National Library of Energy BETA

Sample records for house office building

  1. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc...

  2. Education Office Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office Housing Housing A housing forum and listings for housing in and around Los Alamos. Contact Postdoc Housing Email LANL Students' Association Email LANL postdoc program housing The LANL Postdoc Program has a Postdoc Housing listing. If you are interested in posting a housing opportunity, send an email with the pertinent information to postdocprogram@lanl.gov. Housing listings will be posted for 1 month. If you wish for the listing to remain on the web site longer, please contact

  3. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  4. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  5. Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Islip Housing Authority Energy Efficiency Turnover Protocols Islip, New York PROJECT INFORMATION Project Name: Islip Housing Authority Unit Turnover Retrofit Program Location: Islip, NY Partners: Islip Housing Authority, http://www.rhaonline.com/ Advanced Residential Integrated Solutions Collaborative (ARIES), http://levypartnership.com/ Building Component: Whole building Application: Retrofit; single and multifamily Year Tested: 2013 Applicable Climate Zone(s): All PERFORMANCE DATA Cost of

  6. Office Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  7. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    page, please call 202-586-8800. There were enough buildings in the responding sample to report statistics for all of these types except for research and development, which has...

  8. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  9. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge ...

  10. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  11. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (BTO) Ecosystem Emerging Technologies ... Heat Flow + Air Flow + Water Flow Ventilation Thermal ... and related services 3. Enable buildings to ...

  12. Affordable Cold Climate Infill Housing with Hybrid Insulation Approach, Wyandotte, Michigan (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Wyandotte, Michigan PROJECT INFORMATION Construction: New home Type: Single-family, affordable Builder: City of Wyandotte with various local homebuilders www.wyandotte.net Size: 1,150 to 1,500 ft 2 Price Range: $113,000-$138,000 Date completed: 2012 Climate Zone: Cold PERFORMANCE DATA HERS index: * 2009 IECC = 102 * Case study house 1,475 ft 2 * With renewables = NA * Without renewables = 75 Projected annual energy cost

  13. Director, Building Technologies Office

    Broader source: Energy.gov [DOE]

    This position is located in the Building Technologies Office (BTO) of the Office of Energy Efficiency and Renewable Energy (EERE). The mission of EERE is to create and sustain American leadership...

  14. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House Simulation Protocols have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building ...

  15. Funding Opportunity: Building America High Performance Housing Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The Building Technologies Office (BTO) Residential Buildings Integration Program has announced the availability of $5.5 million for Funding Opportunity Announcement (FOA) DE-FOA-0001395, "Building America Industry Partnerships for High Performance Housing Innovation." DOE seeks to fund up

  16. Inverted Attic Bulkhead for HVAC Ductwork, Roseville, California (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Inverted Attic Bulkhead for HVAC Ductwork Roseville, California PROJECT INFORMATION Project Name: Long-Term Monitoring of Occupied Test House Location: Roseville, CA Partners: K. Hovnanian® Homes®, www.khov.com IBACOS www.ibacos.com Building Component: Envelope, structural, HVAC ducts Construction: New Application: New; single and/or multifamily Year Tested: 2012 Applicable Climate Zone(s): Hot-dry climate PERFORMANCE DATA HERS Index: 52 Projected Energy Savings: 11 million Btu/year heating

  17. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  18. Funding Opportunity: Building America High Performance Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity: Building America High Performance Housing Innovation Funding Opportunity: Building America High Performance Housing Innovation November 19, 2015 - 11:51am Addthis The ...

  19. 2014 Building America House Simulation Protocols

    Energy Savers [EERE]

    2014 Building America House Simulation Protocols E. Wilson, C. Engebrecht Metzger, S. Horowitz, and R. Hendron National Renewable Energy Laboratory Technical Report NREL/TP-5500-60988 March 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  20. Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Hendron, Robert; Engebrecht, Cheryn

    2010-09-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  1. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Energy Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon fuelcells_ataglance_2014.pdf More Documents & Publications Fuel Cell Technologies Office FY 2016 Budget At-A-Glance Fuel Cell Technologies Office FY 2015 Budget At-A-Glance Fuel Cell Technologies

  2. Building Technologies Office 2015 Highlights

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING TECHNOLOGIES OFFICE 2 01 5 H I G H LI G H TS Director's Letter Dear Reader, As we ... This progress is a direct result of our partnerships with national laboratories, industry, ...

  3. Pilot Demonstration of Phased Retrofits in Florida Homes (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Pilot Demonstration of Phased Retrofits in Florida Homes PROJECT INFORMATION Project Name: Pilot Demonstration of Phased Retrofits in Existing Florida Homes Partners: Building America Partnership for Improved Residential Construction, www.ba-pirc.org Florida Power & Light, www.fpl.com Location: Brevard, Collier, and Palm Beach Counties, Florida Application: Retrofit; Single-family Number of Homes: 60 Age Range: 1958-2006 Applicable Climate Zone(s): Hot-humid Year Tested: 2012-2013

  4. A Look at Office Buildings - Index

    U.S. Energy Information Administration (EIA) Indexed Site

    law office, or medical office. An office building may also be part of a campus or complex, such as an administrative building on a college campus. (See Description of Building...

  5. Energy use in office buildings

    SciTech Connect (OSTI)

    1980-10-01

    This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

  6. House Simulation Protocols (Building America Benchmark)- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes the DOE-sponsored House Simulation Protocols, which have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building America program.

  7. Stud Walls With Continuous Exterior Insulation for Factory Built Housing: New York, New York (Fact Sheet), NREL (National Renewable Energy Laboratory), Building America Case Study Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Stud Walls With Continuous Exterior Insulation for Factory Built Housing New York, New York PROJECT INFORMATION Project Name: Advanced Envelope Research for Factory Built Housing Location: New York, NY Partners: Manufactured and modular home building companies The Levy Partnership, Inc., www.levypartnership.com SBRA, www.research-alliance.org AFM Corp., www.afmcorporation.com BASF, www.basf.com Dow Corp., www.dow.com Johns Manville, www.jm.com Owens Corning, www.owenscorning.com CertainTeed,

  8. Keynote Address: Cristin Dorgelo, White House Office of Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cristin Dorgelo, White House Office of Science and Technology Policy Keynote Address: Cristin Dorgelo, White House Office of Science and Technology Policy May 21, 2014 2:20PM to ...

  9. Building America Whole-House Solutions for Existing Homes: Cascade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing...

  10. ARIES: Building America, High Performance Factory Built Housing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review Presenter: ...

  11. Low-Cost Ventilation in Production Housing - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple ...

  12. Building America Whole-House Solutions for New Homes: Winchester...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Winchester Homes and Camberly Homes - Silver Spring, Maryland (Fact Sheet) Building America Whole-House Solutions for New ...

  13. Building America Whole-House Solutions for Existing Homes: Cascade...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing ...

  14. Office Buildings - End-Use Equipment

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration, 2003 Commercial Buildings Energy Consumption Survey. More computers, dedicated servers, printers, and photocopiers were used in office buildings than in...

  15. An Overview of the Building Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Innovation, Speeding Adoption, Scaling Savings An Overview of the Building Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption Costs U.S. $410 billion to power 2 National Electricity Use Our homes and buildings use 76% of all U.S. electricity 3 The Opportunity: Energy Savings Potential for Buildings and Homes Reduce building energy use by 50% 4 BTO Budget: FY2013 - Proposed FY2016 $0 $50 $100 $150 $200 $250 $300 Residential Buildings

  16. 2014 Building Technologies Office Program Peer Review Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Building Technologies Office Program Peer Review Report 2014 Building Technologies Office Program Peer Review Report The 2014 Building Technologies Office Program Peer Review...

  17. 2013 Building Technologies Office Program Peer Review Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Building Technologies Office Program Peer Review Report 2013 Building Technologies Office Program Peer Review Report The 2013 Building Technologies Office Program Peer Review ...

  18. Building Technologies Office Projects Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Projects Map Building Technologies Office Projects Map Welcome to the Building Technologies Office Projects Map. Here you will find listings for our ...

  19. Building America Industrialized Housing Partnership (BAIHP II)

    SciTech Connect (OSTI)

    Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

    2010-11-30

    This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

  20. 2014 Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Wilson, E.; Engebrecht, C. Metzger; Horowitz, S.; Hendron, R.

    2014-03-01

    As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  1. Keynote Address: Cristin Dorgelo, White House Office of Science and

    Office of Environmental Management (EM)

    Technology Policy | Department of Energy Cristin Dorgelo, White House Office of Science and Technology Policy Keynote Address: Cristin Dorgelo, White House Office of Science and Technology Policy May 21, 2014 2:20PM to 2:30PM PDT Pacific Ballroom Cristin Dorgelo, Assistant Director of Grand Challenges for The White House Office of Science and Technology Policy will deliver a keynote address

  2. Building America House Simulation Protocols (Revised)

    SciTech Connect (OSTI)

    Hendron, R.; Engebrecht, C.

    2010-10-01

    The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

  3. building tech office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Technologies Office The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high-impact technologies, systems and practices. The long-term goal of the Building Technologies Office is to reduce energy use by 50%, compared to a 2010 baseline. To secure these savings, research, development, demonstration, and deployment of next-generation building technologies are needed to advance building systems and

  4. Building America Whole-House Solutions for New Homes: Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Test Homes Building America Whole-House Solutions for New Homes: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes This project ...

  5. 2014 Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.; Hendron, R.

    2014-03-01

    As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  6. Building America Whole-House Solutions for New Homes: Insight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Insight Homes, Seaford, Delaware Case study of Insight Homes, who worked with the Building America research partner IBACOS to ...

  7. Building America Whole-House Solutions for Existing Homes: National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) Building Science Corporation ...

  8. Building America Whole-House Solutions for New Homes: Transformations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2009, Transformations, Inc. partnered with the Building Science Corporation team to build new net zero energy houses in three developments in Massachusetts that achieve a 45% ...

  9. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The conversion of an older Massachusetts building into ...

  10. Building America Whole-House Solutions for New Homes: Quadrant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quadrant Homes, Kent, Washington Building America Whole-House Solutions for New Homes: Quadrant Homes, Kent, Washington Case study of Quadrant Homes, who worked with Building ...

  11. Building America Whole-House Solutions for Existing Homes: Inverted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania Vol. 9: Building America Best Practices Series - Builders ...

  12. 2015 Building Technologies Office Program Peer Review Report...

    Energy Savers [EERE]

    Technologies Office Program Peer Review Report 2015 Building Technologies Office Program Peer Review Report The 2015 Building Technologies Office Program Peer Review Report ...

  13. Better Buildings Challenge Expands to Multifamily Housing | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Better Buildings Challenge Expands to Multifamily Housing Better Buildings Challenge Expands to Multifamily Housing December 4, 2013 - 12:00am Addthis The U.S. Departments of Energy and Housing and Urban Development on December 3 expanded the Better Buildings Challenge to multifamily housing such as apartments and condominiums. The departments also launched the Better Buildings Accelerators to support efforts led by state and local governments to cut energy waste and eliminate market

  14. 1997 Housing Characteristics Tables Home Office Equipment Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Percent of U.S. Households; 13 pages, 48 kb) Contents Pages HC7-1b. Home Office Equipment by Climate Zone, Percent of U.S. Households, 1997 1 HC7-2b. Home Office Equipment by Year of Construction, Percent of U.S. Households, 1997 1 HC7-3b. Home Office Equipment by Household Income, Percent of U.S. Households, 1997 1 HC7-4b. Home Office Equipment by Type of Housing Unit, Percent of U.S. Households, 1997 1 HC7-5b. Home Office Equipment by Type of Owner-Occupied Housing Unit, Percent of U.S.

  15. Table HC7-6a. Home Office Equipment by Type of Rented Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Home Office Equipment by Type of Rented Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Rented Units Type of Rented Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.5 0.8 1.0 0.9 3.0 Total ............................................... 34.3 10.5 7.4 15.2 1.1 6.9 Households Using Office Equipment .......................... 28.7 9.2 6.5 12.1 0.9 7.5 Personal Computers 1

  16. ARIES: Building America, High Performance Factory Built Housing - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review Presenter: Jordan Dentz, Levy Partnership View the Presentation PDF icon ARIES: Building America, High Performance Factory Built Housing - 2015 Peer Review More Documents & Publications ARIES lab houses. Photo courtesy of The Levy Partnership, Inc. Integrated Design: A High-Performance Solution

  17. Reference Buildings by Building Type: Small office

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  18. Reference Buildings by Building Type: Medium office

    Broader source: Energy.gov [DOE]

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  19. Building Technologies Office 2014 Highlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Highlights Building Technologies Office 2014 Highlights View a summary of select 2014 accomplishments from DOE's Building Technologies Office. PDF icon Building Technologies Office 2014 Highlights More Documents & Publications Multi-Year Program Plan Building Technologies Office Overview - 2013 Peer Review Building Technologies Office Overview - 2015

  20. Building Technologies Office Overview - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 3 Peer Review Building Technologies Office Overview - 2013 Peer Review Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review PDF icon bto_overview_risser_040213.pdf More Documents & Publications Building Technologies Office Overview - 2014 Peer Review Building Technologies Office Overview - 2015

  1. BUILDING TECHNOLOGIES OFFICE 2014 HIGHLIGHTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Installations are rising LEDs Make Rapid Inroads in Market ... In response, building codes are constantly increasing in ... Each team included students and advisors. Teams were ...

  2. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    179D DOE Calculator EERE Building Technologies Office 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the...

  3. Building Technologies Office Program Peer Review

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) hosts an annual programmatic peer review. The event is open to the public and will provide the opportunity for stakeholders to learn more about BTO research, development, demonstration and deployment projects.

  4. Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing: Read This Before You Move In

    SciTech Connect (OSTI)

    2001-09-06

    This document provides advice for healthy and affordable housing: practical recommendations for building, renovating, and maintaining housing.

  5. Building Technologies Office 2015 Highlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office 2015 Highlights Building Technologies Office 2015 Highlights View a summary of select 2015 accomplishments from DOE's Building Technologies Office. PDF icon Building Technologies Office 2015 Highlights More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Building Technologies Office Overview - 2016 BTO Peer Review Credit: National Institute of Standards Thermodynamic Evaluation of Low-Global Warming Potential

  6. Building America Whole-House Solutions for New Homes: Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake Building America Whole-House Solutions for New...

  7. Energy Department Recognizes Denver Area Partners for Housing and Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Recognizes Denver Area Partners for Housing and Building Efficiency Energy Department Recognizes Denver Area Partners for Housing and Building Efficiency June 8, 2015 - 3:37pm Addthis As a part of the Administration's effort to help cut energy waste, the Energy Department and the U.S. Department of Housing and Urban Development (HUD) will recognize the Denver Housing Authority and the cities of Denver and Arvada, Colorado today for their leadership in the

  8. Addendum to the Building America House Simulation Protocols | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Addendum to the Building America House Simulation Protocols Addendum to the Building America House Simulation Protocols The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  9. Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Energy Efficiency in Separate Tenant Spaces - A Feasibility Study Energy Efficiency in Separate Tenant Spaces - A Feasibility Study While commercial building owners generally have control over building systems and operations, tenants play a critical role in achieving lasting reductions in energy intensity. In recognition of this collaborative role, the Department of Energy has studied the feasibility of improving energy efficiency in tenant spaces. Read more Apply

  10. High-Performance Affordable Housing with Habitat for Humanity - Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Top Innovation | Department of Energy High-Performance Affordable Housing with Habitat for Humanity - Building America Top Innovation High-Performance Affordable Housing with Habitat for Humanity - Building America Top Innovation Photo of people building ENERGY STAR homes. High-performance homes provide compelling benefits for all homeowners, but no sector is better served than affordable housing. These are the homeowners that most need the reduced costs of ownership and maintenance

  11. Building America 2014 House Simulation Protocols | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 House Simulation Protocols Building America 2014 House Simulation Protocols As Building America has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit

  12. Building America Whole-House Solutions for New Homes: Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Meeting DOE Challenge Homes Program Certification Three production home builders-K. Hovnanian Homes, David Weekley Homes, and ...

  13. Building America Whole-House Solutions for Existing Homes: Cascade...

    Energy Savers [EERE]

    Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily...

  14. Building America Whole-House Solutions for New Homes: Schneider...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Schneider Homes, Inc.: Village at Miller Creek - Burien, WA More Documents & Publications Building America Whole-House Solutions for New Homes: Tom Walsh & Co., Portland, ...

  15. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit ...

  16. Building America Whole-House Solutions for Existing Homes: Greenbelt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greenbelt Homes, Inc. Pilot Retrofit Project - Greenbelt, Maryland Building America Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Project - ...

  17. Building America Whole-House Solutions for New Homes: Artistic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Artistic Homes, Albuquerque, New Mexico Building America Whole-House Solutions for New Homes: Artistic Homes, Albuquerque, New Mexico Case study of Artistic Homes who worked with ...

  18. Building America Whole-House Solutions for New Homes: Winchester...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Camberly Homes - Silver Spring, Maryland (Fact Sheet) Building America Whole-House Solutions for New Homes: Winchester Homes and Camberly Homes - Silver Spring, Maryland ...

  19. Building America Whole-House Solutions for New Homes: Devoted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Climates DOE Zero Energy Ready Home: Durable Energy Builders, Houston, Texas Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut

  20. Building America Whole-House Solutions for Existing Homes: Applying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: ...

