Powered by Deep Web Technologies
Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

F (2001) -- Household Natural Gas Usage Form F (2001) -- Household Natural Gas Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Natural Gas Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

2

Form EIA-457E (2001) -- Household Bottled Gas Usage  

U.S. Energy Information Administration (EIA) Indexed Site

E (2001) - Household Electricity Usage Form E (2001) - Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Electricity Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

3

Answers to Frequently Asked Questions About the Household Bottled ...  

U.S. Energy Information Administration (EIA)

Form EIA-457D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

4

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2012 (EIA)

Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the...

5

Trends in the Use of Natural Gas in U.S. Households, 1987 to 2001  

U.S. Energy Information Administration (EIA)

used, the RECS is ideal as a data source so as to reveal the underlying factors behind the trends in energy demand--and in this paper, household natural gas demand.

6

Greenhouse gas emissions from home composting of organic household waste  

Science Conference Proceedings (OSTI)

The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6-3.5 kg week{sup -1} and the temperature inside the composting units was in all cases only a few degrees (2-10 {sup o}C) higher than the ambient temperature. The emissions of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) were quantified as 0.4-4.2 kg CH{sub 4} Mg{sup -1} input wet waste (ww) and 0.30-0.55 kg N{sub 2}O Mg{sup -1} ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH{sub 4} and N{sub 2}O emissions) of 100-239 kg CO{sub 2}-eq. Mg{sup -1} ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH{sub 4} during mixing which was estimated to 8-12% of the total CH{sub 4} emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg{sup -1} ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO{sub 2}-eq. Mg{sup -1} ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.

Andersen, J.K., E-mail: jka@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark); Boldrin, A.; Christensen, T.H.; Scheutz, C. [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)

2010-12-15T23:59:59.000Z

7

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

8

Residential demand for natural gas by black and nonblack households in the Midwest  

SciTech Connect

This paper presents a comparative analysis of natural gas demand by black and nonblack households in the Midwest census region. Historically, such comparative analyses have been grounded in comparisons of the share of income spent for energy (see Newman and Day, 1975; Grier, 1979; and Brazzel and Hunter, 1979). Because of theoretical flaws associated with this approach, our analysis is couched within a complete demand system (see Morrissey, 1984) in which certain restrictions required by consumer demand theory are imposed on our energy demand system. This approach should provide more precise measurement of the relative nature of natural gas demand. Philips (1983), Deaton and Muellbauer (1980), and Theil (1980), along with Morrissev, provide fine discussions of the complete demand system. Our working hypothesis is that the structural demand relationship for natural gas is different for black and nonblack households and that this difference reflects the greater vulnerability of blacks to rising prices of natural gas. Because of deficient economic resources and a long legacy of institutional constraints such as financial red-lining and housing discrimination, as well as lingering behavioral characteristics, it remains difficult for blacks to move out of energy-inefficient housing. This, in turn, corresponds directly to a larger energy demand burden for blacks in the Midwest. This paper is organized into four sections. The first section provides the historical background upon which our analysis is based. The second section is a discussion of our demand model. Our empirical results are described in the third section. In the fourth and final section, our conclusions and suggestions for future research are presented. 18 refs., 7 tabs.

Poyer, D.A.; Johnson, G.

1985-10-01T23:59:59.000Z

9

Genome in a Bottle Consortium  

Science Conference Proceedings (OSTI)

Genome in a Bottle Consortium. Summary: NIST has organized the "Genome in a Bottle Consortium" to develop the reference ...

2013-03-15T23:59:59.000Z

10

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

11

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

offering larger incentives for natural gas vehicles? -Do youbuy-down incentives were offered. For natural gas vehicle

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

12

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

2000. Natural Gas Vehicle Coalition, “Energy Policy Act ofPolicy Alternative Fuel Vehicles: The Case of Compressed Natural Gas (Natural Gas Vehicles Stall on Way to Market,” Forum for Applied Research and Public Policy,

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

13

Genome in a Bottle Consortium Workshop  

Science Conference Proceedings (OSTI)

Genome in a Bottle Consortium Workshop. Purpose: NIST ... well. Related Project(s): Genome in a Bottle Consortium. Details: ...

2013-08-13T23:59:59.000Z

14

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

AdministrationHousehold Vehicles Energy Consumption 1994 110 Electricity: See Main Heating Fuel. Energy Used in the Home: For electricity or natural gas, the quantity is the...

15

U.S. household winter natural gas heating expenditures expected to ...  

U.S. Energy Information Administration (EIA)

LDCs typically buy the natural gas commodity using a variety of services—depending on factors such as their load profile/customer mix, geographic location, ...

16

EIA - Household Transportation report: Household Vehicles ...  

U.S. Energy Information Administration (EIA)

This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of ...

17

The effect of household consumption patterns on energy use and greenhouse gas emissions: Comparison between Spain and Sweden.  

E-Print Network (OSTI)

??The purpose of this study is to provide a better understanding of the effect of increasing income on energy use and greenhouse gas (GHG) emissions… (more)

Cintas Sánchez, Olivia

2011-01-01T23:59:59.000Z

18

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

19

Section J: HOUSEHOLD CHARACTERISTICS  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey Form EIA-457A (2001)--Household Questionnaire OMB No.: 1905-0092, Expiring February 29, 2004 42 Section J: HOUSEHOLD ...

20

Stably Free Modules Over the Klein Bottle.  

E-Print Network (OSTI)

??This paper is concerned with constructing countably many, non-free stably free modules for the Klein bottle group. The work is based on the papers “Stably… (more)

Misseldine, Andrew

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that  

E-Print Network (OSTI)

CHEMICAL WASTE RECYCLING PROGRAM EMPTY CHEMICAL BOTTLES: which include all glass, plastic and metal bottles that previously contained chemicals (hazardous or non-hazardous) are collected by CWS for recycling. Bottles should be dry and empty without chemical residue. Rinse and collect rinsate in chemical

Ungerleider, Leslie G.

22

Investigation of the use of biogas in a gas hob$$hand the feasibility of upgrading it on a household scale.  

E-Print Network (OSTI)

??Incldes abstract. The production and use of biogas on a household scale is becoming more common. The biogas is mainly used for lighting and cooking.… (more)

Trautmann, Christina.

2012-01-01T23:59:59.000Z

23

Bottling Electricity: Storage as a Strategic Tool for Managing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a...

24

Development of Syringe/Bottle Hybrids for Sampling Slurries  

SciTech Connect

A convenient and effective sample bottle system based on simple modifications of disposable plastic syringes and bottles has been devised and tested for slurry samples. Syringe/ bottle hybrids (hereafter referred to as syringe bottles) have the convenience of regular flat-bottom bottles with screw cap closures. In addition, the syringe imparts a sliding and adjustable bottom to the bottle that forces the entire contents from the bottle. The system was designed especially to collect samples for high temperature work-ups of DWPF slurry samples. The syringe bottles together with fixed-bottom sample vial inserts would provide the DWPF with convenient and reliable methods for dealing with slurry samples.

Coleman, C.J. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1998-01-08T23:59:59.000Z

25

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Household Tables Household Tables (Million U.S. Households; 24 pages, 122 kb) Contents Pages HC2-1a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 2 HC2-2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 2 HC2-3a. Household Characteristics by Household Income, Million U.S. Households, 2001 2 HC2-4a. Household Characteristics by Type of Housing Unit, Million U.S. Households, 2001 2 HC2-5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC2-6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC2-7a. Household Characteristics by Four Most Populated States, Million U.S. Households, 2001 2

26

Analysis of the energy requirement for household consumption.  

E-Print Network (OSTI)

??Humans in households use energy for their activities. This use is both direct, for example electricity and natural gas, but also indirect, for the production,… (more)

Vringer, Kees

2005-01-01T23:59:59.000Z

27

char_household2001.pdf  

Annual Energy Outlook 2012 (EIA)

9a. Household Characteristics by Northeast Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row...

28

The economics of US greenhouse gas emissions reduction policy : assessing distributional effects across households and the 50 United States using a recursive dynamic computable general equilibrium (CGE) model  

E-Print Network (OSTI)

The political economy of US climate policy has revolved around state- and district- level distributional economics, and to a lesser extent household-level distribution questions. Many politicians and analysts have suggested ...

Look, Wesley Allen

2013-01-01T23:59:59.000Z

29

Household carbon dioxide production in relation to the greenhouse effect  

SciTech Connect

A survey of 655 households from eastern suburbs of Melbourne was undertaken to determine householders[prime] attitudes to, and understanding of, the greenhouse effect. Carbon dioxide emissions resulting from car, electricity and gas use were computed and household actions which could reduce CO[sub 2] emissions were addressed. Preliminary analysis of the results indicates that householders in this area are aware of, and concerned about, the greenhouse effect, although their understanding of its causes is often poor. Many appreciate the contribution of cars, but are unclear about the relative importance of other household activities. Carbon dioxide emissions from the three sources examined averaged 21[center dot]2 tonnes/year per household and 7[center dot]4 tonnes/year per person. Electricity was the largest contributor (8[center dot]6 tonnes/year), cars the next largest (7[center dot]7 tonnes/year) and gas third (5[center dot] tonnes/year) per household. Emissions varied considerably from household to household. There was a strong positive correlation between availability of economic resources and household CO[sub 2] output from all sources. Carbon dioxide production, particularly from car use, was greater from households which were most distant from a railway station, and from larger households, and numbers of children in the household had little effect on emissions. There were also some economics of scale for households containing more adults. Understanding the causes of the greenhouse bore little relation to change in CO[sub 2] emissions; being concerned about it was associated with a small reduction; but actual actions to reduce car use and household heating, however motivated, produced significant reductions. 12 refs., 9 figs., 6 tabs.

Stokes, D.; Lindsay, A.; Marinopoulos, J.; Treloar, A.; Wescott, G. (Deakin Univ., Clayton (Australia))

1994-03-01T23:59:59.000Z

30

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

31

Car Sharing within Households –  

E-Print Network (OSTI)

The objective of this paper was to analyse two activities: who rents a car and why? Which households share the driving of their cars? In order to do that, the Parc-Auto (Car-Fleet) database, built from annual postal surveys conducted with a panel of 10,000 French households, has been processed. Among approximately one hundred questions in the survey, two key questions have been crossed against many social, economic, demographic, geographic or time variables. KQ1: “During the last 12 months, did you — or another person from your home — rent a car in France for personal purposes? ” KQ2: “Is this car occasionally used by other persons?” Here are the main findings. Renting households are mainly working, high income households, living in the core of big cities, and in particular in Paris. Most of them have two wage-sheets and two cars, one of which is generally a recent, high power, high quality car. Car rental is mainly an occasional practice. Yet for a minority of renters, it is a sustained habit. Households with more licence holders than cars share the most: about three quarters of them share their cars. On the contrary, single driver-single car households have less opportunity to share: only 15 % share. Household car sharing shed light on the gender role within households: while 58 % of the main users of the shared cars are male, 55 % of secondary users are female. Household car sharing is mainly a regular practice. Finally, without diminishing the merits of innovative transport solutions proposed here and there, it is not a waste of time to give some insight on self established behaviour within households. This reveals that complex patterns have been built over time by the people themselves, to cope with diverse situations that cannot be easily handled by straightforward classifications. The car cannot be reduced to a personal object. Household car sharing also carries strong links with the issue of car dependency. Sifting car availability and choice

Francis Papon; Laurent Hivert

2008-01-01T23:59:59.000Z

32

PRELIMINARY DATA Housing Unit and Household Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

PRELIMINARY DATA Housing Unit and Household Characteristics RSE Column Factor: Total Households (million) Households With Fans (million) Percent of Households With Fans Number of...

33

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

34

A Framework for Corporate Householding  

E-Print Network (OSTI)

Previous research on corporate household and corporate householding has presented examples, literature review, and working definitions. In this paper, we first improve our ...

Madnick, Stuart

2003-03-21T23:59:59.000Z

35

Towards sustainable household energy use in the Netherlands, Int  

E-Print Network (OSTI)

Abstract: Households consume direct energy, using natural gas, heating oil, gasoline and electricity, and consume indirect energy, the energy related to the production of goods and the delivery of services for the households. Past trends and present-day household energy use (direct and indirect) are analysed and described. A comparison of these findings with objectives concerning ecological sustainability demonstrates that present-day household energy use is not sustainable. A scenario towards sustainable household energy use is designed containing far-reaching measures with regard to direct energy use. Scenario evaluation shows a substantial reduction of direct energy use; however, this is not enough to meet the sustainability objectiv es. Based on these results, the possibilities and the limitations are discussed to enable households to make their direct and indirect energy use sustainable on the long run.

Jack Van Der Wal; Henri C. Moll

2001-01-01T23:59:59.000Z

36

Transportation and Greenhouse Gas Mitigation  

E-Print Network (OSTI)

Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofreplacement. Greenhouse gas budgets for households and

Lutsey, Nicholas P.; Sperling, Dan

2008-01-01T23:59:59.000Z

37

Spray bottle apparatus with force multiply pistons  

DOE Patents (OSTI)

The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

Eschbach, Eugene A. (Richland, WA)

1992-01-01T23:59:59.000Z

38

Spray bottle apparatus with pressure multiplying pistons  

DOE Patents (OSTI)

The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

Moss, Owen R. (Kennewick, WA); Gordon, Norman R. (Kennewick, WA); DeFord, Henry S. (Kennewick, WA)

1990-01-01T23:59:59.000Z

39

housingunit_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Unit Tables Housing Unit Tables (Million U.S. Households; 49 pages, 210 kb) Contents Pages HC1-1a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 5 HC1-2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 4 HC1-3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 4 HC1-4a. Housing Unit Characteristics by Type of Housing Unit, Million U.S. Households, 2001 4 HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 4 HC1-6a. Housing Unit Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 4 HC1-7a. Housing Unit Characteristics by Four Most Populated States, Million U.S. Households, 2001 4

40

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Home Office Equipment Tables Home Office Equipment Tables (Million U.S. Households; 12 pages, 123 kb) Contents Pages HC7-1a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 1 HC7-2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 1 HC7-3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 1 HC7-4a. Home Office Equipment by Type of Housing Unit, Million U.S. Households, 2001 1 HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 1 HC7-6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 1 HC7-7a. Home Office Equipment by Four Most Populated States, Million U.S. Households, 2001 1

42

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

43

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

In contrast to a hybrid vehicle whichcombines multiple1994) "Demand Electric Vehicles in Hybrid for Households:or 180 mile hybrid electric vehicle. Natural gas vehicles (

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

44

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

45

Household Vehicles Energy Use Cover Page  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Glossary Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use Cover Page Contact Us * Feedback *...

46

High-Speed Fracture Phenomena of Glass Bottle by Underwater ...  

Science Conference Proceedings (OSTI)

Presentation Title, High-Speed Fracture Phenomena of Glass Bottle by Underwater Shock Wave. Author(s), Hidetoshi Sakamoto, Shinjirou Kawabe, Yoshifumi ...

47

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

48

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

49

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Space Heating by Northeast Census Region, 9a. Space Heating by Northeast Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 20.3 14.8 5.4 NE Heat Home .................................................... 106.0 20.1 14.7 5.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.9 No Heating Equipment ................................ 0.5 Q Q Q 39.5 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.7 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 20.1 14.7 5.4 NE Natural Gas .................................................

50

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Space Heating by Midwest Census Region, 0a. Space Heating by Midwest Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Heat Home .................................................... 106.0 24.5 17.1 7.4 NE Do Not Heat Home ....................................... 1.0 Q Q Q 19.8 No Heating Equipment ................................ 0.5 Q Q Q 39.2 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q 38.4 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 24.5 17.1 7.4 NE Natural Gas

51

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by West Census Region, 2a. Space Heating by West Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.6 1.0 1.6 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Heat Home .................................................... 106.0 22.6 6.7 15.9 NE Do Not Heat Home ....................................... 1.0 0.7 Q 0.7 10.6 No Heating Equipment ................................ 0.5 0.4 Q 0.4 18.1 Have Equipment But Do Not Use It ............................................... 0.4 0.2 Q 0.2 27.5 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 22.6 6.7 15.9 NE Natural Gas .................................................

52

Squeeze bottle apparatus with force multiplying pistons  

DOE Patents (OSTI)

The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber, and a corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area, thereby generating greater hydraulic pressure for use in forming the spray.

Moss, Owen R. (Cary, NC); Gordon, Norman R. (Kennewick, WA); DeFord, Henry S. (Kennewick, WA); Eschbach, Eugene A. (Richland, WA)

1994-01-01T23:59:59.000Z

53

"Housing Unit and Household","Households","With Fans","Households...  

U.S. Energy Information Administration (EIA) Indexed Site

LPG",5,3.8,75.6,10,2.7,2 "Wood",2,1.5,73.5,3.7,2.5,1.8 "Kerosene",0.7,0.3,47,0.8,2.3,1.1 "Solar","Q","Q","Q","Q","Q","Q" "OtherNone",0.6,0.1,21.6,0.3,2.1,0.5 "Natural Gas...

54

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products  

E-Print Network (OSTI)

Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products containing toxic chemicals. These wastes CANNOT be disposed of in regular garbage. Any should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

de Lijser, Peter

55

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning Tables Air Conditioning Tables (Million U.S. Households; 24 pages, 138 kb) Contents Pages HC4-1a. Air Conditioning by Climate Zone, Million U.S. Households, 2001 2 HC4-2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 2 HC4-3a. Air Conditioning by Household Income, Million U.S. Households, 2001 2 HC4-4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 2 HC4-5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 2 HC4-6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 2 HC4-7a. Air Conditioning by Four Most Populated States, Million U.S. Households, 2001 2 HC4-8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 2

56

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. 3. Vehicle Miles Traveled This chapter presents information on household vehicle usage, as measured by the number of vehicle miles traveled (VMT). VMT is one of the two most important components used in estimating household vehicle fuel consumption. (The other, fuel efficiency, is discussed in Chapter 4). In addition, this chapter examines differences in driving behavior based on the characteristics of the household and the type of vehicle driven. Trends in household driving patterns are also examined using additional information from the Department of Transportation's Nationwide Personal Transportation Survey (NPTS). Household VMT is a measure of the demand for personal transportation. Demand for transportation may be viewed from either an economic or a social perspective. From the economic point-of-view, the use of a household vehicle represents the consumption of one

57

Energy Spending and Vulnerable Households  

E-Print Network (OSTI)

 off than before. In particular large households with low  incomes seem to have been adversely affected by the new tariff structures since  they have comparably large energy expenditure (Bennet et al., 2002).    5. Vulnerable Households and Energy Spending  The...  tariffs can play an important part in the public debate  on  eradicating  fuel  poverty  and  helping  the  vulnerable  households.  Smart  metering  can  provide  consumers  with  information  on  the  actual  energy  consumption and might  lead  to...

Jamasb, Tooraj; Meier, Helena

2011-01-26T23:59:59.000Z

58

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

DOEEIA-0464(91) Distribution Category UC-950 Household Vehicles Energy Consumption 1991 December 1993 Energy Information Administration Office of Energy Markets and End Use U.S....

59

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

60

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

a regular basis at the time of the 1990 RECS personal interviews. Electricity: See Main Heating Fuel. Energy Information AdministrationHousehold Vehicles Energy Consumption 1991...

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bottling Electricity: Storage as a Strategic Tool for Managing Variability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bottling Electricity: Storage as a Strategic Tool for Managing Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid - EAC Report (December 2008) The objectives of this report are to provide the Secretary of Energy with the Electricity Advisory Committee's proposed five-year plan for integrating basic and applied research on energy storage technology applications. This report recommends policies that the U.S. Department of Energy (DOE) should consider as it develops and implements an energy storage technologies program, as authorized by the Energy Independence and Security Act of 2007. Bottling Electricity: Storage as a Strategic Tool for Managing Variability

62

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Household Characteristics by Household Income, 3a. Household Characteristics by Household Income, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Household Size 1 Person ....................................... 28.2 9.7 -- -- -- 6.5 11.3 5.7 2 Persons ...................................... 35.1 4.3 -- -- -- 2.0 7.8 5.8 3 Persons ...................................... 17.0 -- 3.3 -- -- 2.2 5.2 7.3 4 Persons ...................................... 15.6 -- 2.2 -- -- -- 4.3 8.1 5 Persons ...................................... 7.1

63

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by West Census Region, 2a. Household Characteristics by West Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.8 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Household Size 1 Person ...................................................... 28.2 5.6 1.8 3.8 5.4 2 Persons .................................................... 35.1 7.3 1.9 5.5 4.9 3 Persons .................................................... 17.0 3.5 0.9 2.6 7.6 4 Persons .................................................... 15.6 3.5 1.1 2.4 6.4 5 Persons .................................................... 7.1 2.0 0.6 1.4 9.7 6 or More Persons

64

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

65

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Household Characteristics by Midwest Census Region, 0a. Household Characteristics by Midwest Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.7 Total .............................................................. 107.0 24.5 17.1 7.4 NE Household Size 1 Person ...................................................... 28.2 6.7 4.7 2.0 6.2 2 Persons .................................................... 35.1 8.0 5.4 2.6 5.0 3 Persons .................................................... 17.0 3.8 2.7 1.1 7.9 4 Persons .................................................... 15.6 3.5 2.5 1.0 8.1 5 Persons .................................................... 7.1 1.7

66

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Space Heating by Urban/Rural Location, 8a. Space Heating by Urban/Rural Location, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.6 0.9 1.3 1.3 1.2 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.3 Heat Home .................................................... 106.0 49.1 18.0 21.2 17.8 4.3 Do Not Heat Home ....................................... 1.0 0.7 0.1 0.1 0.1 25.8 No Heating Equipment ................................ 0.5 0.4 0.1 Q 0.1 33.2 Have Equipment But Do Not Use It ............................................... 0.4 0.3 Q Q Q 30.2 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0 49.1 18.0 21.2 17.8 4.3 Natural Gas

67

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Space Heating by Type of Owner-Occupied Housing Unit, 5a. Space Heating by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.4 1.9 3.0 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Heat Home ..................................... 72.4 63.0 2.0 1.7 5.7 6.7 Do Not Heat Home ........................ 0.4 0.2 Q Q Q 46.2 No Heating Equipment .................. 0.3 0.2 Q Q Q 39.0 Have Equipment But Do Not Use It ................................ Q Q Q Q Q NF Main Heating Fuel and Equipment (Have and Use Equipment) ............ 72.4 63.0 2.0 1.7 5.7 6.7 Natural Gas

68

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Space Heating by Year of Construction, 2a. Space Heating by Year of Construction, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.5 1.1 1.1 1.1 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Heat Home ..................................... 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Do Not Heat Home ........................ 1.0 Q Q Q 0.2 0.3 Q 23.2 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 30.3 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q Q Q 37.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 15.4 18.2 18.6 13.6 13.9 26.4 4.3 Natural Gas ...................................

69

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Space Heating by Type of Housing Unit, 4a. Space Heating by Type of Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.7 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.4 Heat Home ..................................... 106.0 73.4 9.4 16.4 6.8 4.5 Do Not Heat Home ........................ 1.0 0.3 Q 0.6 Q 19.0 No Heating Equipment .................. 0.5 0.2 Q 0.3 Q 24.2 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 28.1 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 73.4 9.4 16.4 6.8 4.5 Natural Gas ...................................

70

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Space Heating by Type of Rented Housing Unit, 6a. Space Heating by Type of Rented Housing Unit, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Heat Home ..................................... 33.7 10.4 7.4 14.8 1.1 6.9 Do Not Heat Home ........................ 0.6 Q Q 0.5 Q 21.4 No Heating Equipment .................. 0.2 Q Q Q Q 84.5 Have Equipment But Do Not Use It ................................ 0.4 Q Q 0.3 Q 36.4 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 33.7 10.4 7.4 14.8 1.1 6.9 Natural Gas ...................................

71

Extending Efficiency Services to Underserved Households: NYSERDA...  

NLE Websites -- All DOE Office Websites (Extended Search)

Extending Efficiency Services to Underserved Households: NYSERDA's Assisted Home Performance with ENERGY STAR Program Title Extending Efficiency Services to Underserved Households:...

72

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

73

Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coca-Cola Bottling Co. Coca-Cola Bottling Co. Brings Hybrids to New Orleans to someone by E-mail Share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Facebook Tweet about Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Twitter Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Google Bookmark Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Delicious Rank Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on Digg Find More places to share Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings Hybrids to New Orleans on AddThis.com... Jan. 1, 2010 Coca-Cola Bottling Co. Brings Hybrids to New Orleans

74

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

75

A Comprehensive Model for Evaluation of Carbon Footprint and Greenhouse Gages Emission in Household Biogas Plants  

Science Conference Proceedings (OSTI)

Based on Life Cycle Assessment and other related methods, this paper introduced a comprehensive model for the evaluation of the carbon footprint and greenhouse gases emission in household biogas plants including nearly all the processes of the household ... Keywords: Biogas Plant, Carbon Footprint, Life Cycle, Greenhouse Gas

Jie Zhou; Shubiao Wu; Wanqin Zhang; Changle Pang; Baozhi Wang; Renjie Dong; Li Chen

2012-07-01T23:59:59.000Z

76

Cover Page of Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Household Vehicles Energy Use Cover Page Cover Page of Household Vehicles Energy Use: Latest Data & Trends...

