacialenergy.com/2014/02/19/downsizing-wind-energy-for-your-phone/ 1/2  

E-Print Network [OSTI]

suppliers selling electricity and natural gas to residential, commercial, industrial, and institutional Energy Saving Tips Events General Electricity green roof Household Tips Life Tips Natural Gas New Announcements Community Electrical Safety Electricity Energy Energy Efficiency Energy Innovations Energy News

Chiao, Jung-Chih

331

Household demand and willingness to pay for hybrid vehicles  

Science Journals Connector (OSTI)

Abstract This paper quantitatively evaluates consumers' willingness to pay for hybrid vehicles by estimating the demand of hybrid vehicles in the U.S. market. Using micro-level data on consumer purchases of hybrid and non-hybrid vehicles from National Household Travel Survey 2009, this paper formulates a mixed logit model of consumers' vehicle choices. Parameter estimates are then used to evaluate consumers' willingness to pay for hybrids. Results suggest that households' willingness to pay for hybrids ranges from $963 to $1718 for different income groups, which is significantly lower than the average price premium (over $5000) of hybrid vehicles, even when taking the fuel costs savings of hybrid vehicles into consideration. The differences reveal that although the market has shown increasing interest in hybrid vehicles, consumers' valuation of the hybrid feature is still not high enough to compensate for the price premium when they make new purchases. Policy simulations are conducted to examine the effects of raising federal tax incentives on the purchase of hybrid vehicles.

Yizao Liu

2014-01-01T23:59:59.000Z

332

Assessment of Supply Chain Energy Efficiency Potentials: A U.S. Case Study  

E-Print Network [OSTI]

use and greenhouse gas (GHG) emissions of a variety of goodsto the supply chain energy and GHG footprints of goods andto estimate achievable household GHG footprint reductions

Masanet, Eric

2010-01-01T23:59:59.000Z

333

Energy Department Awards $92.5 Million to 19 States to Weatherize...  

Office of Environmental Management (EM)

Secretary Alphonso Jackson, and Environmental Protection Agency Administrator Stephen Johnson kicked off the Partnership for Home Energy Efficiency, aimed at reducing household...

334

BC Hydro Brings Energy Savings to Low-Income Families in Canada  

Broader source: Energy.gov [DOE]

The number of British Columbia, Canada, households eligible for Better Buildings Residential Network member BC Hydros Energy Conservation Assistance Program (ECAP) just doubled. British Columbia...

335

SmartTecO: Context-Based Ambient Sensing and Monitoring for Optimizing Energy Consumption  

E-Print Network [OSTI]

, Germany firstname.lastname@kit.edu Naoya Namatame Keio University Tokyo, Japan namachan- tems currently implemented in households and offices. Domestic energy use is commonly invisible

Beigl, Michael

336

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network [OSTI]

energy-efficiency standards for household refrigerators are in place in several parts of the world, including North America, Europe, Japan, and

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

337

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

E-Print Network [OSTI]

energy-efficiency standards for household refrigerators are in place in several parts of the world, including North America, Europe, Japan, and

McMahon, James E.; Wiel, Stephen

2001-01-01T23:59:59.000Z

338

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect (OSTI)

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

339

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

Total Energy Source Demand Coal, Oil, Gas, Heat, ElectricityEnergy Source Demand per Household Coal, Oil, Gas, Heat,ton of oil equivalent Considerable increases in demand for

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

340

Using Multiple Household Food Inventories to Measure Food Availability in the Home  

E-Print Network [OSTI]

-home assessment included an audio recorded interview on food habits and beliefs. Complete data were collected from all 9 women (32.8 y +/- 6.0; 3 married; 4 +/- 1.6 adults/children in household; 4 SNAP; 6 food insecure) and their households. Weekly grocery...

Sisk, Cheree L.

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network [OSTI]

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

342

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation Policy  

E-Print Network [OSTI]

Socioeconomic Differences in Household Automobile Ownership Rates: Implications for Evacuation's aftermath concerned the size and composition of the area's populations that lacked access to an automobile for all U.S. metropolitan areas that reside in a household without access to an automobile. Finally, we

Sekhon, Jasjeet S.

343

The Driving Internal Beliefs of Household Internet Adoption among Jordanians and the Role of Cultural Values  

Science Journals Connector (OSTI)

The purpose of this study is to develop and validate a comprehensive model for the determinants of household Internet adoption through identifying the driving internal beliefs of individuals and the effect of cultural values on behavioral intention to ... Keywords: Hofstede's Cultural Dimensions, Household Internet Adoption, Internal Beliefs, Micro Cultural Level, Perceived Risks, Technology Acceptance Model

Amin A. Shaqrah; Khaled Saleh Al Omoush; Raed Musbah Alqirem

2011-01-01T23:59:59.000Z

344

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit  

Science Journals Connector (OSTI)

Particle and Gas Emissions from a Simulated Coal-Burning Household Fire Pit ... Chinese anthracite and bituminous coals produce different amounts of emissions when burned in a fire pit that simulates common rural household use of these fuels. ... Here we present emissions from burning 15 different fuels in a laboratory system designed to mimic the fire pits used in Xuan Wei County, China. ...

Linwei Tian; Donald Lucas; Susan L. Fischer; S. C. Lee; S. Katharine Hammond; Catherine P. Koshland

2008-02-21T23:59:59.000Z

345

Journal: Ecological Applications1 Carbon, nitrogen, and phosphorus fluxes in household ecosystems in the3  

E-Print Network [OSTI]

#12;1 Journal: Ecological Applications1 2 Carbon, nitrogen, and phosphorus fluxes in household Resources Center, Saint Paul, MN 551089 3 University of Minnesota, Department of Ecology, Evolution with several29 components of household activities including air and motor vehicle travel, food consumption,30

Minnesota, University of

346

Flame Retardant Transfers from U.S. Households (Dust and Laundry Wastewater) to the Aquatic Environment  

Science Journals Connector (OSTI)

Analytes were ionized by APPI; dopant (acetone) was introduced (150 ?L/min) by a liquid chromatography pump (LC-20AD, Shimadzu Corporation, Kyoto, Japan). ... We collected repeat dust samples from 292 households in the Northern California Childhood Leukemia Study during two sampling rounds (from 2001 to 2007 and during 2010) using household vacuum cleaners and measured 22 PBDEs using high resoln. ...

Erika D. Schreder; Mark J. La Guardia

2014-09-17T23:59:59.000Z

347

Passive sampling methods to determine household and personal care product use  

E-Print Network [OSTI]

Passive sampling methods to determine household and personal care product use DEBORAH H. BENNETTa, cleaning products, passive sampling, SUPERB, longitudinal. Introduction Personal care and household care products, such as cleaning products and pesticides, are frequently used in most house- holds although

Leistikow, Bruce N.

348

Minority energy assessment report. Fall 1992  

SciTech Connect (OSTI)

The purpose of this research is to project household energy consumption, energy expenditure, and energy expenditure as share of income for five population groups from 1991 to 2009. The approach uses the Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory for the US Department of Energy`s Office of Minority Economic Impact. The MEAM provides a framework that can be used to forecast regional energy consumption and energy expenditure for majority, black, Hispanic, poor, and nonpoor households. The forecasts of key macroeconomic and energy variables used as exogenous variables in the MEAM were obtained from the Data Resources, Inc., Macromodel and Energy Model. Generally, the projections of household energy consumption, expenditure, and energy expenditure as share of income vary across population groups and census regions.

Teotia, A.P.S.; Poyer, D.A.; Lampley, L.; Anderson, J.L.

1992-12-01T23:59:59.000Z

349

Energy Information Administration/Short-Term Energy Outlook - January 2005  

Gasoline and Diesel Fuel Update (EIA)

January 2005 January 2005 1 Short-Term Energy Outlook January 2005 Winter Fuels Update (Figure 1) Consumer prices for heating fuels are relatively unchanged since the December Outlook, leaving projections for household heating fuel expenditures about the same as previously projected, despite continued warm weather in the middle of the heating season. Heating oil expenditures by typical Northeastern households are expected to average 30 percent above last winter's levels, with residential fuel oil prices averaging $1.82 per gallon for the October-to-March period. Expenditures for propane-heated households are expected to increase about 20 percent this winter.

350

Energy Information Administration/Short-Term Energy Outlook - February 2005  

Gasoline and Diesel Fuel Update (EIA)

February 2005 February 2005 1 Short-Term Energy Outlook February 2005 Winter Fuels Update (Figure 1) Despite some cold weather during the second half of January, expected average consumer prices for heating fuels this heating season are little changed since the January Outlook, leaving projections for household heating fuel expenditures about the same as previously reported. Heating oil expenditures by typical Northeastern households are expected to average 32 percent above last winter's levels, with residential fuel oil prices averaging $1.82 per gallon for the October-to-March period. Expenditures for propane-heated households are expected to increase about

351

Modeling household adoption of earthquake hazard adjustments: a longitudinal panel study of Southern California and Western Washington residents  

E-Print Network [OSTI]

This research, aimed at advancing the theory of environmental hazard adjustment processes by contrasting households from three cities in a high seismic hazard area with households from three other cities in a moderate seismic hazard area...

Arlikatti, Sudha S

2006-10-30T23:59:59.000Z

352

2014 Virginia Polytechnic Institute and State University BSE-158NP Household Water Quality in Loudoun County, Virginia  

E-Print Network [OSTI]

2014 Virginia Polytechnic Institute and State University BSE-158NP Household Water Quality in Loudoun County, Virginia OCTOBER 2013 VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM Erin Ling, Water Quality Extension Associate, and Brian Benham, Extension Specialist and Professor

Liskiewicz, Maciej

353

2014 Virginia Polytechnic Institute and State University BSE-151NP Household Water Quality in Albemarle County, Virginia  

E-Print Network [OSTI]

2014 Virginia Polytechnic Institute and State University BSE-151NP Household Water Quality in Albemarle County, Virginia APRIL 2013 VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM Erin Ling, Water Quality Extension Associate, and Brian Benham, Extension Specialist and Professor

Liskiewicz, Maciej

354

2014 Virginia Polytechnic Institute and State University BSE-162NP Household Water Quality in Pittsylvania County, Virginia  

E-Print Network [OSTI]

2014 Virginia Polytechnic Institute and State University BSE-162NP Household Water Quality in Pittsylvania County, Virginia OCTOBER 2013 VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM Erin Ling, Water Quality Extension Associate, and Brian Benham, Extension Specialist and Professor

Liskiewicz, Maciej

355

Community Rating, Cross Subsidies and Underinsurance: Why so many Households in Japan do not Purchase Earthquake Insurance  

Science Journals Connector (OSTI)

Japan is famous for its earthquakes. According to ... survey, however, only 20% of Japanese households purchased an earthquake insurance policy in 2005. Why do so many households in Japan not purchase earthquake ...