  1. Building America Whole-House Solutions for New Homes: Transformations...

    Energy Savers [EERE]

    Transformations, Inc. Net Zero Energy Communities (Fact Sheet) Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet)...

  2. Building America Whole-House Solutions for Existing Homes: Islip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Islip Housing Authority Energy Efficiency Turnover Protocols - Islip, NY More Documents & Publications Building America Case Studies for Existing Homes: Philadelphia ...

  3. Advanced Energy Retrofit Guide Office Buildings

    SciTech Connect (OSTI)

    Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

    2011-09-27

    The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

  4. Building America Whole-House Solutions for New Homes: Treasure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Treasure Homes, Sacramento, California Case study of Treasure Homes, who worked with SMUD, DOE, NREL, and ConSol to build ...

  5. Building America Whole-House Solutions for New Homes: Imagine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imagine Homes, San Antonio, Texas Building America Whole-House Solutions for New Homes: Imagine Homes, San Antonio, Texas Case study of Imagine Homes, who worked with the Building ...

  6. Low-Cost Ventilation in Production Housing - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Low-Cost Ventilation in Production Housing - Building America Top Innovation Low-Cost Ventilation in Production Housing - Building America Top Innovation This drawing shows simple and cost-effective ventilation strategies for homes. As high-performance homes get more air tight and better insulated, attention to good indoor air quality becomes essential. This Top Innovation profile describes Building America research by Building Science Corporation to develop

  7. Achieving 50% Energy Savings in Office Buildings, Advanced Energy Design Guides: Office Buildings (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This fact sheet summarizes recommendations for designing new office buildings that result in 50% less energy use than conventional designs meeting minimum code requirements. The recommendations are drawn from the Advanced Energy Design Guide for Small to Medium Office Buildings, an ASHRAE publication that provides comprehensive recommendations for designing low-energy-use office buildings with gross floor areas up to 100,000 ft2 (see sidebar). Designed as a stand-alone document, this fact sheet provides key principles and a set of prescriptive design recommendations appropriate for smaller office buildings with insufficient budgets to fully implement best practices for integrated design and optimized performance. The recommendations have undergone a thorough analysis and review process through ASHRAE, and have been deemed the best combination of measures to achieve 50% savings in the greatest number of office buildings.

  8. 2014 Building Technologies Office Program Peer Review Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Building Technologies Office Program Peer Review Report 2014 Building Technologies Office Program Peer Review Report The 2014 Building Technologies Office Program Peer Review Report summarizes the results of the 2014 Building Technologies Office (BTO) Peer Review, which was held in Arlington, Virginia, on April 22-24, 2014. Read the report PDF icon 2014 BTO Peer Review Report More Documents & Publications 2015 Building Technologies Office Program Peer Review Report Emerging

  9. 2015 Building Technologies Office Program Peer Review Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Building Technologies Office Program Peer Review Report 2015 Building Technologies Office Program Peer Review Report The 2015 Building Technologies Office Program Peer Review Report summarizes the results of the 2015 Building Technologies Office (BTO) Peer Review, which was held in Vienna, Virginia, on April 14-16, 2015. Read the report PDF icon 2015 BTO Peer Review Report More Documents & Publications 2014 Building Technologies Office Program Peer Review Report Market

  10. Building Technologies Office Peer Review 2015

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Building Technologies Office is hosting its third annual Program Peer Review on April 14-16, 2015 in Vienna, Virginia. The event is open to the public and will provide the opportunity for stakeholders to learn more about BTO research, development, demonstration and deployment projects. Space for the event is limited and registration is required.

  11. Pollution prevention opportunity assessment for Building 922 solid office waste

    SciTech Connect (OSTI)

    Phillips, N.M.

    1995-01-01

    Building 922 houses all of SNL/California`s ES and H Departments: Health Protection, Environmental Protection, Safety, and Environmental Operations. It covers approximately 10,000 square feet and houses about 80 people. The office personnel generate nonhazardous solid office wastes in their daily activities. To determine the types and amounts of waste generated, a special PPOA sorting team sorted all of the trash collected from the building for a period of one-week (including paper and aluminum cans in the recycling bins). The team sorted the trash into major categories: paper, plastic, metals, glass, wet garbage, rest room waste, and miscellaneous materials. They then sorted it into subcategories within each major category. Rest room waste was collected but not sorted. The waste in each category was weighed separately. The total amount of trash collected during the week was approximately 168.8 kg (371.4 lbs). The results of this PPOA indicate that SNL/California is minimizing most nonhazardous office waste and reductions planned for the near future will add significantly to the minimization efforts.

  12. Highlighting High Performance: Department of Environmental Protection; Cambria Office Building, Ebensburg, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    The 36,000-square-foot Cambria Office building in Ebensbug, Pennsylvania houses the Pennsylvania Department of Environmental Protection. Designers of the energy-efficient building used integrated design to minimize energy use and pollution created in the production of the materials they used, and reduced the overall pollution and environmental impact the building will create over its lifetime. The building also employs daylighting and renewable energy technologies.

  13. Building America Whole-House Solutions for Existing Homes: Passive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room-to-Room Air Transfer, Fresno, California (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet) In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors

  14. HVAC Design Strategy for a Hot-Humid Production Builder, Houston, Texas (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    HVAC Design Strategy for a Hot-Humid Production Builder Houston, Texas PROJECT INFORMATION Construction: New Home Type: Single-family, production builder Builder: David Weekley Homes - Houston www.davidweekleyhomes.com/ new-homes/tx/houston Size: 1,757 ft 2 to 4,169 ft 2 Price Range: about $260,000 to $450,000 Date Completed: 2013 Climate Zone: Hot-humid PERFORMANCE DATA HERS index: Builder standard practice = 66; case study 1,757-ft 2 house = 54 Projected annual energy cost savings: $375

  15. Subscribe to Building Technologies Office Updates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subscribe to Building Technologies Office Updates Subscribe to Building Technologies Office Updates Sign up to receive email notices of funding opportunities, special events, live webinars, and news from the Building Technologies Office (BTO). These periodic notices include the following topics: New energy-saving technology Energy efficient commercial buildings Energy efficient residential buildings Appliance standards Building energy codes Buildings-to-Grid Integration Enter your email address

  16. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

  17. Building America Whole-House Solutions for New Homes: A Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Production Builder's Passive House, Denver, Colorado (Midtown Building America Whole-House Solutions for New Homes: A Production Builder's Passive House, Denver, Colorado ...

  18. Building America Whole-House Solutions for New Homes: Devoted Builders,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC, Pasco, Washington | Department of Energy Devoted Builders, LLC, Pasco, Washington Building America Whole-House Solutions for New Homes: Devoted Builders, LLC, Pasco, Washington Case study of Devoted Builders who worked with Building America research partner WSU Extension Energy Office to design HERS-54 duplexes with ICF walls, high-efficiency mini-split heat pumps, ERVs, and a spray-foam plus blown cellulose covered ceiling deck. PDF icon Devoted Builders, LLC. - Pasco, WA More

  19. DOE Building Technologies Office seeks science and engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Building Technologies Office seeks science and engineering graduate students for 2016-2017 pilot program to research building to grid integration Deadline for applying is Nov. ...

  20. Towards SustainabilityGreen Building, Sustainability Objectives, and Building America Whole House Systems Research

    SciTech Connect (OSTI)

    none,

    2008-02-01

    This paper discusses Building America whole-house systems research within the broad effort to reduce or eliminate the environmental impact of building and provides specific recommendations for future Building America research based on Building Science Corporations experience with several recent projects involving green home building programs.

  1. In-House Facility for Building Batteries and Performance Behavior...

    Office of Scientific and Technical Information (OSTI)

    Batteries and Performance Behavior of SNL-Built 18650 Li(CFx)n Cells. Citation Details In-Document Search Title: In-House Facility for Building Batteries and Performance ...

  2. Building America Whole-House Solutions for New Homes: Evluating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania | Department of Energy Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania Building America Whole-House Solutions for New Homes: Evluating Through-Wall Air Transfer Fans, Pittburgh, Pennsylvania In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate HVAC distribution systems during heating, cooling, and midseason conditions.

  3. Building America Whole-House Solutions for Existing Homes: Cascade

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Cascade Apartments - Deep Energy Multifamily Retrofit (Fact Sheet) This project implemented energy retrofit improvements in the Cascade multifamily community, which resulted in annual energy cost savings of 22%, improved comfort

  4. Better Buildings Alliance- Annual Open House Webinar

    Broader source: Energy.gov [DOE]

    The Better Buildings Alliance is hosting a webinar on new energy efficiency resources and upcoming opportunities available this year through DOE's Better Building Alliance. Learn about new solutions that can help reduce energy costs for your organization.

  5. Contact the Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About » Contact the Building Technologies Office Contact the Building Technologies Office The Building Technologies Office always welcomes your feedback and suggestions. Contact us via mail, phone or email. Address U.S. Department of Energy Building Technologies Office (BTO) Mail Stop EE-2J 1000 Independence Ave, SW Washington, DC 20585 Phone Number 202.586.9127 Media Inquiries For media inquiries, please email the EERE communications team at EE.Media@ee.doe.gov. Web Requests If you have a

  6. 2013 DOE Building Technologies Office Program Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review The 2013 Department of Energy (DOE) Building Technologies Office Program Review was held April 2-4, 2013 in Washington, DC. This inaugural review encompassed active work done by the Building Technologies Office (BTO), with a total of 59 individual activities reviewed. Sixty independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these

  7. 2013 Building Technologies Office Program Peer Review Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3 Building Technologies Office Program Peer Review Report 2013 Building Technologies Office Program Peer Review Report The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2-4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO's Emerging Technologies Program, 20 from the

  8. Better Buildings Webinar: Better Buildings Alliance- Annual Open House Webinar

    Broader source: Energy.gov [DOE]

    The Better Buildings Alliance is hosting a webinar on new energy efficiency resources and upcoming opportunities available this year through DOE's Better Building Alliance.

  9. Table HC7-5a. Home Office Equipment by Type of Owner-Occupied Housing Unit,

    U.S. Energy Information Administration (EIA) Indexed Site

    5a. Home Office Equipment by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Home Office Equipment RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Home Two to Four Units Five or More Units 0.3 0.3 2.1 3.0 1.6 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Households Using Office Equipment .......................... 67.5 59.0 2.0 1.7 4.8 7.0

  10. Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

  11. Building Technologies Office Overview - 2015 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technologies Office Overview - 2015 Peer Review Building Technologies Office Overview - 2015 Peer Review Presenter: Roland Risser, U.S. Department of Energy Cutting our nation's energy consumption calls for cutting-edge, energy-efficient solutions. That's where the Building Technologies Office comes in. We are researching, developing, and deploying cost-effective solutions to cut building energy use in half by 2030. Our office will examine the feedback from the 2015 Program Peer

  12. Better Building Alliance – Annual Open House

    Broader source: Energy.gov [DOE]

    Join us for an overview of the new energy efficiency resources and upcoming opportunities available this year through the U.S. Department of Energy’s Better Buildings Alliance. We’ll present the...

  13. Building Technologies Office Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About » Building Technologies Office Peer Review Building Technologies Office Peer Review The Building Technologies Office (BTO) hosts an annual peer review. The event is open to the public and will provide the opportunity for stakeholders to learn more about BTO research, development, demonstration and deployment projects. Peer reviews are important in providing robust, documented feedback for program planning. Knowledge about the quality and effectiveness of current Building Technologies

  14. Building America Whole-House Solutions for New Homes: Tommy Williams...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Tommy Williams Homes, Gainesville, Florida Case study of Tommy Williams Homes who partnered with Building America to build ...

  15. Highlighting High Performance Buildings: Department of Environmental Protection-Cambria Office Building, Ebensburg, Pennsylvania

    SciTech Connect (OSTI)

    2001-11-01

    The 36,000-square-foot Cambria Office building used integrated design to minimize energy use, pollution and environmental impact the building will create over its lifetime.

  16. Addendum to the Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Engebrecht, C. Metzger; Wilson, E.; Horowitz, S.

    2012-12-01

    As DOE's Building America program has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the programs goals. The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  17. Addendum to the Building America House Simulation Protocols

    SciTech Connect (OSTI)

    Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

    2012-12-01

    As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

  18. Property:Building/FloorAreaOffices | Open Energy Information

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingFloorAreaOffices Jump to: navigation, search This is a property of type Number. Floor area for Offices Pages using the property...

  19. Building Technologies Office Overview - 2014 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Peer Review Building Technologies Office Overview - 2014 Peer Review Presenter: Roland Risser, U.S. Department of Energy Cutting our nation's energy consumption calls for cutting-edge, energy-efficient solutions. That's where the Building Technologies Office comes in. We are researching, developing, and deploying cost-effective solutions to cut building energy use in half by 2030. Our office will examine the feedback from the 2014 Program Peer Review to see what's working for us,

  20. How to Select Lighting Controls for Offices and Public Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Select Lighting Controls for Offices and Public Buildings How to Select Lighting Controls for Offices and Public Buildings Fact sheet details agency guidelines for selecting lighting controls for offices and public buildings to save operating costs and energy. PDF icon light_controls.pdf More Documents & Publications Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers Exterior LED Lighting Projects at Princeton

  1. Building Technologies Office 2014 Program Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4 Program Peer Review Building Technologies Office 2014 Program Peer Review The 2014 Department of Energy (DOE) Building Technologies Office Peer Review was held April 22-24, 2014 in Arlington, Virginia. This second annual review encompassed active work done by the Building Technologies Office (BTO). Independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the management of existing

  2. Post Office Building, Rancho Mirage, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post Office Building, Rancho Mirage, California Post Office Building, Rancho Mirage, California Photo of Photovoltaic System at Rancho Mirage Post Office in California The U.S. Postal Service (USPS) has been making an effort to add solar power to its offices as part of the Million Solar Roofs Initiative. They have been working with the staff at the National Renewable Energy Laboratory (NREL) to implement energy systems at USPS facilities. NREL assisted the USPS in rehabilitating an inoperable

  3. About the Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office's Multi-Year Program Plan for Fiscal Years 2016-2020 provides a roadmap of our strategies and goals for significantly reducing building energy use intensity. ...

  4. Building Technologies Office Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office. Through robust feedback, the BTO Program Peer Review enhances existing efforts ...

  5. Building America Whole-House Solutions for New Homes: Zero Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake Building America Whole-House Solutions for New Homes: Zero Energy Ready Home Multifamily Project: Mutual ...

  6. Archive Reference Buildings by Building Type: Small office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  7. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  8. Grand Junction Office Founder Honored at the Philip C. Leahy Memorial Park Dedication and Open House

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) held an open house and park dedication at the Grand Junction, Colorado, Office to commemorate its place in the Manhattan Project...

  9. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions Chicago, Illinois PROJECT INFORMATION Construction: Retrofit Type: Single-family homes Building Component: Envelope Location: Chicago, IL Technical Support Partner: Partnership for Advanced Residential Retrofit, www.gastechnology.org/PARR Year Tested: 2013 Climate Zone: Zone 5 (cold) PROJECT HOUSING GROUPS The table below depicts the

  10. Building America Whole-House Solutions for New Homes: Nexus EnergyHome...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, ...

  11. House-as-a-System Business Case - Building America Top Innovations...

    Energy Savers [EERE]

    House-as-a-System Business Case - Building America Top Innovations House-as-a-System Business Case - Building America Top Innovations August 25, 2014 - 10:48am Addthis...

  12. Building Technologies Office 2014 Highlights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlights Building Technologies Office 2014 Highlights Building Technologies Office 2014 Highlights Table of Contents Feature Story: LEDs Make Rapid Inroads in Market Research & Development of Emerging Technologies Making a Difference in the Marketplace University Partnerships Inspire Next Generation of Building Professionals Cutting Edge Research Facilities Locking-In Energy Savings in 2014 Employee Profile: John Cymbalsky Looking Ahead Download PDF version » Director's Letter Dear

  13. Building America Top Innovations 2012: Low-Cost Ventilation in Production Housing

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research on simple whole-house ventilation systems that cost less than $350 to install and meet code requirements.

  14. Buildings Technology Office Residential Buildings Integration (RBI) 2015 plenary presentation

    Energy Savers [EERE]

    BuildingIQ Inc: Predictive Energy Optimization BuildingIQ Inc: Predictive Energy Optimization BuildingIQ Inc: Predictive Energy Optimization Lead Performer: BuildingIQ Inc. - Foster City, California Partners: Department of General Services - Washington, DC DOE Funding: $1,767,138 Cost Share: $1,767,138 Project Term: October 2014 - September 2016 Funding Opportunity: Funding Opportunity Announcement Number DE-FOA-0001084 Project Objective BuildingIQ offers an innovative, scalable, and low-cost

  15. House-as-a-System Business Case - Building America Top Innovations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy House-as-a-System Business Case - Building America Top Innovations House-as-a-System Business Case - Building America Top Innovations August 25, 2014 - 10:48am Addthis House-as-a-System Business Case - Building America Top Innovations Top Innovations in this category include profiles of Building America field research projects with production builders who have used a whole-house approach to achieve exceptional energy efficiency, comfort, and durability. These examples

  16. 2013 Building Technologies Office Program Peer Review Report

    SciTech Connect (OSTI)

    none,

    2013-11-01

    The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2–4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO’s Emerging Technologies Program, 20 from the Commercial Buildings Integration Program, 6 from the Residential Buildings Integration Program, and 4 from the Building Energy Codes Program. This report summarizes the scores and comments provided by the independent reviewers for each project.