77

Ergonomics Designs of Aluminum Beverage Cans and Bottles  

Science Conference Proceedings (OSTI)

This paper introduced the finite element analyses into the ergonomics designs to evaluate the human feelings numerically and objectively. Two design examples in developing aluminum beverage cans and bottles are presented. The first example describes a design of the tab of the can with better finger access. A simulation of finger pulling up the tab of the can has been performed and a pain in the finger has been evaluated by using the maximum value of the contact stress of a finger model. The finger access comparison of three kinds of tab ring shape designs showed that the finger access of the tab that may have a larger contact area with finger is better. The second example describes a design of rib-shape embossed bottles for hot vending. Analyses of tactile sensation of heat have been performed and the amount of heat transmitted from hot bottles to finger was used to present the hot touch feeling. Comparison results showed that the hot touch feeling of rib-shape embossed bottles is better than that of cylindrical bottles, and that the shape of the rib also influenced the hot touch feeling.

Han Jing; Itoh, Ryouiti; Shinguryo, Takuro [Technical Development Department, Aluminum Company, Mitsubishi Materials Corporation, 1500 Suganuma, Oyama-Cho, Sunto-Gun, Shizuoka, 410-1392 (Japan); Yamazaki, Koetsu [Division of Innovative Technology and Science, Graduate School of Natural Science and Technology, Kanazawa University, 2-40-20 Kodatsuno, Kanazawa, Ishikawa, 920-8667 (Japan); Nishiyama, Sadao [Aluminum Company, Mitsubishi Materials Corporation, 19F Otemachi First Square West, 1-5-1, Ohtemachi, Chiyoda-Ku. Tokyo, 100-8117 (Japan)

2005-08-05T23:59:59.000Z

78

Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

W as hi ng to n, DC DOEEIA-0464(94) Distribution Category UC-950 Household Vehicles Energy Consumption 1994 August 1997 Energy Information Administration Office of Energy Markets...

79

ac_household2001.pdf  

Annual Energy Outlook 2012 (EIA)

2a. Air Conditioning by West Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total...

80

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Household savings and portfolio choice  

E-Print Network (OSTI)

This thesis consists of three essays that examine household savings and portfolio choice behavior. Chapter One analyses the effects of employer matching contributions and tax incentives on participation and contribution ...

Klein, Sean Patrick

2010-01-01T23:59:59.000Z

82

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Air Conditioning by Household Income, 3a. Air Conditioning by Household Income, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.9 1.5 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 12.3 17.4 21.5 31.7 9.6 23.4 3.9 Air Conditioners Not Used ............ 2.1 0.4 0.7 0.5 0.5 0.4 0.9 20.8 Households Using Electric Air-Conditioning 2 .......................... 80.8 11.9 16.7 21.0 31.2 9.1 22.6 3.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 6.2 10.7 15.2 25.3 4.5 12.4 5.3 Without a Heat Pump .................. 46.2 4.9 9.1 12.1 20.1 3.6 10.4 6.1 With a Heat Pump

83

Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution  

SciTech Connect

The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

Durst, B.M.; Clayton, E.D.; Smith, J.H.

1985-01-01T23:59:59.000Z

84

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

85

Household Energy Expenditure and Income Groups: Evidence from Great Britain  

E-Print Network (OSTI)

  and  0.024  for  district heating However, as income is not observed its effect cannot be analysed.  Wu et al. (2004) examine the demand for space heating in Armenia, Moldova, and  Kyrgyz  Republic  using  household  survey  data.  In  these  countries...  and in some regions incomes are not sufficient to  afford space heating from district heating systems making these systems unviable.  We  analyse  electricity,  gas  and  overall  energy  spending  for  a  large  sample  of  households  in  Great  Britain.  We  discern  inflection  points  and  discuss...

Jamasb, Tooraj; Meier, H

86

Distributional Impacts of Carbon Pricing: A General Equilibrium Approach with Micro-Data for Households  

E-Print Network (OSTI)

Many policies to limit greenhouse gas emissions have at their core efforts to put a price on carbon emissions. Carbon pricing impacts households both by raising the cost of carbon intensive products and by changing factor ...

Rausch, Sebastian

87

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

or 180 mile hybrid electric vehicle. Natural gas vehicles (1994) Demand for Electric Vehicles in Hybrid Households: A nof Electric, Hybrid and Other Alternative Vehicles. A r t h

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

88

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Household Characteristics by Climate Zone, a. Household Characteristics by Climate Zone, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Household Size 1 Person ....................................... 28.2 2.5 8.1 6.5 4.8 6.2 9.9 2 Persons ...................................... 35.1 3.1 9.4 8.2 6.5 7.9 8.7 3 Persons ...................................... 17.0 1.3 4.3 4.0 3.3 4.1 10.7 4 Persons ...................................... 15.6 1.4 3.9 3.4 3.4 3.5 10.5 5 Persons ......................................

89

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Household Characteristics by Type of Rented Housing Unit, 6a. Household Characteristics by Type of Rented Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.1 0.9 2.5 Total Rented Units ........................ 34.3 10.5 7.4 15.2 1.1 6.9 Household Size 1 Person ....................................... 12.3 2.5 2.6 7.0 0.3 10.0 2 Persons ...................................... 9.2 2.5 2.5 4.1 Q 11.8 3 Persons ...................................... 5.4 2.0 1.1 2.0 0.4 13.9 4 Persons ...................................... 3.8 1.6 0.7 1.4 Q 17.7 5 Persons ...................................... 2.0 0.9 0.4 0.6 Q 24.1 6 or More Persons ........................

90

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Household Characteristics by Type of Owner-Occupied Housing Unit, 5a. Household Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.3 0.4 2.0 2.9 1.3 Total Owner-Occupied Units ....... 72.7 63.2 2.1 1.8 5.7 6.7 Household Size 1 Person ....................................... 15.8 12.5 0.8 0.9 1.6 10.3 2 Persons ...................................... 25.9 23.4 0.5 0.5 1.5 10.1 3 Persons ...................................... 11.6 9.6 0.5 Q 1.3 12.1 4 Persons ...................................... 11.8 10.9 Q Q 0.7 15.7 5 Persons ...................................... 5.1 4.5 Q Q 0.4 24.2 6 or More Persons

91

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Household Characteristics by South Census Region, 1a. Household Characteristics by South Census Region, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.1 1.5 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Household Size 1 Person ...................................................... 28.2 9.9 5.0 1.8 3.1 6.3 2 Persons .................................................... 35.1 13.0 6.7 2.5 3.8 4.2 3 Persons .................................................... 17.0 6.6 3.7 1.2 1.7 8.8 4 Persons .................................................... 15.6 6.0 3.3 0.8 1.9 10.7 5 Persons ....................................................

92

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Household Characteristics by Urban/Rural Location, 8a. Household Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.1 Household Size 1 Person ...................................................... 28.2 14.6 5.3 4.8 3.6 6.4 2 Persons .................................................... 35.1 15.7 5.7 6.9 6.8 5.4 3 Persons .................................................... 17.0 7.6 2.8 3.5 3.1 7.2 4 Persons .................................................... 15.6 6.8 2.3 4.1 2.4 8.1 5 Persons .................................................... 7.1 3.1 1.3 1.3 1.4 12.3 6 or More Persons

93

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Home Office Equipment by Household Income, 3a. Home Office Equipment by Household Income, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.4 1.9 1.2 1.0 0.6 1.9 0.9 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 47.6 3.0 Households Using Office Equipment .......................... 96.2 13.2 19.8 25.5 37.7 10.7 38.8 3.2 Personal Computers 2 ................... 60.0 3.7 8.7 16.0 31.6 3.7 17.4 4.6 Number of Desktop PCs 1 .................................................. 45.1 2.8 7.1 12.8 22.4 2.8 13.6 5.1 2 or more .................................... 9.1 0.6 0.7 1.7 6.2 0.6 2.2 13.0 Number of Laptop PCs

94

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Household Characteristics by Year of Construction, 2a. Household Characteristics by Year of Construction, Million U.S. Households, 2001 Household Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.0 1.2 1.2 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Household Size 1 Person ....................................... 28.2 2.5 4.5 5.1 4.0 3.7 8.3 7.5 2 Persons ...................................... 35.1 4.8 6.2 6.6 4.5 5.3 7.8 5.8 3 Persons ...................................... 17.0 2.5 3.3 2.9 2.3 1.9 4.1 8.4 4 Persons ...................................... 15.6 3.4 2.8 2.3 1.9 1.8 3.4 9.6 5 Persons ...................................... 7.1 1.6 1.2 1.3 0.6 0.7 1.6 14.3 6 or More Persons

95

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

HOW MANY HYBRID HOUSEHOLDS IN THE CALIFORNIA NEW CAR MARKET?average 2.43 cars per household, then the hybrid householdnumber of multi-car households that fit our hybrid household

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

96

Household energy in South Asia  

Science Conference Proceedings (OSTI)

This research study on the use of energy in South Asis (India, Pakistan, Sri Lanka and Bangladesh) was sponsored by the Food and Agriculture Organization of the UN, the International Bank for Reconstruction and Development (the World Bank), and the Directorate-General for Development of the Commission of the European Communities. The aim of this book is to improve the understanding of household energy and its linkages, by reviewing the data resources on household energy use, supply, prices and other relevant factors that exist in South Asia.

Leach, G.

1987-01-01T23:59:59.000Z

97

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

98

Table WH1. Total Households Using Water Heating Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table WH1. Total Households Using Water Heating Equipment, 2005 Million U.S. Households Fuels Used (million U.S. households) Number of Water Heaters Used

99

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Space Heating by Household Income, 3a. Space Heating by Household Income, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Heat Home ..................................... 106.0 18.4 22.7 26.8 38.1 14.6 33.4 3.3 Do Not Heat Home ........................ 1.0 0.3 Q 0.3 0.3 0.3 0.4 23.4 No Heating Equipment .................. 0.5 Q Q Q 0.2 Q Q 35.0 Have Equipment But Do Not Use It ................................ 0.4 Q Q Q Q 0.2 0.3 22.8 Main Heating Fuel and Equipment (Have and Use Equipment) ............ 106.0 18.4 22.7

100

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Appliances by Household Income, 3a. Appliances by Household Income, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.5 1.4 1.1 1.0 0.8 1.6 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2 1 ................................................ 95.2 17.3 21.1 24.8 32.0 13.8 31.1 3.4 2 or More .................................. 6.5 0.8 0.9 1.3 3.6 0.6 1.5 13.1 Most Used Oven ........................ 101.7 18.0 22.0 26.1 35.6 14.4 32.6 3.2

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

102

Table 1. Natural Gas Consumption and Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Appliances Households Using Natural Gas (million) ... 1 A small amount of natural gas used for air conditioning is included in "Natural Gas" under "All Uses".

103

The plastic bottle: A multi-industry impact  

Science Conference Proceedings (OSTI)

Recent changes in motor oil packaging project the future rate of change for packaging operations of companies committed to the marketing of motor oil. Highlighted by the widespread conversion to the plastic bottle as a new standard container for motor oil is the need for the development of higher speed, more cost effective packaging machinery which will meet and eventually exceed historical line speeds and operating efficiencies. The significant investments required for evolving equipment and packaging systems require rethinking of traditional manufacturing concepts and relationships; onetime investments in packaging plants are decisions of the past. The plastic bottle for motor oil truly impacts packaging operations, distribution networks, retail outlets and packaging machinery manufacturers. It is a multi-industry impact.

Noel, J.F.

1986-01-01T23:59:59.000Z

104

Cold weather led to record-high natural gas storage ...  

U.S. Energy Information Administration (EIA)

... Northeast natural gas markets during the first half of last week arrived earlier in the Midwest, where about 68% of households use natural gas for ...

105

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

106

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the tables. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle miles traveled (VMT) or gallons consumed; (2) Tables of per household statistics such as VMT per household; and (3) Tables of per vehicle statistics such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model year data, or family income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table. Row and Column Factors These tables present estimates

107

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Home Office Equipment by Northeast Census Region, 9a. Home Office Equipment by Northeast Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.1 1.4 1.2 Total .............................................................. 107.0 20.3 14.8 5.4 NE Households Using Office Equipment ......................................... 96.2 17.9 12.8 5.0 1.3 Personal Computers 1 ................................. 60.0 10.9 7.7 3.3 3.1 Number of Desktop PCs 1 ................................................................ 45.1 8.7 6.2 2.5 3.7 2 or more ................................................... 9.1 1.4 0.9 0.5 12.9 Number of Laptop PCs 1 ................................................................

108

Energy and household expenditure patterns  

Science Conference Proceedings (OSTI)

Since households account, either directly or indirectly, for two-thirds of the energy consumed in the US, changes in household activities will affect energy use. Expected changes in prices, personal income, and family spending over the next 20 years are looked at as well as the implications for energy consumption. The analysis shows that direct energy purchases will break with past trends, dropping from 2.6% to 0.2% annual growth for the rest of the century. Growth in spending on energy-using goods is also likely to slow down. The year 2000 will see a marked decrease in the growth of national energy consumption. 58 references, 3 figures, 35 tables.

Lareau, T.J.; Darmstadter, J.

1983-01-01T23:59:59.000Z

109

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Home Office Equipment by Midwest Census Region, 0a. Home Office Equipment by Midwest Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 24.5 17.1 7.4 NE Households Using Office Equipment ......................................... 96.2 22.4 15.7 6.7 1.3 Personal Computers 1 ................................. 60.0 14.1 9.9 4.2 3.7 Number of Desktop PCs 1 ................................................................ 45.1 10.4 7.2 3.2 3.7 2 or more ................................................... 9.1 2.3 1.6 0.7 10.1 Number of Laptop PCs 1 ................................................................

110

char_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Household Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.0 1.5 1.5 Total .............................................................. 107.0 7.1 12.3 7.7 6.3 NE Household Size 1 Person ...................................................... 28.2 2.2 2.4 1.8 1.7 7.3 2 Persons .................................................... 35.1 2.2 4.0 2.4 2.0 6.9 3 Persons .................................................... 17.0 1.1 2.0 1.2 1.2 9.5 4 Persons .................................................... 15.6 0.8 1.9 1.3 0.9 11.2 5 Persons .................................................... 7.1 0.4 1.1 0.4 0.5 19.8 6 or More Persons ....................................... 4.0 0.4 0.9 0.4 0.1 16.4 2001 Household Income Category

111

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Air Conditioning by Midwest Census Region, 0a. Air Conditioning by Midwest Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 20.5 13.6 6.8 2.2 Air Conditioners Not Used ........................... 2.1 0.3 Q Q 27.5 Households Using Electric Air-Conditioning 1 ........................................ 80.8 20.2 13.4 6.7 2.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 14.3 9.5 4.8 3.8 Without a Heat Pump ................................ 46.2 13.6 9.0 4.6 3.9 With a Heat Pump .....................................

112

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Air Conditioning by Urban/Rural Location, 8a. Air Conditioning by Urban/Rural Location, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.4 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 36.8 13.6 18.9 13.6 4.3 Air Conditioners Not Used ........................... 2.1 1.2 0.2 0.4 0.3 21.4 Households Using Electric Air-Conditioning 2 ........................................ 80.8 35.6 13.4 18.6 13.3 4.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 ............................ 57.5 23.6 8.6 15.8 9.4 5.1 Without a Heat Pump ................................ 46.2 19.3 7.4 13.1 6.4 6.3 With a Heat Pump ..................................... 11.3 4.4

113

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Air Conditioning by Type of Owner-Occupied Housing Unit, 5a. Air Conditioning by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.5 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 59.5 58.7 6.5 12.4 5.3 5.2 Air Conditioners Not Used ............ 1.2 1.1 Q 0.6 Q 23.3 Households Using Electric Air-Conditioning 1 .......................... 58.2 57.6 6.3 11.8 5.1 5.3 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 44.7 43.6 3.2 7.1 3.5 7.0 Without a Heat Pump .................. 35.6 35.0 2.4 6.1 2.7 7.7 With a Heat Pump .......................

114

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

6a. Air Conditioning by Type of Rented Housing Unit, 6a. Air Conditioning by Type of Rented Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.8 0.5 1.4 1.2 1.6 Households With Electric Air-Conditioning Equipment ........ 23.4 58.7 6.5 12.4 5.3 6.1 Air Conditioners Not Used ............ 0.9 1.1 Q 0.6 Q 23.0 Households Using Electric Air-Conditioning 1 .......................... 22.5 57.6 6.3 11.8 5.1 6.2 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 12.7 43.6 3.2 7.1 3.5 8.5 Without a Heat Pump .................. 10.6 35.0 2.4 6.1 2.7 9.3 With a Heat Pump ....................... 2.2 8.6 0.8 1.0

115

Inconsistent pathways of household waste  

Science Conference Proceedings (OSTI)

The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

Dahlen, Lisa [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden)], E-mail: lisa.dahlen@ltu.se; Aberg, Helena [Department of Food, Health and Environment, University of Gothenburg, P.O. Box 12204, SE, 402 42 Gothenburg (Sweden); Lagerkvist, Anders [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden); Berg, Per E.O. [HB Anttilator, Stagnellsgatan 3, SE, 652 23, Karlstad (Sweden)

2009-06-15T23:59:59.000Z

116

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Air Conditioning by South Census Region, 1a. Air Conditioning by South Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.4 Households With Electric Air-Conditioning Equipment ...................... 82.9 37.2 19.3 6.4 11.5 1.5 Air Conditioners Not Used ........................... 2.1 0.4 Q Q Q 28.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 36.9 19.0 6.4 11.5 1.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 30.4 16.1 5.0 9.2 2.8 Without a Heat Pump ................................ 46.2 22.1 10.4 3.4 8.3 5.6 With a Heat Pump

117

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Air Conditioning by Northeast Census Region, 9a. Air Conditioning by Northeast Census Region, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.8 Households With Electric Air-Conditioning Equipment ...................... 82.9 14.5 11.3 3.2 3.3 Air Conditioners Not Used ........................... 2.1 0.3 0.3 Q 28.3 Households Using Electric Air-Conditioning 1 ........................................ 80.8 14.2 11.1 3.2 3.4 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 5.7 4.9 0.8 8.9 Without a Heat Pump ................................ 46.2 5.2 4.5 0.7 9.2 With a Heat Pump .....................................

118

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Air Conditioning by Year of Construction, 2a. Air Conditioning by Year of Construction, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.6 1.2 1.1 1.2 1.1 0.9 Households With Electric Air-Conditioning Equipment ........ 82.9 13.6 16.0 14.7 10.4 10.5 17.6 4.7 Air Conditioners Not Used ............ 2.1 Q 0.3 0.5 0.3 0.4 0.5 27.2 Households Using Electric Air-Conditioning 2 .......................... 80.8 13.4 15.8 14.2 10.1 10.2 17.1 4.7 Type of Electric Air-Conditioning Used Central Air-Conditioning 3 .............. 57.5 12.6 13.7 11.0 7.1 6.6 6.4 5.9 Without a Heat Pump .................. 46.2 10.1 10.4 8.0 6.1 5.9 5.7 7.0 With a Heat Pump ....................... 11.3 2.5 3.3

119

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Air Conditioning by Type of Housing Unit, 4a. Air Conditioning by Type of Housing Unit, Million U.S. Households, 2001 Air Conditioning Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.6 1.5 1.4 1.8 Households With Electric Air-Conditioning Equipment ........ 82.9 58.7 6.5 12.4 5.3 4.9 Air Conditioners Not Used ............ 2.1 1.1 Q 0.6 Q 21.8 Households Using Electric Air-Conditioning 1 .......................... 80.8 57.6 6.3 11.8 5.1 4.9 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 .............. 57.5 43.6 3.2 7.1 3.5 6.7 Without a Heat Pump .................. 46.2 35.0 2.4 6.1 2.7 7.7 With a Heat Pump ....................... 11.3 8.6 0.8 1.0 0.8 19.7 Room Air-Conditioning

120

Household energy use in urban Venezuela: Implications from surveys in Maracaibo, Valencia, Merida, and Barcelona-Puerto La Cruz  

Science Conference Proceedings (OSTI)

This report identifies the most important results of a comparative analysis of household commercial energy use in Venezuelan urban cities. The use of modern fuels is widespread among all cities. Cooking consumes the largest share of urban household energy use. The survey documents no use of biomass and a negligible use of kerosene for cooking. LPG, natural gas, and kerosene are the main fuels available. LPG is the fuel choice of low-income households in all cities except Maracaibo, where 40% of all households use natural gas. Electricity consumption in Venezuela`s urban households is remarkably high compared with the levels used in households in comparable Latin American countries and in households of industrialized nations which confront harsher climatic conditions and, therefore, use electricity for water and space heating. The penetration of appliances in Venezuela`s urban households is very high. The appliances available on the market are inefficient, and there are inefficient patterns of energy use among the population. Climate conditions and the urban built form all play important roles in determining the high level of energy consumption in Venezuelan urban households. It is important to acknowledge the opportunities for introducing energy efficiency and conservation in Venezuela`s residential sector, particularly given current economic and financial constraints, which may hamper the future provision of energy services.

Figueroa, M.J.; Sathaye, J.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics  

SciTech Connect

This report describes results of the research project on "Improving Demographic Components of Integrated Assessment Models: The Effect of Changes in Population Composition by Household Characteristics". The overall objective of this project was to improve projections of energy demand and associated greenhouse gas emissions by taking into account demographic factors currently not incorporated in Integrated Assessment Models (IAMs) of global climate change. We proposed to examine the potential magnitude of effects on energy demand of changes in the composition of populations by household characteristics for three countries: the U.S., China, and Indonesia. For each country, we planned to analyze household energy use survey data to estimate relationships between household characteristics and energy use; develop a new set of detailed household projections for each country; and combine these analyses to produce new projections of energy demand illustrating the potential importance of consideration of households.

Brian C. O'Neill

2006-08-09T23:59:59.000Z

122

Gas  

Science Conference Proceedings (OSTI)

... Implements a gas based on the ideal gas law. It should be noted that this model of gases is niave (from many perspectives). ...

123

Fuelwood Use by Rural Households in the Brazilian Atlantic Forest  

E-Print Network (OSTI)

Fuelwood is an important source of domestic energy in rural regions of Brazil. In the Zona da Mata of Minas Gerais, native species from the Atlantic Forest are an important source of fuelwood, supplemented by wood from eucalyptus and coffee plantations. The use of native species is complicated by their increasing scarcity and the recent enforcement of forest policies that prohibit the felling of even dead natives trees without a permit. In this study, the factors contributing to the use of fuelwood in this region, despite the simultaneous use of liquid petroleum gas in most households, are explored by examining fuelwood use patterns in four small rural communities in the Zona da Mata Mineira using household surveys and semi-structured interviews. Two hypotheses were tested using a Jacknife regression. The first hypothesis, based on the energy ladder model, tested the predictive power of socioeconomic status in relation to fuelwood use. Two dependent variables were used to represent the importance of fuelwood to a household: the amount of time a household spent collecting fuelwood (Effort) and the number of purposes a household used fuelwood for (Class of Fuelwood Use). Socioeconomic status did explain a statistically significant percentage of the variance in Effort, but not in Class of Fuelwood Use. The second hypothesis tested for a moderating effect of the availability of fuelwood on the relationship between the socioeconomic status of a household and the dependent variables. The interaction between access to fuelwood and socioeconomic status was shown to explain a significant percentage of the variance in Effort, thereby indicating that the effect of socioeconomic status on time spent collecting fuelwood depends on access to fuelwood. However, there was no statistically significant interaction found between Class of Fuelwood Use and fuelwood availability. The Atlantic Forest Policy was found to have little influence on domestic energy decisions made by surveyed households. Few research subjects had a good understanding of the basic tenets of this policy and the Forest Police do not have adequate resources to enforce the policy at this level.

Wilcox-Moore, Kellie J.

2010-05-01T23:59:59.000Z

124

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

125

Nationwide Survey on Household Energy Use  

U.S. Energy Information Administration (EIA)

4 ~ Apartment in house or building divided into 2, 3, or 4 apartments ... of your family (living in your household). Include income from all sources--before taxes

126

Alston S. Householder Fellowship | Careers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

in Scientific Computing honors Dr. Alston S. Householder, founding Director of the Mathematics Division (now Computer Science and Mathematics Division) at the Oak Ridge National...

127

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

128

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

129

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

130

Residential Energy Usage by Origin of Householder  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Residential Home Page > Energy Usage by Origin of Householder. Consumption and Expenditures. NOTE: To View and/or Print PDF's ...