Michio Naoi; Miki Seko; Kazuto Sumita

2010-05-01T23:59:59.000Z

356

Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective  

SciTech Connect (OSTI)

Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

Bernstad, A., E-mail: Anna.bernstad@chemeng.lth.se [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden); Cour Jansen, J. la [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden)

2012-05-15T23:59:59.000Z

357

EIA Energy Efficiency-  

U.S. Energy Information Administration (EIA) Indexed Site

- Energy Efficiency, energy consumption - Energy Efficiency, energy consumption savings households, buildings, industry & vehicles Energy Savings Links Home > Households, Buildings & Industry > Energy Efficiency > Energy Savings Energy Savings saving energy in all sectors Last Page Modified: August 2010 All Sectors, Home, Commercial Building , Automobile Transportation, Manufacturing, Federal Government Program, Nonprofit and Other Organizations These links are provided solely as a service to our customers, and therefore should not be construed as advocating or reflecting any position of the Energy Information Administration (EIA). In addition, EIA does not guarantee the content or accuracy of any information presented in linked sites. If you have an "Energy Savings" web site that may be an appropriate link for this site, please contact us if you wish to be listed on this page.

358

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

What's new in our home energy use? What's new in our home energy use? RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from over 12,000 U.S. households. This report highlights findings from the survey, with details presented in the Household Energy Characteristics tables. How we use energy in our homes has changed substantially over the past three decades. Over this period U.S. homes on average have become larger, have fewer occupants, and are more energy-efficient. In 2005, energy use per household was 95 million British thermal units (Btu) of energy compared with 138 million Btu per household in 1978, a drop of 31 percent. Did You Know? Over 50 million U.S. homes have three or more televisions.

359

Energy data  

Open Energy Info (EERE)

Data.gov Data.gov and Powered by OpenEI.org Data.gov Mashathon 2010: an Energy Mashup A regional mashup of 7 cities with energy information from Data.gov and OpenEI.org Click on a city to view data Census Utility Information Smart Grid Information Incentives Average kWh rate Average household electricity usage Average electricity cost per household Mashup information This mashup was created at the first Data.gov mashathon event, August 24-25, 2010. It was further refined from October 6-8, 2010 by the National Renewable Energy Laboratory. This mashup profiles 7 cities in different parts of the United States that have a population of roughly 600,000 according to the 2000 census data and 2006 census-estimated population. Thanks to: Teammates at the Data.gov Mashathon, including Susan Turnbull, Chris

360

Neighborhood design and the energy efficiency of urban lifestyle in China : treating residence and mobility as lifestyle bundle  

E-Print Network [OSTI]

China and the rest of the world are facing the challenge of meeting energy demand sustainably. Household-level energy consumption is a large ultimate driving force of a nation's energy use. Realizing a sustainable energy ...

Chen, Yang, Ph. D. Massachusetts Institute of Technology. Dept. of Urban Studies and Planning

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Information Administration - Energy Efficiency, energy consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Efficiency Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and related information. This site provides an in depth discussion of the concept of energy efficiency and how it is measured, measurement, summaries of formal user meetings on energy efficiency data and measurement, as well as analysis of greenhouse gas emissions as related to energy use and energy efficiency. At the site you will find links to other sources of information, and via a listserv all interested analysts can share ideas, data, and ask for assistance on methodological problems associated with energy use, energy efficiency, and greenhouse gas issues. Contact: Behjat.Hojjati@eia.doe.gov

362

Energy consumption and environmental pollution: a stochastic model  

Science Journals Connector (OSTI)

......indicated that total energy consumption in sugar beet production...pollution. Although energy consumption increased sugar beet yield...and found that hybrid and electric car technologies exhibit (efficiency...ergy efficiency, affects consumption choice by Swedish households......

Charles S. Tapiero

2009-07-01T23:59:59.000Z

363

Energy Department Announces Winners of Housing Innovation Awards  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money.

364

Meeting Customers' Energy Efficiency Goals- In Concert with the Environment  

E-Print Network [OSTI]

This paper describes an exciting new environmental program called "In Concert With The Environment." This program was originally targeted at high school students who analyzed their household's energy usage and the potential energy and related...

Merchant, D. G.

365

Agent-based competitive simulation: exploring future retail energy markets  

Science Journals Connector (OSTI)

Future sustainable energy systems will need efficient, clean, low-cost, renewable energy sources, as well as market structures that motivate sustainable behaviors on the part of households and businesses. "Smart grid" components can help consumers manage ...

Carsten Block; John Collins; Wolfgang Ketter

2010-08-01T23:59:59.000Z

366

Transaction Costs and their Impact on Energy Demand Behaviour  

Science Journals Connector (OSTI)

The very recent trends in energy demand are incompatible with empirically fitted price elasticities. ... associated with investment decisions of households for energy conservation and/or fuel substitution may...

Erich Unterwurzacher; Franz Wirl

1989-01-01T23:59:59.000Z

367

Platform Markets and Energy Services  

E-Print Network [OSTI]

2010). Residential and commercial end-users are starting to be informed of their real-time costs, consumption patterns, and of the origin of their electricity. The partial self-supply of household users from solar panels and combined heat and power... to the development of one or multiple platform markets. Household consumers are expected to take a more active role and become producers, such as through selling small-scale photovoltaic energy production or participating in demand response contracts (UK...

Weiller, Claire M.; Pollitt, Michael G.

2014-01-07T23:59:59.000Z

368

Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas  

Science Journals Connector (OSTI)

In todays world of volatile fuel prices and climate concerns, there is little study on the relationship between vehicle ownership patterns and attitudes toward vehicle cost (including fuel prices and feebates) and vehicle technologies. This work provides new data on ownership decisions and owner preferences under various scenarios, coupled with calibrated models to microsimulate Austins personal-fleet evolution. Opinion survey results suggest that most Austinites (63%, population-corrected share) support a feebate policy to favor more fuel efficient vehicles. Top purchase criteria are price, type/class, and fuel economy. Most (56%) respondents also indicated that they would consider purchasing a Plug-in Hybrid Electric Vehicle (PHEV) if it were to cost $6000 more than its conventional, gasoline-powered counterpart. And many respond strongly to signals on the external (health and climate) costs of a vehicles emissions, more strongly than they respond to information on fuel cost savings. Twenty five-year simulations of Austins household vehicle fleet suggest that, under all scenarios modeled, Austins vehicle usage levels (measured in total vehicle miles traveled or VMT) are predicted to increase overall, along with average vehicle ownership levels (both per household and per capita). Under a feebate, HEVs, \\{PHEVs\\} and Smart Cars are estimated to represent 25% of the fleets VMT by simulation year 25; this scenario is predicted to raise total regional VMT slightly (just 2.32%, by simulation year 25), relative to the trend scenario, while reducing CO2 emissions only slightly (by 5.62%, relative to trend). Doubling the trend-case gas price to $5/gallon is simulated to reduce the year-25 vehicle use levels by 24% and CO2 emissions by 30% (relative to trend). Two- and three-vehicle households are simulated to be the highest adopters of \\{HEVs\\} and \\{PHEVs\\} across all scenarios. The combined share of vans, pickup trucks, sport utility vehicles (SUVs), and cross-over utility vehicles (CUVs) is lowest under the feebate scenario, at 35% (versus 47% in Austins current household fleet). Feebate-policy receipts are forecasted to exceed rebates in each simulation year. In the longer term, gas price dynamics, tax incentives, feebates and purchase prices along with new technologies, government-industry partnerships, and more accurate information on range and recharging times (which increase customer confidence in EV technologies) should have added effects on energy dependence and greenhouse gas emissions.

Sashank Musti; Kara M. Kockelman

2011-01-01T23:59:59.000Z

369

Equitable economic energy efficiency : creating good jobs in low-income efficiency programming  

E-Print Network [OSTI]

Energy efficiency is an important consideration in energy policy-making. So, a federal program aimed at funding "energy efficiency retrofits" for low-income households could be an important step in increasing the overall ...

Sarin, Amit

2009-01-01T23:59:59.000Z

370

Negotiating reforms at home: Natural resources and the politics of energy access in urban Tanzania  

E-Print Network [OSTI]

conditions of urban energy in Dar es Salaam and the spacesconditions of urban energy in Dar es Salaam. It presents aof household energy conditions in Dar es Salaam, my research

Ghanadan, Rebecca

2004-01-01T23:59:59.000Z

371

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu

2014-01-01T23:59:59.000Z

372

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network [OSTI]

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

373

9 - Chinese healthcare system reforms and household saving patterns: some stylised facts  

Science Journals Connector (OSTI)

Abstract: This chapter aims to evaluate the relationship between one of the recent healthcare reforms in the Peoples Republic of China and household decisions both in terms of out-of-pocket expenditure and saving. Evidence on the results achieved by reforms of the health insurance sector in terms of reducing out-of-pocket medical expenditure is still uncertain and contradictory, and very little is known about the effect of these measures on the consumption and saving behaviour of the Chinese population. To shed light on this issue we use data collected by Chinese Household Income Project surveys (CHIPs), through a series of questionnaire-based interviews conducted in urban areas in 1995 and 2002. Our descriptive analysis suggests that there is a positive relationship between public health insurance coverage and household saving. This empirical evidence suggests that public insurance coverage is ineffective as a source of protection against income losses and might induce households to save more.

Vincenzo Atella; Agar Brugiavini; Hao Chen; Noemi Pace

2014-01-01T23:59:59.000Z

374

Household technology adoption in a global marketplace: Incorporating the role of espoused cultural values  

Science Journals Connector (OSTI)

While MATH and the extended MATH have done an excellent job in explaining household technology adoption, there is still room for advancing our understanding of this phenomenon in light of the complexities embo...

Xiaojun Zhang; Likoebe M. Maruping

2008-09-01T23:59:59.000Z

375

Distributional Impacts of Carbon Pricing: A General Equilibrium Approach with Micro-Data for Households  

E-Print Network [OSTI]

Many policies to limit greenhouse gas emissions have at their core efforts to put a price on carbon emissions. Carbon pricing impacts households both by raising the cost of carbon intensive products and by changing factor ...

Rausch, Sebastian

376

Fact #748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010  

Broader source: Energy.gov [DOE]

The overall share of annual household expenditures for transportation was lower in 2010 than it was in 1984, reaching its lowest point in 2009 at 15.5%. In the early to mid-1980s when oil prices...

377

Essays on Price Dynamics, Welfare Analysis, Household Food Insecurity in Mexico  

E-Print Network [OSTI]

prices, and determinants of household food insecurity are discussed and presented in three separate essays. In the first essay, the dynamic information flows among prices of important agricultural commodities in the United States (U.S.) and Mexico...

Magana Lemus, David

2013-09-20T23:59:59.000Z

378

Race, median household income, and primary Grade IV glioma treatment patterns  

Science Journals Connector (OSTI)

...behaviors among a population of Hispanic origin. Daisy Gonzalez 1...population subgroups, including Hispanics. Objective: This study assessed...population-based sample of Hispanic women in PR. Methods: This...complex sampling design of households in the San Juan Metropolitan...

Jill S. Barnholtz-Sloan; Vonetta L. Williams; Marc Chamberlain; and Andrew E. Sloan

2006-04-15T23:59:59.000Z

379

Household structure and labor force participation of black, hispanic, and white mothers  

Science Journals Connector (OSTI)

This paper investigates whether the inclusion of nonnuclear adults in a household facilitates the labor force participation of single and married mothers. Results based on a sample of extended and nuclear hous...