  17. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  18. Building America Whole-House Solutions for Existing Homes: Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) | Department of Energy Pilot Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Pilot Demonstration of Phased Retrofits in Florida Homes - Central and South Florida (Fact Sheet) In this pilot project, the Florida Solar Energy Center and Florida Power and Light are collaborating to retrofit a large

  19. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including the cost of sensor and lighting Reduce ... * Smart shadings * Highly insulated windows * Windows attachment 8 Building Envelope R&D Priorities Technology 2025 ...

  20. Building Technologies Office FY 2015 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 BUDGET AT-A-GLANCE Buildings use more than 70% of the electrical energy consumed in the United States. Homes and commercial buildings consume 40% of the nation's total energy with an annual energy bill of more than $400 billion. These energy bills can be cost-effectively reduced by 20-50% or more through various energy efficiency technologies and techniques. The Building Technologies Office will continue to develop and demonstrate advanced building efficiency technologies and practices to make

  1. Building Technologies Office FY 2016 Budget At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 BUDGET AT-A-GLANCE Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation's total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%-50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced building efficiency technologies and practices to make buildings in

  2. Building America Whole-House Solutions for New Homes: Hood River Passive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House - Hood River, Oregon (Fact Sheet) | Department of Energy Building America Whole-House Solutions for New Homes: Hood River Passive House - Hood River, Oregon (Fact Sheet) Building America Whole-House Solutions for New Homes: Hood River Passive House - Hood River, Oregon (Fact Sheet) The Hood River Passive Project incorporates high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters

  3. Building Technologies Office Challenges National Labs to Rethink...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Challenges National Labs to Rethink Market Engagement Strategy December 10, 2015 - 2:21pm Addthis Karma Sawyer, Ph.D. Karma Sawyer, Ph.D. Technology ...

  4. Activity Stream - STIL2 Swedish Office Buildings Survey - Datasets...

    Open Energy Info (EERE)

    over 1 year ago Jay Huggins created the dataset STIL2 Swedish Office Buildings Survey over 1 year ago License License Not Specified Author Swedish Energy Agency Contact OpenEI User...

  5. Building Technologies Office 2016 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Peer Review Building Technologies Office 2016 Peer Review The 2016 Department of Energy (DOE) Building Technologies Office (BTO) Peer Review was held April 4-7, 2016 in Falls Church, Virginia. This fourth annual review encompassed many of BTO's active research, development, demonstration and deployment projects. Independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the management of existing

  6. Building Technologies Office Overview - 2016 BTO Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 6 BTO Peer Review Building Technologies Office Overview - 2016 BTO Peer Review Presenter: Roland Risser, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. PDF icon 2016 BTO Peer Review Presentation-Driving Innovation, Speeding Adoption, Scaling Savings More Documents & Publications Goals Framework

  7. Golden Reading Room: Office of Acquisition Documents, Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Support Services | Department of Energy Better Buildings Initiative Support Services Golden Reading Room: Office of Acquisition Documents, Better Buildings Initiative Support Services Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). DE-SOL-0005538

  8. Building Technologies Office 2015 Program Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Program Peer Review Building Technologies Office 2015 Program Peer Review The 2015 Department of Energy (DOE) Building Technologies Office (BTO) Peer Review was held April 14-16, 2015 in Vienna, Virginia. This third annual review encompassed many of BTO's active research, development, demonstration and deployment projects. Independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the

  9. Behavioral Opportunities for Energy Savings in Office Buildings: a London

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Experiment | Department of Energy Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment Behavioral Opportunities for Energy Savings in Office Buildings: a London Field Experiment Report details a controlled field experiment to reduce energy use and greenhouse gas emissions in five organizations in London, England. The major finding of this report is that making public commitments and comparing one person's behavior with that of others significantly

  10. Building America Whole-House Solutions for New Homes: Transformations, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Net Zero Energy Communities (Fact Sheet) | Department of Energy Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet) Building America Whole-House Solutions for New Homes: Transformations, Inc. Net Zero Energy Communities (Fact Sheet) In 2009, Transformations, Inc. partnered with the Building Science Corporation team to build new net zero energy houses in three developments in Massachusetts that achieve a 45% reduction in energy

  11. Building Technologies Office Challenges National Labs to Rethink Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engagement Strategy | Department of Energy Technologies Office Challenges National Labs to Rethink Market Engagement Strategy Building Technologies Office Challenges National Labs to Rethink Market Engagement Strategy December 10, 2015 - 2:21pm Addthis Karma Sawyer, Ph.D. Karma Sawyer, Ph.D. Technology Analysis and Commercialization Manager, Windows and Building Envelope Technology Manager What are the key facts? According to the U.S. Patent Office, only about 3,000 out of 1.5 million U.S.

  12. Delaware Company Breathes New Life into Old Post Office Building |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local

  13. Building America Whole-House Solutions for New Homes: EcoVillage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions for New Homes: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York Building America Whole-House Solutions for New Homes: EcoVillage: A Net Zero...

  14. White House Office of Science and Technology Policy Summer 2014 Internship Program Application Period

    Broader source: Energy.gov [DOE]

    The White House Office of Science and Technology Policy is currently accepting applications for its Summer 2014 Internship Program.  The application deadline is 11:59pm Friday, March 7.  Students...

  15. Building America Whole-House Solutions for Existing Homes: Performance of a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) | Department of Energy Performance of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Performance of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) The Alliance for Residential Building Innovation (ARBI) team conducted a deep retrofit project within Stockton's Large-Scale Retrofit Program that expanded on the

  16. DOE/ NREL Build One of the World's Most Energy Efficient Office Spaces

    ScienceCinema (OSTI)

    None

    2013-05-29

    Technology ? from sophisticated computer modeling to advanced windows that actually open ? will help the newest building at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) be one of the world's most energy efficient offices. Scheduled to open this summer, the 222,000 square-foot RSF will house more than 800 staff and an energy efficient information technology data center. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

  17. Building America Whole-House Solutions for New Homes: Affordable Cold

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Infill Housing with Hybrid Insulation Approach | Department of Energy Affordable Cold Climate Infill Housing with Hybrid Insulation Approach Building America Whole-House Solutions for New Homes: Affordable Cold Climate Infill Housing with Hybrid Insulation Approach The City of Wyandotte started a construction program to engage local builders in constructing energy-efficient homes in existing neighborhoods for less than $100/ft2. PDF icon Affordable Cold Climate Infill Housing with

  18. Building America Whole-House Solutions for New Homes: Imagine Homes, San

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antonio, Texas | Department of Energy Imagine Homes, San Antonio, Texas Building America Whole-House Solutions for New Homes: Imagine Homes, San Antonio, Texas Case study of Imagine Homes, who worked with the Building America research partner IBACOS to build HERS-52 homes with spray foam-insulated attics and central fan-integrated supply ventilation. PDF icon Imagine Homes: Stillwater Ranch - San Antonio, TX More Documents & Publications Building America Whole-House Solutions for New

  19. Radiological Laboratory, Utility, Office Building LEED Strategy & Achievement

    SciTech Connect (OSTI)

    Seguin, Nicole R.

    2012-07-18

    Missions that the Radiological Laboratory, utility, Office Building (RLUOB) supports are: (1) Nuclear Materials Handling, Processing, and Fabrication; (2) Stockpile Management; (3) Materials and Manufacturing Technologies; (4) Nonproliferation Programs; (5) Waste Management Activities - Environmental Programs; and (6) Materials Disposition. The key capabilities are actinide analytical chemistry and material characterization.

  20. Building America Whole-House Solutions for New Homes: Northwest Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Manufactured Housing Program High-Performance Test Homes | Department of Energy Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes Building America Whole-House Solutions for New Homes: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes This project represents the third phase of a multi-year effort to develop and bring to market a High-Performance Manufactured Home. In this project, the Northwest Energy Efficient

  1. Building America Whole-House Solutions for New Homes: Testing Ductless Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington | Department of Energy Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington Building America Whole-House Solutions for New Homes: Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for

  2. Building America Whole-House Solutions for New Homes: The Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet) | Department of Energy The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet) Building America Whole-House Solutions for New Homes: The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet) The first Challenge Home built in New England features cool-roof shingles, HERS 20-42, and walls densely packed with blown fiberglass. PDF icon The

  3. Building America Whole-House Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest (Fact sheet) | Department of Energy and Existing Homes: Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest (Fact sheet) Building America Whole-House Solutions for New and Existing Homes: Evaluating Energy Savings in All-Electric Public Housing in the Pacific Northwest (Fact sheet) This project analyzes the cost effectiveness of energy-saving measures installed by a large public

  4. Building America Whole-House Solutions for Existing HomesBay Ridge Gardens

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) | Department of Energy HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) Building America Whole-House Solutions for Existing HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) Approximately 43% energy savings are achieved in a 1970s multifamily

  5. The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership

    SciTech Connect (OSTI)

    Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

    2010-12-31

    This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

  6. Office of Building Technologies evaluation and planning report

    SciTech Connect (OSTI)

    Pierce, B.

    1994-06-01

    The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

  7. Houston, Texas design/build house. Case study report

    SciTech Connect (OSTI)

    Borden, J. O.; Porter, C. B.

    1981-06-01

    The task activities relating to the Houston house, including problems, constructive comments, and successes, are described. Included in appendices are: cost data, methodology for ranking cities, house information sheet, thermal performance analysis, architectural information release, press releases and news clippings, and house pictures. One appendix was abstracted separately. (MHR)

  8. Designing and Building Houses that are Solar Ready

    Broader source: Energy.gov [DOE]

    Builders considering adding photovoltaic (PV) systems to new houses after initial construction is completed can save time and money by following new house Solar Ready design guidelines. Solar Ready houses are designed and built with integrated electrical and mechanical features that streamline the integration of PV systems.

  9. Chapter 5: Increasing Efficiency of Building Systems and Technologies | Building Technologies Office Potential Energy Savings Analysis Supplemental Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Increasing Efficiency of Building Systems and Technologies Supplemental Information Building Energy Technology Roadmaps Building Technologies Office Potential Energy Savings Analysis ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Building Technologies Office Potential Energy Savings Analysis Chapter 5: Supplemental Information Introduction The analysis undertaken to support Chapter 5 compares the potential energy savings from research,

  10. Air exchange effectiveness in office buildings: Measurement techniques and results

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.

    1992-07-01

    We define two air exchange effectiveness parameters which indicate the extent of short circuiting, mixing, or displacement air flow in an entire building, the air diffusion effectiveness which indicates the air flow pattern locally, and the normalized local age of air. After describing two tracer gas procedures for measuring these parameters, we discuss assumptions inherent in the data analysis that are often violated in large office buildings. To obtain valuable data, careful selection of buildings for measurements and assessments to determine if operating conditions are reasonably consistent with the assumptions are necessary. Multiple factors, in addition to the air flow pattern in the occupied space, can affect measurement results, consequently, the interpretation of measurements is not straightforward. We summarize the results of measurements in several office buildings and in a research laboratory. Almost all measurements indicate that the extent of both short circuiting and displacement flow is small. A moderate amount of short circuiting is evident from a few measurements in rooms with heated supply air. Ages of air and their reciprocals (local ventilation rates) often vary substantially between rooms, probably because of room-to-room variation in the rate of air supply. For future research, we suggest assessments of measurement accuracy, development of measurement approaches that may be practically applied for a broader range of buildings, and a greater focus on pollutant removal efficiencies.

  11. Building America Whole-House Solutions for New Homes: Nexus EnergyHomes -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Frederick, Maryland | Department of Energy Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland This new duplex home successfully combines affordability with state-of-the-art efficiency and indoor environmental quality, achieving the highest rating possible under the National Green Building Standard PDF icon Nexus EnergyHomes - Frederick, Maryland More

  12. Building America Whole-House Solutions for New Homes: Quadrant Homes, Kent,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington | Department of Energy Quadrant Homes, Kent, Washington Building America Whole-House Solutions for New Homes: Quadrant Homes, Kent, Washington Case study of Quadrant Homes, who worked with Building America partner WSU Energy Extension to design HERS-65 homes with ducts in conditioned space; 2x6 factory-built walls; and systems-engineered streamlined construction. PDF icon Quadrant Homes: Kentlake Highlands - Kent, WA More Documents & Publications Building America Whole-House

  13. Building America Whole-House Solutions for Existing Homes: Applying Best

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) | Department of Energy Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Applying Best Practices to Florida Local Government Retrofit Programs - Central Florida (Fact Sheet) In this project, researchers from Building America Partnership for

  14. Building-related risk factors and work-related lower respiratory symptoms in 80 office buildings

    SciTech Connect (OSTI)

    Mendell, M.J.; Naco, G.M.; Wilcox, T.G.; Sieber, W.K.

    2002-01-01

    We assessed building-related risk factors for lower respiratory symptoms in office workers. The National Institute for Occupational Safety and Health in 1993 collected data during indoor environmental health investigations of workplaces. We used multivariate logistic regression analyses to assess relationships between lower respiratory symptoms in office workers and risk factors plausibly related to microbiologic contamination. Among 2,435 occupants in 80 office buildings, frequent, work-related multiple lower respiratory symptoms were strongly associated, in multivariate models, with two risk factors for microbiologic contamination: poor pan drainage under cooling coils and debris in outside air intake. Associations tended to be stronger among those with a history of physician-diagnosed asthma. These findings suggest that adverse lower respiratory health effects from indoor work environments, although unusual, may occur in relation to poorly designed or maintained ventilation systems, particularly among previously diagnosed asthmatics. These findings require confirmation in more representative buildings.

  15. Highlighting High Performance: Department of Environmental Protection; Cambria Office Building, Ebensburg, Pennsylvania

    SciTech Connect (OSTI)

    2001-11-01

    The 36,000-square-foot Cambria Office building used integrated design to minimize energy use, pollution and environmental impact the building will create over its lifetime.

  16. Building America Whole-House Solutions for New Homes: Affordable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infill Housing with Hybrid Insulation Approach The City of Wyandotte started a construction program to engage local builders in constructing energy-efficient homes in ...

  17. Building America Whole-House Solutions for New Homes: Nelson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Nelson Construction: Hamilton Way - Farmington, CT More Documents & Publications DOE Zero Energy Ready Home Case Study: Transformations Inc., Custom House, Devens, MA ...

  18. Building America Whole-House Solutions for Existing Homes: Exterior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    foam insulation, and a control house that follows Home ... Solutions for New and Existing Homes: Stand-off Furring in Deep Energy Retrofits Traditional air distribution system. ...

  19. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    5 Top 10 Office Building Owners Globally as of Year End, 2010 (million SF) Owner 1. RREEF Americas 2. Brookfield Properties Corp. 3. The Blackstone Group 4. CB Richard Ellis Investors 5. Hines 6. LaSalleInvestment Management 7. TIAA-CREF 8. Boston Properties 9. Vornado Realty Trust 10. Duke Realty Corp. Total for Top 10: Source(s): National Real Estate Investor, The 2011 Best of The Best Rankings: 2011 Top 25 Office Owners, June 1, 2011.

  20. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    2009 Energy Consumption per Square Foot of Office Floorspace by Vintage (Thousand Btu/SF) (1) Vintage 2000-2009 81.4 1990-1999 74.1 1980-1989 73.1 1970-1979 102.8 1960-1969 71.4 Pre-1959 75.5 Buildings providing consumption data: 436 Note(s): Source(s): Energy Intensity 1) Commercial office buildings sampled include the following: Class A, B, C. BOMA International, Experience Exchange Report 2010, 2010

  1. Building America Whole-House Solutions for New Homes: Urbane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed ...

  2. Building America Whole-House Solutions for Existing Homes: Applying...

    Energy Savers [EERE]

    Retrofits in Florida Homes - Central and South Florida (Fact Sheet) Building America Efficient Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas...

  3. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    1 Energy Benchmarks for Newly Constructed Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 38.6 0.9 0.8 1.1 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones.

  4. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    9 Energy Benchmarks for Newly Constructed Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 31.7 1.7 0.6 1.3 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones.

  5. Building America Case Studies for Existing Homes: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols

    Broader source: Energy.gov [DOE]

    The Philadelphia Housing Authority worked with the U.S. Department of Energy’s Building America Program to integrate energy-efficiency measures into the refurbishment process that each unit normally goes through between occupancies.

  6. Building America Best Practices Series Volume 15: 40% Whole-House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate This guide book is a resource to help builders design and construct highly ...

  7. Building America Whole-House Solutions for New Homes: HVAC Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this ...

  8. Building America Whole-House Solutions for New Homes: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Homes: High-Performance Ducts in Hot-Dry Climates Building America Whole-House Solutions for New Homes: High-Performance Ducts in Hot-Dry Climates The Alliance for Residential...

  9. Building America Expert Meeting Report. Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, Arlan

    2011-10-01

    This expert meeting was hosted by the IBACOS Building America research team to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting.