131

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

132

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

133

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Home Office Equipment by South Census Region, 1a. Home Office Equipment by South Census Region, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.8 1.2 1.3 1.6 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Households Using Office Equipment ......................................... 96.2 34.6 18.4 6.0 10.1 1.2 Personal Computers 1 ................................. 60.0 20.7 11.7 3.2 5.8 4.0 Number of Desktop PCs 1 ................................................................ 45.1 15.5 8.6 2.6 4.3 4.9 2 or more ................................................... 9.1 3.1 2.0 0.4 0.7 9.6 Number of Laptop PCs

134

Electricity Prices for Households - EIA  

Gasoline and Diesel Fuel Update (EIA)

Households for Selected Countries1 Households for Selected Countries1 (U.S. Dollars per Kilowatthour) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA 0.023 NA NA Australia 0.091 0.092 0.094 0.098 NA NA NA NA NA Austria 0.144 0.154 0.152 0.163 0.158 0.158 0.178 0.201 NA Barbados NA NA NA NA NA NA NA NA NA Belgium NA NA NA NA NA NA NA NA NA Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA 0.145 0.171 NA Canada 0.067 0.069 0.070 0.071 0.076 0.078 NA NA NA Chile NA NA NA NA NA NA 0.140 0.195 NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 0.075 0.071 0.074 0.076 0.079 0.079 0.080 0.086 NA Colombia NA NA NA NA NA NA 0.111 0.135 NA

135

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Home Office Equipment by Year of Construction, 2a. Home Office Equipment by Year of Construction, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.4 1.1 1.1 1.2 1.2 1.0 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Households Using Office Equipment .......................... 96.2 14.9 16.7 17.0 12.2 13.0 22.4 4.4 Personal Computers 2 ................... 60.0 11.0 11.6 10.3 7.2 7.8 12.0 5.3 Number of Desktop PCs 1 .................................................. 45.1 8.0 9.0 7.7 5.3 6.1 9.1 5.8 2 or more .................................... 9.1 1.8 1.6 2.0 1.1 1.0 1.6 11.8 Number of Laptop PCs 1 ..................................................

136

ac_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2001 2001 Air Conditioning Characteristics RSE Column Factor: Total U.S. Four Most Populated States RSE Row Factors New York California Texas Florida 0.4 1.1 1.7 1.2 1.2 Households With Electric Air-Conditioning Equipment ...................... 82.9 4.9 6.0 7.4 6.2 2.4 Air Conditioners Not Used ........................... 2.1 0.1 0.8 Q 0.1 23.2 Households Using Electric Air-Conditioning 1 ........................................ 80.8 4.7 5.2 7.4 6.1 2.6 Type of Electric Air-Conditioning Used Central Air-Conditioning 2 ............................ 57.5 1.3 3.9 6.2 5.7 6.7 Without a Heat Pump ................................ 46.2 1.2 3.2 5.5 3.8 8.1 With a Heat Pump ..................................... 11.3 Q 0.8 0.6 1.9 14.7 Room Air-Conditioning ................................ 23.3 3.4 1.2 1.2 0.3 13.6 1 Unit

137

homeoffice_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Home Office Equipment by Climate Zone, a. Home Office Equipment by Climate Zone, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.2 1.1 1.0 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 7.9 Households Using Office Equipment .......................... 96.2 8.4 26.2 21.1 19.0 21.5 7.8 Personal Computers 2 ................... 60.0 5.7 16.7 13.1 12.1 12.6 7.4 Number of Desktop PCs 1 .................................................. 45.1 4.2 12.8 9.6 8.8 9.6 7.8 2 or more .................................... 9.1 0.8 2.4 2.3 2.0 1.7 12.1 Number of Laptop PCs 1 ..................................................

138

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

139

Atom trapping in a bottle beam created by a diffractive optical element  

E-Print Network (OSTI)

A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

V. V. Ivanov; J. A. Isaacs; M. Saffman; S. A. Kemme; A. R. Ellis; G. R. Brady; J. R. Wendt; G. W. Biedermann; S. Samora

2013-05-23T23:59:59.000Z

140

Free planar actions of the Klein bottle group Frederic Le Roux  

E-Print Network (OSTI)

Free planar actions of the Klein bottle group Fr´ed´eric Le Roux January 16, 2011 Abstract We describe the structure of the free actions of the fundamental group of the Klein bottle torsion free groups that cannot act freely on the plane. We also find some properties which

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Atom trapping in a bottle beam created by a diffractive optical element  

E-Print Network (OSTI)

A diffractive optical element (DOE) has been fabricated for creating blue detuned atomic bottle beam traps. The DOE integrates several diffractive lenses for trap creation and imaging of atomic fluorescence. We characterize the performance of the DOE and demonstrate trapping of cold Cesium atoms inside a bottle beam.

Ivanov, V V; Saffman, M; Kemme, S A; Ellis, A R; Brady, G R; Wendt, J R; Biedermann, G W; Samora, S

2013-01-01T23:59:59.000Z

142

www.mdpi.com/journal/ijerph Bottled Water: United States Consumers and Their Perceptions of Water Quality  

E-Print Network (OSTI)

Abstract: Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report bottled water as their primary drinking water source when they perceive that drinking water is not safe. Furthermore, those who give lower ratings to the quality of their ground water are more likely to regularly purchase bottle water for drinking and use bottle water as their primary drinking water source.

Zhihua Hu; Lois Wright Morton; Robert L. Mahler

2011-01-01T23:59:59.000Z

143

Characterization of household waste in Greenland  

Science Conference Proceedings (OSTI)

The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

Eisted, Rasmus, E-mail: raei@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2011-07-15T23:59:59.000Z

144

Factors influencing county level household fuelwood use  

Science Conference Proceedings (OSTI)

This study explains household fuelwood consumption behavior at the county level by linking it to economic and demographic conditions in counties. Using this link, counties are identified where potential fuelwood use problems and benefits are greatest. A probit equation estimates household probability of wood use (percent woodburners in a county heating degree days, household income, nonwood fuel price, fuelwood price, percent forest land, population density, and fraction of households using various types of heating equipment. A linear-in-parameters equation estimates average wood consumed by a woodburner based on county heating degree days, household income, percent forest land, and price of nonwood fuel divided by fuelwood price. Parameters are estimated using fuelwood use data for individual households from a 1908-81 nationwide survey. The probit equation predicts percentage of wood burns well over a wide range of county conditions. The wood consumption equation overpredicts for counties with high income and high population density (over 6000 persons per square mile). The model shows average woodburning per household over all households decreases with increasing population density, and the influence of county economic characteristics varies with density.

Skog, K.E.

1986-01-01T23:59:59.000Z

145

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Appliances by Northeast Census Region, 9a. Appliances by Northeast Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.3 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 19.6 14.5 5.2 1.1 1 .............................................................. 95.2 18.2 13.3 4.9 1.1 2 or More ................................................. 6.5 1.4 1.1 0.3 11.7 Most Used Oven ...................................... 101.7 19.6 14.5 5.2 1.1 Electric .....................................................

146

spaceheat_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Space Heating by South Census Region, 1a. Space Heating by South Census Region, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.3 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Heat Home .................................................... 106.0 38.8 20.2 6.8 11.8 NE Do Not Heat Home ....................................... 1.0 Q Q Q Q 20.1 No Heating Equipment ................................ 0.5 Q Q Q Q 39.8 Have Equipment But Do Not Use It ............................................... 0.4 Q Q Q Q 39.0 Main Heating Fuel and Equipment (Have and Use Equipment) ........................... 106.0

147

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by West Census Region, 2a. Appliances by West Census Region, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.2 Total .............................................................. 107.0 23.3 6.7 16.6 NE Kitchen Appliances Cooking Appliances Oven ......................................................... 101.7 22.1 6.6 15.5 1.1 1 .............................................................. 95.2 20.9 6.4 14.5 1.1 2 or More ................................................. 6.5 1.2 0.2 1.0 14.6 Most Used Oven ...................................... 101.7 22.1 6.6 15.5 1.1 Electric .....................................................

148

Measurement of nicotine in household dust  

Science Conference Proceedings (OSTI)

An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure.

Kim, Sungroul [Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Institute for Global Tobacco Control, 627 N. Washington Street, 2nd Floor Baltimore, MD 21205 (United States); Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States)], E-mail: srkim@jhsph.edu; Aung, Ther; Berkeley, Emily [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Diette, Gregory B. [Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States); Department of Medicine, Johns Hopkins University School of Medicine (United States); Breysse, Patrick N. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 (United States)

2008-11-15T23:59:59.000Z

149

Probit Model Estimation Revisited: Trinomial Models of Household Car Ownership  

E-Print Network (OSTI)

Household Ownership of Car Davidon, W. C. (1959) VariableStudy Report 9: Models of Car Ownership and License Holding.Trinomial Models of Household Car Ownership. Transportation

Bunch, David S.; Kitamura, Ryuichi

1991-01-01T23:59:59.000Z

150

Modeling patterns of hot water use in households  

E-Print Network (OSTI)

7 No Dishwashers . . . . . . . .to households without dishwashers. no_cw is only applied towasher; the absence of a dishwasher; a household consisting

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

151

Performance of a short 'magnetic bottle' electron spectrometer  

Science Conference Proceedings (OSTI)

In this article, a newly constructed electron spectrometer of the magnetic bottle type is described. The instrument is part of an apparatus for measuring the electron spectra of free clusters using synchrotron radiation. Argon and helium outer valence photoelectron spectra have been recorded in order to investigate the characteristic features of the spectrometer. The energy resolution (E/{Delta}E) has been found to be {approx}30. Using electrostatic retardation of the electrons, it can be increased to at least 110. The transmission as a function of kinetic energy is flat, and is not impaired much by retardation with up to 80% of the initial kinetic energy. We have measured a detection efficiency of most probably 0.6{sub -0.1}{sup +0.05}, but at least of 0.4. Results from testing the alignment of the magnet, and from trajectory simulations, are also discussed.

Mucke, M.; Lischke, T.; Arion, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Foerstel, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bradshaw, A. M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Hergenhahn, U. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

2012-06-15T23:59:59.000Z

152

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

SciTech Connect

The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

2009-04-15T23:59:59.000Z

153

Urban household energy use in Thailand  

SciTech Connect

Changes in household fuel and electricity use that accompany urbanization in Third World countries bear large economic and environmental costs. The processes driving the fuel transition, and the policy mechanisms by which it can be influenced, need to be better understood for the sake of forecasting and planning, especially in the case of electricity demand. This study examines patterns of household fuel use and electrical appliance utilization in Bangkok, Chieng Mai and Ayutthaya, Thailand, based on the results of a household energy survey. Survey data are statistically analyzed using a variety of multiple regression techniques to evaluate the relative influence of various household and fuel characteristics on fuel and appliance choice. Results suggest that changes to the value of women's time in urban households, as women become increasingly active in the labor force, have a major influence on patterns of household energy use. The use of the home for small-scale commercial activities, particularly food preparation, also has a significant influence on fuel choice. In general, household income does not prove to be an important factor in fuel and appliance selection in these cities, although income is closely related to total electricity use. The electricity use of individual household appliances is also analyzed using statistical techniques as well as limited direct metering. The technology of appliance production in Thailand is evaluated through interviews with manufacturers and comparisons of product performance. These data are used to develop policy recommendations for improving the efficiency of electrical appliances in Thailand by relying principally on the dynamism of the consumer goods market, rather than direct regulation. The annual electricity savings from the recommended program for fostering rapid adoption of efficient technologies are estimated to reach 1800 GWh by the year 2005 for urban households alone.

Tyler, S.R.

1992-01-01T23:59:59.000Z

154

Did Household Consumption Become More Volatile?  

E-Print Network (OSTI)

I show that after accounting for predictable variation arising from movements in real interest rates, preferences, income shocks, liquidity constraints and measurement errors, volatility of household consumption in the US increased between 1970 and 2004. For households headed by nonwhite and/or poorly educated individuals, this rise was significantly larger. This stands in sharp contrast with the dramatic fall in instability of the aggregate U.S. economy over the same period. Thus, while aggregate shocks affecting households fell over time, idiosyncratic shocks increased. This finding may lead to significant welfare implications.

Olga Gorbachev

2009-01-01T23:59:59.000Z

155

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

a. Appliances by Climate Zone, a. Appliances by Climate Zone, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.9 1.1 1.1 1.2 1.1 Total .................................................. 107.0 9.2 28.6 24.0 21.0 24.1 7.8 Kitchen Appliances Cooking Appliances Oven .............................................. 101.7 9.1 27.9 23.1 19.4 22.2 7.8 1 ................................................... 95.2 8.7 26.0 21.6 17.7 21.2 7.9 2 or More ..................................... 6.5 0.4 1.9 1.5 1.7 1.0 14.7 Most Used Oven ........................... 101.7 9.1 27.9 23.1 19.4 22.2

156

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

4a. Appliances by Type of Housing Unit, 4a. Appliances by Type of Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Type of Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.4 0.5 1.7 1.6 1.9 Total ............................................... 107.0 73.7 9.5 17.0 6.8 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 69.1 9.4 16.7 6.6 4.3 1 ................................................ 95.2 63.7 8.9 16.2 6.3 4.3 2 or More .................................. 6.5 5.4 0.4 0.4 0.2 15.9 Most Used Oven ........................ 101.7 69.1 9.4 16.7 6.6 4.3 Electric ...................................... 63.0 43.3 5.2 10.9 3.6

157

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Appliances by Type of Owner-Occupied Housing Unit, 5a. Appliances by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.4 2.1 3.1 1.3 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Kitchen Appliances Cooking Appliances Oven ........................................... 68.3 59.1 2.0 1.7 5.4 7.0 1 ................................................ 62.9 54.1 2.0 1.6 5.2 7.1 2 or More .................................. 5.4 5.0 Q Q 0.2 22.1 Most Used Oven ........................ 68.3 59.1 2.0 1.7 5.4 7.0 Electric ......................................

158

appl_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Appliances by Year of Construction, 2a. Appliances by Year of Construction, Million U.S. Households, 2001 Appliance Types and Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.4 1.5 1.2 1.1 1.2 1.1 0.9 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.2 Kitchen Appliances Cooking Appliances Oven ........................................... 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 1 ................................................ 95.2 13.1 16.3 16.6 12.1 12.7 24.3 4.4 2 or More .................................. 6.5 1.2 0.9 1.1 0.7 1.0 1.6 14.8 Most Used Oven ........................ 101.7 14.3 17.2 17.8 12.9 13.7 25.9 4.2 Electric ......................................

159

Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA  

SciTech Connect

The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

1979-12-01T23:59:59.000Z

160

Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA  

DOE Green Energy (OSTI)

The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

Not Available

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft Word - Household Energy Use CA  

U.S. Energy Information Administration (EIA) Indexed Site

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

162

Microsoft Word - Household Energy Use CA  

Gasoline and Diesel Fuel Update (EIA)

0 20 40 60 80 100 US PAC CA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US PAC CA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US PAC CA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US PAC CA Expenditures dollars ELECTRICITY ONLY average per household  California households use 62 million Btu of energy per home, 31% less than the U.S. average. The lower than average site consumption results in households spending 30% less for energy than the U.S. average.  Average site electricity consumption in California homes is among the lowest in the nation, as the mild climate in much of the state leads to less reliance on

163

U.S. Household Electricity Report  

Reports and Publications (EIA)

Brief analysis reports on the amount of electricity consumed annually by U.S. households for each of several end uses, including space heating and cooling, water heating, lighting, and the operation of more than two dozen appliances.

Barbara Fichman

2005-07-14T23:59:59.000Z

164

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

165

Do Disaster Expectations Explain Household Portfolios?  

E-Print Network (OSTI)

use the American Consumer Expenditure Survey (CEX) for consumption ex- penditure information. The data covers the period between 1983 and 2004. The expenditure information is recorded quarterly with approximately 5000 households in each wave. Every...

Alan, Sule

166

Household gasoline demand in the United States  

E-Print Network (OSTI)

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

167

Indoor Secondary Pollutants from Household Product Emissions in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor Secondary Pollutants from Household Product Emissions in the Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Title Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study Publication Type Journal Article LBNL Report Number LBNL-58785 Year of Publication 2006 Authors Destaillats, Hugo, Melissa M. Lunden, Brett C. Singer, Beverly K. Coleman, Alfred T. Hodgson, Charles J. Weschler, and William W. Nazaroff Journal Environmental Science and Technology Volume 40 Start Page Chapter Pagination 4421-4428 Abstract Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 × 105 molecules cm-3 were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1 - 25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products

168

An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors  

E-Print Network (OSTI)

Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled ...

Memmott, Matthew

169

Design and Operation of Equipment to Detect and Remove Water within Used Nuclear Fuel Storage Bottles  

SciTech Connect

Inspection and drying equipment has been implemented in a hot cell to address the inadvertent ingress of water into used nuclear fuel storage bottles. Operated with telemanipulators, the system holds up to two fuel bottles and allows their threaded openings to be connected to pressure transducers and a vacuum pump. A prescribed pressure rebound test is used to diagnose the presence of moisture. Bottles found to contain moisture are dried by vaporization. The drying process is accelerated by the application of heat and vacuum. These techniques detect and remove virtually all free water (even water contained in a debris bed) while leaving behind most, if not all, particulates. The extracted water vapour passes through a thermoelectric cooler where it is condensed back to the liquid phase for collection. Fuel bottles are verified to be dry by passing the pressure rebound test.

C.C. Baker; T.M. Pfeiffer; J.C. Price

2013-09-01T23:59:59.000Z

170

Consumer Winter Natural Gas Costs - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Household Gas Heating Costs. Since ... percent more by our calculations for a typical ... coming season they spent less for it due to much lower resid ...

171

Household and environmental characteristics related to household energy-consumption change: A human ecological approach  

Science Conference Proceedings (OSTI)

This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

Guerin, D.A.

1988-01-01T23:59:59.000Z

172

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

173

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

174

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network (OSTI)

7: Estimated annual supply chain natural gas related GHG7: Estimated annual supply chain natural gas related GHGTotal Indirect ? supply chain Direct ? natural gas Direct ?

Masanet, Eric

2010-01-01T23:59:59.000Z

175

Model documentation: household model of energy  

Science Conference Proceedings (OSTI)

The Household Model of Energy is an econometric model, meaning that energy use is determined quantitatively with the use of economic variables such as fuel prices and income. HOME is also primarily a structural model, meaning that energy use is determined as the result of interactions of intermediate components such as the number of households, the end use fuel shares and the energy use per household. HOME forecasts energy consumption in all occupied residential structures (households) in the United States on an annual basis through 1990. The forecasts are made based upon a number of initial conditions in 1980, various estimated elasticities, various parameters and assumptions, and a set of forecasted fuel prices and income. In addition to the structural detail, HOME operates on a more disaggregated level. This includes four end-use services (space heating, water heating, air conditioning, and others), up to seven fuel/technology types (dependent upon the end use service), two housing types, four structure vintages, and four Census regions. When the model is run as a module in IFFS, a sharing scheme further disaggregates the model to 10 Federal regions.

Holte, J.A.

1984-02-01T23:59:59.000Z

176

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

177

Competition Helps Kids Learn About Energy and Save Their Households...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm...

178

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

179

Vehicle Technologies Office: Fact #259: March 17, 2003 Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

9: March 17, 2003 Household Travel by Gender to someone by E-mail Share Vehicle Technologies Office: Fact 259: March 17, 2003 Household Travel by Gender on Facebook Tweet about...

180

Essays on household decision making in developing countries  

E-Print Network (OSTI)

This dissertation contains three essays on household decision making in the areas of education and health in developing countries. The first chapter explores intra-household decision making in the context of conditional ...

Berry, James W. (James Wesley)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of the Household Sample for Furnace and Boiler Life...  

NLE Websites -- All DOE Office Websites (Extended Search)

households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler...

182

ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYSIS OF CEE HOUSEHOLD SURVEY ANALYSIS OF CEE HOUSEHOLD SURVEY NATIONAL AWARENESS OF ENERGY STAR ® FOR 2012 TABLE OF CONTENTS Acknowledgements .................................................................................. ii Executive Summary ............................................................................ ES-1 Introduction ............................................................................................... 1 Methodology Overview ............................................................................. 2 Key Findings ............................................................................................. 5 Recognition .................................................................................................................. 5 Understanding ........................................................................................................... 12

183

Universe in a (Blue) Bottle | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Universe in a (Blue) Bottle Universe in a (Blue) Bottle High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » October 2012 Universe in a (Blue) Bottle Simulating the evolution of the universe on the Argonne Leadership Computing Facility's IBM Blue Gene/Q. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of ANL Large-scale structures in the universe form over time in these stills from a supercomputer simulation of the evolution of the universe.

184

Universe in a (Blue) Bottle | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Universe in a (Blue) Bottle Universe in a (Blue) Bottle Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » October 2012 Universe in a (Blue) Bottle Simulating the evolution of the universe on the Argonne Leadership Computing Facility's IBM Blue Gene/Q. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of ANL Large-scale structures in the universe form over time in these stills from

185

Fission gas release restrictor for breached fuel rod  

DOE Patents (OSTI)

In the event of a breach in the cladding of a rod in an operating liquid metal fast breeder reactor, the rapid release of high-pressure gas from the fission gas plenum may result in a gas blanketing of the breached rod and rods adjacent thereto which impairs the heat transfer to the liquid metal coolant. In order to control the release rate of fission gas in the event of a breached rod, the substantial portion of the conventional fission gas plenum is formed as a gas bottle means which includes a gas pervious means in a small portion thereof. During normal reactor operation, as the fission gas pressure gradually increases, the gas pressure interiorly of and exteriorly of the gas bottle means equalizes. In the event of a breach in the cladding, the gas pervious means in the gas bottle means constitutes a sufficient restriction to the rapid flow of gas therethrough that under maximum design pressure differential conditions, the fission gas flow through the breach will not significantly reduce the heat transfer from the affected rod and adjacent rods to the liquid metal heat transfer fluid flowing therebetween.

Kadambi, N. Prasad (Gaithersburg, MD); Tilbrook, Roger W. (Monroeville, PA); Spencer, Daniel R. (Unity Twp., PA); Schwallie, Ambrose L. (Greensburg, PA)

1986-01-01T23:59:59.000Z

186

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

Efficiency of Household Appliances in China Jiang Lin8 Appliance Market inEfficiency of Household Appliances in China Executive

Lin, Jiang

2006-01-01T23:59:59.000Z

187

Deep cuts in household greenhouse gas emissions Andrew Blakers  

E-Print Network (OSTI)

an electric light bulb with a power of 100 W for 10 hours then 1,000 watt-hours, or 1 kilowatt hour (k simple measure! 2. Incandescent light bulbs will be phased out over the next few years, but if you do frequently used incandescent light fittings with compact fluorescent lights will reduce your lighting bill

188

U.S. household winter natural gas heating expenditures ...  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, ... and 5% lower for electric ... variety of services—depending on factors such as their load pro ...

189

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

190

Energy Policy 33 (2005) 18251832 Letting the (energy) Gini out of the bottle: Lorenz curves of  

E-Print Network (OSTI)

Energy Policy 33 (2005) 1825­1832 Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity Arne Jacobsona , Anita D. Milmana , Daniel M. Kammena,b, * a Energy and Resources Group, University of California

Kammen, Daniel M.

191

Playful bottle: a mobile social persuasion system to motivate healthy water intake  

Science Conference Proceedings (OSTI)

This study of mobile persuasion system explores the use of a mobile phone, when attached to an everyday object used by an everyday behavior, becomes a tool to sense and influence that behavior. This mobile persuasion system, called Playful Bottle system, ... Keywords: hydration behavior, mobile computing, persuasive technology, ubiquitous computting

Meng-Chieh Chiu; Shih-Ping Chang; Yu-Chen Chang; Hao-Hua Chu; Cheryl Chia-Hui Chen; Fei-Hsiu Hsiao; Ju-Chun Ko

2009-09-01T23:59:59.000Z

192

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test BanPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

193

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

Outline: 1. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. TestingPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

194

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

. Some Bits of History. 2. Nuclear Weapons 101. 3. The Comprehensive Test Ban Treaty. 4. Testing The TestPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. Some Bits of History. 2. Nuclear Weapons

Gilfoyle, Jerry

195

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970). Prevent the spread of nuclear and eliminate nuclear weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) entersPutting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle

Gilfoyle, Jerry

196

Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation  

E-Print Network (OSTI)

weapons (1953). Vetoed by the Soviets. Nuclear Non-Proliferation Treaty (NPT) enters into force (1970Putting the Genie Back in the Bottle: The Science of Nuclear Non-Proliferation Jerry Gilfoyle of Nuclear Non-Proliferation Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1

Gilfoyle, Jerry

197

ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS  

E-Print Network (OSTI)

e.g. , reductions in landfill gas flaring),  or changes to landfills is +/?30%, the range for methane emissions from  natural gas 

Masanet, Eric

2010-01-01T23:59:59.000Z

198

Householder’s Perceptions of Insulation Adequacy and Drafts in the Home in 2001  

E-Print Network (OSTI)

In order to improve the estimation of end-use heating consumption, the Energy Information Administration's (EIA), 2001 Residential Energy Consumption Survey (RECS), for the first time, asked respondents to judge how drafty they perceived their homes to be as a measure of insulation quality. The analysis of the 2001 RECS data shows that householders in newlyconstructed homes perceived their homes to be better insulated and less drafty than do householders in older homes. Single-family homes are perceived to be better insulated and less drafty than are apartments in buildings with two to four units. Cross-variable comparisons also provide the associations between the level of insulation and winter drafts in the homes with household characteristics and location of the home.