Marta Tienda; Jennifer Glass

1985-08-01T23:59:59.000Z

380

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network [OSTI]

market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

Sheng, Hongyan

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The effect of household characteristics on saving behaviour and the theory of savings in Japan  

Science Journals Connector (OSTI)

The purpose of this paper is to estimate the household saving functions based on cross-section data which contain fruitful informations of individual observations. The paper also attempts to test various theor...

T. Suruga; T. Tachibanaki

1991-01-01T23:59:59.000Z

382

The Relationship Between Life Satisfaction Among Wives and Financial Preparedness of Households in Japan  

Science Journals Connector (OSTI)

The wealth gap between the rich and poor is widening and contributing to Japans shrinking middle class. This study examined ... future and life satisfaction and their association with household financial prepare...

Yoko Mimura

2014-02-01T23:59:59.000Z

383

Study of energy tax and rebate schemes: energy conservation and the question of equity  

SciTech Connect (OSTI)

Taxing all kinds of primary energy at the wellhead on a $/Btu basis is suggested. This aims at inducing energy conservation throughout the economic system. To reduce the financial pressure of the tax on consumers, especially the poor, tax revenues could be rebated to households. It has been attempted to design an equitable rebate scheme. A mathematical model was developed that approximates the reduction in a household's total energy consumption in response to higher energy prices and different rebate schemes. This model is based on the assumption that energy consumption is a function of a household's real income, prices of different commodities, and energy intensities. The amount of energy saved and the change in real expenditure of a household was calculated for four tax rates; 50%, 100%, 224% and 400%, and five rebate schemes; one regressive, two progressive, one income distribution preserving and the flat per-capita rebate. The results indicate that, for a given tax rate, the choice of rebate scheme does not significantly affect the amount of energy conserved by the households. However, the effectof different rebate schemes on a household's real expenditure could be dramatically different.

Fazel Sarjui, F.

1983-01-01T23:59:59.000Z

384

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: 2: Vol. 10, No. 3 Middle-Income Energy Savings LIGTT Greenhouse Gas Standards Port of Oakland Study Ashok Gadgil Wins Zayed Award Max Tech Research Highlights Sources and Credits PDF of EETD News Helping Middle-Income Families Find Energy Savings A recent study by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) identifies steps that energy-efficiency program managers can take to deliver significant savings on home energy bills to middle-income households. Looking across a green field at a row of medium sized homes. "Middle income households have been hit hard by the recent recession, and sagging home prices have undermined the traditional reliance of middle-income households on home equity for financing home improvements," says Berkeley Lab's Mark Zimring, a researcher in the Environmental Energy

385

A Mixed Nordic Experience: Implementing Competitive Retail Electricity Markets for Household Customers  

SciTech Connect (OSTI)

Although the Nordic countries were among the first to develop competition in the electricity industry, it took a long time to make retail competition work. In Norway and Sweden a considerable number of households are actively using the market but very few households are active in Finland and Denmark. One problem has been institutional barriers involving metering, limited unbundling of distribution and supply, and limited access to reliable information on contracts and prices. (author)

Olsen, Ole Jess; Johnsen, Tor Arnt; Lewis, Philip

2006-11-15T23:59:59.000Z

386

The Determinants of Homeonwership in Presence of Shocks Experienced by Mexican Households  

E-Print Network [OSTI]

that households? experience and government income support programs influence homeownership in Mexico. A secondary objective is to determine how socio-demographic variables influence homeownership in Mexico. Based on the Random Utility Model, logit models... of Direct Rural Support of Mexico (PROGRESA) and the Program of Direct Rural Support of Mexico (PROCAMPO), appear to be increasing iii homeownership. These social welfare programs provide cash transfers to households. For whatever reason, PROGRESA...

Lopez Cabrera, Jesus Antonio 1977-

2012-11-05T23:59:59.000Z

387

Applications of demand analysis for the dairy industry using household scanner data  

E-Print Network [OSTI]

Education 7 10 Martial Status 5 11 Male Head Occupation 12 12 Female Head Occupation 12 13 Household Composition 8 14 Race 4 15 Hispanic Origin 2 16 Region 4 17 Scantrack Market Identifier 53 18 Projection Factor 1... classified as either Hispanic or not Hispanic, with 18% being Hispanic and 82% not Hispanic. Since female household heads are considered primary to making food purchase decisions some key statistics about this demographic variable are included. Of all...

Stockton, Matthew C.

2005-02-17T23:59:59.000Z

388

Arsenic Removal from Groundwater by Household Sand Filters:? Comparative Field Study, Model Calculations, and Health Benefits  

Science Journals Connector (OSTI)

Arsenic Removal from Groundwater by Household Sand Filters:? Comparative Field Study, Model Calculations, and Health Benefits ... Simultaneously, raw groundwater from the same households and additional 31 tubewells was sampled to investigate arsenic coprecipitation with hydrous ferric iron from solution, i.e., without contact to sand surfaces. ... Concentra tions of total Fe, Mn, Na, K, Mg, and Ca were quantified by atomic absorption spectroscopy (Shimadzu AA-6800, Kyoto, Japan). ...

Michael Berg; Samuel Luzi; Pham Thi Kim Trang; Pham Hung Viet; Walter Giger; Doris Stben

2006-07-19T23:59:59.000Z

389

Experimental results of a household automatic icemaker in a refrigerator/freezer  

SciTech Connect (OSTI)

This paper describes the performance test results of an automatic icemaker refrigerator under various modes of icemaker operation. The tests were conducted on a 20-ft{sup 3} (0.566-m{sup 3}) household refrigerator that had a single forced convection evaporator and was charged with R-12. The focus of the research was to ascertain the effect of icemaker operation on the refrigerator`s daily energy consumption. Thus, three different types of tests were conducted, depending upon the icemaker`s operating mode. In the first test type, the baseline, the automatic icemaker was turned off and no ice was made. In the second test type, the ice-making mode (test A), the icemaker was turned on and ice was continuously made. Compared to the baseline, additional power was intermittently consumed by a mold heater that melts the ice cubes` interface with the tray, a solenoid valve that supplies water to the icemaker tray, and a motor that rotates the ejector blades to press the crescent-shaped ice cubes out of the mold and unload them into an ice bin. In the third test type, the failure mode (test B), the water supply was manually disconnected but the icemaker was left turned on. Even though no ice was made, additional power was still consumed by the mold heater, the solenoid valve, and the motorized ejector. In tests A and B, the energy consumed by the icemaker`s components increases the cooling load, which raises the compressor power consumption. The present study shows that at the AHAM-specified test conditions, uninterrupted icemaking increased the daily energy consumption by 22.5% to 27.2%.

Haider, I.; Feng, H.; Radermacher, R. [Univ. of Maryland, College Park, MD (United States). Center for Environmental Energy Engineering

1996-12-31T23:59:59.000Z

390

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

391

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

392

Distributional aspects of an energy conserving tax and rebate  

Science Journals Connector (OSTI)

Previous work on an energy-conserving well-head tax and rebate has treated consumers as a single, lumped entity. This work investigates energy savings, and, especially, distributional effects over a disaggregated household sector (16 expenditure levels 7 household sizes 4 degrees of urbanization). The approach includes the price effects on indirect as well as direct energy consumption. Reduction in energy demand is insensitive to the distribution of the rebate, i.e., it is dominated by interproduct substitution and technology change. Change in a household's real expenditure is, of course, affected by the rebate scheme. A rebate which maintains real expenditures (i.e., allows consumption of the pre-tax market basket) is designed for different households; this is compared with a flat per-capita rebate. This is done for energy taxes of 100, 224 and 400% (base year = 19721973), yielding energy savings of about 8, 16 and 20%, respectively.

Robert A. Herendeen; Farzaneh Fazel

1984-01-01T23:59:59.000Z

393

Monthly energy review, August 1995  

SciTech Connect (OSTI)

Two brief articles are presented: measuring dependence on imported oil; and preliminary estimates of household energy consumption and expenditures in 1993. Then statistical tables are presented: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. Appendices present thermal conversion factors, metric and other physical conversion factors, CO{sub 2} emission factors for coal, and listing of previous articles. A glossary is also included.

NONE

1995-08-24T23:59:59.000Z

394

Evaluation of the soft measures' effects on ambient water quality improvement and household and industry economies  

Science Journals Connector (OSTI)

Abstract Various ecological footprint calculators, carbon footprint calculators and water footprint calculators have been developed in recent years. The basic concepts of ecological behaviour record notebooks and of carbon dioxide emission calculators have been developed since the late 20th century. The first carbon dioxide emission calculator was developed in 1991. Likewise, water pollutant discharge calculators have been developed to estimate the effects of soft measures introduced into households to reduce pollutant discharge since 2004. The soft measures which have been developed in Japan may consist of a wider framework, household sustainable consumption, which has been developed in Europe, and can be referred to cleaner consumption. In this research, summarisation of the short history of ecological behaviour record notebooks and ecological footprint calculators in Japan since the 1980s was conducted, and the soft measures in households to reduce pollutant discharge were evaluated for their effects on ambient water quality improvement as well as household and industry economies. Effects of the soft measures on related industry economies were investigated using an InputOutput Tableanalysis and the effects of the imported goods were evaluated with an import effect matrix, which was developed in this research. The effects of the soft measures on household expenditures were estimated to be a decrease by 2.5% or USD 285 person?1year?1 in 20032006. The results show that the soft measures positively affect the chemical fibre industry and significantly affect the detergent industry. Analysis of the import effect matrix proved that the six industries were tightly related through extensive amounts of imported goods. The soft measures in households may lead to household sustainable consumption and thus reduce disadvantageous human impacts on water environments. The effects of the measures introduced to improve the environment should be qualitatively and quantitatively evaluated to avoid redundant concerns and discord between the environment and the economy, which may be worried when the relationship is not well understood.

Yoshiaki Tsuzuki

2014-01-01T23:59:59.000Z

395

4/18/2014 Marriage: Eco-friendlier than divorce? -USATODAY.com http://usatoday30.usatoday.com/tech/science/environment/2007-12-03-divorce-energy_N.htm 1/2  

E-Print Network [OSTI]

Reddit Facebook What's this? Cars Auto Financing Event Tickets Jobs Real Estate Online of San Francisco home energy audit company Sustainable Spaces, says overall household space is increasing

396

Greenhouse gas emissions from home composting of organic household waste  

SciTech Connect (OSTI)

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

397

Marginal Energy Prices - RECS97 Update  

Broader source: Energy.gov (indexed) [DOE]

Marginal Energy Prices - RECS97 Update Marginal Energy Prices - RECS97 Update The original estimation of residential marginal energy prices at the individual household level (as reported in the Marginal Energy Prices Report, http://www.eren.doe.gov/buildings/codes_standards/applbrf/pdfs/marginal_ energy_price.pdf) was based on household energy billing data from EIA's 1993 RECS survey. When the 1997 RECS survey data became available, LBNL updated its estimation of residential marginal energy prices at the individual household level using that data. In addition, LBNL incorporated several refinements (as described below) to the marginal price estimation method it had originally developed. Presented below are the: * RECS97-based results. * Refinements to LBNL's marginal price estimation method.