  10. Building America Whole-House Solutions for Existing Homes: 56th and Walnut:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Philly Gut Rehab Development | Department of Energy Building America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development Building America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development In this project, CPM partnered with the Consortium for Advanced Residential Buildings team to renovate 32 units in 11 three-story, historic, brick masonry urban buildings. PDF icon 56th and Walnut: A Philly Gut Rehab Development

  11. Building America Whole-House Solutions for New Homes: Challenges of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York | Department of Energy Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York In this project, the Consortium for Advanced Residential Buildings team sought to create a

  12. Building America Whole-House Solutions for New Homes: Winchester Homes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Camberly Homes - Silver Spring, Maryland (Fact Sheet) | Department of Energy Building America Whole-House Solutions for New Homes: Winchester Homes and Camberly Homes - Silver Spring, Maryland (Fact Sheet) Building America Whole-House Solutions for New Homes: Winchester Homes and Camberly Homes - Silver Spring, Maryland (Fact Sheet) The Partnership for Home Innovation team worked with the builder to develop a new set of high performance home designs-including advanced wall and HVAC

  13. Building America Whole-House Solutions for New Home: Fort Devens: Cold

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Market-Rate Townhomes | Department of Energy Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes Twelve townhomes constructed at a decommissioned army base incorporated efficiency upgrades to achieve a HERS Index score of 41 before adding renewables. PDF icon Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40 -

  14. Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing

    Energy Savers [EERE]

    simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight

  15. Building America Whole-House Solutions for New Homes: Exterior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and maybe more appropriate for ...

  16. Building America Whole-House Solutions for Existing Homes: Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power and Light are collaborating to retrofit a large number of homes using a phased ... of a Hot-Dry Climate Whole-House Retrofit, Stockton, California (Fact Sheet) ...

  17. Building America Whole-House Solutions for New Homes: Imagine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of Imagine Homes, who worked with the Building America research partner IBACOS to build HERS-52 homes with spray foam-insulated attics and central fan-integrated supply ...

  18. Building America Whole-House Solutions for New Homes: Tindall...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of Tindall Homes who worked with Building America research team IBACOS to build 20 HERS-58 homes with R-49 mixed attic insulation, poly-iso foam in advanced framed ...

  19. Building America Whole-House Solutions for Existing Home: Retrofitting...

    Broader source: Energy.gov (indexed) [DOE]

    Insight Homes, Seaford, Delaware Building America Technology Solutions for New and Existing Homes: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota

  20. NREL Helps Habitat for Humanity of Metro Denver Build Earth-Smart House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Habitat for Humanity of Metro Denver Build Earth-Smart House For more information contact: e:mail: Public Affairs Golden, Colo., April 14, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) Exemplary Buildings team helped Habitat for Humanity of Metro Denver design a low energy passive solar Earth-Smart house that debuts next week in downtown Denver. Media are invited to attend the dedication ceremony on Earth Day, April 22 at 11:30 a.m. - 12:15 p.m. The house

  1. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 81.6 65.3 142.5 38 17 30.3 11 625 0.29 500 178 Census Region and Division

  2. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.1 66.1 144.2 37 17 29.1 10 678 0.31 539 192 Census Region and Division

  3. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 83.7 66.0 142.2 36 16 28.0 10 708 0.33 558 204 Census Region and Division

  4. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 86.3 67.4 144.3 37 17 28.8 11 808 0.38 632 234 Census Region and Division

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 90.5 70.4 156.8 39 18 30.5 12 875 0.39 680 262 Census Region and Division

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 97 Average Electricity Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 101.4 83.2 168.8 42 21 35.0 13 1,061 0.52 871 337 Census Region and

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total 107.0 85.2 211.2 46 18 36.0 14 1,178 0.48 938 366 Census Region and Division

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 9.4 9.2 19.6 41 19 40.2 16 607 0.29 598 231 Census Region and

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.7 44.8 106.3 109 46 84.2 32 609 0.26 472 181 Census Region

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 58.7 46.0 111.9 115 47 89.9 34 696 0.29 546 206 Census Region

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires Natural Gas, 1997 Average Natural Gas Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 61.9 51.3 106.1 103 50 85.3 32 698 0.34

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 66.9 53.8 137.2 90 35 72.4 27 873 0.34 702 265 Census Region

  13. Building America Whole-House Solutions for Existing Homes: Conway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and...

  14. White House Blog Post on the President's "Better Buildings Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    ... can build on skills learned in the manufacturing sector. ... "President Obama's energy efficiency agenda is ambitious, his ... in greenhouse gas emissions by 2030. Seventeen of ...

  15. Building America Whole-House Solutions for Existing Homes: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This case study presents information about a Building America project conducted by the Partnership for Advanced Residential Retrofit team comparing measure packages installed ...

  16. Building America Whole-House Solutions for New Homes: Grupe,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartVent night ventilation cooling; and FreshVent continuous ventilation. ... Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best ...

  17. Building America Whole-House Solutions for Existing Homes: Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Optimized Solutions, Chicago, Illinois This case study presents information about a ... More Documents & Publications Building Energy Optimization Analysis Method (BEopt) - ...

  18. Building America Whole-House Solutions for New Homes: Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    design and implementation strategy for air sealing in low-rise multifamily buildings ... PDF icon Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily ...

  19. Building America Top Innovations Hall of Fame Profile … House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America funds integrated research in market- ready technology solutions through ... assessments relative to each builder or retrofit contractor's standard practice. ...

  20. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  1. Technical Support Document: 50% Energy Savings for Small Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Huang, Yunzhi; Lane, Michael D.; Liu, Bing

    2010-04-30

    The Technical Support Document (TSD) for 50% energy savings in small office buildings documents the analysis and results for a recommended package of energy efficiency measures (EEMs) referred to as the advanced EEMs. These are changes to a building design that will reduce energy usage. The package of advanced EEMs achieves a minimum of 50% energy savings and a construction area weighted average energy savings of 56.6% over the ANSI/ASHRAE/IESNA Standard 90.1-2004 for 16 cities which represent the full range of climate zones in the United States. The 50% goal is for site energy usage reduction. The weighted average is based on data on the building area of construction in the various climate locations. Cost-effectiveness of the EEMs is determined showing an average simple payback of 6.7 years for all 16 climate locations. An alternative set of results is provided which includes a variable air volume HVAC system that achieves at least 50% energy savings in 7 of the 16 climate zones with a construction area weighted average savings of 48.5%. Other packages of EEMs may also achieve 50% energy savings; this report does not consider all alternatives but rather presents at least one way to reach the goal. Design teams using this TSD should follow an integrated design approach and utilize additional analysis to evaluate the specific conditions of a project.

  2. Building America Best Practices Series Volume 11. Guide to 40% Whole-House

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Savings in the Marine Climate | Department of Energy Volume 11. Guide to 40% Whole-House Energy Savings in the Marine Climate Building America Best Practices Series Volume 11. Guide to 40% Whole-House Energy Savings in the Marine Climate This Building America Best Practices guide outlines ways to achieve 40% energy savings in the U.S. marine climate. PDF icon marine_40_guide.pdf More Documents & Publications Building America Best Practices, Vol. 12 - Builders Challenge Guide to

  3. Building America Whole-House Solutions for Existing Home: Retrofitting a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1960s Split-Level Cold-Climate Home | Department of Energy Whole-House Solutions for Existing Home: Retrofitting a 1960s Split-Level Cold-Climate Home Building America Whole-House Solutions for Existing Home: Retrofitting a 1960s Split-Level Cold-Climate Home The U.S. Department of Energy Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders and the owners of a 1960s split-level home in Westport, Connecticut, to evaluate and implement a

  4. Building America Whole-House Solutions for New Homes: A Production Builder's Passive House, Denver, Colorado (Midtown

    Broader source: Energy.gov [DOE]

    Brookfield Home’s first project is in a community called Midtown in Denver, Colorado, in which the builder took on the challenge of increased energy efficiency by creating a Passive House-certified model home. Brookfield worked with the U.S. Department of Energy’s Building America research team IBACOS to create this home, evaluate advanced building technologies, and use the home as a marketing tool for potential homebuyers Brookfield also worked with KGA studio architects to create a new floor plan that would be constructed to the PH standard as an upgrade option.

  5. Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts

    SciTech Connect (OSTI)

    Ueno, K.; Bergey, D.; Wytrykowska, H.

    2013-09-01

    Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.

  6. Building America Whole-House Solutions for New Homes: Artistic Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Albuquerque, New Mexico | Department of Energy Artistic Homes, Albuquerque, New Mexico Building America Whole-House Solutions for New Homes: Artistic Homes, Albuquerque, New Mexico Case study of Artistic Homes who worked with Building America research partners Building Science Corporation and BIRA to design homes that achieve HERS <60 without PV or zero net energy with PV with ducts in dropped ceilings, R-50 attic insulation; HRVs with HEPA filters; and extensive air sealing. PDF icon

  7. Building America Whole-House Solutions for New Homes: CDC Realty Inc.,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tucson, Arizona | Department of Energy CDC Realty Inc., Tucson, Arizona Building America Whole-House Solutions for New Homes: CDC Realty Inc., Tucson, Arizona Case study of CDC Realty Inc. who worked with Building America research partner Building Science Corporation to design HERS-54 homes with ducts in insulated attics, solar water heating, tight air sealing, and rigid foam exterior sheathing. PDF icon CDC Realty Inc.: Centennial Terrace - Tucson, AZ More Documents & Publications

  8. Building America Whole-House Solutions for New Homes: Grupe, Rocklin,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Grupe, Rocklin, California Building America Whole-House Solutions for New Homes: Grupe, Rocklin, California Case Study of Grupe who worked with Building America research partner Davis Energy Group to design HERS-54 homes that included PV roof tiles, SmartVent night ventilation cooling; and FreshVent continuous ventilation. PDF icon Grupe: Carsten Crossings - Rocklin, CA More Documents & Publications Outside Air Ventilation Controller - Building America

  9. Building America Whole-House Solutions for New Homes: Meeting DOE Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes Program Certification | Department of Energy Meeting DOE Challenge Homes Program Certification Building America Whole-House Solutions for New Homes: Meeting DOE Challenge Homes Program Certification Three production home builders-K. Hovnanian Homes, David Weekley Homes, and Transformations, Inc.-partnered with Building America team Building Science Corporation to evaluate the certification of five test homes to the new DOE Challenge Home program performance standard (now DOE Zero

  10. Building America Whole-House Solutions for New Homes: Shaw Construction,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aspen, Colorado | Department of Energy Shaw Construction, Aspen, Colorado Building America Whole-House Solutions for New Homes: Shaw Construction, Aspen, Colorado Case study of Shaw Construction who worked with Building America research partner Building Science Corporation to design affordable HERS-54 townhouses with central solar radiator space heating, PV, R-28 closed-cell spray foam under slab and R-26 in advanced framed walls, and rigid polyiso on inside of basement walls. PDF icon Shaw

  11. Building America Whole-House Solutions for New Homes: Treasure Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sacramento, California | Department of Energy Treasure Homes, Sacramento, California Building America Whole-House Solutions for New Homes: Treasure Homes, Sacramento, California Case study of Treasure Homes, who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV. PDF icon Treasure Homes: Fallen Leaf at Riverbend - Sacramento, CA More Documents & Publications Building America

  12. Building America Whole-House Solutions for New Homes: Urbane Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisville, Kentucky | Department of Energy Urbane Homes, Louisville, Kentucky Building America Whole-House Solutions for New Homes: Urbane Homes, Louisville, Kentucky Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space. PDF icon Urbane Homes - Louisville, KY More Documents & Publications High

  13. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    3 Energy Consumption and Expenditures per Square Foot of Office Floorspace, by Function and Class (1) | | Medical Offices | Financial Offices | Corporate Facilities(2) | Class A | Class B | Class C | | All Buildings | Note(s): Source(s): 2006 2004 Energy Intensity Energy Energy Intensity Energy (thousand Btu/SF) Expenditures ($2010/SF) (thousand Btu/SF) Expenditures ($2010/SF) 90.79 2.56 N.A. 2.36 N.A. 3.12 N.A. 3.32 96.78 2.74 89.38 2.72 81.88 2.44 78.84 2.08 74.87 2.30 N.A. 2.04 1) Categories

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450 Census

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.4 181.2 43 18 34.0 13 1,061 0.45 840 321 Census Region

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census

  18. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census

  19. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census

  20. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census

  1. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census

  2. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census

  3. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census

  4. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.7 7.4 12.1 47 29 45.6 16 379 0.23 365 125 Census Region and Division

  6. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 12.2 44 26 42.8 15 389 0.23 382 133 Census Region and Division

  7. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.3 7.2 11.7 40 25 39.6 14 383 0.23 376 132 Census Region and Division

  8. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.8 7.7 12.0 41 26 40.1 15 406 0.26 398 146 Census Region and Division

  9. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 7.7 7.6 12.3 41 26 41.1 15 369 0.23 366 131 Census Region and Division

  10. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 8.2 0.5 13.9 542 20 34.1 12 6,063 0.23 381 134 Census Region and

  11. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average LPG Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 8.1 7.9 14.9 48 25 46.8 17 481 0.26 470 170 Census Region and Division

  12. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average LPG Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 8.1 8.0 13.9 45 26 44.6 17 508 0.29 500 192 Census Region and

  13. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 53.4 41.5 92.8 127 57 98.7 35 578 0.26 450 159 Census Region and

  14. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 54.2 41.0 91.8 116 52 87.6 32 658 0.29 498 183 Census Region and

  15. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 55.4 41.3 93.2 121 53 89.9 33 722 0.32 537 198 Census Region and

  16. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average Natural Gas Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 57.3 42.5 99.4 114 49 84.3 33 615 0.26 456 176 Census Region and

  17. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per per per per Total Total Floorspace per Square per Household per Square per Household Households Number (billion Building Foot Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) (million Btu) (thousand Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 81.6 65.4 142.5 143 65 114.1 41 1,156 0.53 926 330

  18. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 1 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (millionBtu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.1 66.1 144.2 141 64 111.7 40 1,256 0.58 998 356

  19. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 83.8 66.1 142.2 130 60 102.3 37 1,309 0.61 1,033 377

  20. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 4 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 86.3 67.5 144.4 134 63 104.7 39 1,437 0.67 1,123 417

  1. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 90.5 70.4 156.8 130 58 100.8 39 1,388 0.62 1,080 416

  2. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 0 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 94.0 74.2 169.2 124 54 98.1 38 1,485 0.65 1,172 450

  3. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 3 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 96.6 76.5 181.2 131 55 103.6 40 1,620 0.68 1,282 491

  4. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 7 Average of Major Energy Sources Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space(2) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 101.5 83.2 168.8 123 61 101.0 39 1,633 0.80

  5. Residential Buildings Historical Publications reports, data and housing

    Gasoline and Diesel Fuel Update (EIA)

    questionnaires 2001 Average of Major Energy Sources Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 107.0 85.2 211.3 116 47 92.2 36 1,875 0.76 1,493

  6. Healthy and Affordable Housing: Practical Recommendations for Building, Renovating and Maintaining Housing: Read This Before You Design, Build or Renovate

    SciTech Connect (OSTI)

    2001-09-06

    This document helps builders design, build, or renovate homes, keeping in mind the issues of asthma, health, indoor air quality, dust, and living creatures.

  7. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    5 2004 Number of Industrialized Housing Manufacturers Versus Production (Stick-Builders) Companies Type Panelized Modular (1) HUD-Code Production Builders Component Manufacturers Special (Commercial) Units Note(s): Source(s): 170 1) 170 of these companies also produce panelized homes. Automated Builder Magazine, Mar. 2005, p. 34-35; Automated Builder Magazine, Jan. 2004, p. 16. Number of Companies 3,500 200 90 7,000 2,200

  8. Building America Whole-House Solutions for Existing Homes: Passive...

    Energy Savers [EERE]

    this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and...

  9. Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency

    Broader source: Energy.gov [DOE]

    Building on $2 billion in financing commitments from the private sector for energy efficiency updates to commercial buildings under the President's Better Buildings Challenge, the U.S. Departments of Energy and Housing and Urban Development today expanded the Challenge to multifamily housing such as apartments and condominiums.

  10. Building America Whole-House Solutions for New Homes: Winchester Homes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Camberley Homes | Department of Energy Whole-House Solutions for New Homes: Winchester Homes and Camberley Homes Building America Whole-House Solutions for New Homes: Winchester Homes and Camberley Homes In this project, Winchester/Camberley Homes worked with Partnership for Home Innovation team to develop and test a new set of high performance homes designs and techniques that could be applied on a production scale, including advanced framing and materials and innovative work scopes. The

  11. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    1 2007 Top Five Manufacturers of Factory-Built Housing Units (1) Company CMH Manufacturing 20% Champion Enterprises, Inc. 19% Palm Harbor Homes, Inc. 10% Fleetwood Enterprises, Inc. 9% Skyline Corporation 6% Note(s): Source(s): 8,207 376.4 1) Data based on mail-in surveys from manufacturers which may not be entirely complete. 2) Market shares based on total gross sales volume of the factory-built home producers included in the list of the top 25 factory-built producers responding to the survey.