Behjat Hojjati

2004-01-01T23:59:59.000Z

199

Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.  

SciTech Connect

Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

Poyer, D.A.; Teotia, A.P.S. [Argonne National Lab., IL (United States); Henderson, L. [Univ. of Baltimore, MD (United States)

1998-05-01T23:59:59.000Z

200

Mitigating Carbon Emissions: the Potential of Improving Efficiencyof Household Appliances in China  

SciTech Connect

China is already the second's largest energy consumer in the world after the United States, and its demand for energy is expected to continue to grow rapidly in the foreseeable future, due to its fast economic growth and its low level of energy use per capita. From 2001 to 2005, the growth rate of energy consumption in China has exceeded the growth rate of its economy (NBS, 2006), raising serious concerns about the consequences of such energy use on local environment and global climate. It is widely expected that China is likely to overtake the US in energy consumption and greenhouse gas (GHG) emissions during the first half of the 21st century. Therefore, there is considerable interest in the international community in searching for options that may help China slow down its growth in energy consumption and GHG emissions through improving energy efficiency and adopting more environmentally friendly fuel supplies such as renewable energy. This study examines the energy saving potential of three major residential energy end uses: household refrigeration, air-conditioning, and water heating. China is already the largest consumer market in the world for household appliances, and increasingly the global production base for consumer appliances. Sales of household refrigerators, room air-conditioners, and water heaters are growing rapidly due to rising incomes and booming housing market. At the same time, the energy use of Chinese appliances is relatively inefficient compared to similar products in the developed economies. Therefore, the potential for energy savings through improving appliance efficiency is substantial. This study focuses particularly on the impact of more stringent energy efficiency standards for household appliances, given that such policies are found to be very effective in improving the efficiency of household appliances, and are well established both in China and around world (CLASP, 2006).

Lin, Jiang

2006-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A Model of Household Demand for Activity Participation and Mobility  

E-Print Network (OSTI)

household car ownership, car usage, and travel by differentownership demand, and car usage demand. Modal travel demand,mode), car ownership, and car usage for spatial aggregations

Golob, Thomas F.

1996-01-01T23:59:59.000Z

202

Crime and the Nation’s Households, 2000 By  

E-Print Network (OSTI)

experienced 1 or more violent or property crimes in 2000, according to data from the National Crime Victimization Survey (NCVS). About 4.3 million households had members who experienced 1 or more nonfatal violent crimes, including rape, sexual assault, robbery, and aggravated or simple assault. About 14.8 million households experienced 1 or more property crimes — household burglary, motor vehicle theft, or theft. Vandalism, presented for the first time in a Bureau of Justice Statistics (BJS) report, victimized about 6.1 million households. The households that sustained vandalism were counted separately from those experiencing other crimes. Because vandalism is included for the first time, findings are presented in a box on page 4. Beginning in 2001, NCVS victimizations will be measured both with and without vandalism. Measuring the extent to which households are victimized by crime One measure of the impact of crime throughout the Nation is gained through estimating the number and percentage of households victimized Highlights During 2000, 16 % of U.S. households had a member who experienced a crime, with 4 % having a member victimized by violent crime. During 1994, 25 % of households experienced at least one crime; 7 % a violent crime.

Patsy A. Klaus

2002-01-01T23:59:59.000Z

203

Barriers to household investment in residential energy conservation: preliminary assessment  

Science Conference Proceedings (OSTI)

A general assessment of the range of barriers which impede household investments in weatherization and other energy efficiency improvements for their homes is provided. The relationship of similar factors to households' interest in receiving a free energy audits examined. Rates of return that underly household investments in major conservation improvements are assessed. A special analysis of household knowledge of economically attractive investments is provided that compares high payback improvements specified by the energy audit with the list of needed or desirable conservation improvements identified by respondents. (LEW)

Hoffman, W.L.

1982-12-01T23:59:59.000Z

204

Household Responses to the Financial Crisis in Indonesia  

E-Print Network (OSTI)

on farm households in Indonesia and Thailand,” World Bank20. Cameron, Lisa. (1999). “Indonesia: a quarterly review,”The Real Costs of Indonesia's Economic Crisis: Preliminary

Thomas, Duncan; Frankenberg, Elizabeth

2005-01-01T23:59:59.000Z

205

SUPPLEMENTAL ENERGY-RELATED DATA FOR THE 2001 NATIONAL HOUSEHOLD ...  

U.S. Energy Information Administration (EIA)

... vehicle manufacturer, vehicle model, vehicle model year, and vehicle type – several ENERGY INFORMATION ADMINISTRATION/2001 NATIONAL HOUSEHOLD TRAVEL SURVEY K-23 ...

206

Essays on the effects of demographics on household consumption.  

E-Print Network (OSTI)

??My dissertation analyses the relationship between households' consumption behavior and changes in family demographic characteristics. The first paper studies consumption over the period of the… (more)

Stepanova, Ekaterina, 1977-

2006-01-01T23:59:59.000Z

207

Table 1. Household Characteristics by Ceiling Fans, 2001  

U.S. Energy Information Administration (EIA)

A reporting of the number of housing units using ceiling fans in U.S. households as reported in the 2001 Residential Energy Consumption Survey

208

U.S. households are incorporating energy–efficient features ...  

U.S. Energy Information Administration (EIA)

... area of increased efficiency: about 60% of households use at least some energy-efficient compact fluorescent (CFL) or light-emitting diode (LED) ...

209

Householder's Perceptions of Insulation Adequacy and Drafts in the ...  

U.S. Energy Information Administration (EIA)

The 2001 RECS was the first RECS to request household perceptions regarding the presence of winter drafts in the home. The data presented in this report ...

210

1997 Residential Energy Consumption and Expenditures per Household ...  

U.S. Energy Information Administration (EIA)

Return to: Residential Home Page . Changes in the 1997 RECS: Housing Unit Type Per Household Member Per Building Increase. Residential Energy Consumption ...

211

Answers to Frequently Asked Questions About the Household ...  

U.S. Energy Information Administration (EIA)

Form EIA-457E (2001) – Household Electricity Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey

212

Appliance Commitment for Household Load Scheduling  

Science Conference Proceedings (OSTI)

This paper presents a novel appliance commitment algorithm that schedules thermostatically-controlled household loads based on price and consumption forecasts considering users comfort settings to meet an optimization objective such as minimum payment or maximum comfort. The formulation of an appliance commitment problem was described in the paper using an electrical water heater load as an example. The thermal dynamics of heating and coasting of the water heater load was modeled by physical models; random hot water consumption was modeled with statistical methods. The models were used to predict the appliance operation over the scheduling time horizon. User comfort was transformed to a set of linear constraints. Then, a novel linear, sequential, optimization process was used to solve the appliance commitment problem. The simulation results demonstrate that the algorithm is fast, robust, and flexible. The algorithm can be used in home/building energy-management systems to help household owners or building managers to automatically create optimal load operation schedules based on different cost and comfort settings and compare cost/benefits among schedules.

Du, Pengwei; Lu, Ning

2011-06-30T23:59:59.000Z

213

In-vessel composting of household wastes  

Science Conference Proceedings (OSTI)

The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for a period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.

Iyengar, Srinath R. [Civil and Environmental Engineering Department, V.J. Technological Institute, H.R. Mahajani Road, Matunga, Mumbai 400 019 (India)]. E-mail: srinathrangamani@yahoo.com; Bhave, Prashant P. [Civil and Environmental Engineering Department, V.J. Technological Institute, H.R. Mahajani Road, Matunga, Mumbai 400 019 (India)]. E-mail: drppbhave@vsnl.net

2006-07-01T23:59:59.000Z

214

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409, "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

E-Print Network (OSTI)

EPRI EA-3409, "Household Appliance Choice: Revision of REEPSEA",3409: "HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPSreport EA-3409, "Household Appliance Choice: Revi- sion of

Wood, D.J.

2010-01-01T23:59:59.000Z

215

Simulating household activities to lower consumption peaks: demonstration  

Science Conference Proceedings (OSTI)

Energy experts need fine-grained dynamics oriented tools to investigate household activities in order to improve power management in the residential sector. This paper presents the SMACH framework for modelling, simulating and analy- sis of household ... Keywords: agent-based modelling, energy, social simulation

Edouard Amouroux, Francois Sempé, Thomas Huraux, Nicolas Sabouret, Yvon Haradji

2013-05-01T23:59:59.000Z

216

Elements of consumption: an abstract visualization of household consumption  

Science Conference Proceedings (OSTI)

To promote sustainability consumers must be informed about their consumption behaviours. Ambient displays can be used as an eco-feedback technology to convey household consumption information. Elements of Consumption (EoC) demonstrates this by visualizing ... Keywords: a-life, eco-feedback, household consumption, sustainability

Stephen Makonin; Philippe Pasquier; Lyn Bartram

2011-07-01T23:59:59.000Z

217

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

218

Model of home heating and calculation of rates of return to household energy conservation investment  

Science Conference Proceedings (OSTI)

This study attempts to find out if households' investments on energy conservation yield expected returns. It first builds a home-heating regression model, then uses the results of the model to calculate the rates of return for households' investments on the energy conservation. The home heating model includes housing characteristics, economic and demographic variables, appliance related variables, and regional dummy variables. Housing characteristic variables are modeled according to the specific physical relationship between the house and its heating requirement. Data from the Residential Energy Consumption Survey (RECS) of 1980-1981 is used for the empirical testing of the model. The model is estimated for single-detached family houses separately for three major home-heating fuel types: electricity, natural gas and fuel oil. Four scenarios are used to calculate rates of return for each household. The results show in the Northern areas the rates of return in most of the cases are a lot higher than market interest rates. In the Western and Southern areas, with few exceptions, the rates of return are lower than market interest rates. The variation of heating degree days and energy prices can affect the rates of return up to 20 percentage points.

Hsueh, L.M.

1984-01-01T23:59:59.000Z

219

2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form D (2001) -- Household Bottled Gas (LPG or Propane) Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the Household Bottled Gas (LPG or Propane) Usage Form What is the purpose of the Residential Energy Consumption Survey? The Residential Energy Consumption Survey (RECS) collects data on energy consumption and expenditures in U.S. housing units. Over 5,000 statistically selected households across the U.S. have already provided information about their household, the physical characteristics of their housing unit, their energy-using equipment, and their energy suppliers. Now we are requesting the energy billing records for these households from each of their energy suppliers. After all this information has been collected, the information will be used to

220

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table AC1. Total Households Using Air-Conditioning Equipment, 2005 Million U.S. Households Type of Air-Conditioning Equipment (millions) Central System

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

222

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

1994) Demand for Electric Vehicles in Hybrid Households: A nand the Household Electric Vehicle Market: A Constraintsthe mar- ket for electric vehicles in California. Presented

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

223

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

224

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

225

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

226

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

227

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

228

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

of Household Income and Appliance Ownership. ECEEE Summerof decreasing prices of appliances, if price data becomesForecasting Household Appliance Ownership in a Growing

Letschert, Virginie

2010-01-01T23:59:59.000Z

229

Projecting household energy consumption within a conditional demand framework  

SciTech Connect

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-01-01T23:59:59.000Z

230

Projecting household energy consumption within a conditional demand framework  

Science Conference Proceedings (OSTI)

Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

Teotia, A.; Poyer, D.

1991-12-31T23:59:59.000Z

231

Forecasting new gas users  

Science Conference Proceedings (OSTI)

Each year hundreds of oil or electric customers call Boston Gas to ask about fuel-switching. What do they look for? A gas utility can boost sales only one way-by gaining new customers. And in today`s slowly growing economy, conservation trends limit growth opportunities. The average household today uses two-thirds the energy of 15 years ago. Commercial and industrial (C/I) customers also conserve. If a gas utility is to grow, a majority of its new customers will likely come from competing fuels, such as oil or electricity.

Lonshteyn, A. [Boston Gas Co., MA (United States)

1995-02-01T23:59:59.000Z

232

Appliance Standby Power and Energy Consumption in South African Households  

Open Energy Info (EERE)

Appliance Standby Power and Energy Consumption in South African Households Appliance Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South African Households Focus Area: Appliances & Equipment Topics: Policy Impacts Website: active.cput.ac.za/energy/web/DUE/DOCS/422/Paper%20-%20Shuma-Iwisi%20M. Equivalent URI: cleanenergysolutions.org/content/appliance-standby-power-and-energy-co Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance A modified engineering model is proposed to estimate standby power and energy losses in households. The modified model accounts for the randomness of standby power and energy losses due to unpredicted user appliance operational behavior.

233

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

234

Profiling energy use in households and office spaces  

Science Conference Proceedings (OSTI)

Energy consumption is largely studied in the context of different environments, such as domestic, corporate, industrial, and public sectors. In this paper, we discuss two environments, households and office spaces, where people have an especially ...

Salman Taherian; Marcelo Pias; George Coulouris; Jon Crowcroft

2010-04-01T23:59:59.000Z

235

Household Preferences for Supporting Renewable Energy, and Barriers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Household Preferences for Supporting Renewable Energy, and Barriers to Green Power Demand Speaker(s): Ryan Wiser Date: May 9, 2002 - 12:00pm Location: Bldg. 90 Nearly 40% of the...

236

Energy Consumption of Refrigerators in Ghana - Outcomes of Household...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar HostPoint of...

237

Smoothing consumption across households and time : essays in development economics  

E-Print Network (OSTI)

This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

Kinnan, Cynthia Georgia

2010-01-01T23:59:59.000Z

238

A Theoretical Basis for Household Energy Conservation UsingProduct...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Theoretical Basis for Household Energy Conservation Using Product-Integrated Feedback Speaker(s): Teddy McCalley Date: October 11, 2002 - 12:00pm Location: Bldg. 90 Seminar Host...

239

Characterizing Household Plug Loads through Self-Administered Load Research  

Science Conference Proceedings (OSTI)

Household miscellaneous loads, which include consumer electronics, are the fastest growing segment of household energy use in the United States. Although the relative energy intensity of applications such as heating and cooling is declining, the DOEAnnual Energy Outlook forecasts that the intensity of residential miscellaneous end uses will increase substantially by 2030. Studies by TIAX and Ecos Consulting reveal that miscellaneous devices8212smaller devices in terms of energy draw but growing in usage8...

2009-12-09T23:59:59.000Z

240

The temperature dependence of ultra-cold neutron wall losses in material bottles coated with deuterated polystryene  

Science Conference Proceedings (OSTI)

Ultra-cold neutrons (UCN) from the LANSCE super-thermal deuterium source were used to fill an acrylic bottle coated with deuterated polystyrene. The bottle was constructed to minimize losses through the filling valve. The storage time was extracted from a series of measurements where the number of neutrons was counted after they were held in the bottle for durations varying from 60-1200 s. The data were collected at temperatures of 18, 40, 65, 105, and 295 K. The data has been analyzed in terms of the ratio of the imaginary to real part of the wall potential. The analysis considers the velocity dependence of the probability per bounce of wall loss. The implication of these measurements for the SNS electric dipole moment search will be presented.

Cooper, Martiin D [Los Alamos National Laboratory; Bagdasarova, Yelena [Los Alamos National Laboratory; Clayton, Steven M [Los Alamos National Laboratory; Currie, Scott A [Los Alamos National Laboratory; Griffith, William C [Los Alamos National Laboratory; Ito, Takeyasu [Los Alamos National Laboratory; Makela, Mark F [Los Alamos National Laboratory; Morris, Cheistopher [Los Alamos National Laboratory; Rahaman, Mohamad S [Los Alamos National Laboratory; Ramsey, John C [Los Alamos National Laboratory; Saunders, Alexander [Los Alamos National Laboratory; Rios, Raymond [IDAHO STATE UNIV.

2011-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Household waste disposal in Mekelle city, Northern Ethiopia  

SciTech Connect

In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal.

Tadesse, Tewodros [Agricultural Economics and Rural Policy Group, Wageningen University, Hollandseweg 1 6706 KN Wageningen (Netherlands)], E-mail: tewodroslog@yahoo.com; Ruijs, Arjan [Environmental Economics and Natural Resources Group, Wageningen University, P.O. Box 8130, 6700 EW Wageningen (Netherlands); Hagos, Fitsum [International Water Management Institute (IWMI), Subregional Office for the Nile Basin and East Africa, P.O. Box 5689, Addis Ababa (Ethiopia)

2008-07-01T23:59:59.000Z

242

Ventilation Behavior and Household Characteristics in NewCalifornia Houses  

SciTech Connect

A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

Price, Phillip N.; Sherman, Max H.

2006-02-01T23:59:59.000Z

243

Source separation of household waste: A case study in China  

SciTech Connect

A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

Zhuang Ying; Wu Songwei; Wang Yunlong [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Wu Weixiang [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: weixiang@zju.edu.cn; Chen Yingxu [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

2008-07-01T23:59:59.000Z

244

Transferring 2001 National Household Travel Survey  

Science Conference Proceedings (OSTI)

Policy makers rely on transportation statistics, including data on personal travel behavior, to formulate strategic transportation policies, and to improve the safety and efficiency of the U.S. transportation system. Data on personal travel trends are needed to examine the reliability, efficiency, capacity, and flexibility of the Nation's transportation system to meet current demands and to accommodate future demand. These data are also needed to assess the feasibility and efficiency of alternative congestion-mitigating technologies (e.g., high-speed rail, magnetically levitated trains, and intelligent vehicle and highway systems); to evaluate the merits of alternative transportation investment programs; and to assess the energy-use and air-quality impacts of various policies. To address these data needs, the U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel. The 1969 survey was the first Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990, 1995, and 2001. Data on daily travel were collected in 1969, 1977, 1983, 1990 and 1995. In 2001, the survey was renamed the National Household Travel Survey (NHTS) and it collected both daily and long-distance trips. The 2001 survey was sponsored by three USDOT agencies: Federal Highway Administration (FHWA), Bureau of Transportation Statistics (BTS), and National Highway Traffic Safety Administration (NHTSA). The primary objective of the survey was to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the demographics of the traveler can be established. Commercial and institutional travel were not part of the survey. Due to the survey's design, data in the NHTS survey series were not recommended for estimating travel statistics for categories smaller than the combination of Census division (e.g., New England, Middle Atlantic, and Pacific), MSA size, and the availability of rail. Extrapolating NHTS data within small geographic areas could risk developing and subsequently using unreliable estimates. For example, if a planning agency in City X of State Y estimates travel rates and other travel characteristics based on survey data collected from NHTS sample households that were located in City X of State Y, then the agency could risk developing and using unreliable estimates for their planning process. Typically, this limitation significantly increases as the size of an area decreases. That said, the NHTS contains a wealth of information that could allow statistical inferences about small geographic areas, with a pre-determined level of statistical certainty. The question then becomes whether a method can be developed that integrates the NHTS data and other data to estimate key travel characteristics for small geographic areas such as Census tract and transportation analysis zone, and whether this method can outperform other, competing methods.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL; Schmoyer, Richard L [ORNL; Chin, Shih-Miao [ORNL

2007-05-01T23:59:59.000Z

245

Process qualification and testing of LENS deposited AY1E0125 D-bottle brackets.  

SciTech Connect

The LENS Qualification team had the goal of performing a process qualification for the Laser Engineered Net Shaping{trademark}(LENS{reg_sign}) process. Process Qualification requires that a part be selected for process demonstration. The AY1E0125 D-Bottle Bracket from the W80-3 was selected for this work. The repeatability of the LENS process was baselined to determine process parameters. Six D-Bottle brackets were deposited using LENS, machined to final dimensions, and tested in comparison to conventionally processed brackets. The tests, taken from ES1E0003, included a mass analysis and structural dynamic testing including free-free and assembly-level modal tests, and Haversine shock tests. The LENS brackets performed with very similar characteristics to the conventionally processed brackets. Based on the results of the testing, it was concluded that the performance of the brackets made them eligible for parallel path testing in subsystem level tests. The testing results and process rigor qualified the LENS process as detailed in EER200638525A.

Atwood, Clinton J.; Smugeresky, John E. (Sandia National Labs, Livermore,CA); Jew, Michael (Sandia National Labs, Livermore,CA); Gill, David Dennis; Scheffel, Simon (Sandia National Labs, Livermore,CA)

2006-11-01T23:59:59.000Z

246

Using NMR to study full intact wine bottles A.J. Weekley, P. Bruins, M. Sisto, and M.P. Augustine*  

E-Print Network (OSTI)

Using NMR to study full intact wine bottles A.J. Weekley, P. Bruins, M. Sisto, and M.P. Augustine 2002; revised 19 November 2002 Abstract A nuclear magnetic resonance (NMR) probe and spectrometer Sauvignons with high resolution 1 H NMR spectroscopy. Selected examples of full bottle 13 C NMR spectra

Augustine, Mathew P.

247

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

size styles) 5. Compressed natural gas, ranges 80 or 120,Hybrid electric: Compressed natural gas: Reformulatedof electric, compressed natural gas and methanol fueled

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

248

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

B. C. D. E. F. Compressed natural gas Reformulated gasolineelectric ~]1 compressed natural gas [~1 reformulatedgasolinefull size styles) Compressed natural gas, ranges 80 or 120,

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

249

Delivering Energy Efficiency to Middle Income Single Family Households  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivering Energy Efficiency to Middle Income Single Family Households Delivering Energy Efficiency to Middle Income Single Family Households Title Delivering Energy Efficiency to Middle Income Single Family Households Publication Type Report Year of Publication 2011 Authors Zimring, Mark, Merrian Borgeson, Ian M. Hoffman, Charles A. Goldman, Elizabeth Stuart, Annika Todd, and Megan A. Billingsley Pagination 102 Date Published 12/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract The question posed in this report is: How can programs motivate these middle income single family households to seek out more comprehensive energy upgrades, and empower them to do so? Research methods included interviews with more than 35 program administrators, policy makers, researchers, and other experts; case studies of programs, based on interviews with staff and a review of program materials and data; and analysis of relevant data sources and existing research on demographics, the financial status of Americans, and the characteristics of middle income American households. While there is no 'silver bullet' to help these households overcome the range of barriers they face, this report describes outreach strategies, innovative program designs, and financing tools that show promise in increasing the attractiveness and accessibility of energy efficiency for this group. These strategies and tools should be seen as models that are currently being honed to build our knowledge and capacity to deliver energy improvements to middle income households. However, the strategies described in this report are probably not sufficient, in the absence of robust policy frameworks, to deliver these improvements at scale. Instead, these strategies must be paired with enabling and complementary policies to reach their full potential.

250

Household solid waste characteristics and management in Chittagong, Bangladesh  

Science Conference Proceedings (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

251

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

even after purchase incentives for natural gas and electricnatural gas, and gasoline vehicles. The use of purchase incentives

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

252

Gas, Mister, not gasoline  

SciTech Connect

A prototype rechargeable CNG commuter car with an LP-gas standby reserve avoids the need for area fueling stations while providing an emergency range-extending technique through its LPG system. Operating on a household power line, the charging compressor fills each tank to 1000 psig at an electric cost of less than 7 cents/100 CF of compressed gas. The four fuel tanks weigh only 120 lb and give the small Opel GT car a range of 75 miles. A 10-gal LPG tank adds 300 miles to this range.

Axworthy, R.T.

1982-10-01T23:59:59.000Z

253

Gas evolution from geopressured brines  

DOE Green Energy (OSTI)

The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

Matthews, C.S.