398

Marginal Energy Prices - RECS97 Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marginal Energy Prices - RECS97 Update Marginal Energy Prices - RECS97 Update The original estimation of residential marginal energy prices at the individual household level (as reported in the Marginal Energy Prices Report, http://www.eren.doe.gov/buildings/codes_standards/applbrf/pdfs/marginal_ energy_price.pdf) was based on household energy billing data from EIA's 1993 RECS survey. When the 1997 RECS survey data became available, LBNL updated its estimation of residential marginal energy prices at the individual household level using that data. In addition, LBNL incorporated several refinements (as described below) to the marginal price estimation method it had originally developed. Presented below are the: * RECS97-based results. * Refinements to LBNL's marginal price estimation method.

399

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

400

Alleviating energy poverty for the world's poor | Open Energy Information  

Open Energy Info (EERE)

Alleviating energy poverty for the world's poor Alleviating energy poverty for the world's poor Jump to: navigation, search Tool Summary Name: Alleviating energy poverty for the world's poor Agency/Company /Organization: Ambuj Sagar Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, People and Policy Phase: Create a Vision Topics: Co-benefits assessment, - Energy Access Resource Type: Publications User Interface: Website Website: www.sciencedirect.com/science/article/pii/S0301421504000096 Cost: Free Language: English This report argues for an 'energy poverty alleviation' fund to help provide modern energy services to poor households. It also proposes an approach through which to create such a fund, namely by introducing an incremental levy on petroleum. Improving energy services for poor households in developing countries

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nevada: Kingston Creek Hydro Project Powers 100 Households |...  

Energy Savers [EERE]

in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Geothermal Energy Growth Continues, Industry Survey Reports Project Overview Positive Impact...

402

"Table HC15.3 Household Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Four Most Populated States, 2005" 3 Household Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Household Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Household Size" "1 Person",30,1.8,1.9,2,3.2 "2 Persons",34.8,2.2,2.3,2.4,3.2 "3 Persons",18.4,1.1,1.3,1.2,1.8 "4 Persons",15.9,1,0.9,1,2.3 "5 Persons",7.9,0.6,0.6,0.9,0.9 "6 or More Persons",4.1,0.4,"Q",0.5,0.7 "2005 Annual Household Income Category" "Less than $9,999",9.9,0.8,0.7,0.9,1 "$10,000 to $14,999",8.5,0.8,0.4,0.6,0.7

403

Feed the Future Bangladesh: Baseline Integrated Household Survey | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Feed the Future Bangladesh: Baseline Integrated Household Survey Feed the Future Bangladesh: Baseline Integrated Household Survey Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Feed the Future Bangladesh: Baseline Integrated Household Survey Dataset Summary Description The Bangladesh Integrated Household Survey dataset is a thorough assessment of current standard of food security in Bangladesh taken from 2011-2012. The dataset includes all baseline household surveys made under the USAID-led Feed the Future initiative, a collaborative effort that supports country-owned processes and plans for improving food security and promoting transparency, and within the Zones of Influence as outlined by the Feed the Future Bangladesh plan .The BIHS sample is statistically representative at the following levels: (a) nationally representative of rural Bangladesh; (b) representative of rural areas of each of the seven administrative divisions of the country; and, (c) representative of the Feed the Future (FTF) zone of influence.

404

Household transmission of pandemic 2009 influenza A (H1N1) virus in Osaka, Japan in May 2009  

Science Journals Connector (OSTI)

SummaryObjective To assess household transmission of pandemic influenza A (H1N1) and effectiveness of postexposure prophylaxis (PEP) of antiviral drugs among household contacts of patients during the first pandemic influenza A (H1N1) outbreak in Osaka, Japan in May 2009. Methods Active surveillance of patients and their families was conducted. Public Health Center staff visited each home with an infected patient and advised every household member with regard to precautionary measures, and PEP was provided to household contacts to prevent secondary infection. We analyzed the effectiveness of PEP and characteristics of secondary infection. Results The secondary attack rate (SAR) among household contacts was 3.7%. The SAR among household contacts without PEP was 26.1%. However, the SAR among those with PEP was 0.6%. Only two of 331 household contacts with PEP became infected. One of the two was infected with an oseltamivir-resistant strain. Analysis of SAR by age group showed that those under 20 years of age were at higher risk than those over 20 (relative risk [RR]=7.9; 95% confidence interval [CI]=2.2427.8). Significant differences with respect to sex, number of household contacts, and use of antiviral medications in the index cases were not observed. Conclusions Our present results indicate that PEP is effective for preventing secondary H1N1 infection among household contacts.

N. Komiya; Y. Gu; H. Kamiya; Y. Yahata; Y. Yasui; K. Taniguchi; N. Okabe

2010-01-01T23:59:59.000Z

405

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book [EERE]

2 2 Energy Burden Definitions Energy burden is an important statistic for policy makers who are considering the need for energy assistance. Energy burden can be defined broadly as the burden placed on household incomes by the cost of energy, or more simply, the ratio of energy expenditures to household income. However, there are different ways to compute energy burden, and different interpretations and uses of the energy burden statistics. DOE Weatherization primarily uses mean individual burden and mean group burden since these statistics provide data on how an "average" individual household fares against an "average" group of households (that is, how burdens are distributed for the population). DOE Weatherization (and HHS) also uses the median individual burden which shows

406

Residential energy demand modeling and the NIECS data base : an evaluation  

E-Print Network [OSTI]

The purpose of this report is to evaluate the 1978-79 National Interim Energy Consumption Survey (NIECS) data base in terms of its usefulness for estimating residential energy demand models based on household appliance ...

Cowing, Thomas G.

1982-01-01T23:59:59.000Z

407

Making energy efficiency desirable : lessons from a cutting-edge program in Minneapolis  

E-Print Network [OSTI]

For the last 30 years, experts have claimed that energy efficiency upgrades in existing buildings can lead to significant reductions in energy use, yet efficiency programs, particularly those geared towards households, ...

Stern, Stephanie (Stephanie B.)

2011-01-01T23:59:59.000Z

408

Evaluation of energy efficiency standards for residential clothes dryers in the USA  

Science Journals Connector (OSTI)

This article describes the analysis of monetary and energy savings attributable to various energy efficiency levels considered as potential US federal standards ... cost-effective for nearly one fifth of US households

Alex Lekov; Victor Franco; Steve Meyers

2014-02-01T23:59:59.000Z

409

ECEEE 2011 SUMMER STUDY EnERgY EffiCiEnCY fiRST: ThE foUnDaTion of a low-CaRbon SoCiETY 2037 The significance of difference  

E-Print Network [OSTI]

The significance of difference: Understanding variation in household energy consumption Janine Morley School@comp.lancs.ac.uk Keywords socio-technical, energy behaviour, interaction, consumption dynamics, demand patterns, domestic energy, electricity use, households, end-use consumption, practices, practice theory Abstract Studies

Hazas, Mike

410

Green Button Apps | Open Energy Information  

Open Energy Info (EERE)

Apps Apps Jump to: navigation, search Green button.png What are Green Button Applications? Green Button is the common-sense idea that electricity customers should be able to download their own detailed household or building electricity usage information from their utility website, in a common consumer- and computer-friendly format. Green Button Apps use customer-downloaded Green Button data to help those consumers explore and manage their energy usage, perform a virtual energy audit, receive energy efficiency tips, make solar photovoltaic decisions and more. Who can use Green Button Apps? Green Button App users are people who have access to their household energy usage data via a Green Button on their utility or retail energy supplier website. Most apps will require use of downloaded household or building energy use

411

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

412

"Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" 0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Usage Indicators" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.9,2.5,1.3,0.5,1,2.4,4.6 "2 Times A Day",24.6,6.5,7,4.3,3.2,3.6,4.8,10.3 "Once a Day",42.3,8.8,9.8,8.7,5.1,10,5,12.9

413

The causes of Japan's lost decade: The role of household consumption  

Science Journals Connector (OSTI)

In this paper, I analyze the causes of the prolonged slowdown of the Japanese economy in the 1990s and find that the stagnation of investment, especially private fixed investment, was the primary culprit. I then investigate the causes of the stagnation of household consumption during the 1990s and find that the stagnation of household disposable income, the decline in household wealth, and increased uncertainty about the future are among the contributing factors. Finally, I consider whether demand side factors or supply side factors were more important as causes of the prolonged slowdown of the Japanese economy in the 1990s and conclude that the former (especially misguided government policies) were probably more important.

Charles Yuji Horioka

2006-01-01T23:59:59.000Z

414

Variability of Consumer Impacts from Energy Efficiency Standards  

Science Journals Connector (OSTI)

A typical prospective analysis of the expected impact of energy efficiency standards on consumers is based on average ... been developed to characterize the variability among individual households and to calculat...

James E. McMahon; Xiaomin Liu

2001-01-01T23:59:59.000Z

415

Examining the Variation of Household Vehicles Holding Behavior in the Chukyo Region in Japan  

Science Journals Connector (OSTI)

Abstract Japan began initial stage of motorization in 1960s. The motorization made life of human highly dependent on private cars. As a result, vehicle holding behavior in the household might have a change during this process. This study examines the variation of the household vehicles owning behavior in the Chukyo region in Japan. The vehicle type is classified into the light motor car and the ordinary motor one. Meanwhile, the impact of the ownership of trucks is not taken into consideration. The person trip survey data in 1971 and 2001 are used as the sample. A bivariate ordered probit model is proposed for analyzing the ownership of two types of private cars. Since the maximal likelihood estimation method was found to be low efficient, the Gibbs sampler algorithm is implemented in this study. The conclusions of this study are listed as follows. Firstly, age of the householder, numbers of workers and number of members (>= 25 years old) were significant factors with same effects both in 1971 and 2001. Secondly, gender of the householder, district, population density and density of railway stations changed their effects from 1971 to 2001. The households with female householder were unwilling to own the light motor car only in 1971.The residents living in Nagoya would not like to own the ordinary motor car in 2001. Population density and density of railway stations affected ownership of the light motor car only in 2001. Lastly, there was a substitution effect on ownership between the light motor car and the ordinary motor one only in 2001.

Jia Yang; Mimi Tian; Tomio Miwa; Takayuki Morikawa

2014-01-01T23:59:59.000Z

416

Residential Network Members Impact More Than 42,000 Households  

Broader source: Energy.gov [DOE]

Eligible Better Buildings Residential Network members reported completing 27,563 home energy upgrades during 2013 as part of the Residential Networks first reporting cycle. In addition, 13 Better...

417

Fuelwood Use by Rural Households in the Brazilian Atlantic Forest  

E-Print Network [OSTI]

Fuelwood is an important source of domestic energy in rural regions of Brazil. In the Zona da Mata of Minas Gerais, native species from the Atlantic Forest are an important source of fuelwood, supplemented by wood from eucalyptus and coffee...

Wilcox-Moore, Kellie J.

2010-07-14T23:59:59.000Z

418

Micro-generation for UK Households: Thermodynamic and Related Analysis.  

E-Print Network [OSTI]

??Micro- generation is the small-scale and localised provision of heat or electricity. Micro-generators have the potential to reduce greenhouse-gas emissions and enhance energy security by (more)

Allen, Stephen R

2009-01-01T23:59:59.000Z

419

Long Term Dynamics of Inequalities between French Households concerning Automobile COLLET, Roger; BOUCQ, Elise; MADRE, Jean-Loup; HIVERT, Laurent.  