  12. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    2 2007 Top Five Manufacturers of Modular/3D Housing Units (1) Company Champion Enterprises, Inc. 27% CMH Manufacturing 14% All American Homes, LLC 10% Palm Harbor Homes, Inc. 10% Excel Homes LLC 7% Note(s): Source(s): 1,200 110.6 1) Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market shares based on total gross sales volume of the Modular/3D home producers included in the list of the top 25 factory-built producers responding to the survey. In 2007,

  13. Buildings Energy Data Book: 2.7 Industrialized Housing (IH)

    Buildings Energy Data Book [EERE]

    4 2004 Top Five Manufacturers of Factory-Fabricated Components (1) Company Carpenter Contractors 175.0 1,130 Automated Building Company 102.5 702 Landmark Truss 45.0 425 Southern Building Products 25.9 180 Dolan Lumber & Truss 25.1 260 Note(s): Source(s): Automated Builder Magazine, Sept. 2005, p. 40-41. 26% 15% 7% 4% 4% 1) Factory-fabricated components include trusses, wall panels, and doors. Data based on mail-in surveys from manufacturers, which may not be entirely complete. 2) Market

  14. LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-10-22

    5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

  15. Building America House Simulation Protocols - Revised October 2010

    SciTech Connect (OSTI)

    2010-10-01

    This document was developed to track and manage progress toward multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent reference point. This report corrects editorial errors that were in the original publication.

  16. Building America Whole-House Solutions for New Homes: EcoVillage: A Net

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Community, Ithaca, New York | Department of Energy EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York Building America Whole-House Solutions for New Homes: EcoVillage: A Net Zero Energy Ready Community, Ithaca, New York Consortium for Advanced Residential Buildings is working with the EcoVillage co-housing community in Ithaca, New York, on their third neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists

  17. In-House Facility for Building Batteries and Performance Behavior of

    Office of Scientific and Technical Information (OSTI)

    SNL-Built 18650 Li/(CFx)n Cells. (Conference) | SciTech Connect In-House Facility for Building Batteries and Performance Behavior of SNL-Built 18650 Li/(CFx)n Cells. Citation Details In-Document Search Title: In-House Facility for Building Batteries and Performance Behavior of SNL-Built 18650 Li/(CFx)n Cells. Abstract not provided. Authors: Nagasubramanian, Ganesan Publication Date: 2007-08-01 OSTI Identifier: 1141456 Report Number(s): SAND2007-5545C 506619 DOE Contract Number:

  18. Building America Best Practices Series Volume 15: 40% Whole-House Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings in the Hot-Humid Climate | Department of Energy 5: 40% Whole-House Energy Savings in the Hot-Humid Climate Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate

  19. Building America Best Practices Series Volume 16: 40% Whole-House Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings in the Mixed-Humid Climate | Department of Energy 6: 40% Whole-House Energy Savings in the Mixed-Humid Climate Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid

  20. Addendum to the Building America House Simulation Protocols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas from the United States | Department of Energy Addendum to Environmental Review Documents Concerning Exports of Natural Gas from the United States Addendum to Environmental Review Documents Concerning Exports of Natural Gas from the United States On August 15, 2014, the Department of Energy's Office of Fossil Energy published the final Addendum To Environmental Review Documents Concerning Exports Of Natural Gas From The United States (Addendum). The purpose of the Addendum is to provide

  1. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    7 Advanced Energy Design Guide for Small Office Buildings (1) Shell Percent Glass (WWR) 20-40% Window U-Factor 0.33-0.56 SHGC 0.31-0.49 Wall R-Value 7.6-15.2 Roof R-Value Attic 30-60 Insulation Above Deck 15-30 Wall Material Mass (HC > 7 Btu/ft^2) Lighting Average Power Density (Watts/SF) 0.9 System and Plant System and Plant Packaged Single-Zone Packaged Single-Zone w/ Economizer Cooling Capacity > 54 kBtu Heating Plant: Gas Furnace 80% Combustion Efficiency Cooling Plant: Air conditioner

  2. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    2 Energy Expenditures per Square Foot of Office Floorspace by Building Age ($2009) (1) Number of Number of Number of Age (years) 2009 Responses 2006 Responses 2004 Responses 0-9 2.1 451 2.1 483 1.8 564 10-19 1.9 582 2.3 503 2.0 848 20-29 2.1 1,161 2.4 939 2.0 786 30-39 2.4 416 2.7 314 2.3 290 40-49 2.5 150 3.0 68 2.9 57 50+ 2.5 187 2.5 128 2.1 164 All Buildings 2.2 3,494 2.4 2,619 1.8 2,939 Note(s): Source(s): 1) Energy includes electric, gas, fuel oil, purchased steam, purchased chilled water,

  3. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  4. Building America Whole-House Solutions for New Homes: Low-Cost Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Savings at the Community Scale, Fresno, California | Department of Energy Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California Building America Whole-House Solutions for New Homes: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California In this project, U.S. Department of Energy Building America research team IBACOS partnered with builder Wathen Castanos Hybrid Homes to develop a simple and low-cost methodology by which

  5. Building America Whole-House Solutions for New Homes: New Traditions,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vancouver, Washington | Department of Energy New Traditions, Vancouver, Washington Building America Whole-House Solutions for New Homes: New Traditions, Vancouver, Washington Case study of New Tradition Homes who worked with Building America partner WSU Energy Extension to design HERS-65 homes with ducts in conditioned space, site grading and drain piping, and high-efficiency HVAC. PDF icon New Tradition Homes: Landover Commons - Vancouver, WA More Documents & Publications Low-Cost

  6. Building America Whole-House Solutions for New Homes: Rural Development,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc., Greenfield, Massachusetts | Department of Energy Rural Development, Inc., Greenfield, Massachusetts Building America Whole-House Solutions for New Homes: Rural Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 w/o PV), with double-stud walls heavy insulation, low-load sealed-combustion gas space heaters, triple-pane windows, solar water heating, and PV. PDF icon

  7. Building America Whole-House Solutions for New Homes: Singer Village - A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cold Climate Zero Energy Ready Home, Derby, Connecticut | Department of Energy Singer Village - A Cold Climate Zero Energy Ready Home, Derby, Connecticut Building America Whole-House Solutions for New Homes: Singer Village - A Cold Climate Zero Energy Ready Home, Derby, Connecticut After progressively incorporating ENERGY STAR for Homes Versions 1, 2, and 3 into its standard practices over the years, builder Brookside Development was seeking to build an even more sustainable product that

  8. Building America Whole-House Solutions for New Homes: Tom Walsh & Co.,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland, Oregon | Department of Energy Tom Walsh & Co., Portland, Oregon Building America Whole-House Solutions for New Homes: Tom Walsh & Co., Portland, Oregon Case study of Tom Walsh & Co., who worked with Building America research partner BIRA to design HERS 59 homes with ducts in conditioned space in dropped ceiling soffits, extensive air sealing, and extensve site water management. PDF icon Tom Walsh & Co.: New Columbia - Portland, Oregon More Documents &

  9. Building America Whole-House Solutions for Existing Homes: Evaluation of a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Retrofit | Department of Energy a Multifamily Retrofit Building America Whole-House Solutions for Existing Homes: Evaluation of a Multifamily Retrofit A 37-unit apartment complex underwent multiple energy retrofit measures, including attic and wall insulation, low-e windows, and energy-efficient appliances, to comply with the Boulder SmartRegs Ordinance. PDF icon Evaluation of a Multifamily Retrofit in Climate Zone 5 - Boulder, Colorado More Documents & Publications Building

  10. Building America Whole-House Solutions for Existing Homes: National Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) | Department of Energy National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) Building America Whole-House Solutions for Existing Homes: National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet) Building Science Corporation developed a package of high-efficiency measures for retrofit of 42 homes sponsored by National Grid, resulting in energy use of

  11. Building Technologies Office 2016 Peer Review | Department of Energy

    Energy Savers [EERE]

    Emerging Technologies » Building Energy Modeling Building Energy Modeling About the portfolio Building energy modeling (BEM)-physics-based calculation of building energy consumption-is a multi-use tool for building energy efficiency. Established use cases include design of new buildings and deep retrofits, development of whole-building energy efficiency codes and standards (e.g., ASHRAE 90.1) and performance-path compliance with those codes (e.g., ASHRAE 90.1 "Appendix G" Performance

  12. Building America Whole-House Solutions for New Homes: Pulte Homes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communities of Del Webb, Las Vegas, Nevada | Department of Energy Pulte Homes and Communities of Del Webb, Las Vegas, Nevada Building America Whole-House Solutions for New Homes: Pulte Homes and Communities of Del Webb, Las Vegas, Nevada Case study of Pulte Homes-Las Vegas Division who teamed with Building America team Building Science Corporation to design HERS-54 homes with high-efficiency HVAC with ducts in conditioned space, jump ducts, and a fresh air intake; advanced framed walls;

  13. Building Technologies Office FY 2017 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About Us » Building Technologies Office FY 2017 Budget At-A-Glance Building Technologies Office FY 2017 Budget At-A-Glance Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation's total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%-50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will

  14. Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Energy-Saving Homes, Buildings, & Manufacturing (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in saving

  15. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    SciTech Connect (OSTI)

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  16. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    SciTech Connect (OSTI)

    Burdick, A.

    2011-10-01

    This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.

  17. Before the House Transportation and Infrastructure Subcommittee on Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management By: Drury Crawley, Office of Energy

  18. Final Technical Report. Sault Tribe Building Efficiency Audits of Tribally-Owned Governmental Buildings and Residential Tribal Housing

    SciTech Connect (OSTI)

    Holt, Jeffrey W.

    2015-03-27

    The Tribe is working to reduce energy consumption and expense in Tribally-owned governmental buildings and low income housing sites. In 2009, the Tribe applied to the U. S. Department of Energy for funding to conduct energy audits of Tribally-owned governmental buildings. Findings from the energy audits would define the extent and types of energy efficiency improvements needed, establish a basis for energy priorities, strategies and action plans, and provide a benchmark for measuring improvements from energy efficiency implementations. In 2010, the DOE awarded a grant in the amount of $95,238 to the Tribe to fund the energy audits of nine governmental buildings and to pay for travel expenses associated with attendance and participation at the DOE annual program reviews. In 2011, the Tribe applied for and was awarded a DOE grant in the amount of $75,509 to conduct energy audits of the remaining 30 Tribally-owned governmental buildings. Repeating mobilization steps performed during the first DOE energy audits grant, the Tribe initiated the second round of governmental building energy audits by completing energy auditor procurement. The selected energy auditor successfully passed DOE debarment and Sault Tribe background clearances. The energy audits contract was awarded to U. P. Engineers and Architects, Inc. of Sault Ste. Marie, Michigan. The Tribe continued mobilizing for the energy audits by providing the energy auditor with one year of electric, gas and water utility invoice copies per building, as well as supplemental building information, such as operating hours. The Tribe also contacted building occupants to coordinate scheduling for the on-site energy audit inspections and arranged for facilities management personnel to guide the energy auditor through the buildings and answer questions regarding building systems.

  19. Building America Whole-House Solutions for New Homes: HVAC Design Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Hot-Humid Production Builder | Department of Energy HVAC Design Strategy for a Hot-Humid Production Builder Building America Whole-House Solutions for New Homes: HVAC Design Strategy for a Hot-Humid Production Builder In this project, BSC worked with the builder to develop a cost-effective design for moving the HVAC system into conditioned space and increase the energy performance of future production houses in anticipation of 2015 IECC codes. PDF icon HVAC Design Strategy for a

  20. Building a 40% Energy Saving House in the Mixed-Humid Climate

    SciTech Connect (OSTI)

    Christian, Jeffrey E; Bonar, Jacob

    2011-10-01

    This report describes a home that uses 40% less energy than the energy-efficient Building America standard - a giant step in the pursuit of affordable near-zero-energy housing through the evolution of five near-zero-energy research houses. This four-bedroom, two-bath, 1232-ft2 house has a Home Energy Rating System (HERS) index of 35 (a HERS rating of 0 is a zero-energy house, a conventional new house would have a HERS rating of 100), which qualifies it for federal energy efficiency and solar incentives. The house is leading to the planned construction of a similar home in Greensburg, Kansas, and 21 staff houses in the Walden Reserve, a 7000-unit "deep green" community in Cookville, Tennessee. Discussions are underway for construction of similar houses in Charleston, South Carolina, Seattle, Washington, Knoxville and Oak Ridge, Tennessee, and upstate New York. This house should lead to a 40% and 50% Gate-3, Mixed-Humid-Climate Joule for the DOE Building America Program. The house is constructed with structurally-insulated-panel walls and roof, raised metal-seam roof with infrared reflective coating, airtight envelope (1.65 air changes per hour at 50 Pascal), supply mechanical ventilation, ducts inside the conditioned space, extensive moisture control package, foundation geothermal space heating and cooling system, ZEHcor wall, solar water heater, and a 2.2 kWp grid-connected photovoltaic (PV) system. The detailed specifications for the envelope and the equipment used in ZEH5 compared to all the houses in this series are shown in Tables 1 and 2. Based on a validated computer simulation of ZEH5 with typical occupancy patterns and energy services for four occupants, energy for this all-electric house is predicted to cost only $0.66/day ($0.86/day counting the hookup charges). By contrast, the benchmark house would require $3.56/day, including hookup charges (these costs are based on a 2006 residential rates of $0.07/kWh and solar buyback at $0.15/kWh). The solar fraction for this home located in Lenoir City, Tennessee, is predicted to be as high as 41%(accounting for both solar PV and the solar water heater). This all-electric home is predicted to use 25 kWh/day based on the one year of measured data used to calibrate a whole-building simulation model. Based on two years of measured data, the roof-mounted 2.2 kWp PV system is predicted to generate 7.5 kWh/day. The 2005 cost to commercially construct ZEH5, including builder profit and overhead, is estimated at about $150,000. This cost - for ZEH5's panelized construction, premanufactured utility wall (ZEHcor), foundation geothermal system, and the addition of the walkout lower level, and considering the falling cost for PV - suggests that the construction cost per ft2 for a ZEH5 two-story will be even more cost-competitive. The 2005 construction cost estimate for a finished-out ZEH5 with 2632 ft2 is $222,000 or $85/ft2. The intention of this report is to help builders and homeowners make the decision to build zero-energy-ready homes. Detailed drawings, specifications, and lessons learned in the construction and analysis of data from about 100 sensors monitoring thermal performance for a one-year period are presented. This information should be specifically useful to those considering structural insulated panel walls and roof, foundation geothermal space heating and cooling, solar water heater and roof-mounted, photovoltaic, grid-tied systems.

  1. Office of Building Technology, State and Community Programs Strategic Plan

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This is the strategic plan for the Building Technology Program in 1998. This describes trends in the BTP program and projects goals for the future.

  2. Building America Whole-House Solutions for New Homes: High-Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ducts in Hot-Dry Climates | Department of Energy High-Performance Ducts in Hot-Dry Climates Building America Whole-House Solutions for New Homes: High-Performance Ducts in Hot-Dry Climates The Alliance for Residential Building Innovation worked with Pacific Gas & Electric Company to implement various high-performance duct strategies, including ducts located fully within conditioned space, ducts in sealed attics, and a "high-performance attic" that adds insulation to the roof

  3. Building America Whole-House Solutions for New Homes: John Wesley Miller,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tucson, Arizona | Department of Energy John Wesley Miller, Tucson, Arizona Building America Whole-House Solutions for New Homes: John Wesley Miller, Tucson, Arizona Case study of John Wesley Miller Companies, who worked with the NAHBRC to build two net-zero energy homes with foam-sheathed masonry walls, low-E windows 2.9 ACH50 air sealing, transfer grilles, ducts in insulated attic, PV, and solar water heating. PDF icon John Wesley Miller Companies: Armory Park Del Sol - Tucson, AZ More

  4. Building America Whole-House Solutions for New Homes: New Town Builders'

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power of Zero Energy Center | Department of Energy New Town Builders' Power of Zero Energy Center Building America Whole-House Solutions for New Homes: New Town Builders' Power of Zero Energy Center New Town Builders, a builder of energy efficient homes in Denver, Colorado, offers a zero energy option for all the homes it builds. To attract a wide range of potential home buyers to its energy efficient homes, New Town Builders created a "Power of Zero Energy Center" linked to its

  5. Building America Whole-House Solutions for Existing Homes: Community-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling - Southeastern United States | Department of Energy Community-Scale Energy Modeling - Southeastern United States Building America Whole-House Solutions for Existing Homes: Community-Scale Energy Modeling - Southeastern United States Community-scale energy modeling and testing are useful for determining energy conservation measures that will effectively reduce energy use. To that end, IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption,

  6. Building America Whole-House Solutions for Existing Homes: Greenbelt Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. Pilot Retrofit Project - Greenbelt, Maryland | Department of Energy Greenbelt Homes, Inc. Pilot Retrofit Project - Greenbelt, Maryland Building America Whole-House Solutions for Existing Homes: Greenbelt Homes, Inc. Pilot Retrofit Project - Greenbelt, Maryland This multiyear pilot energy efficiency retrofit project was undertaken by Greenbelt Homes, Inc, (GHI) a 1,566 home cooperative of circa 1930 and 1940 homes, to serve as a basis for decision making for the rollout of a

  7. Building America Whole-House Solutions for Existing Homes: Inverted Attic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulkhead for HVAC Ductwork | Department of Energy Inverted Attic Bulkhead for HVAC Ductwork Building America Whole-House Solutions for Existing Homes: Inverted Attic Bulkhead for HVAC Ductwork This occupied test home received a modified truss system to accommodate ductwork within an inverted insulated bulkhead along the attic floor, which saves energy by placing heating, ventilating, and air-conditioning (HVAC) ductwork within the home's thermal boundary. PDF icon Inverted Attic Bulkhead for

  8. Building America Whole-House Solutions for New Homes: Transformations, Inc.

    Broader source: Energy.gov (indexed) [DOE]

    Bryan Hannegan - Associate Lab Director, Energy Systems Integration, at the National Renewable Energy Laboratory Most Recent Energy Systems Integration Facility Delivering on Promise to Strengthen America's Clean Energy Innovation September 11 of Energy

    Better Buildings Residential Network member PUSH (People United for Sustainable Housing) Buffalo broke ground in March 2014 on its Massachusetts Avenue Sustainable Homes (MASH) project. The initiative will create energy-efficient,

  9. Building Technologies Office FY 2015 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 Budget At-A-Glance Building Technologies Office FY 2015 Budget At-A-Glance Buildings use more than 70% of the electrical energy consumed in the United States. Homes and commercial buildings consume 40% of the nation's total energy with an annual energy bill of more than $400 billion. These energy bills can be cost-effectively reduced by 20-50% or more through various energy efficiency technologies and techniques. The Building Technologies Office will continue to develop and

  10. Preliminary Energy Analysis of the Pennsylvania Department of Environmental Protection's Cambria Office Building Ebensburg, PA

    SciTech Connect (OSTI)

    Deru, M.; Hancock, E.