1980-06-01T23:59:59.000Z

254

A Case Study to Bottle the Biogas in Cylinders as Source of Power for Rural Industries Development in Pakistan  

E-Print Network (OSTI)

Abstract: Pakistan is one of the developing countries with very low energy consumption, correspondingly low standard of living and high population growth. The country is trying to improve its living standards by increasing its energy consumption and establishing appropriate industries. It has immense hydropower potential, which is almost untapped at the present time. Employment generation and poverty alleviation are the two main issues related with rural development. These issues can be tackled by rural industrialization using local resources and appropriate technologies. However, sufficient number of industries can not be set up in rural areas so far due to scarcity of energy supply i.e. electricity, diesel etc. Biogas, a renewable fuel may be able to fill the gap in energy availability in the rural areas. Biogas can supply energy near to biogas plant which makes it hindrance in its wide spread application and therefore mobility of biogas is must, which is achieved by bottling of biogas. Here a model is conceptualized to bottle the biogas in cylinders and then use it to power the rural industries. It is found that use of bottled biogas can save diesel of the worth US $ 147 in 12 hours and also generate employment for 12 persons. Key words: Employment rural industries biogas bottling

Syed Zafar Ilyas

2006-01-01T23:59:59.000Z

255

HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT  

DOE Green Energy (OSTI)

A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

RILEY DL; BRIDGES AE; EDWARDS WS

2010-03-30T23:59:59.000Z

256

Water Related Energy Use in Households and Cities - an Australian  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Related Energy Use in Households and Cities - an Australian Water Related Energy Use in Households and Cities - an Australian Perspective Speaker(s): Steven Kenway Date: May 12, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon This presentation covers the content of recent journal papers and reports focused on the water-energy nexus and the related theory of urban metabolism. This includes (i) a review of the water-energy nexus focused on cities (ii) quantifying water-related energy in cities (iii) modeling household water-related energy use including key factors, sensitivity and uncertainty analysis, and (iv) relevance and implications of the urban metabolism theoretical framework. Steven's work focuses on understanding the indirect connections between urban water management, energy use and

257

EIA - Gasoline and Diesel Fuel report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued after EIA's 1994 survey. Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. This report, Household Vehicles Energy Consumption 1991, is based on data from the 1991 Residential Transportation Energy Consumption Survey (RTECS). Focusing on vehicle miles traveled (VMT) and energy enduse consumption and expenditures by households for personal transportation, the 1991 RTECS is

258

Energy Consumption of Refrigerators in Ghana - Outcomes of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Consumption of Refrigerators in Ghana - Outcomes of Household Energy Consumption of Refrigerators in Ghana - Outcomes of Household Surveys Speaker(s): Essel Ben Hagan Date: July 12, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Van Buskirk Galen Barbose As part of activities to develop refrigerator efficiency standards regulations in Ghana, a national survey on the energy consumption of refrigerators and refrigerator-freezers has been conducted. The survey covered 1000 households in urban, peri-urban and rural communities in various parts of the country. The survey found that, on average, refrigerators and refrigerator-freezers in Ghana use almost three times what is allowed by minimum efficiency standards in the U.S., and a few refrigerators had energy use at levels almost ten times the U.S.

259

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

260

Econometric analysis of energy use in urban households  

SciTech Connect

This article analyzes the pattern of energy carrier consumption in the residential sector of Bangalore, a major city in south India. A 1,000-household survey was used to study the type of energy carrier used by households in different income groups for different end-uses, such as cooking, water heating, and lighting. The dependence of income on the carrier utilized is established using a carrier dependence index. Using regression analysis, the index analyses the impact of different explanatory variables such as family income, family size, and price of energy carrier on consumption. The results show that income plays an important role not only in the selection of an energy carrier but also on the quantity of consumption per household. Also, a source-service matrix is prepared for Bangalore`s residential sector, which shows the disaggregation of energy consumption by the type of energy carrier and end-use.

Reddy, B.S. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The welfare effects of raising household energy prices in Poland  

Science Conference Proceedings (OSTI)

We examine the welfare effects from increasing household energy prices in Poland. Subsidizing household energy prices, common in the transition economies, is shown to be highly regressive. The wealthy spend a larger portion of their income on energy and consume more energy in absolute terms. We therefore rule out the oft-used social welfare argument for delaying household energy price increases. Raising prices, while targeting relief to the poor through a social assistance program is the first-best response. However, if governments want to ease the adjustment, several options are open, including: in-kind transfers to the poor, vouchers, in-cash transfers, and lifeline pricing for electricity. Our simulations show that if raising prices to efficient levels is not politically feasible at present and social assistance targeting is sufficiently weak, it may be socially better to use lifeline pricing and a large price increase than an overall, but smaller, price increase.

Freund, C.L. [Columbia Univ., New York, NY (United States); Wallich, C.I. [World Bank, Washington, DC (United States)

1996-06-01T23:59:59.000Z

262

Modeling patterns of hot water use in households  

Science Conference Proceedings (OSTI)

This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

1996-11-01T23:59:59.000Z

263

Modeling patterns of hot water use in households  

SciTech Connect

This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

264

Table 2. Percent of Households with Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Percent of Households with Vehicles, Selected Survey Years " Percent of Households with Vehicles, Selected Survey Years " ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",85.5450237,89.00343643,88.75545852,89.42917548,87.25590956,92.08566108 "Household Characteristics" "Census Region and Division" " Northeast",77.22222222,"NA",79.16666667,82.9015544,75.38461538,85.09615385 " New England",88.37209302,"NA",81.81818182,82.9787234,82,88.52459016 " Middle Atlantic ",73.72262774,"NA",78.37837838,82.31292517,74.30555556,83.67346939 " Midwest ",85.51401869,"NA",90.66666667,90.17094017,92.30769231,91.47286822 " East North Central",82,"NA",88.81987578,89.88095238,91.51515152,90.55555556

265

Energy Information Administration/Household Vehicles Energy Consumption 1994  

U.S. Energy Information Administration (EIA) Indexed Site

, , Energy Information Administration/Household Vehicles Energy Consumption 1994 ix Household Vehicles Energy Consumption 1994 presents statistics about energy-related characteristics of highway vehicles available for personal use by members of U.S. households. The data were collected in the 1994 Residential Transportation Energy Consumption Survey, the final cycle in a series of nationwide energy consumption surveys conducted during the 1980's and 1990's by the Energy Information Administrations. Engines Became More Powerful . . . Percent Distribution of Total Residential Vehicle Fleet by Number of Cylinders, 1988 and 1994 Percent Distribution of Vehicle Fleet by Engine Size, 1988 and 1994 Percent Percent 4 cyl Less than 2.50 liters 6 cyl 2.50- 4.49 liters 8 cyl 4.50 liters or greater 20 20 40 40 Vehicle

266

The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures  

SciTech Connect

In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

Eisenberg, Joel Fred [ORNL

2008-06-01T23:59:59.000Z

267

The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures  

SciTech Connect

In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

Eisenberg, Joel Fred [ORNL

2008-06-01T23:59:59.000Z

268

New York Household Travel Patterns: A Comparison Analysis  

SciTech Connect

In 1969, the U. S. Department of Transportation began collecting detailed data on personal travel to address various transportation planning issues. These issues range from assessing transportation investment programs to developing new technologies to alleviate congestion. This 1969 survey was the birth of the Nationwide Personal Transportation Survey (NPTS). The survey was conducted again in 1977, 1983, 1990 and 1995. Longer-distance travel was collected in 1977 and 1995. In 2001, the survey was renamed to the National Household Travel Survey (NHTS) and collected both daily and longer-distance trips in one survey. In addition to the number of sample households that the national NPTS/NHTS survey allotted to New York State (NYS), the state procured an additional sample of households in both the 1995 and 2001 surveys. In the 1995 survey, NYS procured an addition sample of more than 9,000 households, increasing the final NY NPTS sample size to a total of 11,004 households. Again in 2001, NYS procured 12,000 additional sample households, increasing the final New York NHTS sample size to a total of 13,423 households with usable data. These additional sample households allowed NYS to address transportation planning issues pertinent to geographic areas significantly smaller than for what the national NPTS and NHTS data are intended. Specifically, these larger sample sizes enable detailed analysis of twelve individual Metropolitan Planning Organizations (MPOs). Furthermore, they allowed NYS to address trends in travel behavior over time. In this report, travel data for the entire NYS were compared to those of the rest of the country with respect to personal travel behavior and key travel determinants. The influence of New York City (NYC) data on the comparisons of the state of New York to the rest of the country was also examined. Moreover, the analysis examined the relationship between population density and travel patterns, and the similarities and differences among New York MPOs. The 1995 and 2001 survey data make it possible to examine and identify travel trends over time. This report does not address, however, the causes of the differences and/or trends.

Hu, Patricia S [ORNL; Reuscher, Tim [ORNL

2007-05-01T23:59:59.000Z

269

A Glance at China’s Household Consumption  

SciTech Connect

Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

Shui, Bin

2009-10-22T23:59:59.000Z

270

Household Markets for Neighborhood Electric Vehicles in California  

E-Print Network (OSTI)

of electric and compressed natural gas vehicles; and Twogasoline, compressed natural gas, hybrid electric, and threethe batteries. f-v Compressed natural gas vehicle Natural g

Kurani, Kenneth S; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

1995-01-01T23:59:59.000Z

271

Household Markets for Neighborhood Electric Vehicles in California  

E-Print Network (OSTI)

of electric and compressed natural gas vehicles; and Twogasoline, compressed natural gas, hybridelectric, and threeon the batteries. Compressed natural gas vehicle Natural

Kurani, Kenneth S.; Sperling, Daniel; Lipman, Timothy; Stanger, Deborah; Turrentine, Thomas; Stein, Aram

2001-01-01T23:59:59.000Z

272

Table HC6.9 Home Appliances Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

HC6.9 Home Appliances Characteristics by Number of Household Members, 2005 HC6.9 Home Appliances Characteristics by Number of Household Members, 2005 Total U.S.............................................................. 111.1 30.0 34.8 18.4 15.9 12.0 Cooking Appliances Conventional Ovens Use an Oven.................................................. 109.6 29.5 34.4 18.2 15.7 11.8 1................................................................. 103.3 28.4 32.0 17.3 14.7 11.0 2 or More.................................................... 6.2 1.1 2.5 1.0 0.9 0.8 Do Not Use an Oven...................................... 1.5 0.6 0.4 Q Q Q Most-Used Oven Fuel Electric....................................................... 67.9 18.2 22.5 11.2 9.5 6.5 Natural Gas................................................ 36.4 9.9 10.0 6.1 5.6 4.7 Propane/LPG.............................................

273

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

274

Racial and demographic differences in household travel and fuel purchase behavior  

Science Conference Proceedings (OSTI)

Monthly fuel purchase logs from the Residential Energy Consumption Survey's Household Transportation Panel (TP) were analyzed to determine the relationship between various household characteristics and purchase frequency, tank inventories, vehicle-miles traveled, and fuel expenditures. Multiple classification analysis (MCA) was used to relate observed differences in dependent variables to such index-type household characteristics as income and residence location, and sex, race and age of household head. Because it isolates the net effect of each parameter, after accounting for the effects of all other parameters, MCA is particularly appropriate for this type of analysis. Results reveal clear differences in travel and fuel purchase behavior for four distinct groups of vehicle-owning households. Black households tend to own far fewer vehicles with lower fuel economy, to use them more intensively, to purchase fuel more frequently, and to maintain lower fuel inventories than white households. Similarly, poor households own fewer vehicles with lower fuel economy, but they drive them less intensively, purchase fuel more frequently, and maintain lower fuel inventories than nonpoor households. Elderly households also own fewer vehicles with lower fuel economy. But since they drive them much less intensively, their fuel purchases are much less frequent and their fuel inventories are higher than nonelderly households. Female-headed households also own fewer vehicles but with somewhat higher fuel economy. They drive them less intensively, maintain higher fuel inventories, and purchase fuel less frequently than male-headed households. 13 refs., 8 tabs.

Gur, Y.; Millar, M.

1987-01-01T23:59:59.000Z

275

EvoNILM: evolutionary appliance detection for miscellaneous household appliances  

Science Conference Proceedings (OSTI)

To improve the energy awareness of consumers, it is necessary to provide them with information about their energy demand, not just on the household level. Non-intrusive load monitoring (NILM) gives the consumer the opportunity to disaggregate their consumed ... Keywords: evolutionary algorithm, load disaggregation, non-intrusive load monitoring

Dominik Egarter; Wilfried Elmenreich

2013-07-01T23:59:59.000Z

276

Modelling the Energy Demand of Households in a Combined  

E-Print Network (OSTI)

. Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004; Hondroyiannis, 2004) and passenger cars (Meyer et al., 2007). Some recent studies cover the whole residential

Steininger, Karl W.

277

Using unlabeled Wi-Fi scan data to discover occupancy patterns of private households  

Science Conference Proceedings (OSTI)

This poster presents the homeset algorithm, a lightweight approach to estimate occupancy schedules of private households. The algorithm relies on the mobile phones of households' occupants to collect Wi-Fi scans. The scans are then used to determine ...

Wilhelm Kleiminger, Christian Beckel, Anind Dey, Silvia Santini

2013-11-01T23:59:59.000Z

278

California’s Immigrant Households and Public-Assistance Participation in the 1990s - Policy Brief  

E-Print Network (OSTI)

with Dependent Children (AFDC)/California Work Opportunitystate households participating in AFDC/ CalWORKs pro- grams.of noncitizen households received AFDC, compared to 4.5% of

2002-01-01T23:59:59.000Z

279

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

280

An Analysis of the Price Elasticity of Demand for Household Appliances  

E-Print Network (OSTI)

Customers’ Choice of Appliance Efficiency Level: CombiningThe Effect of Income on Appliances in U.S. Households. U.S.Household’s Choice of Appliance Efficiency Level. Review of

Dale, Larry

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advances in Household Appliances- A Review  

Science Conference Proceedings (OSTI)

An overview of options and potential barriers and risks for reducing the energy consumption, peak demand, and emissions for seven key energy consuming residential products (refrigerator-freezers, dishwashers, clothes washers, clothes dryers, electric ovens, gas ovens and microwave ovens) is presented. The paper primarily concentrates on the potential energy savings from the use of advanced technologies in appliances for the U.S. market. The significance and usefulness of each technology was evaluated in order to prioritize the R&D needs to improve energy efficiency of appliances in view of energy savings, cost, and complexity. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Although significant energy savings may be achieved, one of the major barriers in most cases is high first cost. One way of addressing this issue and promoting the introduction of new technologies is to level the playing field for all manufacturers by establishing Minimum Energy Performance Standards (MEPS) which are not cost prohibitive and promoting energy efficient products through incentives to both manufacturers and consumers.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2011-01-01T23:59:59.000Z

282

Household Vehicles Energy Use: Latest Data and Trends - Table A04  

U.S. Energy Information Administration (EIA)

... Buildings & Industry > Transportation Surveys > Household Vehicles Energy ... U.S. Vehicles by Model ... Office of Coal, Nuclear, Electric, and Alternate ...

283

High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana  

E-Print Network (OSTI)

The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

Yazdani, Iman

2007-01-01T23:59:59.000Z

284

Residential energy use and conservation in Venezuela: Results and implications of a household survey in Caracas  

SciTech Connect

This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowing the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.

Figueroa, M.J.; Ketoff, A.; Masera, O.

1992-10-01T23:59:59.000Z

285

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

D (2005) - Household Propane (Bottled Gas or LPG) Usage Form D (2005) - Household Propane (Bottled Gas or LPG) Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Propane (Bottled Gas or LPG) Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality

286

Playful bottle: a mobile social persuasion system to motivate healthy water intake Ubicomp'09  

E-Print Network (OSTI)

This study of mobile persuasion system explores the use of a mobile phone, when attached to an everyday object used by an everyday behavior, becomes a tool to sense and influence that behavior. This mobile persuasion system, called Playful Bottle system, makes use of a mobile phone attached to an everyday drinking mug and motivates office workers to drink healthy quantities of water. A camera and accelerometer sensors in the phone are used to build a vision/motion-based water intake tracker to detect the amount and regularity of water consumed by the user. Additionally, the phone includes hydration games in which natural drinking actions are used as game input. Two hydration games are developed: a single-user TreeGame with automated computer reminders and a multi-user ForestGame with computer-mediated social reminders from members of the group playing the game. Results from 7-week user study with 16 test subjects suggest that both hydration games are effective for encouraging adequate and regular water intake by users. Additionally, results of this study suggest that adding social reminders to the hydration game is more effective than system reminders alone.

Meng-chieh Chiu; Shih-ping Chang; Yu-chen Chang; Hao-hua Chu; Cheryl Chia-hui Chen; Fei-hsiu Hsiao; Ju-chun Ko

2009-01-01T23:59:59.000Z

287

gas | OpenEI  

Open Energy Info (EERE)

gas gas Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

288

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

This page left blank. This page left blank. E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices

289

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

B B : E S T I M AT I O N M E T H O D O L O G I E S APPENDIX B A P P E N D I X B ESTIMATION METHODOLOGIES INTRODUCTION The National Household Travel Survey (NHTS) is the nation's inventory of local and long distance travel, according to the U.S. Department of Transportation. Between April 2001 and May 2002, roughly 26 thousand households 41 were interviewed about their travel, based on the use of over 53 thousand vehicles. Using confidential data collected during those interviews, coupled with EIA's retail fuel prices, external data sources of test 42 fuel economy, and internal procedures for modifying test fuel economy to on-road, in-use fuel economy, EIA has extended this inventory to include the energy used for travel, thereby continuing a data series that was discontinued by EIA in 1994. This appendix presents the methods used for each eligible sampled

290

RECS data show decreased energy consumption per household  

Reports and Publications (EIA)

Total United States energy consumption in homes has remained relatively stable for many years as increased energy efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). The average household consumed 90 million British thermal units (Btu) in 2009 based on RECS. This continues the downward trend in average residential energy consumption of the last 30 years. Despite increases in the number and the average size of homes plus increased use of electronics, improvements in efficiency for space heating, air conditioning, and major appliances have all led to decreased consumption per household. Newer homes also tend to feature better insulation and other characteristics, such as double-pane windows, that improve the building envelope.

2012-06-06T23:59:59.000Z

291

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

E E N E R G Y O V E RV I E W ENERGY INFORMATION ADMINISTRATION/HOUSEHOLD VEHICLES ENERGY USE: LATEST DATA & TRENDS ENERGY OVERVIEW E N E R G Y O V E RV I E W INTRODUCTION Author's Note Estimates of gallons of fuel consumed, type of fuel used, price paid for fuel, and fuel economy are based on data imputed by EIA, using vehicle characteristics and vehicle-miles traveled data collected during the interview process for the 2001 National Household Travel Survey (NHTS). Rather than obtaining that information directly from fuel purchase diaries, EIA exploited its experience and expertise with modeling techniques for transportation studies, filling missing and uncollected data with information reported to other federal agencies, as described in Appendices B and C of this report.

292

Energy conservation for household refrigerators and water heaters  

Science Conference Proceedings (OSTI)

An energy conservation arrangement for household refrigerators and water heaters, in which the source of cold water to the hot water heater is divided and part is caused to flow through and be warmed in the condenser of the refrigerator. The warmed water is then further heated in the oil cooling loop of the refrigerator compressor, and proceeds then to the top of the hot water tank.

Speicher, T. L.

1984-12-11T23:59:59.000Z

293

Elasticities of Electricity Demand in Urban Indian Households  

E-Print Network (OSTI)

Energy demand, and in particular electricity demand in India has been growing at a very rapid rate over the last decade. Given, current trends in population growth, industrialisation, urbanisation, modernisation and income growth, electricity consumption is expected to increase substantially in the coming decades as well. Tariff reforms could play a potentially important role as a demand side management tool in India. However, the effects of any price revisions on consumption will depend on the price elasticity of demand for electricity. In the past, electricity demand studies for India published in international journals have been based on aggregate macro data at the country or sub-national / state level. In this paper, price and income elasticities of electricity demand in the residential sector of all urban areas of India are estimated for the first time using disaggregate level survey data for over thirty thousand households. Three electricity demand functions have been estimated using monthly data for the following seasons: winter, monsoon and summer. The results show electricity demand is income and price inelastic in all three seasons, and that household, demographic and geographical variables are important in determining electricity demand, something that is not possible to determine using aggregate macro models alone. Key Words Residential electricity demand, price elasticity, income elasticity Short Title Electricity demand in Indian households Acknowledgements: The authors would like to gratefully acknowledge the National Sample Survey Organisation, Department of Statistics of the Government of India, for making available to us the unit level, household survey data. We would also like to thank Prof. Daniel Spreng for his support of our research. 2 1.

Shonali Pachauri

2002-01-01T23:59:59.000Z

294

Sizing Wind/Photovoltaic Hybrids for Households in Inner Mongolia  

DOE Green Energy (OSTI)

Approximately 140,000 wind turbines currently provide electricity to about one-third of the non-grid-connected households in Inner Mongolia. However, these households often suffer from a lack of power during the low-wind summer months. This report describes an analysis of hybrid wind/photovoltaic (PV) systems for such households. The sizing of the major components is based on a subjective trade-off between the cost of the system and the percent unmet load, as determined by the Hybrid 2 software in conjunction with a simplified time-series model. Actual resource data (wind speed and solar radiation) from the region are processed so as to best represent the scenarios of interest. Small wind turbines of both Chinese and U.S. manufacture are considered in the designs. The results indicate that combinations of wind and PV are more cost-effective than either one alone, and that the relative amount of PV in the design increases as the acceptable unmet load decreases and as the average wind sp eed decreases.

Barley, C. D.; Lew, D. J.; Flowers, L. T.

1997-06-01T23:59:59.000Z

295

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

of electric vehicles the safety of compressed gas vehicleselectric vehicles the practicality of home recharging or the safety

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

296

Ventilation Behavior and Household Characteristics in New California Houses  

E-Print Network (OSTI)

Pump Heating Gas Wall Heater Electric Wall Heater Wood stovepump Heating, Gas Wall Heater, Electric Wall He ater, Woodheating, sources of organic chemicals (VOCs) such as pressed wood

Price, Phillip N.; Sherman, Max H.

2006-01-01T23:59:59.000Z

297

Household heating fuels vary across the country - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

298

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

299

Regional patterns of U.S. household carbon emissions  

E-Print Network (OSTI)

market structure in a given region (see Electronic supplementary material). The estimated pattern of natural gas

Pizer, William; Sanchirico, James N.; Batz, Michael

2010-01-01T23:59:59.000Z

300

Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 5, 1: January 5, 2004 Number of Household Vehicles has Grown Significantly to someone by E-mail Share Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Facebook Tweet about Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Twitter Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Google Bookmark Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Delicious Rank Vehicle Technologies Office: Fact #301: January 5, 2004 Number of Household Vehicles has Grown Significantly on Digg Find More places to share Vehicle Technologies Office: Fact #301:

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network (OSTI)

gas vehicles and hybrid electric vehicles, in addition toof range, and hybrid electric vehicles with 140 and 180possible designs of hybrid electric vehicles pose complex

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

302

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network (OSTI)

gas vebacles and hybrid electric vehicles, maddition tocontrast to a hybrid electric vehicle that combines electrichousehold.In contrast to a hybrid electric vehicle that of

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

303

Exemplifying Business Opportunities for Improving Data Quality From Corporate Household Research  

E-Print Network (OSTI)

Corporate household (CHH) refers to the organizational information about the structure within the corporation and a variety of inter-organizational relationships. Knowledge derived from this data is ...

Madnick, Stuart

2004-12-10T23:59:59.000Z

304

U.S. households forecast to use more heating fuels this ...  

U.S. Energy Information Administration (EIA)

What is the role of coal in the United States? ... 2012 U.S. households ... many located in rural areas. Propane inventories totaled almost 76 million ...

305

Methodology and Estimation of the Welfare Impact of Energy Reforms on Households in Azerbaijan.  

E-Print Network (OSTI)

??ABSTRACT Title of Dissertation: METHODOLOGY AND ESTIMATION OF THE WELFARE IMPACT OF ENERGY REFORMS ON HOUSEHOLDS IN AZERBAIJAN Irina Klytchnikova, Doctor of Philosophy, 2006 Dissertation… (more)

Klytchnikova, Irina

2006-01-01T23:59:59.000Z

306

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Type of Housing Unit, 2001 RSE Column Factor: Total ... where the end use is electric air-conditioning, ...

307

The Other Energy Crisis: Managing Urban Household Energy Use in Senegal  

E-Print Network (OSTI)

for 62 percent of national energy consumption, or over 1 .1energy consumption, and (2) residential, because of the dominant role that households play in national

Leitmann, Josef

1989-01-01T23:59:59.000Z

308

Table HC6.7 Air-Conditioning Usage Indicators by Number of Household...  

Gasoline and Diesel Fuel Update (EIA)

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9...

309

Table 1. Consumption and Expenditures in U.S. Households, 1997  

U.S. Energy Information Administration (EIA)

A household is assigned to a climate zone according to the 30-year average annual degree-days for an appropriate nearby weather station. (5) ...

310

In the UNITED STATES there are 96.6 million households  

U.S. Energy Information Administration (EIA)

In the UNITED STATES there are 96.6 million households 69% are single-family homes; 25% are apartments; and 6% are mobile homes. Housing stock is ...

311

Table 1. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ho ...

312

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

313

Table CE1-7c. Total Energy Consumption in U.S. Households by Four ...  

U.S. Energy Information Administration (EIA)

Other Appliances and Lighting ... It does include the small number of households where the fuel for central air-conditioning equipment was something other than ...

314

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

U.S. Per Household Vehicle-Miles Traveled ... and Alternate Fuels, Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions."

315

Household Vehicles Energy Use: Latest Data and Trends - Table A01  

U.S. Energy Information Administration (EIA)

Table A1. U.S. Number of Vehicles, Vehicles-Miles, Motor Fuel Consumption and Expenditures, 2001: 2001 Household and Vehicle Characteristics

316

The impact of physical planning policy on household energy use and greenhouse emissions .  

E-Print Network (OSTI)

??This thesis investigates the impact of physical planning policy on combined transport and dwelling-related energy use by households. Separate analyses and reviews are conducted into… (more)

Rickwood, Peter

317

Table AP1. Total Households Using Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Total Consumption for Home Appliances and Lighting by Fuels Used, 2005 Quadrillion British Thermal Units (Btu) U.S. Households (millions) Electricity

318

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

319

Effect of Income on Appliances in U.S. Households, The  

Reports and Publications (EIA)

This web page page entails how people live, the factors that cause the most differences in home lifestyle, including energy use in Geographic Location, Socioeconomics and Household Income.