E-Print Network [OSTI]

Long Term Dynamics of Inequalities between French Households concerning Automobile COLLET, Roger TERM DYNAMICS OF INEQUALITIES BETWEEN FRENCH HOUSEHOLDS CONCERNING AUTOMOBILE Roger Collet, INRETS of automobile. As the curves representing car ownership (number of cars per adult) and car use (annual mileage

Paris-Sud XI, Université de

420

Patterns of stove usage after introduction of an advanced cookstove: the long-term application of household sensors  

Science Journals Connector (OSTI)

Household air pollution generated from solid fuel use for cooking is one of the leading risk factors for ill-health globally. ... However, household usage of these stoves and resulting changes in usage of traditional polluting stoves is not well characterized. ...

Ajay Pillarisetti; Mayur Vaswani; Darby Jack; Kalpana Balakrishnan; Michael N. Bates; Narendra K. Arora; Kirk R. Smith

2014-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Effects on minority and low-income households of the EPA proposal to reduce leaded gasoline use  

SciTech Connect (OSTI)

To reduce the potentially harmful environmental effects of lead in the environment, the US Environmental Protection Agency (EPA) has proposed a reduction in the amount of lead used in leaded gasoline. This report examines the potential impacts of such action on minority and low-income households in the US. The benefits of the EPA's proposal would presumably accrue primarily to households that contain small children and that are located in the central cities of metropolitan areas. This is because small children (under age seven) are particularly susceptible to the effects of lead and also because the automobile traffic density in central cities is higher than in any other area. Potential costs are examined in terms of households that own vehicles requiring leaded gasoline. Costs could accrue either because of higher gasoline prices due to reduced lead content or because of higher vehicle repair costs for engines that must use leaded gasoline to prevent excessive wear. Because of their location and number, minority and low-income households with small children would benefit more than the average US household. No costs would be incurred by the relatively large segment of minority and low-income households that own no vehicles. However, the Hispanic and other minority (except black) and low-income households that do own vehicles have a greater than average share of vehicles that require leaded gasoline; costs to these households because of the EPA's proposed action would be comparatively high.

Rose, K.; LaBelle, S.; Winter, R.; Klein, Y.

1985-04-01T23:59:59.000Z

422

Characterizing probability density distributions for household electricity load profiles from high-resolution electricity use data  

Science Journals Connector (OSTI)

Abstract This paper presents a high-resolution bottom-up model of electricity use in an average household based on fit to probability distributions of a comprehensive high-resolution household electricity use data set for detached houses in Sweden. The distributions used in this paper are the Weibull distribution and the Log-Normal distribution. These fitted distributions are analyzed in terms of relative variation estimates of electricity use and standard deviation. It is concluded that the distributions have a reasonable overall goodness of fit both in terms of electricity use and standard deviation. A KolmogorovSmirnov test of goodness of fit is also provided. In addition to this, the model is extended to multiple households via convolution of individual electricity use profiles. With the use of the central limit theorem this is analytically extended to the general case of a large number of households. Finally a brief comparison with other models of probability distributions is made along with a discussion regarding the model and its applicability.

Joakim Munkhammar; Jesper Rydn; Joakim Widn

2014-01-01T23:59:59.000Z

423

Increased Levels of Markers of Microbial Exposure in Homes with Indoor Storage of Organic Household Waste  

Science Journals Connector (OSTI)

...Levels of Markers of Microbial Exposure in Homes with Indoor Storage of Organic Household...might increase microbial exposure in the home environment. In this study we evaluated...House dust samples were collected in 99 homes in The Netherlands selected on the basis...

Inge M. Wouters; Jeroen Douwes; Gert Doekes; Peter S. Thorne; Bert Brunekreef; Dick J. J. Heederik

2000-02-01T23:59:59.000Z

424

Table 5.2. U.S. per Household Vehicle-Miles Traveled, Vehicle...  

U.S. Energy Information Administration (EIA) Indexed Site

Years or More ... 13.6 1.8 17.1 907 1,044 4.6 Race of Householder White ... 73.3 1.9 21.7 1,099 1,267 1.8 Black...

425

Table 5.12. U.S. Average Vehicle-Miles Traveled by Household...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 30.7 Q 26.3 37.2 Q Q Q Q Q Q Q 20.7 Race of Householder White ... 26.0 23.2 25.2 32.6 19.3 16.4 13.3...

426

Home ownership as wealth over the life cycle European Household Motivation for Residential Assets  

E-Print Network [OSTI]

Home ownership as wealth over the life cycle European Household Motivation for Residential Assets Current situation and future prospects INTRODUCTION Encouraging Home Ownership Most countries encourage a country's wealth and the proportion of home owners. 44 Homeownership rates in Western Europe (Source: EMF

Birmingham, University of

427

Finding the creatures of habit; Clustering households based on their flexibility in using electricity  

E-Print Network [OSTI]

electricity Ian Dent, Uwe Aickelin and Tom Rodden School of Computer Science University of Nottingham, UK, AB15 8QH tony.craig@hutton.ac.uk ABSTRACT Changes in the UK electricity market, particularly to change households' electricity usage patterns for the benefit of the overall sys- tem. Users show

Aickelin, Uwe

428

Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose  

Broader source: Energy.gov [DOE]

In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to...

429

Household use of paint and petroleum solvents and the risk of childhood leukemia  

Science Journals Connector (OSTI)

...African American, or non-Hispanic White according to their physician...Screening identified 1,253 Hispanic cases of whom 1,119 (89...random telephone numbers. A household enumeration was obtained for...controls, identified 1,668 Hispanics of whom 1,462 (88) completed...

Ghislaine Scelo; Catherine Metayer; Steve Selvin; Martyn Smith; Melinda Aldrich; Joseph Wiemels; Luoping Zhang; and Patricia Buffler

2008-05-01T23:59:59.000Z

430

Table HC1-3a. Housing Unit Characteristics by Household Income,  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Housing Unit Characteristics by Household Income, 3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Census Region and Division Northeast ...................................... 20.3 3.3 4.2 4.9 7.8 2.6 6.8 6.4 New England .............................. 5.4 0.8 1.1 1.3 2.3 0.6 1.6 9.9 Middle Atlantic ............................ 14.8 2.6 3.2 3.5 5.6 2.0 5.2 7.7 Midwest ......................................... 24.5 3.7 5.2 6.8 8.9 2.8 7.4 5.8 East North Central ......................

431

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

432

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

433

Operational energy consumption and GHG emissions in residential sector in urban China : an empirical study in Jinan  

E-Print Network [OSTI]

Driven by rapid urbanization and increasing household incomes, residential energy consumption in urban China has been growing steadily in the past decade, posing critical energy and greenhouse gas emission challenges. ...

Zhang, Jiyang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

434

Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China  

E-Print Network [OSTI]

Energy Research Institutes energy demand model (CERI, 2009): GDP growth, persons perenergy-environment modeling. 1 Major drivers are economic activity (household income, GDP growth and GDP per

Zhou, Nan

2010-01-01T23:59:59.000Z

435

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

EIA household energy use data now includes detail on 16 States EIA household energy use data now includes detail on 16 States RECS 2009 - Release date: March 28, 2011 EIA is releasing new benchmark estimates for home energy use for the year 2009 that include detailed data for 16 States, 12 more than in past EIA residential energy surveys. EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census Regions and nine Divisions. In 1997, EIA produced additional tabulations for the four most populous States (California, New York, Texas, and Florida). A threefold increase in the number of households included in the 2009 RECS offers more accuracy and coverage for understanding energy usage for all estimated States, Regions and Divisions.

436

Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy newsroomassetsimagesenergy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security...

437

Energy consumption and expenditure projections by population group on the basis on the annual energy outlook 2000 forecast.  

SciTech Connect (OSTI)

The changes in the patterns of energy use and expenditures by population group are analyzed by using the 1993 and 1997 Residential Energy Consumption Surveys. Historically, these patterns have differed among non-Hispanic White households, non-Hispanic Black households, and Hispanic households. Patterns of energy use and expenditures are influenced by geographic and metropolitan location, the composition of housing stock, economic and demographic status, and the composition of energy use by end-use category. As a consequence, as energy-related factors change across groups, patterns of energy use and expenditures also change. Over time, with changes in the composition of these factors by population group and their variable influences on energy use, the impact on energy use and expenditures has varied across these population groups.

Poyer, D. A.; Decision and Information Sciences

2001-05-31T23:59:59.000Z

438

Reducing greenhouse gas emissions from households and industry by the use of charcoal from sawmill residues in Tanzania  

Science Journals Connector (OSTI)

Like many countries in sub-Saharan Africa, Tanzania faces considerable challenges in meeting the future energy demands of its rapidly growing urban population without depleting its forests. Nonindustrial charcoal production generates large emissions of greenhouse gases (GHG) in the form of CO2 from forest degradation and methane from oxidation in traditional kilns. On a global scale, the GHG emissions from cement production are of considerable magnitude and are increasing rapidly. In this study, the impact of converting sawmill residues into charcoal briquettes and charcoal powder in Tanzania was assessed, using a cradle-to-grave approach. Furthermore, the net effects on GHG of substituting more GHG-intensive fuels with these charcoal products were evaluated. Replacing coal in cement manufacturing with this sawmill charcoal powder may reduce GHG emissions by 455495kg of CO2eqMWh?1, corresponding to an 8391% decrease. The net GHG emission reduction when replacing charcoal from miombo woodlands with these sawmill charcoal briquettes is 78557kg of CO2eqMWh?1, or 4284%, depending on whether the substituted charcoal can be considered carbon neutral or not. These replacements may considerably reduce the GHG emissions from the cement industry and in charcoal-dependent households in Tanzania. Due to the significant problems related to energy supply and forest deterioration in sub-Saharan countries, as well as the global growth of GHG emissions from the cement industry, this study might of relevance also outside Tanzania.

Hanne K. Sjlie

2012-01-01T23:59:59.000Z

439

DEPARTMENT OF ENERGY  

Broader source: Energy.gov (indexed) [DOE]

62, No. 81 1 Monday, April 28, 1997 / Notices 62, No. 81 1 Monday, April 28, 1997 / Notices 23117 DEPARTMENT OF ENERGY Office of Energy Efnclency and Renewable Energy Finding of No Significant Impact; Energy Conservation Program for Consumer Products AGENCY: Office of Energy Efficiency and Renewable Energy, DOE. ACTION: Finding of no significant impact (FONSI) for amended energy conservation standards for refrigerators. refrigerator-freezers. and freezers. SUMMARY: The Energy Policy and Conservation Act, as amended by the National Energy Conservation Policy Act and the National Appliance Energy Conservation Act, and the National Appliance Energy Conservation Amendments, prescribes energy conservation standards for certain major household appliances, and requires the Department of Energy (DOE) to

440

Can migrogrids make a major contribution to UK energy supply ?  