    2003-01-01

    The Pennsylvania Department of Environmental Protection (DEP) has undertaken a path to build''high performance green'' buildings as part of the objectives of the Governors Green Government Council. The first building, completed in 1998, is used as the DEPs regional headquarters in Harrisburg. The Cambria office, located in Ebensburg, is DEPs second building. Many of the lessons learned from the first building were successfully applied to this building, which was completed in 2000. The objective was to provide a comfortable and productive work environment while minimizing its short- and long-term environmental impacts.

  11. BuildSmart NY Innovators Summit Offers Sneak Peek at Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is approximately 205 million square feet of real estate, including universities, prisons, mental health hospitals, office buildings, and facilities that house its trains, buses,...

  12. Building America Whole-House Solutions for New Homes: Schneider Homes, Burien, Washington

    Broader source: Energy.gov [DOE]

    Case study of Schneider Homes who worked with Building America research partner WSU Extension Energy Office to design HERS 65 homes with high-efficiency furnaces in an air- sealed garage closet with ducts in conditioned space, 80% CFL lighting, ENERGY STAR appliances, air-tight drywall, and air sealing of attic hatches.

  13. Building America Whole-House Solutions for New Home: Fort Devens: Cold Climate Market-Rate Townhomes

    Broader source: Energy.gov [DOE]

    Fort Devens: Cold Climate Market-Rate Townhomes Targeting HERS Index of 40, Harvard, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)

  14. NREL Sets the Bar for Office Building Energy Use - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sets the Bar for Office Building Energy Use December 7, 2009 Photo of a truck delivering materials to an office building under construction. Enlarge image Designers met NREL's aggressive energy use requirement for the Research Support Facility by taking advantage Colorado's sunny climate. Large windows for daylighting and thermally sophisticated wall systems for solar heating are crucial to the net-zero energy design. Credit: Pat Corkery Technology - from sophisticated computer modeling to

  15. USDOE energy standard compliance test on two-story office building

    SciTech Connect (OSTI)

    Bailey, S.A.

    1993-11-01

    There exists some skepticism in the design community regarding the ability to design an aesthetically pleasing building that meets the interim energy conservation standard for new commercial buildings initiated by the US Department of Energy. In response to this, a study was undertaken to demonstrate that compliance with energy standards does not mean giving up the architectural intent of a building. An unusual and architecturally pleasing building design was chosen for this study. This two-story office building has a large, central atrium, made almost entirely of glass. It is the building`s focal point, lending an inviting atmosphere to the interior spaces but also poses a considerable challenge to the HVAC system to keep the building comfortable. The building was simulated and easily complied with the Standard, based on an annual energy cost comparison. Alterations to the original design affected neither the interior floor plan nor exterior elevations.

  16. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    0 Energy Benchmarks for Existing Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Post Pre Post Pre Post Pre Post Pre Miami 1A 1.0 0.0 22.0 19.2 0.4 0.4 1.9 13.0 Houston 2A 4.6 1.8 15.5 14.7 0.5 0.5 1.5 12.8 Phoenix 2B 4.0 0.7 17.5 19.4 0.4 0.4 1.9 15.0 Atlanta 3A 7.8 4.3 10.1 10.4 0.6 0.5 1.4 13.9 Los Angeles 3B 4.1 0.3 8.0 3.5 0.5 0.5 1.4 10.9 Las Vegas 3B 5.6 1.4 13.2 14.6 0.5 0.5 1.8 14.5 San Francisco 3C 5.8 1.7 2.9 1.2 0.6 0.6 1.1 8.9 Baltimore 4A

  17. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    8 Energy Benchmarks for Existing Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Post Pre Post Pre Post Pre Post Pre Miami 1A 0.3 0.8 21.9 24.5 0.3 0.2 3.1 3.5 Houston 2A 4.2 4.4 17.7 20.9 0.3 0.3 2.8 3.3 Phoenix 2B 3.0 3.3 16.2 18.3 0.3 0.3 3.2 3.7 Atlanta 3A 6.9 8.5 14.1 17.5 0.4 0.4 2.6 3.2 Los Angeles 3B 2.8 2.9 11.9 13.0 0.4 0.4 2.5 2.7 Las Vegas 3B 4.6 4.7 10.8 13.0 0.3 0.3 2.7 3.3 San Francisco 3C 5.0 6.4 5.6 6.6 0.4 0.4 1.8 2.1 Baltimore 4A 9.8

  18. Office | Open Energy Information

    Open Energy Info (EERE)

    Office Jump to: navigation, search Building Type Office Definition Buildings used for general office space, professional office, or administrative offices. Medical offices are...

  19. Building Technologies Office FY 2016 Budget At-A-Glance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 6 Budget At-A-Glance Building Technologies Office FY 2016 Budget At-A-Glance Buildings and homes use more than 73% of the electrical energy consumed in the United States. They also consume 40% of the nation's total energy, with an annual energy bill of $430 billion. These energy bills can be cost effectively reduced by 20%-50% or more through various energy-efficient technologies and techniques. The Building Technologies Office (BTO) will continue to develop and demonstrate advanced

  20. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  1. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Florida Solar Energy Center; IBACOS; National Renewable Energy Laboratory

    2006-08-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

  2. Building America Whole-House Solutions for New Homes: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake

    Broader source: Energy.gov [DOE]

    The 62-until Spring Lake project developed by Mutual Housing California is the first multifamily project nationwide to be certified under DOE's Zero Energy Ready Home program.

  3. Building America Case Study: Zero Energy Ready Home Multifamily Project: Mutual Housing at Spring Lake, Woodland, California

    SciTech Connect (OSTI)

    2015-09-01

    Building cost effective, high performance homes that provide superior comfort, health, and durability is the goal of the Department of Energy's (DOE's) Zero Energy Ready Homes (ZERH) program. Through Building America research and other innovative programs throughout the country, many of the technical challenges to building to the ZERH standard have been addressed. This case study describes the development of a 62-unit multifamily community constructed by nonprofit developer Mutual Housing at the Spring Lake subdivision in Woodland, CA. The Spring Lake project is expected to be the first ZERH-certified multifamily project nationwide. Building America team Alliance for Residential Building Innovation worked with Mutual Housing throughout the project. The case study discusses challenges encountered, lessons learned, and how obstacles were overcome. An objective of this project was to gain a highly visible foothold for residential buildings built to the DOE ZERH specification that can be used to encourage participation by other California builders.

  4. MEMORANDUM TO: John Cymbalsky, U.S. Department of Energy, Office of Building

    Energy Savers [EERE]

    MEMORANDUM TO: John Cymbalsky, U.S. Department of Energy, Office of Building Technologies FROM: Ginger Willson, Director, Nebraska Energy Office DATE: December 12, 2011 RE: Meeting regarding DOE Energy Conservations Standards for Battery Chargers Following the Friday, December 2, 2011 meeting, please find below participants and discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers. The following participated in the meeting:

  5. A Prospective Study of Ventilation Rates and Illness Absence in California Office Buildings

    SciTech Connect (OSTI)

    Eliseeva, Ekaterina A.; Spears, Michael; Chan, Wanyu R.; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2014-10-07

    Background – This study investigated the associations of ventilation rates (VRs), estimated from indoor CO2 concentrations, in offices with the amount of respiratory infections, illness absences, and building-related health symptoms in occupants. Methods – Office buildings were recruited from three California climate zones. In one or more study spaces within each building, real-time logging sensors measured carbon dioxide, temperature, and relative humidity for one year. Ventilation rates were estimated using daily peak CO2 levels, and also using an alternative metric. Data on occupants and health outcomes were collected through web-based surveys every three months. Multivariate models were used to assess relationships between metrics of ventilation rate or CO2 and occupant outcomes. For all outcomes, negative associations were hypothesized with VR metrics, and positive associations with CO2 metrics. Results – Difficulty recruiting buildings and low survey response limited sample size and study power. In 16 studied spaces within 9 office buildings, VRs were uniformly high over the year, from twice to over nine times the California office VR standard (7 L/s or 15 cfm per person). VR and CO2 metrics had no statistically significant relationships with occupant outcomes, except for a small significantly positive association of the alternative VR metric with respiratory illness-related absence, contrary to hypotheses. Conclusions– The very high time-averaged VRs in the California office buildings studied presumably resulted from “economizer cycles” bringing in large volumes of outdoor air; however, in almost all buildings even the estimated minimum VRs supplied (without the economizer) substantially exceeded the minimum required VR. These high VRs may explain the absence of hypothesized relationships with occupant outcomes. Among uniformly high VRs, little variation in contaminant concentration and occupant effects would be expected. These findings may provide initial evidence for an upper bound of the range of VRs within which increased VRs provide benefits in reducing illness absence.

  6. Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

    2012-08-03

    This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

  7. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  8. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect (OSTI)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  9. Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to bedrooms when the bedroom doors are closed and measured potential thermal discomfort that occupants may experience when this strategy is used. Builders can use this information to discuss space conditioning options for low-load houses with their clients to determine acceptable comfort levels for occupants in these cost-optimized, energy-efficient houses.

  10. Building America Whole-House Solutions for Existing Homes: Islip Housing Authority Energy Efficiency Turnover Protocols, Islip, New York

    Broader source: Energy.gov [DOE]

    In this project, ARIES worked with two public housing authorities (PHA) to develop packages of energy efficiency retrofit measures the PHAs can cost effectively implement at the time when units are refurbished between occupancies. T

  11. NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings

    SciTech Connect (OSTI)

    Wallingford, K.M.

    1987-01-01

    A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  13. Building America Whole-House Solutions for Existing HomesBay...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HomesBay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, ... Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet) ...

  14. Native American Housing Stakeholder Meeting- Tribal Data: Building the Bridge to New Capital

    Broader source: Energy.gov [DOE]

    Hosted by the Housing Assistance Council, the Native American Housing Stakeholder Meeting will discuss effective strategies for tribally led data collection, ways to access and leverage new capital...

  15. Apply: Funding Opportunity - Building America Industry Partnerships for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Housing Innovation | Department of Energy Building America Industry Partnerships for High Performance Housing Innovation Apply: Funding Opportunity - Building America Industry Partnerships for High Performance Housing Innovation November 12, 2014 - 6:28pm Addthis This funding opportunity is closed. The Building Technologies Office (BTO)'s Residential Buildings Integration Program has announced the availability of up to $4 million in 2015 for the Building America Industry

  16. Building America Best Practices Series: Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate (Volume 11)

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-09-01

    With the measures described in this guide, builders in the marine climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers.

  17. Revealing Occupancy Patterns in Office Buildings Through the use of Annual Occupancy Sensor Data

    SciTech Connect (OSTI)

    Carlos Duarte; Kevin Van Den Wymelenberg; Craig Rieger

    2013-06-01

    Energy simulation programs like DOE-2 and EnergyPlus are tools that have been proven to aid with energy calculations to predict energy use in buildings. Some inputs to energy simulation models are relatively easy to find, including building size, orientation, construction materials, and HVAC system size and type. Others vary with time (e.g. weather and occupancy) and some can be a challenge to estimate in order to create an accurate simulation. In this paper, the analysis of occupancy sensor data for a large commercial, multi-tenant office building is presented. It details occupancy diversity factors for private offices and summarizes the same for open offices, hallways, conference rooms, break rooms, and restrooms in order to better inform energy simulation parameters. Long-term data were collected allowing results to be presented to show variations of occupancy diversity factors in private offices for time of day, day of the week, holidays, and month of the year. The diversity factors presented differ as much as 46% from those currently published in ASHRAE 90.1 2004 energy cost method guidelines, a document referenced by energy modelers regarding occupancy diversity factors for simulations. This may result in misleading simulation results and may introduce inefficiencies in the final equipment and systems design.

  18. The Lovejoy Building

    High Performance Buildings Database

    Portland, Oregon Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

  19. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    SciTech Connect (OSTI)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  20. Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9213 September 2010 Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings Matthew Leach, Chad Lobato, Adam Hirsch, Shanti Pless, and Paul Torcellini National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308

  1. Energy Savings Modelling of Re-tuning Energy Conservation Measures in Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BASs capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energys building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the re-tuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  2. Cooling season performance of an earth-sheltered office/dormitory building in Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Christian, J.E.

    1984-07-01

    Detailed hourly measurements taken in and around an underground office-dormitory building for two summers document energy savings; whole building-component interface problems; and specific cooling contributions from earth contact, interior thermal mass, and an economizer. The Joint Institute Dormitory (JID) saves about 30% compared with well-built above-grade buildings in a climate typical of Oak Ridge, Tennessee, and has the potential to save as much as 50%. The detailed measurements, which include extensive thermal comfort data, indicate that at least 90% of the occupants are comfortable all of the time. The thermal performance measurements and analysis determine that the peak cooling requirement of this building is 50% less than that of well-built above-grade structures, permitting a cost savings on installed cooling capacity. The dominant building components contributing to the good thermal performance are the structural thermal mass, the earth-covered roof, and the earth contact provided by the bermed walls and slab floor. The 372-m/sup 2/ (4000 gross ft/sup 2/) building used about $300 (at 5.7 cents/kWh) to cool and ventilate from May through September. Eliminating a number of building design and construction anomalies could improve the whole-building performance and reduce the seasonal cooling cost another $85. Close examination of the thermal performance of this building revealed that a very efficient heat pump and thermally sound envelope do not necessarily produce otpimum performance without careful attention given to component interface details. 8 references, 24 figures, 12 tables.

  3. Design and testing of a control strategy for a large naturallyventilated office building

    SciTech Connect (OSTI)

    Carrilho da Graca, Guilherme; Linden, Paul F.; Haves, Philip

    2004-03-16

    The design for the new Federal Building for San Franciscoincludes an office tower that is to be naturally ventilated. Each flooris designed to be cross-ventilated, through upper windows that arecontrolled by the building management system (BMS). Users have controlover lower windows, which can be as much as 50 percent of the totalopenable area. There are significant differences in the performance andthe control of the windward and leeward sides of the building, andseparate monitoring and control strategies are determined for each side.The performance and control of the building has been designed and testedusing a modified version of EnergyPlus. Results from studies withEnergyPlus and CFD are used in designing the control strategy. EnergyPluswas extended to model a simplified version of the airflow patterndetermined using CFD. Wind-driven cross-ventilation produces a main jetthrough the upper openings of the building, across the ceiling from thewindward to the leeward side. Below this jet, the occupied regions aresubject to a recirculating air flow. Results show that temperatureswithin the building are predicted to be satisfactory, provided a suitablecontrol strategy is implemented uses night cooling in periods of hotweather. The control strategy has 10 window opening modes. EnergyPlus wasextended to simulate the effects of these modes, and to assess theeffects of different forms of user behavior. The results show how userbehavior can significantly influence the buildingperformance.

  4. Final Project Report for DPD, Inc. Office Building in Lansing, Michigan

    SciTech Connect (OSTI)

    Deru, M.; Sherman, M.

    2003-03-01

    The National Renewable Energy Laboratory participated with DPD, Inc., in the thermal analysis of buildings constructed using concrete with recycled materials in the aggregate. This project was part of a Phase II Small Business Innovative Research grant to determine how the thermal properties of concrete can be''tuned'' for use in passive solar buildings. DPD Inc. and Michigan State University developed techniques to alter the thermal properties of concrete by introducing recycled materials into the aggregate. Two office/retail buildings were built in Lansing, Michigan for this research. The objective of NREL's involvement was to evaluate the effects of concrete thermal properties on the building performance through energy simulations and monitoring. This report presents a summary of work accomplished on this project, including a predesign analysis of the concrete properties and building designs as well as energy performance analysis after construction. The test results were used to calibrate computer models that were later used to predict long-term performance of the buildings.

  5. Building America Case Study: Advanced Extended Plate and Beam Wall System in a Cold-Climate House, Mount Joy, Pennsylvania

    SciTech Connect (OSTI)

    2016-01-01

    This report presents the design and evaluation of a innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  6. NREL: Wind Research - Building 251 and High Bay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building 251 and High Bay Photo of an aerial shot of a large blue and grey building with parking lot and cars in the foreground. Building 251 at the NWTC houses administrative and research support offices and well as a high bay for testing wind turbine components. Building 251 is the hub of the National Wind Technology Center. In addition to housing administrative and research support offices, the facility's conference rooms enable NREL to host international wind power specialists, conferences,

  7. Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Noonan, Christine F.