Michael Laurence

2004-01-01T23:59:59.000Z

320

U.S. household expenditures for gasoline account for nearly 4% of ...  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, ... a rise in average gasoline prices has led to higher overall household gasoline expenditures.

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessing the Environmental Costs and Benefits of Households Electricity Consumption Management.  

E-Print Network (OSTI)

?? In this study the environmental costs and benefits of smart metering technology systems installed in households in Norway have been assessed. Smart metering technology… (more)

Segtnan, Ida Lund

2011-01-01T23:59:59.000Z

322

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

and V. Letschert (2005). Forecasting Electricity Demand in8364 Material World: Forecasting Household ApplianceMcNeil, 2008). Forecasting Diffusion Forecasting Variables

Letschert, Virginie

2010-01-01T23:59:59.000Z

323

An Analysis of the Price Elasticity of Demand for Household Appliances  

E-Print Network (OSTI)

Refrigerators Clothes Washers Dishwashers Economic VariablesWASHERS, AND DISHWASHERS……………………………3 Physical Household andclothes washers and dishwashers. In the context of

Dale, Larry

2008-01-01T23:59:59.000Z

324

Table 3. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

This write-up presents 1997 Residential Energy Consumption and Expenditures by Origin of Householder. In 1997, there were 101.5 million residential ...

325

U.S. household expenditures for gasoline account for nearly 4% ...  

U.S. Energy Information Administration (EIA)

Gasoline expenditures in 2012 for the average U.S. household reached $2,912, or just under 4% of income before taxes, according to EIA estimates.

326

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

327

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

328

Regional patterns of U.S. household carbon emissions  

E-Print Network (OSTI)

2 (continued) in natural gas usage, with adjacent countiesgas is much more prevalent in the Midwest. Gasoline usage ?

Pizer, William; Sanchirico, James N.; Batz, Michael

2010-01-01T23:59:59.000Z

329

Piedmont Natural Gas - Residential Equipment Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program Piedmont Natural Gas - Residential Equipment Efficiency Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate 2 rebates per household Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount High-Efficiency Furnace: $175 Tankless Water Heater: $150 Tank Water Heater: $50 Provider Gas Technology and Energy Services Piedmont Natural Gas offers rebates on high-efficiency natural gas tankless water heaters, tank water heaters and furnaces. Customers on the 101-Residential Service rate are eligible for these rebates. Rebates are only provided for qualifying natural gas equipment that is installed to

330

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

331

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

SciTech Connect

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

332

Multi-bottle, no compressor, mean pressure control system for a Stirling engine  

DOE Patents (OSTI)

The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

Corey, John A. (Melrose, NY)

1990-01-01T23:59:59.000Z

333

Users and households appliances: design suggestions for a better, sustainable interaction  

Science Conference Proceedings (OSTI)

The Human Machine Interaction has a big role in the user approach with households appliances. During the main phase (the use one), users are called to manage energy choices, often without available efficient information regarding the best behavior they ... Keywords: energy saving, households appliances, interaction design, interfaces, sustainability

Anna Zandanel

2011-09-01T23:59:59.000Z

334

Residential energy use and conservation actions: analysis of disaggregate household data  

Science Conference Proceedings (OSTI)

The Energy Information Administration recently published data they collected from the National Interim Energy Consumption Survey (NIECS). NIECS includes detailed information on 4081 individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances therein, recent conservation actions taken by the household, and fuel consumption and cost for the April 1978 to March 1979 one-year period. This data set provides a new and valuable resource for analysis. The NIECS data on household energy consumption - total energy use, electricity use, and use of the primary space heating fuel, are summarized and analyzed. The regression equations constructed explain roughly half the variation in energy use among households. These equations contain ten or fewer independent variables, the most important of which are fuel price, year house was built, floor area, and heating degree days. Regression equations were developed that estimate the energy saving achieved by each household based on their recent retrofit actions. These equations predict 20 to 40% of the variation among households. Total annual energy use is the most important determinant of retrofit energy saving; other significant variables include age of household head, household income, year house was built, housing tenure, and proxies for the cost of heating and air conditioning the house.

Hirst, E.; Goeltz, R.; Carney, J.

1981-03-01T23:59:59.000Z

335

An examination of how households share and coordinate the completion of errands  

Science Conference Proceedings (OSTI)

People often complete tasks and to-dos not only for themselves but also for others in their household. In this work, we examine how household members share and accomplish errands both individually and together. We conducted a three-week diary study with ... Keywords: cooperative errands, coordination, families, roommates

Timothy Sohn; Lorikeet Lee; Stephanie Zhang; David Dearman; Khai Truong

2012-02-01T23:59:59.000Z

336

A spotlight on security and privacy risks with future household robots: attacks and lessons  

Science Conference Proceedings (OSTI)

Future homes will be populated with large numbers of robots with diverse functionalities, ranging from chore robots to elder care robots to entertainment robots. While household robots will offer numerous benefits, they also have the potential to introduce ... Keywords: cyber-physical systems, domestic robots, household robots, multi-robot attack, privacy, robots, security, single-robot attack, ubiquitous robots

Tamara Denning; Cynthia Matuszek; Karl Koscher; Joshua R. Smith; Tadayoshi Kohno

2009-09-01T23:59:59.000Z

337

Household Vehicles Energy Use: Latest Data & Trends  

U.S. Energy Information Administration (EIA) Indexed Site

C C : Q U A L I T Y O F T H E D ATA APPENDIX C A P P E N D I X C QUALITY OF THE DATA INTRODUCTION This section discusses several issues relating to the quality of the National Household Travel Survey (NHTS) data and to the interpretation of conclusions based on these data. In particular, the focus of our discussion is on the quality of specific data items, such as the fuel economy and fuel type, that were imputed to the NHTS via a cold-decking imputation procedure. This imputation procedure used vehicle-level information from the NHTSA Corporate Average Fuel Economy files for model year's 1978 through 2001. It is nearly impossible to quantify directly the quality of this imputation procedure because NHTS does not collect the necessary fuel economy information for comparison. At best, we have indirect evidence on the quality of our

338

Load Component Database of Household Appliances and Small Office Equipment  

Science Conference Proceedings (OSTI)

This paper discusses the development of a load component database for household appliances and office equipment. To develop more accurate load models at both transmission and distribution level, a better understanding on the individual behaviors of home appliances and office equipment under power system voltage and frequency variations becomes more and more critical. Bonneville Power Administration (BPA) has begun a series of voltage and frequency tests against home appliances and office equipments since 2005. Since 2006, Researchers at Pacific Northwest National Laboratory has collaborated with BPA personnel and developed a load component database based on these appliance testing results to facilitate the load model validation work for the Western Electricity Coordinating Council (WECC). In this paper, the testing procedure and testing results are first presented. The load model parameters are then derived and grouped. Recommendations are given for aggregating the individual appliance models to feeder level, the models of which are used for distribution and transmission level studies.

Lu, Ning; Xie, YuLong; Huang, Zhenyu; Puyleart, Francis; Yang, Steve

2008-07-24T23:59:59.000Z

339

How Do You Encourage Everyone in Your Household to Save Energy? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Encourage Everyone in Your Household to Save Energy? Do You Encourage Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

340

How Do You Encourage Everyone in Your Household to Save Energy? |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Everyone in Your Household to Save Energy? Everyone in Your Household to Save Energy? How Do You Encourage Everyone in Your Household to Save Energy? June 18, 2009 - 5:25pm Addthis Anyone who has decided to save energy at home knows that the entire household needs to be involved if you really want to see savings. Some people-be they roommates, spouses, children, or maybe even yourself-just seem to need some extra reminders to take simple energy-saving steps. How do you encourage everyone in your household to save energy? Each Thursday, you have the chance to share your thoughts on a topic related to energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles How Have You Helped Someone Else Save Energy?

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Household energy handbook: an interim guide and reference manual. World Bank technical paper  

SciTech Connect

A standard framework for measuring and assessing technical information on the household energy sector in developing countries is needed. The handbook is intended as a first step toward creating such a framework. Chapter I discusses energy terms and principles underlying the energy units, definitions, and calculations presented in the following chapters. Chapter II describes household consumption patterns and their relationship to income, location, and household-size variables. Chapter III evaluates energy end uses and the technologies that provide cooking, lighting, refrigeration, and space-heating services. Chapter IV examines household energy resources and supplies, focusing on traditional biomass fuels. Finally, Chapter V demonstrates simple assessment methods and presents case studies to illustrate how household energy data can be used in different types of assessments.

Leach, G.; Gowen, M.

1987-01-01T23:59:59.000Z

342

Exploration, Drilling and Development Operations in the Bottle Rock Area of the Geysers Steam Field, With New Geologic Insights and Models Defining Reservoir Parameters  

Science Conference Proceedings (OSTI)

MCR Geothermal Corporation pioneered successful exploratiory drilling the Bottle Rock area of the Geysers Steam Field in 1976. The wellfield is characterized by a deep reservoir with varied flowrates, temperatures, pressures, and stem chemistries being quite acceptable. More detailed reservoir engineering tests will follow as production commences.

Hebein, Jeffrey J.

1983-12-15T23:59:59.000Z

343

Two perspectives on household electricity use - Today in Energy ...  

U.S. Energy Information Administration (EIA)

... power plants, fuel use, stocks ... Unlike natural gas consumption in the ... and an ever-growing number of home entertainment and rechargeable devices.

344

EIA projects record winter household heating oil prices in the ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; natural gas; prices; states; ... Heating oil prices largely reflect crude oil prices.

345

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

346

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

carbon dioxide emissions and subsequent potential effect on climate change, they do have significant advantages over traditional gasoline fueled vehicles, all other factors

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

347

Household Projection and Its Application to Health/Long-Term Care Expenditures in Japan Using INAHSIM-II  

Science Conference Proceedings (OSTI)

Using a microsimulation model named Integrated Analytical Model for Household Simulation (INAHSIM), the author conducted a household projection in Japan for the period of 2010â??2050. INAHSIM-II specifically means that the initial population is ... Keywords: dynamic micro simulation, health expenditure, household projection, initial population, long-term care expenditure, transition probabilities

Tetsuo Fukawa

2011-02-01T23:59:59.000Z

348

The Determinants of Homeonwership in Presence of Shocks Experienced by Mexican Households  

E-Print Network (OSTI)

Homeownership is both an individual and society objective, because of the positive neighborhood effects associated with areas of higher homeownership. To help realize these positive effects, the Mexican government has several programs directed to increasing homeownership. Many factors, however, may influence homeownership including shocks experienced by households. Shocks such as death in family, illness or accidents, unemployment, and business, crop, or livestock loss affect homeownership if households are unable to cushion the impact of the shock. Government income support programs, however, may help cushion the effect of a shock. The main objective is to determine how shocks that households’ experience and government income support programs influence homeownership in Mexico. A secondary objective is to determine how socio-demographic variables influence homeownership in Mexico. Based on the Random Utility Model, logit models of homeownership are estimated using data are from the 2002 Mexican National Survey on Living Levels of Households. Two models are estimated; with and without income. Income is excluded because of a large number of households that did not report income. Generally, inferences from the two models are similar. Homeownership appears to not be affected by shocks experienced by households. It appears households are able to cushion the impact of shocks. The two income support programs, the Program of Direct Rural Support of Mexico (PROGRESA) and the Program of Direct Rural Support of Mexico (PROCAMPO), appear to be increasing homeownership. These social welfare programs provide cash transfers to households. For whatever reason, PROGRESA has a larger effect on homeownership than PROCAMPO. Households with older heads have a larger probability of being a homeowner than households with younger heads. No statistically significance relationship exists between education and homeownership. Regional differences are seen in homeownership, with households located in the northwest region having a higher probability of homeownership than other regions. Differences in the significance of variable representing the household head’s gender, marital status, and occupation on homeownership exist between logit models that include and do not include current income. The most likely reason for these differences is interactions between the variables and a wealth effect.

Lopez Cabrera, Jesus 1977-

2012-12-01T23:59:59.000Z

349

A REVIEW OF ASSUMPTIONS AND ANALYSIS IN EPRI EA-3409,"HOUSEHOLD APPLIANCE CHOICE: REVISION OF REEPS BEHAVIORAL MODELS"  

SciTech Connect

This paper revises and extends EPRI report EA-3409, ''Household Appliance Choice: Revision of REEPS Behavioral Models.'' That paper reported the results of an econometric study of major appliance choice in new residential construction. Errors appeared in two tables of that report. We offer revised versions of those tables, and a brief analysis of the consequences and significance of the errors. The present paper also proposes several possible extensions and re-specifications of the models examined by EPRI. Some of these are judged to be highly successful; they both satisfy economic intuition more completely than the original specification and produce a better quality fit to the dependent variable. We feel that inclusion of these modifications produces a more useful set of coefficients for economic modeling than the original specification. This paper focuses on EPRI's models of residential space heating technology choice. That choice was modeled as a nested logit structure, with consumers choosing whether to have central air conditioning or not, and, given that choice, what kind of space heating system to have. The model included five space heating alternatives with central cooling (gas, oil, and electric forced-air; heat pumps; and electric baseboard) and eight alternatives without it (gas, oil, and electric forced-air; gas and oil boilers and non-central systems; and electric baseboard heat). The structure of the nested logit model is shown in Figure 1.

Wood, D.J.; Ruderman, H.; McMahon, J. E.

1989-05-01T23:59:59.000Z

350

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

351

Household appliance choice: revision of REEPS behavioral models. Final report  

Science Conference Proceedings (OSTI)

This report describes the analysis of household decisions to install space heating, central cooling, and water heating in new housing as well as decisions to own freezers and second refrigerators. This analysis was conducted as part of the enhancements to the Residential End-Use Energy Planning System (REEPS) under EPRI project RP1918-1. The empirical models used in this analysis were the multinomial logit and its generalization the nested logit. The choice model parameters were estimated statistically on national and regional survey data. The results show that capital and operating costs are significant determinants of appliance market penetrations, and the relative magnitudes of the cost coefficients imply discount rates ranging from 3.4 to twenty-one percent. Several tests were conducted to examine the temporal and geographical stability of the key parameters. The estimated parameters have been incorporated into the REEPS computer code. The revised version of REEPS is now available on a limited release basis to EPRI member utilities for testing on their system.

Goett, A.A.

1984-02-01T23:59:59.000Z

352

A Reliable Natural Language Interface to Household Appliances  

E-Print Network (OSTI)

“I have always wished that my computer would be as easy to use as my telephone. My wish has come true. I no longer know how to use my telephone.” – Bjarne Stroustrop (originator of C++) As household appliances grow in complexity and sophistication, they become harder and harder to use, particularly because of their tiny display screens and limited keyboards. This paper describes a strategy for building natural language interfaces to appliances that circumvents these problems. Our approach leverages decades of research on planning and natural language interfaces to databases by reducing the appliance problem to the database problem; the reduction provably maintains desirable properties of the database interface. The paper goes on to describe the implementation and evaluation of the EXACT interface to appliances, which is based on this reduction. EXACT maps each English user request to an SQL query, which is transformed to create a PDDL goal, and uses the Blackbox planner [13] to map the planning problem to a sequence of appliance commands that satisfy the original request. Both theoretical arguments and experimental evaluation show that EXACT is highly reliable.

Alexander Yates

2003-01-01T23:59:59.000Z

353

Laboratory Testing of Demand-Response Enabled Household Appliances  

SciTech Connect

With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

Sparn, B.; Jin, X.; Earle, L.

2013-10-01T23:59:59.000Z

354

Modeling patterns of hot water use in households  

E-Print Network (OSTI)

various usage characteristics associated with electric, gas-Usage: A Review of Published Metered Studies. Prepared for Gasgas, may be an incentive for people with electric water heaters to reduce their hot water usage.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

355

Gas ranges: latest indoor pollution target  

Science Conference Proceedings (OSTI)

Although a National Research Council study claims that unvented gas cooking and heating appliance are probably responsible for a large portions of the nitrogen dioxide exposures in the population, the data base for gas-stove emissions is actually too limited to be conclusive. The problem of indoor pollution more likely rests with the increased airtightness of houses rather than with gas combustion. In the last 5 years, the normal air flow in new houses has been reduced 80% through new insulation and building techniques designed to lower heating and cooling costs. Other elements contributing to indoor pollution are much more hazardous than gas combustion products: radon gas from the soil, formaldehyde for insulation and construction materials, and toxic chemicals from household aerosols and solvents.

O'Sullivan, S.

1981-12-01T23:59:59.000Z

356

Monetary Policy and Household Mobility: The Effects of Mortgage Interest Rats.  

E-Print Network (OSTI)

Homeowner Mobility and Mortgage Interest Rates: New Evidencenew mortgages. Table 2 Basic Hazard Models of Household Mobility (mobility decisions are related to increases in family size, the existence of a new

Quigley, John M.

2005-01-01T23:59:59.000Z

357

Seasonality, precautionary savings and health uncertainty: Evidence from farm households in Central Kenya  

E-Print Network (OSTI)

on rural households in Kenya." World Development 32(1):91-Second report on poverty in Kenya. Incidence and depth ofPlanning. Government of Kenya. —. 2004. "Kenya Demographic

Ndirangu, Lydia; Burger, Kees; Moll, Hank A.J.; Kuyvenhoven, Arie

2009-01-01T23:59:59.000Z

358

The Design and Implementation of a Corporate Householding Knowledge Processor to Improve Data Quality  

E-Print Network (OSTI)

Advances in Corporate Householding are needed to address certain categories of data quality problems caused by data misinterpretation. In this paper, we first summarize some of these data quality problems and our more ...

Madnick, Stuart

2004-02-06T23:59:59.000Z

359

Table CE1-4c. Total Energy Consumption in U.S. Households by Type ...  

U.S. Energy Information Administration (EIA)

Table CE1-4c. Total Energy Consumption in U.S. Households by Type of Housing Unit, 1997 ... where the end use is electric air-conditioning, ...

360

Table CE1-1c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-1c. Total Energy Consumption in U.S. Households by Climate Zone, 2001 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD and --

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table CE1-10c. Total Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE1-10c. Total Energy Consumption in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region RSE Row

362

10Tips to Spend Less on Household Goods Spend about $20 on a battery  

E-Print Network (OSTI)

10Tips to Spend Less on Household Goods Spend about $20 on a battery recharger. Over time, replace your used batteries with the kind you can use over and over again. 6 You can reuse plastic bags you get

Tullos, Desiree

363

Household water treatment and safe storage options for Northern Region Ghana : consumer preference and relative cost  

E-Print Network (OSTI)

A range of household water treatment and safe storage (HWTS) products are available in Northern Region Ghana which have the potential to significantly improve local drinking water quality. However, to date, the region has ...

Green, Vanessa (Vanessa Layton)

2008-01-01T23:59:59.000Z

364

Facts about FEMA Household Disaster Aid: Examining the 2008 Floods and Tornadoes in Missouri  

Science Conference Proceedings (OSTI)

Very little empirical work has been done on disaster aid in the United States. This paper examines postdisaster grants to households from the Federal Emergency Management Agency in the state of Missouri in 2008, when the state experienced flooding,...

Carolyn Kousky

2013-10-01T23:59:59.000Z

365

Table 4. LPG Consumption and Expeditures in U.S. Households by End ...  

U.S. Energy Information Administration (EIA)

Table 4. LPG Consumption and Expeditures in U.S. Households by End Uses and Census Region, 2001 RSE Column Factor: Total U.S. Census Region RSE Row

366

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households by Four Most Populated States, 1997 RSE Column Factor: Total U.S. Four Most Populated States

367

Residential energy consumption survey. Consumption patterns of household vehicles, supplement: January 1981-September 1981  

Science Conference Proceedings (OSTI)

Information on the fuel consumption characteristics on household vehicles in the 48 contiguous States and the District of Columbia is presented by monthly statistics of fuel consumption, expenditures, miles per gallon, and miles driven.

Not Available

1983-02-01T23:59:59.000Z

368

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

369

Households to pay more than expected to stay warm this winter  

U.S. Energy Information Administration (EIA) Indexed Site

stay warm this winter Following a colder-than-expected November, U.S. households are forecast to consume more heating fuels than previously expected....resulting in higher heating...

370

Monitoring effective use of household water treatment and safe storage technologies in Ethiopia and Ghana  

E-Print Network (OSTI)

Household water treatment and storage (HWTS) technologies dissemination is beginning to scale-up to reach the almost 900 million people without access to an improved water supply (WHO/UNICEF/JMP, 2008). Without well-informed ...

Stevenson, Matthew M

2009-01-01T23:59:59.000Z

371

Calculating economic indexes per household and censal section from official Spanish databases  

Science Conference Proceedings (OSTI)

In the competitive environments, in which all sorts of organisations move it is of utmost importance to have information about clients. Public databases offer information about households and families. However, the non-crossed and non-georeferenced format ...

Sonia Frutos; Ernestina Menasalvas; Cesar Montes; Javier Segovia

2003-12-01T23:59:59.000Z

372

California Immigrant Households and Public Assistance Participation in the 1990s - Detailed Research Findings  

E-Print Network (OSTI)

Seon Lee. 1999. “Transitions from AFDC to Child Welfare inHouseholds Receiving AFDC/TANF by Recency of Entry, 1993?Earnings for Those Receiving AFDC/TANF, Table 7. Proportion

2002-01-01T23:59:59.000Z

373

Table HC6.11 Home Electronics Characteristics by Number of Household...  

Gasoline and Diesel Fuel Update (EIA)

1 Home Electronics Characteristics by Number of Household Members, 2005 Total... 111.1 30.0 34.8 18.4 15.9 12.0...

374

Table CE5-2c. Appliances Energy Consumption in U.S. Households by ...  

U.S. Energy Information Administration (EIA)

Table CE5-2c. Appliances1 Energy Consumption in U.S. Households by Year of Construction, 2001 RSE Column Factor: Total Year of Construction RSE Row

375

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Title Development of the Household Sample for Furnace and Boiler Life-Cycle Cost Analysis Publication Type Report LBNL Report Number LBNL-55088 Year of Publication 2005 Authors Whitehead, Camilla Dunham, Victor H. Franco, Alexander B. Lekov, and James D. Lutz Document Number LBNL-55088 Pagination 22 Date Published May 31 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated.The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

376

A Mixed Nordic Experience: Implementing Competitive Retail Electricity Markets for Household Customers  

Science Conference Proceedings (OSTI)

Although the Nordic countries were among the first to develop competition in the electricity industry, it took a long time to make retail competition work. In Norway and Sweden a considerable number of households are actively using the market but very few households are active in Finland and Denmark. One problem has been institutional barriers involving metering, limited unbundling of distribution and supply, and limited access to reliable information on contracts and prices. (author)

Olsen, Ole Jess; Johnsen, Tor Arnt; Lewis, Philip

2006-11-15T23:59:59.000Z

377

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark V. Scotto; Mark A. Perna

2010-05-30T23:59:59.000Z

378

Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines  

DOE Green Energy (OSTI)

Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

Mark Scotto

2010-05-30T23:59:59.000Z

379

Overview of CFC replacement issues for household refrigeration  

Science Conference Proceedings (OSTI)

In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth's temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

Vineyard, E.A. (Oak Ridge National Lab., TN (United States)); Roke, L. (Fisher and Paykel, Auckland (New Zealand)); Hallett, F. (Frigidaire, Washington, DC (United States))

1991-01-01T23:59:59.000Z

380

Overview of CFC replacement issues for household refrigeration  

Science Conference Proceedings (OSTI)

In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth`s temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Roke, L. [Fisher and Paykel, Auckland (New Zealand); Hallett, F. [Frigidaire, Washington, DC (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE/EA-1674: Environmental Assessment for 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines (August 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Environmental Assessment for 10 CFR 431 Energy Conservation Program: Energy Conservation Standards for Refrigerated Bottled or Canned Beverage Vending Machines August 2009 16-i CHAPTER 16. ENVIRONMENTAL IMPACT ANALYSIS TABLE OF CONTENTS 16.1 INTRODUCTION ............................................................................................................ 16-1 16.2 AIR EMISSIONS ANALYSIS......................................................................................... 16-1 16.2.1 Air Emissions Descriptions................................................................................ 16-1 16.2.2 Air Quality Regulation....................................................................................... 16-3 16.2.3 Analytical Methods for Air Emissions

382

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

Science Conference Proceedings (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

383

Patterns of rural household energy use: a study in the White Nile province - the Sudan  

Science Conference Proceedings (OSTI)

The study investigates rural household domestic energy consumption patterns in a semiarid area of the Sudan. It describes the socioeconomic and evironmental context of energy use, provides an estimation of local woody biomass production and evaluates ecological impacts of increased energy demand on the local resource base. It is based on findings derived from field surveys, a systematic questionnaire and participant observations. Findings indicate that households procure traditional fuels by self-collection and purchases. Household members spent on average 20% of their working time gathering fuels. Generally per caput and total annual expenditure and consumption of domestic fuels are determined by household size, physical availability, storage, prices, income, conservation, substitution and competition among fuel resource uses. Households spend on average 16% of their annual income on traditional fuels. Aggregation of fuels on heat equivalent basis and calculation of their contribution shows that on average firewood provides 63%, charcoal 20.7%, dung 10.4%, crop residues 3.4% and kerosene/diesel 2.5% of the total demand for domestic purposes. Estimated total household woodfuel demand exceeds woody biomass available from the local forests. This demand is presently satisfied by a net depletion of the local forests and purchases from other areas. Degradation of the resource base is further exacerbated by development of irrigation along the White Nile River, increasing livestock numbers (overgrazing) and forest clearance for rainfed cultivation. The most promising relevant and appropriate strategies to alleviate rural household domestic energy problems include: conservation of the existing forest, augmentation through village woodlots and community forestry programmes and improvements in end-use (stoves) and conversion (wood to charcoal) technologies.