E-Print Network [OSTI]

Working Paper No. 70 March 2005 Manuscript to appear in Renewable and Sustainable Energy Reviews #12;ii energy balance on a yearly basis if supplemented by energy storage of 2.7kWh per household. We findCan migrogrids make a major contribution to UK energy supply ? Suleiman Abu-Sharkh, Rachel Li, Tom

Watson, Andrew

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Projected Winter Fuel Expenditures by Fuel and Region Projected Winter Fuel Expenditures by Fuel and Region The average household winter heating fuel expenditures discussed in this STEO provide a broad guide to changes compared with last winter. However, fuel expenditures for individual households are highly dependent on local weather conditions, market size, the size and energy efficiency of individual homes and their heating equipment, and thermostat settings (see Winter Fuels Outlook table). Forecast temperatures are close to last winter nationally, with the Northeast about 3% colder and the West 3% warmer. Natural Gas About one-half of U.S. households use natural gas as their primary heating fuel. EIA expects households heating with natural gas to spend an average of $80 (13%) more this winter than last winter. The increase in natural gas

442

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

443

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2006 Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment

444

GTZ Global Energy Program | Open Energy Information  

Open Energy Info (EERE)

GTZ Global Energy Program GTZ Global Energy Program Jump to: navigation, search Logo: GTZ Global Energy Program Name GTZ Global Energy Program Agency/Company /Organization GTZ Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Website http://www.gtz.de/en/praxis/95 Program Start 2008 Program End 2012 References GTZ projects [1] GTZ is working globally with countries on supply of energy technologies and services to households, SME and public utility institutions. Key products include access to modern energy services and promotion of new technologies. References ↑ "GTZ projects" Retrieved from "http://en.openei.org/w/index.php?title=GTZ_Global_Energy_Program&oldid=328691" Category: Programs What links here Related changes

445

Government Energy News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News Government Energy News RSS December 23, 2013 U.S. Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save Consumers Billions Non-Regulatory Consensus Agreement to Cut Five Million Tons of CO2 Annually December 3, 2013 Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency As Part of Better Buildings Initiative, Administration Commits to Expanding Energy Efficiency Investments in Federal Buildings November 26, 2013 Thirteen States Receive Energy Department Awards to Drive Greater Energy Efficiency, Save Money The Energy Department awarded nearly $4 million to 13 states to increase

446

U.S. Energy Department, Pay-Television Industry and Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

U.S. Energy Department, Pay-Television Industry and Energy U.S. Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save Consumers Billions U.S. Energy Department, Pay-Television Industry and Energy Efficiency Groups Announce Set-Top Box Energy Conservation Agreement; Will Cut Energy Use for 90 Million U.S. Households, Save Consumers Billions December 23, 2013 - 11:35am Addthis News Media Contact DOE: (202) 586-4940; CEA: (703) 907-4326; NCTA: (202) 222-2358; ACEEE: (202) 507-4043; NRDC: (415) 875-6155 WASHINGTON - Today, the U.S. Energy Department, the Natural Resources Defense Council (NRDC), the American Council for an Energy-Efficient Economy (ACEEE), the Appliance Standards Awareness Project (ASAP), the

447

Energy Use, Information, and Behavior in Small Commercial Buildings  

E-Print Network [OSTI]

of analyzing and interpreting energy data They used ethnographic interviewing methods to evaluate energy feedback in the form of a Home Energy Report providing raw monthly billing data and weather-corrected annual energy consumption data to households. Like... and restaurants. Range shown is one standard deviation. l..ow energy business' is an average value for the lowest 10% of businesses in the sample. 20a Figure 4. Monthly energy consumption. CENTER FOR ENERGY AND ENVIRONMENTAL STUDIES Princeton University ENERGY...

Haberl, J. S.; Kempton, W.; Komor, P.

2009-02-20T23:59:59.000Z

448

Ames Electric Department - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Ames Electric Department - Residential Energy Efficiency Rebate Ames Electric Department - Residential Energy Efficiency Rebate Programs Ames Electric Department - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Maximum Rebate Appliances: 50% of the equipment cost Programmable Thermostats: 3 per household Room AC: 2 per household Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $500 Energy Audit: FREE Lighting: $2 - $16 per fixture Lighting Sensors: $10 per unit Refrigerators: $25 - $100 Freezers: $50 Dishwashers: $50

449

Proceedings of the 1991 Socioeconomic Energy Research and Analysis Conference  

SciTech Connect (OSTI)

These proceedings analyze US energy policy as it pertains to minority groups. Example topics include: Economic impacts of the National Energy Strategy on minority and majority households, Utility measures to assist payment-troubled customers, Equity impacts of controlling energy usage through market-based versus regulatory approaches, Technical and planning support for the DOE-HUD initiative for energy efficiency in housing, an analysis of residential energy consumption and expenditures by minority households by home type and housing vintage, and methodical issues in evaluating integrated least cost planning programs.

Not Available

1993-07-01T23:59:59.000Z

450

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2011 1, 2011 Making the Most of the Small Business Conference Veteran participant explains the benefits his company gets out of the Department of energy Annual Small Business Conference. May 11, 2011 How Elyria, Ohio, Is Putting Money Back in Its Citizens Pockets Demand for new energy efficiency measures is already high in Elyria, Ohio. May 10, 2011 Energy-Efficient Rebuilding After Tragedy: Inspiration from Greensburg, Kansas Greensburg is a small town, with fewer than 1,000 households, and is rebuilding post-tornado as a sustainable community. May 10, 2011 An Update on the Department's Loan Programs President Obama has made it clear the nation that wins the clean energy race will likely be the nation that leads the global economy. And in just over two years, the Loan Programs Office has become one of our most

451

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Household Income, 2005" 3 Household Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Household Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Household Size" "1 Person",30,13.5,8.5,4.3,2,1.8,5.9,13.1 "2 Persons",34.8,6,8.8,7.3,4.4,8.4,3.5,8.4 "3 Persons",18.4,3.1,4.7,3.4,2.5,4.6,2,5.8 "4 Persons",15.9,2.2,3.5,3.3,2.7,4.3,2.2,5.1

452

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Household Wastewater Treatment  

E-Print Network [OSTI]

. This publication covers the following topics: 1. Septic tanks/soil absorption systems 2. Quantity of wastewater 3. Quality of wastewater 4. Collection of wastewater 5. Treatment systems 6. Disposal system 7. Assistance with failing systems or new designs 8.... Evaluation table Septic Tanks/Soil Absorption Systems The most common form of on-site waste- water treatment is a septic tank/soil absorption system. In this system, wastewater flows from the household sewage lines into an under- ground septic tank...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

453

Energy Saver Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 16, 2011 May 16, 2011 Smart Meters and a Smarter Grid Smart meters can communicate with in-home displays to let you know how much energy you're using, and even tell you the time of day the energy was used. May 12, 2011 How Do You Save Energy at Home While on Vacation? How do you save energy at home while on vacation? May 10, 2011 Energy-Efficient Rebuilding After Tragedy: Inspiration from Greensburg, Kansas Greensburg is a small town, with fewer than 1,000 households, and is rebuilding post-tornado as a sustainable community. May 9, 2011 Saving Energy and Money at Home while on Vacation Basic and small steps to save money and energy at home while on vacation. May 5, 2011 How Do You Finance Energy-Saving Improvements? How do you finance energy-saving improvements? May 3, 2011

454

Public perceptions of energy consumption and savings  

E-Print Network [OSTI]

Public perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De consumption and savings for a variety of household, transportation, and recycling activities. When asked, with 98% of US emissions attributed to energy consumption (2). According to Pacala and Socolow (3

Kammen, Daniel M.

455

Energy and Society Week 2 Handout solution  

E-Print Network [OSTI]

40 liters of diesel provide power to a household? (Assume that 30% of the energy in diesel versus Power - Work refers to an activity involving a force and movement in the direction of the force energy to accomplish work - it is like the "currency" for performing work. - Power is the rate of doing

Kammen, Daniel M.

456

Voluntary electricity conservation of households after the Great East Japan Earthquake: A stated preference analysis  

Science Journals Connector (OSTI)

Abstract This paper examines the voluntary electricity-saving awareness of households after the Great East Japan Earthquake and the subsequent accident at the Fukushima nuclear power station. We conduct a conjoint analysis of consumer stated preferences for the settings of air conditioners, refrigerators, and the standby power of electrical appliances, based on a web questionnaire survey administered in the areas supplied by the Tokyo Electric Power Company (TEPCO) and Kansai Electric Power Company (KEPCO). The main findings of this paper are as follows. First, we observe awareness of voluntary electricity conservation among the households in both the TEPCO and KEPCO areas after the disasters. Second, awareness of voluntary power saving is higher in the TEPCO area, which has been directly affected by the electric power shortages, in comparison with the KEPCO area, where there was no such direct impact. Third, if power prices are to be further raised, the consumer responses to the price changes would be small in both areas. Furthermore, we show that the potential voluntary reduction in electric power consumption of a household in the TEPCO area is 26% more than that in the KEPCO area during the summer peak periods.

Makoto Tanaka; Takanori Ida

2013-01-01T23:59:59.000Z

457

An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China  

SciTech Connect (OSTI)

Chlorofluorocarbons (CFCs) contained in household refrigerators consist mainly of CFC-11 and CFC-12, which will be eventually released into the environment. Consequentially, environmental releases of these refrigerants will lead to ozone depletion and contribute significantly to the greenhouse effect, if waste refrigerators are not disposed of properly. In the present paper, the potential release of residual CFCs and their substitutes from obsolete household refrigerators in China is examined, and their contributions to ozone depletion and greenhouse effect are compared with those of other recognized ozone-depleting substances (ODS) and greenhouse gases (GHGs). The results imply that annual potential amounts of released residual CFC-11 and CFC-12 will reach their maximums at 4600 and 2300 tons, respectively in 2011, and then decrease gradually to zero until 2020. Meanwhile, the amounts of their most widely used substitutes HCFC-141b and HFC-134a will keep increasing. Subsequently, the contribution ratio of these CFCs and their substitutes to ozone depletion will remain at 25% through 2011, and reach its peak value of 34% by 2018. The contribution to greenhouse effect will reach its peak value of 0.57% by 2010. Moreover, the contribution ratio of these CFCs to the total global release of CFCs will steadily increase, reaching its peak of 15% by 2018. Thus, this period from 2010 to 2018 is a crucial time during which residual CFCs and their substitutes from obsolete household refrigerators in China will contribute significantly to ozone depletion.

Zhao Xiangyang; Duan Huabo [Department of Environmental Science and Engineering, Tsinghua University, Beijing (China); Li Jinhui, E-mail: jinhui@tsinghua.edu.cn [Department of Environmental Science and Engineering, Tsinghua University, Beijing (China)

2011-03-15T23:59:59.000Z

458

An Analysis of the Price Elasticity of Demand for Household Appliances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Price Elasticity of Demand for Household Appliances the Price Elasticity of Demand for Household Appliances Title An Analysis of the Price Elasticity of Demand for Household Appliances Publication Type Report LBNL Report Number LBNL-326E Year of Publication 2008 Authors Dale, Larry L., and Sydny K. Fujita Document Number LBNL-326E Pagination 19 Date Published 02/2008 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This article summarizes our study of the price elasticity of demand1 for home appliances, including refrigerators, clothes washers and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We chose to study this particular set of appliances because data for the elasticity calculation was more readily available for refrigerators, clothes washers, and dishwashers than for other appliances. We begin with a review of the existing economics literature describing the impact of economic variables on the sale of durable goods. We then describe the market for home appliances and changes in it over the past 20 years. We conclude with summary and interpretation of the results of our regression analysis and present estimates of the price elasticity of demand for the three appliances.