    2011-09-01

    This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  8. Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Butner, Ryan S.; Ortiz, Sallie J.

    2011-09-01

    This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  9. Targeted Energy Efficiency Expert Evaluation (E4) Report: Iowa City Federal Building and U.S. Post Office, Iowa City, IA

    SciTech Connect (OSTI)

    Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01

    Final report summarizing Targeted E4 measures and energy savings analysis for the Iowa City Federal Building and Post Office.

  10. 2013 Housing Innovation Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Housing Innovation Award Winners 2013 Housing Innovation Award Winners The 2013 Housing Innovation Awards were presented on October 4, 2013, at a breakfast ceremony during the U.S. Department of Energy (DOE) Solar Decathlon 2013 in Irvine, CA. The awards showcased a number of the Building Technologies Office residential programs under one umbrella event. Learn more about the 2013 winners below. Systems Builders Clifton View Homes [Winner] Dwell Development [Winner] Weiss Building &

  11. 2014 Housing Innovation Awards Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Housing Innovation Awards Winners 2014 Housing Innovation Awards Winners The 2014 Housing Innovation Awards ceremony was held on September 23, 2014, at EEBA's Excellence in Building Conference in St. Louis, MO. The awards recognized 28 industry leaders from the Building Technologies Office DOE Zero Energy Ready Home (formerly DOE Challenge Home) program and Home Performance with ENERGY STAR. DOE Zero Energy Ready Home Leading Builders The DOE Zero Energy Ready Home Leading Builders awards are

  12. 2015 Housing Innovation Award Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Housing Innovation Award Winners 2015 Housing Innovation Award Winners The 2015 Housing Innovation Awards ceremony was held on October, 6th 2015, at EEBA's Excellence in Building Conference in Denver, Colorado. The awards recognized 27 industry leaders from the Building Technologies Office DOE Zero Energy Ready Home Program as well as the Legacy Award, given to an individual who has had a strong influence in paving the way towards high-performance homes. Custom Category Addison Homes,

  13. Building Momentum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Momentum Building Momentum June 28, 2012 - 4:02pm Addthis President Barack Obama and former President Bill Clinton take a tour of the upgrades of the Transwestern Building in Washington, Dec. 2, 2011. | Official White House Photo by Lawrence Jackson. President Barack Obama and former President Bill Clinton take a tour of the upgrades of the Transwestern Building in Washington, Dec. 2, 2011. | Official White House Photo by Lawrence Jackson. Jeff Zients Acting Director of the Office of Management

  14. Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers

    SciTech Connect (OSTI)

    Stetiu, C.

    1998-01-01

    Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

  15. Building America Whole-House Solutions for Existing Homes: 56th...

    Energy Savers [EERE]

    America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development In this project, CPM partnered with the Consortium for Advanced Residential...

  16. Building America Whole-House Solutions for New Homes: EcoVillage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    neighborhood called the Third Residential EcoVillage Experience (TREE). This community-scale project consists of 40 housing units-15 apartments and 25 single family residences. ...

  17. Jackson Street Village: Building Energy-Efficient and Healthy Affordable Housing

    SciTech Connect (OSTI)

    2003-09-01

    This fact sheet describes low-income housing in Minnesota that was designed to keep energy bills down through non-standard insulation techniques.

  18. Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems

    Broader source: Energy.gov [DOE]

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings.

  19. Building America Whole-House Solutions for New Homes: David Weekely...

    Broader source: Energy.gov (indexed) [DOE]

    David Weekley Homes, who worked with Building America research partner Building Science Corporation to design HERS-59 homes with advanced framed walls, airtight drywall, and rigid ...

  20. Technical Support Document: Strategies for 50% Energy Savings in Large Office Buildings

    SciTech Connect (OSTI)

    Leach, M.; Lobato, C.; Hirsch, A.; Pless, S.; Torcellini, P.

    2010-09-01

    This Technical Support Document (TSD) documents technical analysis that informs design guidance for designing and constructing large office buildings that achieve 50% net site energy savings over baseline buildings defined by minimal compliance with respect to ANSI/ASHRAE/IESNA Standard 90.1-2004. This report also represents a step toward developing a methodology for using energy modeling in the design process to achieve aggressive energy savings targets. This report documents the modeling and analysis methods used to identify design recommendations for six climate zones that capture the range of U.S. climate variability; demonstrates how energy savings change between ASHRAE Standard 90.1-2007 and Standard 90.1-2004 to determine baseline energy use; uses a four-story 'low-rise' prototype to analyze the effect of building aspect ratio on energy use intensity; explores comparisons between baseline and low-energy building energy use for alternate energy metrics (net source energy, energy emissions, and energy cost); and examines the extent to which glass curtain construction limits achieve energy savings by using a 12-story 'high-rise' prototype.

  1. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  2. Energy Department Announces $9 Million to Improve Energy Efficiency of Hotels, Hospitals, Offices and other Commercial Buildings

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s effort to double energy productivity by 2030 and reduce carbon emissions in commercial buildings, the Energy Department today announced $9 million to encourage investments in energy-saving technologies that can be tested and deployed in offices, shops, restaurants, hospitals, hotels and other types of commercial buildings.

  3. Building America Technology Solutions for New and Existing Homes: Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In order to quantify the performance of a combined whole-house dehumidifier AC system, researchers from the Consortium of Advanced Residential Buildings (CARB) team monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period.

  4. Building America Whole-House Solutions for New Homes: David Weekely Homes, Houston, Texas

    Broader source: Energy.gov [DOE]

    Case study of David Weekley Homes, who worked with Building America research partner Building Science Corporation to design HERS-59 homes with advanced framed walls, airtight drywall, and rigid foam wall sheathing.

  5. Building America Top Innovations 2012: High-Performance Affordable Housing with Habitat for Humanity

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America support of Habitat for Humanity including researchers who wrote Habitat construction guides and teams that have worked with affiliates on numerous field projects.

  6. Potential energy savings with exterior shades in large office buildings and the impact of discomfort glare

    SciTech Connect (OSTI)

    Hoffmann, Sabine; Lee, Eleanor

    2015-04-01

    Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems. While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption

  7. Building America Whole-House Solutions for New Homes: Green Coast Enterprises, New Orleans, Louisiana

    Broader source: Energy.gov [DOE]

    Case study of Green Coast Enterprises, who worked with Building America research partner Building Science Corporation to build moisture- and flood-resistant HERS- 65 affordable homes on pier foundations, with borate pressure-treated lumber, wind-resistant OSB sheathing, hurricane strapping, roofing membrane, and closed-cell spray foam in attic, walls, and under floor.

  8. Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes work by Building America researchers who visited 24 manufactured home factories between 1996 and 2003 to investigate moisture problems while improving energy efficiency and identified insufficient air sealing and poor HVAC installation as the biggest culprits. One manufacturer reported zero moisture-related issues in 35,000 homes built after implementing Building America recommendations.

  9. Building America Top Innovations 2012: Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes work by Building America researchers who visited 24 manufactured home factories between 1996 and 2003 to investigate moisture problems while improving energy efficiency and identified insufficient air sealing and poor HVAC installation as the biggest culprits. One manufacturer reported zero moisture-related issues in 35,000 homes built after implementing Building America recommendations.

  10. Gas-fired chiller-heaters as a central plant alternative for small office buildings

    SciTech Connect (OSTI)

    Thies, R.M.; Bahnfleth, W.

    1998-01-01

    Gas absorption chillers-heaters have been applied successfully in large projects where use of multiple chillers is feasible. Large facilities typically have a substantial base cooling load. If the base load is greater than 30% of the minimum capacity of the smallest chiller, chiller-heaters alone can be used as the building central plant. However, this study shows that a small office building presents part-load design difficulties that tend to favor the use of other technologies. The engineer can overcome these application problems by a variety of means, as has been illustrated. Manufacturers, too, are addressing the problems associated with low-load operation of direct-fired chiller heaters. A new generation of chiller-heaters that can unload down to 10% of design load will soon be available. If these new machines are capital-cost-competitive and perform up to expectations, the routine application of chiller-heaters in small commercial buildings may be just around the corner.

  11. Small Buildings = Big Opportunity for Energy Savings (Fact Sheet), Building Technologies Office (BTO), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings = Big Opportunity for Energy Savings There is nothing small about the impact that small commercial buildings have on energy use in the United States. In fact, the 4.6 million small buildings across the nation consume 44% of the overall energy use in buildings, presenting an enormous opportunity to cut costs, energy use, and greenhouse gas emissions. Despite this potential, small building owners and operators face unique challenges that have historically impeded the adoption of

  12. Building America Case Study: Philadelphia Housing Authority Energy-Efficiency Turnover Protocols, Philadelphia, Pennsylvania (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Philadelphia Housing Authority Energy-Efficiency Turnover Protocols Philadelphia, Pennsylvania PROJECT INFORMATION Project Name: Philadelphia Housing Authority Unit Turnover Retrofit Program Location: Philadelphia, PA Partners: Philadelphia Housing Authority, pha.phila.gov Advanced Residential Integrated Solutions Collaborative (ARIES), levypartnership.com Building Component: Whole-building Application: Retrofit; multifamily Year Tested: 2014 Applicable Climate Zones: All, with greater benefits

  13. Building America Whole-House Solutions for New Homes: High-Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ducts located fully within conditioned space, ducts in sealed attics, and a ... in Hot-Dry Climates Ducts in Conditioned Space - Building America Top Innovation Vol. 9: ...

  14. Building America Whole-House Solutions for New Homes: CDC Realty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research partner Building Science Corporation to design HERS-54 homes with ducts in insulated attics, solar water heating, tight air sealing, and rigid foam exterior sheathing. ...

  15. Building America Whole-House Solutions for New Homes: Rural Developmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Inc., Greenfield, Massachusetts Case study of Rural Development Inc. who worked with Building America research partner CARB to design affordable HERS-8 homes (60 ...

  16. Building America Whole-House Solutions for New Homes: Tom Walsh...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who worked with Building America research partner BIRA to design HERS 59 homes with ducts in conditioned space in dropped ceiling soffits, extensive air sealing, and extensve...

  17. Building America Best Practices Series Volume 16: 40% Whole-House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, ...

  18. Building America Best Practices Series Volume 15: 40% Whole-House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This guide book is a resource to help builders design and construct highly energy-efficient homes, while addressing building durability, indoor air quality, and occupant health, ...

  19. Building America Whole-House Solutions for New Homes: Pine Mountain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight ... PDF icon Pine Mountain Builders - Georgia More Documents & Publications Building ...

  20. Energy Savings Potential of Flexible and Adaptive HVAC Distribution Systems for Office Buildings

    SciTech Connect (OSTI)

    Loftness, Vivian; Brahme, Rohini; Mondazzi, Michelle; Vineyard, Edward; MacDonald, Michael

    2002-06-01

    It has been understood by architects and engineers that office buildings with easily re-configurable space and flexible mechanical and electrical systems are able to provide comfort that increases worker productivity while using less energy. Raised floors are an example of how fresh air, thermal conditioning, lighting needs, and network access can be delivered in a flexible manner that is not ''embedded'' within the structure. What are not yet documented is how well these systems perform and how much energy they can save. This area is being investigated in phased projects of the 21st Century Research Program of the Air-conditioning and Refrigeration Technology Institute. For the initial project, research teams at the Center for Building Performance and Diagnostics, Pittsburgh, Pennsylvania, and Oak Ridge National Laboratory, Oak Ridge, Tennessee, documented the diversity, performance, and incidence of flexible and adaptive HVAC systems. Information was gathered worldwide from journal and conference articles, case studies, manufactured products and assemblies, and interviews with design professionals. Their report thoroughly describes the variety of system types along with the various design alternatives observed for plenums, diffusers, individual control, and system integration. Many of the systems are illustrated in the report and the authors provide quantitative and qualitative comparisons. Among conclusions regarding key design issues, and barriers to widespread adoption, the authors state that flexible and adaptive HVAC systems, such as underfloor air, perform as well if not better than ceiling-based systems. Leading engineers have become active proponents after their first experience, which is resulting in these flexible and adaptive HVAC systems approaching 10 percent of the new construction market. To encourage adoption of this technology that improves thermal comfort and indoor air quality, follow-on work is required to further document performance. Architects, professional engineers, and commercial real estate developers will benefit from the availability of information that quantifies energy savings, first cost construction differences, and additional operating costs created when office space must be reconfigured to accommodate new tenants.

  1. Optimizing Hydronic System Performance in Residential Applications, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Optimizing Hydronic System Performance in Residential Applications Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boiler Optimization Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org; Appropriate Designs, www.hydronicpros.com; HTP, www.htproducts.com; Peerless, www.peerlessboilers.com; Grundfos, us.grundfos.com; Bell & Gossett, www.bell-gossett.com; Emerson Swan, www.emersonswan.com. Consortium for Advanced Residential Buildings,

  2. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Study Performance of a Hot-Dry Climate Whole-House Retrofit Stockton, California PROJECT INFORMATION Construction: Whole-house retrofit Type: Single-family, affordable Partners: Builder: Green Home Solutions, greenbygrupe.com Alliance for Residential Building Innovation, http://arbi.davisenergy.com Size: 2,152 ft 2 Date completed: 2011 Climate Zone(s): Hot-Dry PERFORMANCE DATA HERS Index: Pre-retrofit rating = 314; post-retrofit rating = 156 Projected annual energy cost savings: $837 Incremental

  3. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

  4. Postdoc Housing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoc Housing Postdoc Housing Point your career towards Los Alamos Laboratory: work with the best minds on the planet in an inclusive environment that is rich in intellectual vitality and opportunities for growth. CONTACT Postdoc Program Office Email Housing in Los Alamos, nearby communities Disclaimer: Los Alamos National Security, LLC (LANS) provides these listings as a convenience for students and prospective students who will be working or participating in programs at Los Alamos National

  5. Building America Whole-House Solutions for New Homes: Nelson Construction, Farmington, Connecticut

    Broader source: Energy.gov [DOE]

    Case study of Nelson Construction, who worked with the Building America research partner Building Science Corporation to design ten HERS 53 homes with ICF foundations, foam-sheathed above-grade walls, and high-effciency furnaces with fresh air intake and jump ducts.

  6. Building America Whole-House Solutions for New Homes: Tindall Homes, Columbus, New Jersey

    Broader source: Energy.gov [DOE]

    Case study of Tindall Homes who worked with Building America research team IBACOS to build 20 HERS-58 homes with R-49 mixed attic insulation, poly-iso foam in advanced framed walls, precast concrete basement walls with rigid foam, tight airsealing, and HRVs

  7. Building America Whole-House Solutions for New Homes: Tommy Williams Homes, Gainesville, Florida

    Broader source: Energy.gov [DOE]

    Case study of Tommy Williams Homes who partnered with Building America to build HERS-58 homes with foam gaskets at sill and top plates, fresh air intakes, SEER 16/HSPF 9.5 heat pumps, and tight air sealing of 2.7 ACH50.

  8. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.

    2012-05-01

    This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

  9. Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers Preprint Shanti Pless and Paul Torcellini To be presented at the ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-55264 May 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  10. Hood River Passive House, Hood River, Oregon (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Honeymoons Lead to Upgrades in Western Vermont Honeymoons Lead to Upgrades in Western Vermont Logo Neighborworks H.E.A.T. Squad. For homeowners who are hesitant to make energy efficiency upgrades, offering them a honeymoon might just be the motivation they need. NeighborWorks of Western Vermont (NWWVT) created a "honeymoon period" for its loan payments and has seen success by allowing homeowners to experience six months of comfort and energy savings before they begin making loan

  11. The Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    The Pennsylvania State University The Pennsylvania State University Team roster: Mitchell Proulx, Mechanical Engineering; Jason Cornelius, Aerospace Engineering; Kyle Dolf, Mechanical Engineering; Nader Abdelnour, Finance; Paul Caldwell, Industrial Engineering; Joseph Consoli, Mechanical Engineering; Adam DiPillo, Aerospace Engineering; Lindsey Hutterer, Public relations; Emily Kaercher, Mechanical Engineering; Daehyun David Lee, Chemical Engineering; Jhi Yong Loke, Mechanical Engineering; John

  12. House Simulation Protocols Report

    Broader source: Energy.gov [DOE]

    Building America's House Simulation Protocols report is designed to assist researchers in tracking the progress of multiyear, whole-building energy reduction against research goals for new and...

  13. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    2 Annual Home Improvement Loan Origination Volumes and Values, by Housing Vintage of Loan Applicant Housing Vintage 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 1990-2000 N/A N/A N/A N/A 49 74 93 95 74 36 23 20 1980-1989 105 103 95 86 117 190 224 235 196 113 75 65 1970-1979 242 231 214 186 144 270 306 320 277 173 123 107 1960-1969 178 165 153 134 97 172 191 200 168 102 70 62 1950-1959 135 123 113 96 147 249 268 279 234 139 93 81 1949 or earlier 126 113 100 84 (1) Total Volume 786

  14. Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors

    Energy Savers [EERE]

    Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Arlan Burdick IBACOS, Inc. October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  15. Building America Whole-House Solutions for New Homes: Insight Homes, Seaford, Delaware

    Broader source: Energy.gov [DOE]

    Case study of Insight Homes, who worked with the Building America research partner IBACOS to design HERS-49 homes with high-efficiency HVAC, ducts in insulated crawl spaces, raised heel trusses, dehumidifiers, and central manifold plumbing.