Abdu, A.S.E.

1985-01-01T23:59:59.000Z

384

"Table HC15.3 Household Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Four Most Populated States, 2005" 3 Household Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Household Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Household Size" "1 Person",30,1.8,1.9,2,3.2 "2 Persons",34.8,2.2,2.3,2.4,3.2 "3 Persons",18.4,1.1,1.3,1.2,1.8 "4 Persons",15.9,1,0.9,1,2.3 "5 Persons",7.9,0.6,0.6,0.9,0.9 "6 or More Persons",4.1,0.4,"Q",0.5,0.7 "2005 Annual Household Income Category" "Less than $9,999",9.9,0.8,0.7,0.9,1 "$10,000 to $14,999",8.5,0.8,0.4,0.6,0.7

385

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

386

Development of the household sample for furnace and boilerlife-cycle cost analysis  

Science Conference Proceedings (OSTI)

Residential household space heating energy use comprises close to half of all residential energy consumption. Currently, average space heating use by household is 43.9 Mbtu for a year. An average, however, does not reflect regional variation in heating practices, energy costs, or fuel type. Indeed, a national average does not capture regional or consumer group cost impacts from changing efficiency levels of heating equipment. The US Department of Energy sets energy standards for residential appliances in, what is called, a rulemaking process. The residential furnace and boiler efficiency rulemaking process investigates the costs and benefits of possible updates to the current minimum efficiency regulations. Lawrence Berkeley National Laboratory (LBNL) selected the sample used in the residential furnace and boiler efficiency rulemaking from publically available data representing United States residences. The sample represents 107 million households in the country. The data sample provides the household energy consumption and energy price inputs to the life-cycle cost analysis segment of the furnace and boiler rulemaking. This paper describes the choice of criteria to select the sample of houses used in the rulemaking process. The process of data extraction is detailed in the appendices and is easily duplicated. The life-cycle cost is calculated in two ways with a household marginal energy price and a national average energy price. The LCC results show that using an national average energy price produces higher LCC savings but does not reflect regional differences in energy price.

Whitehead, Camilla Dunham; Franco, Victor; Lekov, Alex; Lutz, Jim

2005-05-31T23:59:59.000Z

387

Feed the Future Bangladesh: Baseline Integrated Household Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Feed the Future Bangladesh: Baseline Integrated Household Survey Feed the Future Bangladesh: Baseline Integrated Household Survey Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Feed the Future Bangladesh: Baseline Integrated Household Survey Dataset Summary Description The Bangladesh Integrated Household Survey dataset is a thorough assessment of current standard of food security in Bangladesh taken from 2011-2012. The dataset includes all baseline household surveys made under the USAID-led Feed the Future initiative, a collaborative effort that supports country-owned processes and plans for improving food security and promoting transparency, and within the Zones of Influence as outlined by the Feed the Future Bangladesh plan .The BIHS sample is statistically representative at the following levels: (a) nationally representative of rural Bangladesh; (b) representative of rural areas of each of the seven administrative divisions of the country; and, (c) representative of the Feed the Future (FTF) zone of influence.

388

A dynamic model system of household car ownership, trip generation, and modal split: model development and simulation experiment  

E-Print Network (OSTI)

household car ownership, mode usage, and sociodemographictrip making and mode usage upon car ownership appears to beto predict car ownership and mode usage by the panel

Kitamura, Ryuichi

2009-01-01T23:59:59.000Z

389

Essays on the Consumption and Investment Decisions of Households in the Presence of Housing and Human Capital  

E-Print Network (OSTI)

2 Housing and the Consumption Allocation of Households:of Indivisibility on Housing Consumption Volatility . 2.5and consumption allocation . . . . . . . . . . . . . . .

Betermier, Sebastien

2010-01-01T23:59:59.000Z

390

Characteristics, Welfare Use and Material Hardship Among California AFDC Households with Disabled and Chronically Ill Family Members  

E-Print Network (OSTI)

completed telephone survey o f AFDC-recipient households tocare for disabled members. When AFDC and SSI are consideredfamilies in this sample of AFDC recipient families were very

Meyers, Marcia k.

1996-01-01T23:59:59.000Z

391

Load-shifting in a new perspective: Smart scheduling of smart household appliances using an Agent-Bsaed Modelling Approach.  

E-Print Network (OSTI)

??The electricity demand of households in the Netherlands has been growing rapidly for the last decades and will continue to grow in the near future.… (more)

De Blécourt, M.J.

2012-01-01T23:59:59.000Z

392

NorthWestern Energy (Gas) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » NorthWestern Energy (Gas) - Residential Energy Efficiency Rebate Program (Montana) NorthWestern Energy (Gas) - Residential Energy Efficiency Rebate Program (Montana) < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Manufacturing Appliances & Electronics Water Heating Maximum Rebate Lighting: Maximum of fifteen CFLs and five lighting fixtures per calendar year Programmable Thermostat: Two units per household Program Info Funding Source Montana natural gas and electric supply rates. Start Date 01/01/2009 Expiration Date 11/30/2012 State Montana Program Type Utility Rebate Program

393

USE AND CALIBRATION OF A GAS CHROMATOGRAPH FOR GAS ANALYSIS AT THE PROJECT ROVER TEST FACILITY  

DOE Green Energy (OSTI)

A gas-chromatograph system operated by test site personnel was used for over a year to monitor the purity of gases used at the Project Rover test facilities at the Nuclear Rocket Development Station. Information was obtained on the efficiency of gas line purges, total impurities of frozen air in a large liquid hydrogen dewar, and the quality of room inerting systems. Daily monitoring of several block and bleed systems, which prevent hydrogen gas from entering a system through a leaky valve, and periodic monitoring of all gas added to the 10/sup 6/ cubic feet gas storage bottles are required for safe facilities operation. In addition the chromatograph proved useful in special cases for leak detection in vacuum and high pressure systems. The calibration and operation of the chromatograph system using a column of Linde 5A Molecular Sieve for analysis of H/sub 2/, N/sub 2/, land O/sub 2/ is described. Observations of a thermal conductivity reversal in the binary mixture He--H/sub 2/ is presented. (auth)

Liebenberg, D.H.; Edeskuty, F.J.

1963-10-31T23:59:59.000Z

394

Competition Helps Kids Learn About Energy and Save Their Households Some  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition Helps Kids Learn About Energy and Save Their Households Competition Helps Kids Learn About Energy and Save Their Households Some Money Competition Helps Kids Learn About Energy and Save Their Households Some Money May 21, 2013 - 2:40pm Addthis Students can register now to save energy and win prizes with the Home Energy Challenge. Students can register now to save energy and win prizes with the Home Energy Challenge. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Visit HomeEnergyChallenge.org to register for the competition. Third through eighth grade students and teachers will be excited to hear about a competition starting up for next school year that challenges students to learn about energy, develop techniques for saving energy, and

395

"Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Household Income, 2005" 0 Home Appliances Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Home Appliances Usage Indicators" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Cooking Appliances" "Frequency of Hot Meals Cooked" "3 or More Times A Day",8.2,2.9,2.5,1.3,0.5,1,2.4,4.6 "2 Times A Day",24.6,6.5,7,4.3,3.2,3.6,4.8,10.3 "Once a Day",42.3,8.8,9.8,8.7,5.1,10,5,12.9

396

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Common Household Fungus Reduce Oil Imports? a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

397

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

398

Could a Common Household Fungus Reduce Oil Imports? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? Could a Common Household Fungus Reduce Oil Imports? June 21, 2011 - 11:37am Addthis A view of Aspergillus niger with the fungus’ DNA highlighted in green | Photo Courtesy of: PNNL. A view of Aspergillus niger with the fungus' DNA highlighted in green | Photo Courtesy of: PNNL. Ben Squires Analyst, Office of Energy Efficiency & Renewable Energy What does this mean for me? The Department's Pacific Northwest National Laboratory (PNNL) are working to harness the natural process that spoils fruits and vegetables as a way to make fuel and other petroleum substitutes from the parts of plants that we can't eat. The genetic bases of the behaviors and abilities of these two industrially relevant fungal strains will allow researchers to exploit

399

NYSERDA's Green Jobs-Green New York Program: Extending Energy Efficiency Financing To Underserved Households  

Science Conference Proceedings (OSTI)

The New York legislature passed the Green Jobs-Green New York (GJGNY) Act in 2009. Administered by the New York State Energy Research and Development Authority (NYSERDA), GJGNY programs provide New Yorkers with access to free or low-cost energy assessments,1 energy upgrade services,2 low-cost financing, and training for various 'green-collar' careers. Launched in November 2010, GJGNY's residential initiative is notable for its use of novel underwriting criteria to expand access to energy efficiency financing for households seeking to participate in New York's Home Performance with Energy Star (HPwES) program.3 The GJGNY financing program is a valuable test of whether alternatives to credit scores can be used to responsibly expand credit opportunities for households that do not qualify for traditional lending products and, in doing so, enable more households to make energy efficiency upgrades.

Zimring, Mark; Fuller, Merrian

2011-01-24T23:59:59.000Z

400

2 The Financial and Economic Crises: Implications for Consumer Finance and for Households in Michigan  

E-Print Network (OSTI)

IPPSR and MSUE at Michigan State University for financial support. This paper was partially written while a Visiting Scholar at the National Poverty Center at the University of Michigan, and its Michigan is an epicenter of the recent economic and financial crises. Median personal income was 8 percent above the national average at the beginning of the decade and was 8 percent below the national average by the end of it. Between 2008 and 2009, personal income fell for the first time since 1958. Rates of unemployment and foreclosure activity remain high and above the national average. Indeed, the Michigan economy is changing in dramatic and important ways, but there is little information on household responses to this changing environment. How are Michigan households responding to economic and financial shocks? Are they smoothing income, consumption, or both? What mechanisms are they using to achieve these outcomes? On which factors does the degree of adjustment depend? Using data collected from recent household surveys,

Lisa D. Cook; Lisa D. Cook; Ann Marie Schneider; Lauren Meunier; Lisa D. Cook

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ruslands Gas.  

E-Print Network (OSTI)

??This paper is about Russian natural gas and the possibility for Russia to use its reserves of natural gas politically towards the European Union to… (more)

Elkjær, Jonas Bondegaard

2009-01-01T23:59:59.000Z

402

Comparative analysis of energy data bases for household residential and transportation energy use  

SciTech Connect

Survey data bases covering household residential and transportation energy use were reviewed from the perspective of energy policy analysts and data base users. Twenty-three surveys, taken from 1972 to 1985, collected information on household energy consumption and expenditures, energy-using capital stock, and conservation activities. Ten of the surveys covered residential energy use only, including that for space heating and cooling, cooking, water heating, and appliances. Six surveys covered energy use only for household travel in personal vehicles. Seven surveys included data on both of these household energy sectors. Complete energy use data for a household in one year can be estimated only for 1983, using two surveys (one residential and one transportation) taken in the same households. The last nine surveys of the 23 were recent (1983--1985). Review of those nine was based on published materials only. The large-scale surveys generally had less-comprehensive data, while the comprehensive surveys were based on small samples. The surveys were timely and useful for analyzing four types of energy policies: economic regulation, environmental regulation, federal energy production, and direct regulation of energy consumption or production. Future surveys of energy use, such as those of residential energy consumption, should try to link their energy-use questions to large surveys, such as the American Housing Survey, to allow more accurate analysis of comparative impacts of energy policies among population categories of interest (e.g., minority/majority, metropolitan/nonmetropolitan area, census regions, and income class). 78 refs., 9 figs., 29 tabs.

Teotia, A.; Klein, Y.; LaBelle, S.

1988-11-01T23:59:59.000Z

403

Use of electricity billing data to determine household energy use fingerprints  

Science Conference Proceedings (OSTI)

Ways to analyze billing data are discussed. The starting point for these analyses is a method developed at Princeton University. Their Scorekeeping model permits decomposition of total household energy use into its weather- and nonweather-sensitive elements; the weather-sensitive portion is assumed proportional to heating degree days. The Scorekeeping model also allows one to compute weather-adjusted energy consumption for each household based on its billing data and model parameters; this is the model's estimate of annual consumption under long-run weather conditions. The methods discussed here extend the Scorekeeping results to identify additional characteristics of household energy use. In particular, the methods classify households in terms of the intensity with which the particular fuel is used for space heating (primary heating fuel vs supplemental heating fuel vs no heating at all with the fuel). In addition, households that use the particular fuel for air conditioning are identified. In essence, the billing data and model results are used to determine household energy use fingerprints. The billing data and model results can also be used to identify and correct anomalous bills. The automated method discussed here identifies anomalously high or low utility bills, which are then dropped before re-estimation of the Scorekeeping model parameters. Alternatively, a pair of bills may be combined if one is very high and a temporally adjacent bill is very low. The Scorekeeping model is then re-estimated after the two bills are combined into one. The methods permit careful examination and analysis of changes in energy use from one year to another.

Hirst, E.; Goeltz, R.; White, D.

1984-08-01T23:59:59.000Z

404

Natural Gas Weekly Update  

Annual Energy Outlook 2012 (EIA)

or 48 percent, more this winter in fuel expenditures. Households heating primarily with heating oil can expect to pay, on average, 378, or 32 percent, more this winter....

405

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

new feanlres of compressed natural gas. battery poweredgasoline, compressed natural gas, hybrid dectdc, two typesNatural gas vehicles (NGVs) were available with one two compressed

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

406

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

new features of compressed natural gas, battery poweredgasoline, compressed natural gas, hybrid electric, two typesNatural gas vehicles (NGVs) were available with one or two compressed

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

407

Effects on minority and low-income households of the EPA proposal to reduce leaded gasoline use  

DOE Green Energy (OSTI)

To reduce the potentially harmful environmental effects of lead in the environment, the US Environmental Protection Agency (EPA) has proposed a reduction in the amount of lead used in leaded gasoline. This report examines the potential impacts of such action on minority and low-income households in the US. The benefits of the EPA's proposal would presumably accrue primarily to households that contain small children and that are located in the central cities of metropolitan areas. This is because small children (under age seven) are particularly susceptible to the effects of lead and also because the automobile traffic density in central cities is higher than in any other area. Potential costs are examined in terms of households that own vehicles requiring leaded gasoline. Costs could accrue either because of higher gasoline prices due to reduced lead content or because of higher vehicle repair costs for engines that must use leaded gasoline to prevent excessive wear. Because of their location and number, minority and low-income households with small children would benefit more than the average US household. No costs would be incurred by the relatively large segment of minority and low-income households that own no vehicles. However, the Hispanic and other minority (except black) and low-income households that do own vehicles have a greater than average share of vehicles that require leaded gasoline; costs to these households because of the EPA's proposed action would be comparatively high.

Rose, K.; LaBelle, S.; Winter, R.; Klein, Y.

1985-04-01T23:59:59.000Z

408

Form 1: Basic Household Information A B C D E F G H I J K L  

E-Print Network (OSTI)

household? (year) 44 Do your household have a micro-hydro generator? (1 yes; 2 no >>next form) 45 When microhydro; 3 powergrid; 4 other Code 35 1 too expensive; 2 not available; 3 other (specify) #12;ain water; 5 water; 5 river Code 33 1 generator; 2 microhydro; 3 powergrid; 4 other Code 35 1 too expensive; 2

Tullos, Desiree

409

Southwest Gas Corporation - Residential and Builder Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Residential and Builder Efficiency Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) Southwest Gas Corporation - Residential and Builder Efficiency Rebate Program (Arizona) < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Residential: 2 per household Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Residential Natural Gas Tankless Water Heater: $450 Natural Gas Clothes Dryer: $30 Windows: $0.95/sq ft Attic Insulation: $0.15/sq ft Floor Insulation: $0.30/sq ft Builders Energy Star Certified Home: $450 Natural Gas Tankless Water Heater: $450 Attic Insulation: $0.15/sq ft

410

2007-No54-BoilingPoint Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel  

E-Print Network (OSTI)

2007-No54-BoilingPoint Theme Health and Greenhouse Gas Impacts of Biomass and Fossil Fuel Energy nations. In sub-Saharan Africa (SSA), biomass provides more than 90% of household energy needs in many nations. The combustion of biomass emits pollutants that currently cause over 1.6 million annual deaths

Kammen, Daniel M.

411

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

412

A functional analysis of electrical load curve modelling for some households specific electricity end-uses  

E-Print Network (OSTI)

A functional analysis of electrical load curve modelling for some households specific electricity and the way electrical devices are used will evolve significantly. The energy consumption is likely of electrical devices; · integration of decentralized energy production and stocking (PV modules with battery

Paris-Sud XI, Université de

413

Household Response To Dynamic Pricing Of Electricity: A Survey Of The  

Open Energy Info (EERE)

Household Response To Dynamic Pricing Of Electricity: A Survey Of The Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Focus Area: Crosscutting Topics: Market Analysis Website: www.hks.harvard.edu/hepg/Papers/2009/The%20Power%20of%20Experimentatio Equivalent URI: cleanenergysolutions.org/content/household-response-dynamic-pricing-el Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Mandates/Targets,Cost Recovery/Allocation,Enabling Legislation" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

414

The household energy transition in India and China Shonali Pachauri a,, Leiwen Jiang b  

E-Print Network (OSTI)

household surveys. The two countries differ sharply in several respects. Residential energy consumption of national primary energy consumption statistics shows clearly that both India and China are countries energy consumption remains low in both countries, particularly in India. Average energy use is low

415

Recommending energy tariffs and load shifting based on smart household usage profiling  

Science Conference Proceedings (OSTI)

We present a system and study of personalized energy-related recommendation. AgentSwitch utilizes electricity usage data collected from users' households over a period of time to realize a range of smart energy-related recommendations on energy tariffs, ... Keywords: demand response, energy tariffs, load shifting, personalization, recommender systems, smart grid

Joel E. Fischer; Sarvapali D. Ramchurn; Michael Osborne; Oliver Parson; Trung Dong Huynh; Muddasser Alam; Nadia Pantidi; Stuart Moran; Khaled Bachour; Steve Reece; Enrico Costanza; Tom Rodden; Nicholas R. Jennings

2013-03-01T23:59:59.000Z

416

Food practices as situated action: exploring and designing for everyday food practices with households  

Science Conference Proceedings (OSTI)

Household food practices are complex. Many people are unable to effectively respond to challenges in their food environment to maintain diets considered to be in line with national and international standards for healthy eating. We argue that recognizing ... Keywords: everyday practice, food, health, situated action

Rob Comber; Jettie Hoonhout; Aart van Halteren; Paula Moynihan; Patrick Olivier

2013-04-01T23:59:59.000Z

417

Leaking electricity: Standby and off-mode power consumption in consumer electronics and household appliances  

Science Conference Proceedings (OSTI)

This report assesses ``leaking`` electricity from consumer electronics and small household appliances when they are in standby mode or turned off, and examines the impacts of these losses. The report identifies trends in relevant product industries and gives technical and policy options for reducing standby and off-mode power loss.

Thorne, J.; Suozzo, M.

1998-12-31T23:59:59.000Z

418

PHEV Utility Factors (UFs) Derived from Households' Vehicle Usage Patterns Jamie Davies, Ken Kurani  

E-Print Network (OSTI)

to calculate electrical consumption, emissions, fuel costs, and battery lifetime and degradation. Of particular of Battery Electric Vehicles (BEVs) while allowing consumers to make use of the familiar gasoline refueling, each household starts the day with a fully charged battery and does not recharge throughout the day

California at Davis, University of

419

Muffled Price Signals: Household Water Demand Under Increasing-Block Prices  

E-Print Network (OSTI)

The distinction has been quite important in the electricity demand literature, in which long-run price elasticity and electricity pricing, and volume discounts in general. Under increasing blocks, the budget constraintMuffled Price Signals: Household Water Demand Under Increasing-Block Prices Sheila M. Cavanagh, W

Kammen, Daniel M.

420

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

SciTech Connect

Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

Letschert, Virginie; McNeil, Michael A.

2009-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

HOUSEHOLD RESPONSE TO DYNAMIC PRICING OF ELECTRICITY A SURVEY OF SEVENTEEN PRICING EXPERIMENTS  

E-Print Network (OSTI)

(DOE) defines demand response as "changes in electric usage by end-use customers from their normalHOUSEHOLD RESPONSE TO DYNAMIC PRICING OF ELECTRICITY A SURVEY OF SEVENTEEN PRICING EXPERIMENTS response in electricity markets. One of the best ways to let that happen is to let customers see

422

Table HC1-3a. Housing Unit Characteristics by Household Income,  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Housing Unit Characteristics by Household Income, 3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Census Region and Division Northeast ...................................... 20.3 3.3 4.2 4.9 7.8 2.6 6.8 6.4 New England .............................. 5.4 0.8 1.1 1.3 2.3 0.6 1.6 9.9 Middle Atlantic ............................ 14.8 2.6 3.2 3.5 5.6 2.0 5.2 7.7 Midwest ......................................... 24.5 3.7 5.2 6.8 8.9 2.8 7.4 5.8 East North Central ......................

423

Facts about FEMA Household Disaster Aid: Examining the 2008 Floods and Tornadoes in Missouri  

Science Conference Proceedings (OSTI)

Very little empirical work has been done on disaster aid in the United States. This paper examines post-disaster grants to households from the Federal Emergency Management Agency in the state of Missouri in 2008. That year, the state experienced ...

Carolyn Kousky

424

A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact  

DOE Green Energy (OSTI)

The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

Cui, Xiaohui [ORNL; Liu, Cheng [ORNL; Kim, Hoe Kyoung [ORNL; Kao, Shih-Chieh [ORNL; Tuttle, Mark A [ORNL; Bhaduri, Budhendra L [ORNL

2011-01-01T23:59:59.000Z

425

Bottle Rock Power Corporation  

E-Print Network (OSTI)

production wells that include two re-injection wells. All steam production wells and one injection well have to the injection well(s). Geotachnical/Seismic Hazards Suspend original Conditions 7-1 through 7-3. No new been temporarily suspended by installing a bridge plug at some depth in each well. Removal of the plugs

426

Genome in a Bottle  

Science Conference Proceedings (OSTI)

... As new high-throughput “Next Generation” DNA sequencing methods are moving ... the stability and homogeneity, we expect to distribute this DNA as ...

2013-09-18T23:59:59.000Z

427

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

and vehicular-distributed-generation model to estimate zero-power, Vehicular distributed generation, Household marketdistributed generation .25

Williams, Brett D

2010-01-01T23:59:59.000Z

428

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

and vehicular-distributed-generation model to estimate zero-power, Vehicular distributed generation, Household marketdistributed generation .25

Williams, Brett D

2007-01-01T23:59:59.000Z

429

Advances in gas-liquid flows 1990  

SciTech Connect

Gas-liquid two-phase flows commonly occur in nature and industrial applications. Rain, clouds, geysers, and waterfalls are examples of natural gas-liquid flow phenomena, whereas industrial applications can be found in nuclear reactors, steam generators, boilers, condensers, evaporators, fuel atomization, heat pipes, electronic equipment cooling, petroleum engineering, chemical process engineering, and many others. The household-variety phenomena such as garden sprinklers, shower, whirlpool bath, dripping faucet, boiling tea pot, and bubbling beer provide daily experience of gas-liquid flows. The papers presented in this volume reflect the variety and richness of gas-liquid two-phase flow and the increasing role it plays in modern technology. This volume contains papers dealing with some recent development in gas-liquid flow science and technology, covering basic gas-liquid flows, measurements and instrumentation, cavitation and flashing flows, countercurrent flow and flooding, flow in various components and geometries liquid metals and thermocapillary effects, heat transfer, nonlinear phenomena, instability, and other special and general topics related to gas-liquid flows.

Kim, J.M. (Texas Univ., Austin, TX (United States). Nuclear Reactor Lab.); Rohatgi, U.S. (Brookhaven National Lab., Upton, NY (United States)); Hashemi, A. (Lockheed Missiles and Space Company (US))

1990-01-01T23:59:59.000Z

430

Gas purification  

SciTech Connect

Natural gas having a high carbon dioxide content is contacted with sea water in an absorber at or near the bottom of the ocean to produce a purified natural gas.