459

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households  

E-Print Network [OSTI]

for the Weatherization Assistance Program. GJGNY Tier 2Programs Program Weatherization Assistance Program 11 (WAP)

Zimring, Mark

2011-01-01T23:59:59.000Z

460

Motivation and decision criteria for energy efficiency in private households, companies and administrations in Russia  

Science Journals Connector (OSTI)

A recent fundamental study on the dynamics of values in Russia in the course of structural and economic reforms (Lapin, 1996) only paid attention to health, freedom and other human values, but did not consider...

Inna Gritsevich

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

all units in our da- taset. (AHAM) (see Appendix 7-B in DOEownership provided by AHAM (2010, personal communication).in ownership provided by AHAM to weight the RECS ownership

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

462

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households  

E-Print Network [OSTI]

Ho u s e h o ld s The New York legislature passed the GreenJobs-Green New York (GJGNY) Act in 2009. Administered by theand training for various green- collar careers. Launched

Zimring, Mark

2011-01-01T23:59:59.000Z

463

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network [OSTI]

or unusually high heating oil prices in Massachusetts versusgas, and home heating oil prices averaged over the previousgas than in heating oil prices. There is a strong seasonal

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

464

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network [OSTI]

exceeds 0.93. For heating oil prices, the lowest correlationfor weather and heating oil prices. 6. Estimation resultsor unusually high heating oil prices in Massachusetts versus

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

465

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network [OSTI]

the Effects of Electricity Price Changes on Californiafacing typical electricity prices in Massachusetts or aand maximum electricity price), these high expenditure

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

466

Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics  

E-Print Network [OSTI]

residential refrigerators and freezers: function derivationsecond most-used) refrigerators, and freezers, and residualfor more efficient refrigerators and freezers, as well as

Greenblatt, Jeffery

2013-01-01T23:59:59.000Z

467

Do Households Smooth Small Consumption Shocks? Evidence from Anticipated and Unanticipated Variation in Home Energy Costs  

E-Print Network [OSTI]

oil prices show a similar increase in the later years of the sample, but show a much less pronounced seasonal cycle

Cullen, Julie Berry; Friedberg, Leora; Wolfram, Catherine

2005-01-01T23:59:59.000Z

468

The Impact of the Earned Income Tax Credit on Economic Well-Being: A Comparison Across Household Types  

Science Journals Connector (OSTI)

Using survey data from Earned Income Tax Credit (EITC) recipients in Madison County, New ... of the EITC across household types. For tax years 2002 through 2004, we find that ... of EITC amounts, poverty rates, u...

Nicole B. Simpson; Jill Tiefenthaler; Jameson Hyde

2010-12-01T23:59:59.000Z

469

Development of program implementation, evaluation, and selection tools for household water treatment and safe storage systems in developing countries  

E-Print Network [OSTI]

Over the past six years, the MIT Department of Civil and Environmental Engineering's Master of Engineering program has undertaken various projects involved with the design and implementation of a wide range of household ...

Baffrey, Robert Michael Nuval, 1977-

2005-01-01T23:59:59.000Z

470

Risk factors of functional disability among community-dwelling elderly people by household in Japan: a prospective cohort study  

Science Journals Connector (OSTI)

Although the number of elderly people needing care is increasing rapidly in the home setting in Japan, family size and ability to provide such ... identify the risk factors of functional disability by household c...

Emiko Saito; Shouzoh Ueki; Nobufumi Yasuda; Sachiko Yamazaki

2014-08-01T23:59:59.000Z

471

DEPARTMENT OF ENERGY  

Broader source: Energy.gov (indexed) [DOE]

152 / Wednesday, August 9, 1989 / Notices 152 / Wednesday, August 9, 1989 / Notices DEPARTMENT OF ENERGY Office of Conservation and Renewable Energy [Docket Number CE-RM-88-101] Energy Conservation Program for Consumer Products AGENCY: Department of Energy. ACTION: Finding of No Significant Impact (FONSI) for Candidate Energy Conservation Standards for Dishwashers, Clothes. Washers and Clothes Dryers. SUMMARY: The Energy Policy and Conservation Act (EPCA), as amended by the National Energy Conservation Policy Act (NECPA) and the National Appliance Energy Conservation Act (NAECA), prescribes energy conservation standards for certain major household appliances, and requires the Department of Energy (DOE) to administer an energy conservation program for these products. As a general matter, these federal standards preempt State and

472

Buildings Energy Data Book: 2.9 Low-Income Housing  

Buildings Energy Data Book [EERE]

4 4 Weatherization Population Facts - Roughly 25% of Federally eligible households move in and out of poverty "classification" each year. - The average income of Federally eligible households in FY 2005 was $16,264, based on RECS and Bureau of the Census' Current Population Survey (CPS) data. - States target the neediest, especially the elderly, persons with disabilities, and families with children. - Since the inception of the Weatherization Assistance Program in 1976, over 6.3 million households have received weatherization services with DOE and leveraged funding. - In FY 2009, the energy burden on Federally eligible households was about four times the burden on Federally ineligible households (14% versus 4%). Source(s): ORNL, Weatherization Works: Final Report on the National Weatherization Evaluation, Sept. 1994, p. 1 for migrating poor; ORNL, 1996 for targeting; HHS,

473

The RECS relies on the respondents to provide the energy related details of their homes  

Gasoline and Diesel Fuel Update (EIA)

Householder's Perceptions of Insulation Adequacy and Householder's Perceptions of Insulation Adequacy and Drafts in the Home in 2001 Behjat Hojjati , PhD Energy Information Administration U.S. Department of Energy 1000 Independence Ave., SW, EI-63 Washington, DC 20585 behjat.hojjati@eia.doe.gov September 2004 Abstract In order to improve the estimation of end-use heating consumption, the Energy Information Administration's (EIA), 2001 Residential Energy Consumption Survey (RECS), for the first time, asked respondents to judge how drafty they perceived their homes to be as a measure of insulation quality. The analysis of the 2001 RECS data shows that householders in newly- constructed homes perceived their homes to be better insulated and less drafty than do householders in older homes. Single-family homes are perceived to be better insulated and less

474

Distributed storage management using dynamic pricing in a self-organized energy community  

Science Journals Connector (OSTI)

We consider a future self-organized energy community that is composed of "prosumer" households that can autonomously generate, store, import and export power, and also selfishly strive to minimize their cost by adjusting their load profiles using the ...

Ebisa Negeri; Nico Baken

2012-03-01T23:59:59.000Z

475

Water Flows in the Spanish Economy: Agri-Food Sectors, Trade and Households Diets in an Input-Output Framework  

Science Journals Connector (OSTI)

Water Flows in the Spanish Economy: Agri-Food Sectors, Trade and Households Diets in an Input-Output Framework ... So although we use the information from a SAM, since we leave as exogenous accounts the household consumption and foreign trade; it is not a traditional SAM analysis, but more an extended input-output analysis. ... The countries concerned are France, Germany, Portugal, Italy, UK, Netherlands, U.S., Belgium, China, and Japan. ...

Ignacio Cazcarro; Rosa Duarte; Julio Snchez-Chliz

2012-05-21T23:59:59.000Z

476

Energy  

Science Journals Connector (OSTI)

Energy ... Scientific Challenges in Sustainable Energy Technology, by Nathan S. Lewis of the California Institute of Technology, summarizes data on energy resources and analyses the implications for human society. ... ConfChem Conference on Educating the Next Generation: Green and Sustainable ChemistrySolar Energy: A Chemistry Course on Sustainability for General Science Education and Quantitative Reasoning ...

John W. Moore

2008-07-01T23:59:59.000Z

477

Energy in american homes: Changes and prospects  

Science Journals Connector (OSTI)

Average energy consumption per U.S. household has fallen by just under 20% in the last ten years. Much of this drop occurred after 1979, when gas and electricity prices as well as oil prices rose in real terms. The response of households to higher prices has involved physical modifications on and in the home and changes in behavior. Many actions have been taken by households, but the most important single factor has been a significant reduction in indoor temperatures. The greater energy efficiency of new homes and appliances has also helped to depress residential energy demand, although improvements have levelled off in the last few years. There are signs that the momentum of energy conservation is less now than it was 2 years ago, but it appears that energy prices will be high enough to discourage households from returning to former energy-using practices. Along with the continued replacement of homes and appliances with more efficient models, and other factors such as the migration to wanner regions and the movement to more apartments and smaller homes, this will probably keep U.S. residential energy consumption at about its present level through the 1980s.

Stephen Meyers; Lee Schipper

1984-01-01T23:59:59.000Z

478

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

coal Residential coal Residential market trends icon Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Residential energy use per household declines for a range of technology assumptions.... Read full section Electricity use increases with number of households despite efficiency improvement.... Read full section Residential consumption varies depending on efficiency assumptions.... Read full section Tax credits could spur growth in renewable energy equipment in the residential sector.... Read full section Transportation uses lead growth in consumption of petroleum and other liquids.... Read full section issues Issues in Focus Potential efficiency improvements and their impacts on end-use energy demand.... Read full section

479

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

480

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2010 5, 2010 Longview, TX has established a program that enables residents to swap out four incandescent light bulbs for four CFLs. | Department of Energy Photo | Government Work | Getting CFLs Home in Longview, Texas Inefficient light bulbs can drive up electricity bills and drain homeowners' wallets. With that in mind, government officials in the east Texas city of Longview established a light bulb swap program that is projected to save participating households $242. August 24, 2010 Maine's Weatherization Milestones Why Maine is a leader when it comes to weatherization. August 24, 2010 Ho-Chunk Nation is conducting audits throughout Wisconsin to find energy wasters such as decrepit HVAC units. | File photo Wisconsin Tribe Performing State-Wide Audits on 'Energy Wasters'

Note: This page contains sample records for the topic "household energy consump" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NorthWestern Energy - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

NorthWestern Energy - Residential Energy Efficiency Rebate Program NorthWestern Energy - Residential Energy Efficiency Rebate Program NorthWestern Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Ventilation Manufacturing Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Lighting: Maximum of fifteen CFLs and five lighting fixtures per calendar year Programmable Thermostat: Two units per household Program Info Funding Source Montana natural gas and electric supply rates Start Date 1/1/2009 Expiration Date 12/31/2013 State Montana Program Type Utility Rebate Program

482

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › 2009 RECS Features Heating and cooling no longer majority of U.S. home energy use March 7, 2013 Newer U.S. homes are 30% larger but consume about as much energy as older homes February 12, 2013 Where does RECS square footage data come from? July 11, 2012 RECS data show decreased energy consumption per household June 6, 2012 The impact of increasing home size on energy demand April 19, 2012 Did you know that air conditioning is in nearly 100 million U.S. homes? August 19, 2011 See more > graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years

483

Back to School and Saving Energy at Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Back to School and Saving Energy at Home Back to School and Saving Energy at Home Back to School and Saving Energy at Home September 6, 2013 - 10:23am Addthis The school year can mean energy savings for your household. | Photo courtesy of ©iStockphoto/morganl The school year can mean energy savings for your household. | Photo courtesy of ©iStockphoto/morganl Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy What does this mean for me? Emptying your house for the day can save you energy and money this fall. Labor Day has come and gone, which means the kids are back at school and your home is likely empty (or emptier) during the day. With this in mind, opportunities for saving on your electric bill have increased tremendously. Check out our Energy Saver list below of ways to save

484

Consumers' preference for renewable energy in the southwest USA  

Science Journals Connector (OSTI)

The southwestern part of the US has abundant supply of renewable energy resources but little is known about the consumers' preferences for renewable energy in this region. This paper investigates households' willingness to pay for a renewable energy program in a southwestern state, New Mexico (NM). Using the contingent valuation method, we provide different scenarios that include provision of 10% and 20% of renewable energy supply, to elicit households' willingness to pay (WTP) for the renewable energy. We estimate the WTP for specific shares of renewable energy in the total energy mix as it is a key factor in affecting the price of the energy portfolio in the market. The survey design also allows us to check the scope sensitivity of renewable energy which can help guide the future renewable energy policy. We hope results from this study will offer useful insights to energy regulators and utility companies and help them increase the share of renewable energy supply.