Cook, C.F.; Hays, G.E.

1982-03-30T23:59:59.000Z

431

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

432

Gas Week  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Gas WeekHouston, TexasSeptember 24, 2003

Information Center

2003-09-24T23:59:59.000Z

433

ENERGY STAR Qualified Gas Furnaces | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Furnaces Gas Furnaces Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer » Data ENERGY STAR Qualified Gas Furnaces Dataset Summary Description Gas Furnaces that have earned the ENERGY STAR are more efficient than standard models. ENERGY STAR is the trusted symbol for energy efficiency helping consumers save money and protect the environment through energy-efficient products and practices. More information on ENERGY STAR is available at www.energystar.gov. Tags {Furnaces,"Energy Star",products,"energy efficiency",efficient,"greenhouse gas emissions",climate,utility,utilities,household,savings,labels,partners,certification} Dataset Ratings Overall 0 No votes yet Data Utility

434

Tennessee Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

435

Virginia Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

436

Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

437

Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

438

Louisiana Natural Gas Number of Gas and Gas Condensate Wells...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

439

Maryland Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

440

Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

442

Michigan Natural Gas Number of Gas and Gas Condensate Wells ...  

Annual Energy Outlook 2012 (EIA)

Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

443

Colorado Natural Gas Number of Gas and Gas Condensate Wells ...  

Gasoline and Diesel Fuel Update (EIA)

Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

444

Space-Heating energy used by households in the residential sector.  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Energy End Uses Ranked by Energy Consumption, 1989 The following 28 tables present detailed data describing the consumption of and expenditures for energy used by households in the residential sector. The data are presented at the national level, Census region and division levels, for climate zones and for the most populous States, as well as for other selected characteristics of households. This section provides assistance in reading the tables by explaining some of the headings for the categories of data. It also explains the use of the row and column factors to compute the relative standard error of the estimates given in the tables. Organization of the Tables The tables cover consumption and expenditures for six topical areas: Major Energy Source

445

Extending Efficiency Services to Underserved Households: NYSERDAs Assisted Home Performance with ENERGY STAR Program  

NLE Websites -- All DOE Office Websites (Extended Search)

N April 4, 2012 Extending Efficiency Services to Underserved Households: NYSERDA's Assisted Home Performance with ENERGY STAR Program Since 2001, New York residents have completed over 39,000 energy upgrades through NYSERDA's Home Performance with ENERGY STAR (HPwES) initiative. Approximately one third of these projects have been completed through the Assisted HPwES track, which offers large incentives to middle income

446

Household attitudes toward energy conservation in the Pacific Northwest: overview and comparisons  

SciTech Connect

This report presents an overview of a baseline residential energy conservation study for the Pacific Northwest conducted in November 1983 by RMH Research, Inc. It also compares the study results with available data from other surveys. The primary focus of the RMH study is conservation marketing. As such it assesses the attitudes, perceptions, and past conservation actions of the region's residents and provides market segmentation based upon past conservation actions and the propensity to invest in conservation in the future. Excluding renters, who account for about 24% of the region's households, three prospect groups for marketing conservation investments are identified: First Tier Prospects who are very likely to invest in additional conservation measures requiring larger sums of money (estimated at about 547,000 households, or 18 percent of the region's households); Second Tier Prospects who are somewhat likely to invest in full weatherization (estimated at about 22% of the region's households or 695,700); and Non-Prospects who are unlikely to invest in energy conservation in the near future (estimated to be 1,113,400 or 36% of the regional total). A summary comparison of the most important distinguishing attributes of the three prospect groups is presented. Considering the current surplus status of the region's electricity supply situation and the overall strategy in capability building, implications include (1) using public information programs through utilities and the news media to maintain the conservation interests of the first-tier prospects and (2) exploring ways to move the second-tier prospects into the first tier and to reach the so-called non-prospect and rental housing groups.

Fang, J.M.

1985-06-01T23:59:59.000Z

447

Gender Roles and Activities Among the Rural Poor Households: Case Studies from Hill Villages  

E-Print Network (OSTI)

. Therefore, social stratification is imperative and valuable to any social system (parsons, Davis More quoted by Pathy, 1987). Dahrendorf and Bottomore severely criticized the functionalist approach for over emphasizing consensus and considering... of the households. REFERENCES Archarya, Meena and Lynn, Bennett. 1981 The Status of Women in Nepal, Kathmandn CEDA. Ember, C and Melvin Ember J990 Anthropology, Prentice-Hall, Delhi. 82 Occasional Papers Haralumbus, M, 1997 Sociology Theme and Perspectives, Oxford...

Pokharel, Binod

2001-01-01T23:59:59.000Z

448

" Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Household Income, 2005" 3 Household Characteristics by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Household Characteristics" "Total",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Household Size" "1 Person",30,13.5,8.5,4.3,2,1.8,5.9,13.1 "2 Persons",34.8,6,8.8,7.3,4.4,8.4,3.5,8.4 "3 Persons",18.4,3.1,4.7,3.4,2.5,4.6,2,5.8 "4 Persons",15.9,2.2,3.5,3.3,2.7,4.3,2.2,5.1

449

Understanding and Improving Household Energy Consumption and Carbon Emissions Policies - A System Dynamics Approach  

E-Print Network (OSTI)

The purpose of this paper is to propose and demonstrate the application of system dynamics modeling approach to analyze and study the behavior the complex interrelationships among the different policies/interventions aimed at reducing household energy consumption and CO2 emissions (HECCE) based on the Climate Change Act of 2008 of the UK government. The paper uses the system dynamics as both the methodology and tool to model the policies/interventions regarding HECCE. The model so developed shows the complex interrelationships among the different policies/interventions variables and presents the basis for simulating the different scenarios of household energy consumption reduction strategies. The paper concludes that the model is capable of adding to the understanding of the complex system under which HECCE operate and improve it accordingly by studying the behavior of each policy/intervention over time. The outcomes of the research will help decision makers draw more realistic policies/interventions for household energy consumption which is critical to the CO2 emissions reductions agenda of the government.

Oladokun, M.; Motawa, I.; Banfill, P.

2012-01-01T23:59:59.000Z

450

A statistical analysis of structural differences in minority household electricity demand  

SciTech Connect

In this paper, the structures for electricity demand in non-Latino Black and White households are compared. Electricity demand will be analyzed within the context of a complete demand system, and statistical tests for structural differences will be systematically conducted in the hope of pinpointing the location of differences within the context of this model. Structural differences in demand are defined as statistically significant differences in a parameter or group of parameters that identify the quantitative relationship between explanatory variables and electricity consumption. Along with population taste differences, which might emanate from historical and cultural population differences, structural differences might also occur because of differences in housing and geographic patterns and as a result of differences in access to markets and information. As a consequence, energy consumption decisions will differ, and the level and composition of energy consumption are likely to vary. In practice, it is nearly impossible to untangle the causes contributing to structural differences, but it is reasonably easy to test for statistical differences. The superficial evidence indicates there is a strong likelihood that structural differences do exist in electricity demand between White and Black households. The null hypothesis, which states that there exist no differences in the structures for electricity demand for Black and White households, is tested.

Poyer, D.A.; Earl, E.

1994-09-01T23:59:59.000Z

451

An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China  

Science Conference Proceedings (OSTI)

Chlorofluorocarbons (CFCs) contained in household refrigerators consist mainly of CFC-11 and CFC-12, which will be eventually released into the environment. Consequentially, environmental releases of these refrigerants will lead to ozone depletion and contribute significantly to the greenhouse effect, if waste refrigerators are not disposed of properly. In the present paper, the potential release of residual CFCs and their substitutes from obsolete household refrigerators in China is examined, and their contributions to ozone depletion and greenhouse effect are compared with those of other recognized ozone-depleting substances (ODS) and greenhouse gases (GHGs). The results imply that annual potential amounts of released residual CFC-11 and CFC-12 will reach their maximums at 4600 and 2300 tons, respectively in 2011, and then decrease gradually to zero until 2020. Meanwhile, the amounts of their most widely used substitutes HCFC-141b and HFC-134a will keep increasing. Subsequently, the contribution ratio of these CFCs and their substitutes to ozone depletion will remain at 25% through 2011, and reach its peak value of 34% by 2018. The contribution to greenhouse effect will reach its peak value of 0.57% by 2010. Moreover, the contribution ratio of these CFCs to the total global release of CFCs will steadily increase, reaching its peak of 15% by 2018. Thus, this period from 2010 to 2018 is a crucial time during which residual CFCs and their substitutes from obsolete household refrigerators in China will contribute significantly to ozone depletion.

Zhao Xiangyang; Duan Huabo [Department of Environmental Science and Engineering, Tsinghua University, Beijing (China); Li Jinhui, E-mail: jinhui@tsinghua.edu.cn [Department of Environmental Science and Engineering, Tsinghua University, Beijing (China)

2011-03-15T23:59:59.000Z

452

An economic assessment of the impact of two crude oil price scenarios on households  

SciTech Connect

The impact of two possible future crude oil price scenarios -- high and low price cases -- is assessed for three population groups: majority (non-Hispanic and nonblack), black, and Hispanic. The two price scenarios were taken from the energy security'' report published by the US Department of Energy in 1987. Effects of the two crude oil price scenarios for the 1986--95 period are measured for energy demand and composition and for share of income spent on energy by the three population groups at both the national and census-region levels. The effects on blacks are marginally more adverse than on majority householders, while effects on Hispanics are about the same as those on the majority. Little change is seen in percentage of income spent on energy over the forecast period. Both Hispanic and black households would spend a larger share of their incomes on energy than would majority households. The relatively adverse effects in the higher price scenario shift from the South and West Census regions to the Northeast and Midwest. 24 refs., 7 figs., 22 tabs.

Poyer, D.A.; Teotia, A.P.S.; Hemphill, R.C.; Hill, L.G.; Marinelli, J.L.; Rose, K.J.; Santini, D.J.

1990-02-01T23:59:59.000Z

453

An Analysis of the Price Elasticity of Demand for Household Appliances  

NLE Websites -- All DOE Office Websites (Extended Search)

the Price Elasticity of Demand for Household Appliances the Price Elasticity of Demand for Household Appliances Title An Analysis of the Price Elasticity of Demand for Household Appliances Publication Type Report LBNL Report Number LBNL-326E Year of Publication 2008 Authors Dale, Larry L., and Sydny K. Fujita Document Number LBNL-326E Pagination 19 Date Published 02/2008 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This article summarizes our study of the price elasticity of demand1 for home appliances, including refrigerators, clothes washers and dishwashers. In the context of increasingly stringent appliance standards, we are interested in what kind of impact the increased manufacturing costs caused by higher efficiency requirements will have on appliance sales. We chose to study this particular set of appliances because data for the elasticity calculation was more readily available for refrigerators, clothes washers, and dishwashers than for other appliances. We begin with a review of the existing economics literature describing the impact of economic variables on the sale of durable goods. We then describe the market for home appliances and changes in it over the past 20 years. We conclude with summary and interpretation of the results of our regression analysis and present estimates of the price elasticity of demand for the three appliances.

454

Mitigating Carbon Emissions: the Potential of Improving Efficiency of Household Appliances in China  

E-Print Network (OSTI)

Table 6: Annual Energy Usage of Gas Water Heaters in China3 natural gas per unit in south China, with an average usagebaseline usage is estimated to be 182 m 3 of natural gas per

Lin, Jiang

2006-01-01T23:59:59.000Z

455

Rapid energy savings in London's households to mitigate an energy crisis  

E-Print Network (OSTI)

of London had its natural gas supply cut due to a technicalhad “interruptible” natural gas supply contracts (Webb 2009,within hours. Natural gas as supply had been interrupted to

Julien, Aurore; Barrett, Mark; Croxford, Ben

2011-01-01T23:59:59.000Z

456

Characteristics, Welfare Use and Material Hardship Among California AFDC Households with Disabled and Chronically Ill Family Members  

E-Print Network (OSTI)

Families with Severely Disabled Members, 262 cases weightedA F D C Households with Disabled and Chronically 111 Familylevels. 1'he treatment o f disabled individuals in these

Meyers, Marcia k.

1996-01-01T23:59:59.000Z

457

Development of program implementation, evaluation, and selection tools for household water treatment and safe storage systems in developing countries  

E-Print Network (OSTI)

Over the past six years, the MIT Department of Civil and Environmental Engineering's Master of Engineering program has undertaken various projects involved with the design and implementation of a wide range of household ...

Baffrey, Robert Michael Nuval, 1977-

2005-01-01T23:59:59.000Z

458

Own-price and income elasticities for household electricity demand : a survey of literature using meta-regression analysis.  

E-Print Network (OSTI)

??Maria Wist Langmoen Own-price and income elasticities for household electricity demand -A Literature survey using meta-regression analysis Economists have been modelling the electricity demand for… (more)

Langmoen, Maria Wist

2004-01-01T23:59:59.000Z

459

Table 2.5 Household Energy Consumption and Expenditures by End ...  

U.S. Energy Information Administration (EIA)

Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec-tricity 3: Fuel Oil ...

460

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Air Conditioning: Water Heating: Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec ...

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Heating costs for most households are forecast to rise from last ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

462

Rapid energy savings in London's households to mitigate an energy crisis  

E-Print Network (OSTI)

global natural gas and oil reserve depletion, the impendingreducing natural gas and oil reserves in the North Sea andconsequences of shrinking oil reserves, and finally the

Julien, Aurore; Barrett, Mark; Croxford, Ben

2011-01-01T23:59:59.000Z

463

Household disposables as breeding habitats of dengue vectors: Linking wastes and public health  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities of tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that are most frequently disposed off contributed largely to the sustenance of Aedes mosquito population in the city. This calls for a strict legislation towards disposal as well as enhanced management of the household wastes. A link between the wastes disposed and subsequent conversion to the mosquito larval habitats cautions for continuance of Aedes population and possibility of dengue epidemics if the existing management practices are not improved.

Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India); Aditya, Gautam, E-mail: gautamaditya2001@gmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India); Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104 (India); Saha, Goutam K, E-mail: gkszoo@rediffmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India)

2013-01-15T23:59:59.000Z

464

Using Multiple Household Food Inventories to Measure Food Availability in the Home  

E-Print Network (OSTI)

The purpose of this study was to determine the feasibility of conducting multiple household food inventories over the course of 30 days to examine weekly food variability. Household food availability influences the foods individuals choose to consume; therefore, by assessing the home food environment a better understanding of what people are eating can be obtained. Methods of measuring home food availability have been developed and tested in recent years; however most of these methods assess food availability on one occasion only. This study aimed to capture "usual" availability by using multiple assessments. After the development and pre-testing of the 171-item home observation guide to determine the presence and amount of food items in the home (refrigerator, freezer, pantry, elsewhere), two trained researchers recruited a convenience sample of 9 households (44.4% minority), administered a baseline questionnaire (personal info, shopping habits, food resources, and food security), and conducted 5 in-home assessments (5-7 day interval) over a 30-day period. Each in-home assessment included shopping and fast food activities since the last assessment and an observational survey of types and amounts of foods present. The final in-home assessment included an audio recorded interview on food habits and beliefs. Complete data were collected from all 9 women (32.8 y +/- 6.0; 3 married; 4 +/- 1.6 adults/children in household; 4 SNAP; 6 food insecure) and their households. Weekly grocery purchases (place, amount, and purpose) use (frequency) varied from once (n=1) to every week (n=5); 4 used fast food 2-3 times/wk for 4 weeks. Quantity and types of fresh and processed fruits and vegetables varied by week and by family. The feasibility of conducting multiple in-home assessments was confirmed with 100% retention from all participants. This methodology is important in that it provided detailed information on intra-monthly variation in food availability. The findings suggest the inadequacy of a single measure to assess food availability in the home.

Sisk, Cheree L.

2009-08-01T23:59:59.000Z

465

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

466

Gas separating  

DOE Patents (OSTI)

Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

Gollan, A.

1988-03-29T23:59:59.000Z

467

Missouri Natural Gas Number of Gas and Gas Condensate ...  

U.S. Energy Information Administration (EIA)

Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

468

Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases  

E-Print Network (OSTI)

natural gas production. These recommendations generally represent an ‘‘upstream’’ approach to GHG emissions regulation.

2008-01-01T23:59:59.000Z

469

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

470

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

471

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

1991-10-01T23:59:59.000Z

472

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

21,547 21,547 4,916 0.06 0 0.00 0 0.00 7,012 0.13 3 0.00 7,099 0.22 19,031 0.10 N e w H a m p s h i r e New Hampshire 77. Summary Statistics for Natural Gas New Hampshire, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

473

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

139,881 139,881 26,979 0.30 463 0.00 115 3.92 27,709 0.53 19,248 0.70 28,987 0.92 103,037 0.52 A r i z o n a Arizona 50. Summary Statistics for Natural Gas Arizona, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 6 6 6 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 721 508 711 470 417 From Oil Wells ........................................... 72 110 48 88 47 Total.............................................................. 794 618 759 558 464 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease

474

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Middle Middle Atlantic Middle Atlantic 37. Summary Statistics for Natural Gas Middle Atlantic, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 1,857 1,981 2,042 1,679 1,928 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 36,906 36,857 26,180 37,159 38,000 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 161,372 152,717 140,444 128,677 152,494 From Oil Wells ........................................... 824 610 539 723 641 Total.............................................................. 162,196 153,327 140,982 129,400 153,134 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed

475

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

386,690 386,690 102,471 1.16 0 0.00 43 1.47 142,319 2.72 5,301 0.19 98,537 3.12 348,671 1.74 M i n n e s o t a Minnesota 71. Summary Statistics for Natural Gas Minnesota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

476

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

1,108,583 1,108,583 322,275 3.63 298 0.00 32 1.09 538,749 10.28 25,863 0.95 218,054 6.90 1,104,972 5.52 I l l i n o i s Illinois 61. Summary Statistics for Natural Gas Illinois, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 382 385 390 372 370 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 337 330 323 325 289 From Oil Wells ........................................... 10 10 10 10 9 Total.............................................................. 347 340 333 335 298 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

477

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

286,485 286,485 71,533 0.81 25 0.00 31 1.06 137,225 2.62 5,223 0.19 72,802 2.31 286,814 1.43 M i s s o u r i Missouri 73. Summary Statistics for Natural Gas Missouri, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 5 8 12 15 24 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 27 14 8 16 25 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 27 14 8 16 25 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

478

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

411,951 411,951 100,015 1.13 0 0.00 5 0.17 114,365 2.18 45,037 1.65 96,187 3.05 355,609 1.78 Massachusetts Massachusetts 69. Summary Statistics for Natural Gas Massachusetts, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

479

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

480

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

68,747 68,747 34,577 0.39 0 0.00 34 1.16 14,941 0.29 0 0.00 11,506 0.36 61,058 0.31 I d a h o Idaho 60. Summary Statistics for Natural Gas Idaho, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented

Note: This page contains sample records for the topic "household bottled gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0.00 0 0.00 0 0.00 540 0.01 0 0.00 2,132 0.07 2,672 0.01 H a w a i i Hawaii 59. Summary Statistics for Natural Gas Hawaii, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0 0 0 Vented and Flared

482

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

483,052 483,052 136,722 1.54 6,006 0.03 88 3.00 16,293 0.31 283,557 10.38 41,810 1.32 478,471 2.39 F l o r i d a Florida 57. Summary Statistics for Natural Gas Florida, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 47 50 98 92 96 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 7,584 8,011 8,468 7,133 6,706 Total.............................................................. 7,584 8,011 8,468 7,133 6,706 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ...............

483

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

291,898 291,898 113,995 1.29 0 0.00 4 0.14 88,078 1.68 3,491 0.13 54,571 1.73 260,140 1.30 I o w a Iowa 63. Summary Statistics for Natural Gas Iowa, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation.......................... 0 0 0

484

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: New England New England 36. Summary Statistics for Natural Gas New England, 1992-1996 Table 691,089 167,354 1.89 0 0.00 40 1.36 187,469 3.58 80,592 2.95 160,761 5.09 596,215 2.98 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................

485

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

29,693 29,693 0 0.00 0 0.00 6 0.20 17,290 0.33 0 0.00 16,347 0.52 33,644 0.17 District of Columbia District of Columbia 56. Summary Statistics for Natural Gas District of Columbia, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

486

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

42,980 42,980 14,164 0.16 0 0.00 1 0.03 9,791 0.19 23,370 0.86 6,694 0.21 54,020 0.27 D e l a w a r e Delaware 55. Summary Statistics for Natural Gas Delaware, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

487

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

-49,536 -49,536 7,911 0.09 49,674 0.25 15 0.51 12,591 0.24 3 0.00 12,150 0.38 32,670 0.16 North Dakota North Dakota 82. Summary Statistics for Natural Gas North Dakota, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 496 525 507 463 462 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 104 101 104 99 108 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 12,461 18,892 19,592 16,914 16,810 From Oil Wells ........................................... 47,518 46,059 43,640 39,760 38,906 Total.............................................................. 59,979 64,951 63,232 56,674 55,716 Repressuring ................................................

488

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

226,798 226,798 104,124 1.17 0 0.00 0 0.00 58,812 1.12 2,381 0.09 40,467 1.28 205,783 1.03 North Carolina North Carolina 81. Summary Statistics for Natural Gas North Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ........................................... 0 0 0 0 0 Total.............................................................. 0 0 0 0 0 Repressuring ................................................ 0 0 0 0 0 Nonhydrocarbon Gases Removed ............... 0 0 0 0 0 Wet After Lease Separation..........................

489

Electricity displacement by wood used for space heating in PNWRES (Pacific Northwest Residential Energy Survey) (1983) households  

DOE Green Energy (OSTI)

This report evaluates the amount of electricity for residential space heating displaced by the use of wood in a sample of single-family households that completed the 1983 Pacific Northwest Residential Energy Survey. Using electricity bills and daily weather data from the period of July 1981 to July 1982, it was determined that the average household used 21,800 kWh per year, normalized with respect to weather. If no households had used any wood, electricity use would have increased 9%, to 23,700 kWh; space heating electricity use would also have increased, by 21%, to 47% of total electricity use. In the unlikely event that all households had used a great deal of wood for space heating, electricity use could have dropped by 23.5% from the average use, to 16,700 kWh; space heating electricity use would have dropped by 56%, to 24% of total electricity use. Indications concerning future trends regarding the displacement of electricity by wood use are mixed. On one hand, continuing to weatherize homes in the Pacific Northwest may result in less wood use as households find using electricity more economical. On the other hand, historical trends in replacement decisions regarding old space heating systems show a decided preference for wood. 11 refs., 6 figs., 8 tabs.

White, D.L.; Tonn, B.E.

1988-12-01T23:59:59.000Z

490

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

Williams, Brett D

2010-01-01T23:59:59.000Z

491

On the energy sources of Mozambican households and the demand-supply curves for domestic electricity in the northern electrical grid in Mozambique.  

E-Print Network (OSTI)

??The development of electrical infrastructure to supply rural households is considered economically unfeasible because of the high cost of capital investment required to expand the… (more)

Arthur, Maria de Fatima Serra Ribeiro

2009-01-01T23:59:59.000Z

492

Table HC6.12 Home Electronics Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

2 Home Electronics Usage Indicators by Number of Household Members, 2005 2 Home Electronics Usage Indicators by Number of Household Members, 2005 Total................................................................................ 111.1 30.0 34.8 18.4 15.9 12.0 Personal Computers Do Not Use a Personal Computer............................. 35.5 16.3 9.4 4.0 2.7 3.2 Use a Personal Computer.......................................... 75.6 13.8 25.4 14.4 13.2 8.8 Most-Used Personal Computer Type of PC Desk-top Model..................................................... 58.6 10.0 20.0 11.2 10.1 7.3 Laptop Model........................................................ 16.9 3.7 5.4 3.2 3.1 1.5 Hours Turned on Per Week Less than 2 Hours................................................. 13.6 4.0 4.7 1.7 1.8 1.4 2 to 15 Hours........................................................

493

Experience with improved charcoal and wood stoves for households and institutions in Kenya  

SciTech Connect

Efforts at promoting more fuel-efficient charcoal stoves to replace traditional charcoal stoves in Kenya offer some lessons for the dissemination of appropriate technologies. This paper looks at the market-based approach which has made the Kenyan charcoal stoves project a success. Trends in woodfuels (wood and charcoal) consumption in Kenya are identified; the traditional technology for charcoal combustion and the upgraded traditional technologies are described; production achievement and the dissemination and promotion strategy used are examined; and a financial and economic analysis is performed with social, health and environmental effects assessed. Other ways to achieve a more favourable balance between woodfuels consumption and supply are then discussed looking at more efficient charcoal kilns and household woodstoves, improved institutional stoves and increased wood production. The replication potential of the Kenya experiment in other countries is also explored. The lessons learnt from the the Kenya experience concern the relationship between technology, choice and delivery systems as they interact with, economic, institutional, and policy factors. In this case, the design work accepted the traditional technology as a starting point which helped ensure widespread acceptance by households. The potential desirability of relying on local artisans to manufacture consumer durables using existing private sector channels to market these go