Pallab Mozumder; William F. Vsquez; Achla Marathe

2011-01-01T23:59:59.000Z

485

Acculturation in Hispanics and childhood poisoning: Are medicines and household cleaners stored properly?  

Science Journals Connector (OSTI)

Background Unintentional poisonings are a major public health issue in the United States (US). With the increasing number of Hispanics in the US, childhood poisoning is a salient public health issue to address within this population. There is a paucity of research examining the relationship between acculturation in Hispanics and the safe storage of medicines and cleaners. The purpose of the study was to determine if demographic variables, such as acculturation in Hispanics, age, gender and education, were predictive of incorrectly storing medicines and household cleaners. Methods We conducted a study among parents/guardians of small children at two pediatric primary care clinics in the Dallas/Fort Worth (DFW) Metropolitan area. We enrolled 201 parents to identify where they stored medicines and household cleaners, and measured acculturation with the Short Acculturation Scale for Hispanics. Results Of Hispanic participants, 49% were categorized as less acculturated (n=99) while 21% were more acculturated (n=42). Less acculturated participants were over 4 times more likely to store medicines incorrectly, and participants with a high school education or less were over 3 times more likely to improperly store cleaners. With each additional child in the household, the risk for improper storage of cleaners increased by 44%. Conclusion The fact that children of less acculturated families are at greater risk for poisoning and have lower levels of education demonstrates the need for readable educational materials on this salient topic. Because social networks are integral in Hispanic culture, especially among new immigrants, poison prevention messages should be disseminated by interpersonal communications.

Katie L. Crosslin; Ray Tsai; Claudia V. Romo; Adela Tsai

2011-01-01T23:59:59.000Z

486

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

487

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect (OSTI)

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the ``normal`` municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan`s programs. Focusing on the Plan`s household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

Not Available

1991-10-01T23:59:59.000Z

488

China Energy Primer  

E-Print Network [OSTI]

1, 2009) > Household induction cookers > Computer monitors >appliances such as rice cookers and microwaves are theorizedappliances such as rice cookers. More than 90% of households

Ni, Chun Chun

2010-01-01T23:59:59.000Z

489

DOE/EIA-0193/P PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

193/P 193/P PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY OFFICE OF THE CONSUMPTION DATA SYSTEM OFFICE OF PROGRAM DEVELOPMENT ENERGY INFORMATION ADMINISTRATION AUGUST 1, 1979 PRELIMINARY CONSERVATION TABLES FROM THE NATIONAL INTERIM ENERGY CONSUMPTION SURVEY Attached is the first report of the Office of the Consumption Data System, Office of Program Development, Energy Information Administration, presenting preliminary data from the National Interim Energy Consumption Survey (NIECS). The focus of this report is the conservation activities performed by households since January 1977, and the status of households with respect to insulation, storm windows, and other energy conserving characteristics. These tables are from preliminary data files.

490

WEEE and portable batteries in residual household waste: Quantification and characterisation of misplaced waste  

SciTech Connect (OSTI)

Highlights: We analyse 26.1 Mg of residual waste from 3129 Danish households. We quantify and characterise misplaced WEEE and portable batteries. We compare misplaced WEEE and batteries to collection through dedicated schemes. Characterisation showed that primarily small WEEE and light sources are misplaced. Significant amounts of misplaced batteries were discarded as built-in WEEE. - Abstract: A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other western European countries as well.

Bigum, Marianne, E-mail: mkkb@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljvej 113, 2500 Kgs. Lyngby (Denmark); Petersen, Claus, E-mail: claus_petersen@econet.dk [Econet A/S, Strandboulevarden 122, 5, 2100 Kbenhavn (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljvej 113, 2500 Kgs. Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljvej 113, 2500 Kgs. Lyngby (Denmark)

2013-11-15T23:59:59.000Z

491

Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-Containing Household Products  

Science Journals Connector (OSTI)

A number of household cleaning products (bleaches, mildew stain removers, toilet cleaners, cleaning sprays, gels, and scouring powders) contain sodium hypochlorite (NaOCl, ?5%). ... Each tube was packed at the upstream (sampling) end with 3 mm silanized glass-wool followed by a series of sections of 150 mg Tenax TA (60/80 mesh) (Supelco, Bellefonte, PA, USA), 3 mm silanized glass-wool, 100 mg Carboxen 1000 (Supelco, Bellefonte, PA), and finally, 3 mm silanized glass-wool at the downstream end. ...

Mustafa Odabasi

2008-02-01T23:59:59.000Z

492

Determinants of households inflation expectations in Japan and the United States  

Science Journals Connector (OSTI)

Using a VAR model that includes survey data on households inflation expectations for Japan and the US, we investigate their determinants and influences on the economy and compare their properties in two countries. Short-term non-recursive restrictions are imposed taking account of simultaneous co-dependence between realized and expected inflation. We find that responding to changes in exogenous prices and to monetary policy shocks, inflation expectations adjust more quickly than does realized inflation. Compared with Japan, the effects of exogenous prices on inflation and inflation expectations in the US are not only large but also long lasting and shocks to expectations have self-fulfilling effects on inflation.

Kozo Ueda

2010-01-01T23:59:59.000Z

493

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households Title NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households Publication Type Policy Brief Authors Zimring, Mark, and Merrian C. Fuller Tertiary Authors Borgeson, Merrian Secondary Title Clean Energy Program Policy Brief Publisher LBNL Place Published Berkeley Year of Publication 2011 Pagination 7 Date Published 01/2011 Abstract The New York legislature passed the Green Jobs-Green New York (GJGNY) Act in 2009. Administered by the New York State Energy Research and Development Authority (NYSERDA), GJGNY programs provide New Yorkers with access to free or low-cost energy assessments, energy upgrade services, low-cost financing, and training for various "green-collar" careers. Launched in November 2010, GJGNY"s residential initiative is notable for its use of novel underwriting criteria to expand access to energy efficiency financing for households seeking to participate in New York"s Home Performance with Energy Star (HPwES) program. The GJGNY financing program is a valuable test of whether alternatives to credit scores can be used to responsibly expand credit opportunities for households that do not qualify for traditional lending products and, in doing so, enable more households to make energy efficiency upgrades.

494

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

41 - 22650 of 26,764 results. 41 - 22650 of 26,764 results. Download Haier: ENERGY STAR Referral (PRTS21SAC*) DOE referred the matter of Haier refrigerator model PRTS21SAC* to the EPA for appropriate action after DOE testing showed that the model does not meet the ENERGY STAR specification. http://energy.gov/gc/downloads/haier-energy-star-referral-prts21sac Article Green Button Giving Millions of Americans Better Handle on Energy Costs Green Button is an industry-led effort that responds to a White House call-to-action to provide consumers with easy-to-understand data about their household energy use. At today's event, nine major utilities and electricity suppliers will sign on to the initiative, committing to provide more than 15 million households secure access to their energy data with a

495

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book [EERE]

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

496

On the consumption insurance effects of long-term care insurance in Japan: Evidence from micro-level household data  

Science Journals Connector (OSTI)

Using micro-level household data in the 2001 Comprehensive Survey of the Living Conditions of the People on Health and Welfare compiled by the Japanese Ministry of Health, Labor and Welfare, this paper examines how having a household member in need of long-term nursing care can result in welfare losses measured in terms of consumption. In so doing, this study evaluates the role of the public long-term care insurance scheme implemented in Japan in April 2000. The results indicate that when households include a disabled family member, household consumption net of long-term care costs do not decrease as much as before the introduction of long-term care insurance. Further, when compared with the surveys conducted in 1998, the adverse effects on consumption net of long-term care costs have become much weaker. These findings suggest that the introduction of social insurance in 2000 helped Japanese households to reduce the welfare losses associated with a disabled family member.

Yasushi Iwamoto; Miki Kohara; Makoto Saito

2010-01-01T23:59:59.000Z

497

Contact Us - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, End Uses and Efficiency Contacts Energy Consumption, End Uses and Efficiency Contacts Fax: (202)-586-0018 Alternative Fuels Cynthia Amezcua 202-586-1658 cynthia.amezcua@eia.gov Commercial Buildings Joelle Michaels 202-586-8952 joelle.michaels@eia.gov Energy Efficiency William McNary 202-586-6828 william.mcnary@eia.gov Home and Household Energy Use James Berry 202-586-5543 james.berry@eia.gov Household Vehicles Derrick Pinckney 202-586-5744 derrick.pinckney@eia.gov Manufacturing Energy Use Tom Lorenz 202-586-3442 thomas.lorenz@eia.gov State Energy Consumption Estimates Yvonne L. Taylor 202-586-1455 yvonne.taylor@eia.gov Energy Information Administration 1000 Independence Ave, SW Washington, DC 20585 For Energy Data & Statistics (202) 586-8800 infoctr@eia.gov Website Technical Inquiries

498

A Juxtaposition of rational choice and socio-cultural approaches to explain changes in family size throughout the process of economic development using household survey data from Brazil.  

E-Print Network [OSTI]

??This research juxtaposes empirical approaches to analyze the relationship between fertility and economic development. Using household survey data from Brazil in the mid 1990s, separate (more)

Delfino, Daniel

2010-01-01T23:59:59.000Z

499

Role of household factors in parental attitudes to pandemic influenza-related school closure in Japan: a cross-sectional study  

Science Journals Connector (OSTI)

Subjects comprised households of schoolchildren attending six schools (one kindergarten ... ) all attached to Shinshu University, Nagano, Japan. Because these six schools had been investigated...11, 12...], this ...

Mitsuo Uchida; Minoru Kaneko; Shigeyuki Kawa

2014-10-01T23:59:59.000Z

500

Energy  

Gasoline and Diesel Fuel Update (EIA)

Federal, State, local, and foreign governments, EIA survey respondents, and the media. For further information, and for answers to questions on energy statistics, please...