  16. Introduction to Building Systems Performance: Houses that Work II. Revised February 2005

    SciTech Connect (OSTI)

    2005-03-01

    The Building Science Consortium (BSC) design recommendations are based on the hygrothermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.

  17. Building America Whole-House Solutions for New Homes: New Traditions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of New Tradition Homes who worked with Building America partner WSU Energy Extension to design HERS-65 homes with ducts in conditioned space, site grading and drain ...

  18. Building America Whole-House Solutions for New Homes: S & A Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case study of S&A Homes who worked with Building America research partner IBACOS to design urban infill HERS-51 homes with compact duct layout in conditioned space, foam insulated ...

  19. Building America Whole-House Solutions for New Homes: John Wesley...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to build two net-zero energy homes with foam-sheathed masonry walls, low-E windows 2.9 ACH50 air sealing, transfer grilles, ducts in insulated attic, PV, and solar water heating. ...

  20. Building America Whole-House Solutions for New Homes: Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In this project, U.S. Department of Energy Building America research team IBACOS partnered with builder Wathen Castanos Hybrid Homes to develop a simple and low-cost methodology by ...

  1. Energy Department Invests $4 Million to Strengthen Building America Industry Partnerships for High Performance Housing Innovation

    Broader source: Energy.gov [DOE]

    As part of the administration's effort to cut energy waste in the nation's buildings and double energy productivity by 2030, the Energy Department today announced $4 million to develop and demonstrate new energy efficiency solutions for the nation's homes.

  2. Building America Whole-House Solutions for New Homes: Tom Walsh...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Co., Portland, Oregon Case study of Tom Walsh & Co., who worked with Building America research partner BIRA to design HERS 59 homes with ducts in conditioned space in dropped...

  3. Building America Whole-House Solutions for New Homes: Nexus EnergyHomes- Frederick, Maryland

    Broader source: Energy.gov [DOE]

    This new duplex home successfully combines affordability with state-of-the-art efficiency and indoor environmental quality, achieving the highest rating possible under the National Green Building Standard

  4. Building America Whole-House Solutions for Existing Homes: Conway Street Apartments- Greenfield, Massachusetts

    Broader source: Energy.gov [DOE]

    Through recent research efforts, CARB has been evaluating strategies and technologies that can make dramatic improvements in energy performance in multifamily buildings. In this project, the team helped to transform a 100-year-old empty school building into 12 high performance apartments with low energy costs. The advanced features included an excellent thermal envelope of closed-cell spray foam and triple-pane windows, ductless heat pumps, solar thermal hot water system, and photovoltaic system.

  5. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",64783,12208,6628,1549,4031 "Building...

  6. Professional","Government ","All Other Office"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"All Buildings*","Office Buildings" ,,"All Office","Administrative Professional","Government ","All Other Office" "All Buildings",4645,824,442,84,298 "Building Floorspace"...

  7. Energy Department Announces Winners of Housing Innovation Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Winners of Housing Innovation Awards Energy Department Announces Winners of Housing Innovation Awards October 25, 2013 - 12:00am Addthis The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money. The competition, coordinated by the Energy Department's Office of Energy Efficiency

  8. Energy Department Announces Winners of Housing Innovation Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Winners of Housing Innovation Awards Energy Department Announces Winners of Housing Innovation Awards October 25, 2013 - 1:21pm Addthis The Energy Department announced winners of the first-ever Housing Innovation Awards, recognizing 46 diverse industry leaders bringing the best in energy efficient building technologies and design to new and older homes and helping households save money. The competition, coordinated by the Energy Department's Office of Energy

  9. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    Construction Statistics of New Homes Completed/Placed Year Thousand Units Average SF Thousand Units Average SF 1980 234 1981 229 1982 234 1983 278 1984 288 1985 283 1986 256 1987 239 1988 224 1989 203 1990 195 1991 174 1992 212 1993 243 1994 291 1995 319 1996 338 1997 336 1998 374 1999 338 2000 281 2001 196 2002 174 2003 140 2004 124 2005 123 2006 112 2007 95 2008 81 2009 55 2010 50 Source(s): 496 2,392 155 1,172 701 DOC, 2010 Characteristics of New Housing, 2010, "Median and Average

  10. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    4 Region Single-Family Multi-Family Mobile Homes Northeast 54 11% 26 17% 4 8% 84 12% Midwest 82 17% 25 16% 6 11% 113 16% South 258 52% 59 38% 34 68% 351 50% West 103 21% 45 29% 6 13% 154 22% Total 496 100% 155 100% 50 100% 702 100% Source(s): 2010 New Homes Completed/Placed, by Census Region (Thousand Units and Percent of Total Units) Total DOC, Manufacturing, Mining and Construction Statistics: New Residential Construction: New Privately Owned Housing Units Completed, 2010; and DOC,

  11. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    5 2010 Construction Method of Single-Family Homes, by Region (Thousand Units and Percent of Total Units) Region Total Northeast 49 10% 4 33% 2 18% 54 Midwest 76 16% 3 25% 2 18% 82 South 247 52% 4 33% 6 55% 258 West 101 21% 1 8% 1 9% 103 Total 473 100% 12 100% 11 100% 497 Source(s): Stick-Built Modular Panelized/Precut DOC, Manufacturing, Mining and Construction Statistics, New Residential Construction: Type of Construction Method of New Single-Family Houses Completed

  12. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    6 2010 Mobile Home Placements, by Census Region and Top Five States (Percent of National Total) Region Top Five States Northeast 8% Texas 15.2% Midwest 11% Louisiania 8.6% South 69% Florida 5.4% West 13% Tennessee 4.8% Total 100% North Carolina (1) 4.6% Kentucky 4.6% Note(s): 1) North Carolina and Kentucky are tied for fifth with 4.6% of the national total. Source(s): DOC, Manufactured Housing Statistics, New Manufactured Homes Placed: by Size of Home by State - 2010, Placements of New

  13. Building America Whole-House Solutions for New Homes: S & A Homes, Pittsburgh, Pennsylvania

    Broader source: Energy.gov [DOE]

    Case study of S&A Homes who worked with Building America research partner IBACOS to design urban infill HERS-51 homes with compact duct layout in conditioned space, foam insulated precast concrete foundations, high-efficiency HVAC, and tankless water heaters.

  14. Building America Whole-House Solutions for New Homes: Pine Mountain Builders, Pine Mountain, Georgia

    Broader source: Energy.gov [DOE]

    Case study of Pine Mountain Builders who worked with Building America research partners IBACOS and Southface Energy Institute to design HERS-59 homes with air-tight 1.0-1.8 ACH50 construction, spray-foamed walls and attics, and high-efficiency heat pumps with fresh-air intake.

  15. Existing Whole-House Solutions Case Study: Build San Antonio Green, San Antonio, Texas

    SciTech Connect (OSTI)

    none,

    2013-06-01

    PNNL, FSEC, and CalcsPlus provided technical assistance to Build San Antonio Green on three deep energy retrofits. For this gut rehab they replaced the old roof with a steeper roof and replaced drywall while adding insulation, new HVAC, sealed ducts, transfer grilles, outside air run-time ventilation, new lighting and water heater.

  16. OFFICE,

    Office of Legacy Management (LM)

    OFFICE, . . . . . ..-..__. _ --.-.__.. .-..I............ !..-... bUmME. wArl&l ' rrsldu*. in the dw6lopmQt pmgrwh : Be ostiamts Uuat not man lf+ .b%'o,Q~~~ds. cik'e%ah of the eevenl reel&~ will be require& In : 'ri~ofthehereiabefor6notedeopreodo~ of puriata~tio.aadap :, Iv ve unbntend you vi11 not obj.& to:tha aoe " ai spoh +ant+lea of the mirloua real&es ,, ', ',"" ': ., .,.. i. : /~. ,".. .I,: /, . . ' .* ,; ., ,' ,:.' . .-;. ,-Y .b4 P-0 : ,.

  17. Building America Case Study: Sealed Crawl Spaces with Integrated Whole-House Ventilation in a Cold Climate, Ithaca, New York

    SciTech Connect (OSTI)

    2015-09-01

    "9One method of code-compliance for crawlspaces is to seal and insulate the crawlspace, rather than venting to the outdoors. However, codes require mechanical ventilation; either via conditioned supply air from the HVAC system, or a continuous exhaust ventilation strategy. As the CARB's building partner, Ithaca Neighborhood Housing Services, intended to use the unvented crawlspace in a recent development, CARB was interested in investigating a hybrid ventilation method that includes the exhaust air from the crawlspace as a portion of an ASHRAE 62.2 compliant whole-house ventilation strategy. This hybrid ventilation method was evaluated through a series of long-term monitoring tests that observed temperature, humidity, and pressure conditions through the home and crawlspace. Additionally, CARB worked with NREL to perform multi-point tracer gas testing on six separate ventilation strategies - varying portions of 62.2 required flow supplied by the crawlspace fan and an upstairs bathroom fan. The intent of the tracer gas testing was to identify effective Reciprocal Age of Air (RAoA), which is equivalent to the air change rate in well-mixed zones, for each strategy while characterizing localized infiltration rates in several areas of the home.

  18. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    9 Annual Sales of Existing Homes, by Region (thousands) North- Mid- east west South West 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Source(s): HUD, US Housing Market Conditions: 3rd Quarter 2011, Nov. 2011, Exhibit 7: Existing Home Sales 1969-Present, p. 73. 868 1,163 1,914 1,211 5,156 817 1,076 1,860 1,154 4,907 1,006 1,327 2,235 1,084

  19. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    8 2009 Sales Price and Construction Cost Breakdown of an Average New Single-Family Home ($2010) (1) Function Finished Lot 20% Construction Cost 59% Financing 2% Overhead & General Expenses 5% Marketing 1% Sales Commission 3% Profit 9% Total 100% Function Building Permit Fees 2% Impact Fees 1% Water and Sewer Inspection 2% Excavation, Foundation, & Backfill 7% Steel 1% Framing and Trusses 16% Sheathing 2% Windows 3% Exterior Doors 1% Interior Doors & Hardware 2% Stairs 1% Roof

  20. Building America Expert Meeting: Simplified Space Conditioning Strategies for Energy Efficient Houses

    Broader source: Energy.gov [DOE]

    The Building America research team IBACOS conducted an expert meeting on March 11, 2011, at the Seaport Hotel in Boston, Massachusetts on the topic of simplified space conditioning systems in low load homes. This meeting provided a forum for presentations and discussions on the interrelationship between advanced thermal enclosures, space conditioning systems, and comfort; and an outside peer review of IBACOS’ research plan for the topic.

  1. Research and Development Roadmap: Windows and Building Envelope |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Development Roadmap: Windows and Building Envelope Research and Development Roadmap: Windows and Building Envelope Cover of windows and envelope report, depicting a house, storefront, and multiple office windows. This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the

  2. Building America Case Study: Performance of a Hot-Dry Climate Whole House Retrofit, Stockton, California (Fact Sheet)

    SciTech Connect (OSTI)

    ARBI

    2014-09-01

    The Stockton house retrofit is a two-story tudor style single family deep retrofit in the hot-dry climate of Stockton, CA. The home is representative of a deep retrofit option of the scaled home energy upgrade packages offered to targeted neighborhoods under the pilot Large-Scale Retrofit Program (LSRP) administered by the Alliance for Residential Building Innovation (ARBI). Deep retrofit packages expand on the standard package by adding HVAC, water heater and window upgrades to the ducting, attic and floor insulation, domestic hot water insulation, envelope sealing, lighting and ventilation upgrades. Site energy savings with the deep retrofit were 23% compared to the pre-retrofit case, and 15% higher than the savings estimated for the standard retrofit package. Energy savings were largely a result of the water heater upgrade, and a combination of the envelope sealing, insulation and HVAC upgrade. The HVAC system was of higher efficiency than the building code standard. Overall the financed retrofit would have been more cost effective had a less expensive HVAC system been selected and barriers to wall insulation remedied. The homeowner experienced improved comfort throughout the monitored period and was satisfied with the resulting utility bill savings.

  3. Buildings Energy Data Book: 2.5 Residential Construction and Housing Market

    Buildings Energy Data Book [EERE]

    3 Value of New Building Construction, by Year ($2010 Billion) 1980 1985 1990 1995 2000 2005 2006 2007 2008 2009 2010 Source(s): DOC, Current Construction Reports: Value of New Construction Put in Place, C30, Aug. 2003, Table 1 for 1980-1990; DOC, Annual Value of Private Construction Put in Place 1993-2001, Annual Value of Private Construction Put in Place 2002-2011, Annual Value of Public Construction Put in Place 1993- 2001, Annual Value of Public Construction Put in Place 2002-2011; and EIA,

  4. Obama Administration Expands Better Buildings Challenge to Multifamily Housing, Launches New Programs to Boost U.S. Energy Efficiency

    Broader source: Energy.gov [DOE]

    As Part of Better Buildings Initiative, Administration Commits to Expanding Energy Efficiency Investments in Federal Buildings

  5. Energy Efficient Buildings Hub | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This model of a renovated historic building -- Building 661 -- in Philadelphia will house ... This model of a renovated historic building -- Building 661 -- in Philadelphia will house ...

  6. Contaminants in Buildings and Occupied Spaces as Risk Factors forOccupant Symptoms in U.S. Office Buildings: Findings from the U.S. EPABASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Mirer, A.; Lei-Gomez, Q.

    2007-08-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Most reported research into environmental risk factors for these symptoms has focused on ventilation system-related factors, dampness, and particle removal through filtration and cleaning, with relatively few studies of other potential sources of indoor contaminants. We analyzed data collected by the U.S. Environmental Protection Agency (EPA) from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate-adjusted logistic regression models with generalized estimating equations. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and a diverse set of potential indoor and outdoor sources for indoor pollutants. Although most of the investigated risk factors showed no apparent association with building-related symptoms, some interesting associations resulted. Increased prevalence of symptoms was associated with carpets older than one year (lower respiratory symptoms), non-carpeted floors (upper and lower respiratory symptoms), older furniture (eye and skin symptoms), infrequent vacuuming (upper respiratory, eye, and skin symptoms and headache), and masonry exterior walls (cough, eye symptoms, and fatigue/concentration difficulty). For the many potential risk factors assessed, almost none had been investigated previously, and many associations found here may have been by chance. Additional confirmatory research focused on risk factors initially identified here is needed, using more objective measures of health outcomes and risk factors or exposures.

  7. Buildings Energy Data Book: 2.9 Low-Income Housing

    Buildings Energy Data Book [EERE]

    9 2005 Housing Unit Ownership, by Income Level and Weatherization Eligibility (Millions) Single-Family Multi-Family Unit Mobile Home 2005 Household Income Own Rent Own Rent Own Rent Less than $15,000 6.1 2.4 0.3 7.1 1.6 N.A. $15,000 to $30,000 11.0 3.0 0.4 5.8 2.2 0.3 $30,000 to $49,999 15.7 2.5 N.A 3.9 1.2 N.A. All Households 68.2 10.7 4.2 20.1 5.7 1.0 Federally Eligible 10.9 4.5 1.1 9.4 2.5 0.6 Federally Ineligible 57.3 6.2 3.1 10.7 3.2 0.4 Below 100% Poverty Line 5.3 2.4 0.7 6.1 1.5 0.3

  8. NREL Technical Reports Guide the Way to 50% Energy Savings in Hospitals, Office Buildings (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL) have developed two technical reports that provide recommendations to help designers and opera- tors of large office buildings and hospitals achieve at least a 50% energy savings using existing technology. Strategies for 50% Energy Savings in Large Office Buildings found that a 50% energy savings can be

  9. Using DNA to Build Nanomaterials | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using DNA to Build Nanomaterials Stories of Discovery & Innovation Using DNA to Build Nanomaterials Enlarge Photo Photo courtesy of Brookhaven National Laboratory Oleg Gang, left, and Mircea Cotlet at Brookhaven's Center for Functional Nanomaterials. Enlarge Photo 05.09.11 Using DNA to Build Nanomaterials Scientists use complementary strands of synthetic DNA to build functional materials from the bottom up. Future applications include biosensors, optical nano-devices, and new kinds of solar

  10. Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Energy Saving Homes, Buildings, and Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kathleen Hogan, Deputy Assistant Secretary May 1, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and Manufacturing 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters

  11. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility Preprint Chad Lobato, Shanti Pless, Michael Sheppy, and Paul Torcellini Presented at the ASHRAE Winter Conference Las Vegas, Nevada January 29 - February 2, 2011 Conference Paper NREL/CP-5500-49002 February 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  12. Building America Case Study: A Production Builder's Passive House, Denver, Colorado (Midtown), Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    A Production Builder's Passive House Denver, Colorado (Midtown) Brookfeld Homes Denver (Brookfeld) started a homebuilding division in the Denver, Colorado, market in 2012. Even as a startup division, some of the homes it offers have better energy performance than those currently offered by many production builders in the area. Brookfeld's frst project is in a community called Midtown, in which the builder took on the challenge of increased energy effciency by creating a Passive House (PH)

  13. Vehicle Technologies Office Merit Review 2015: Clean Cities Coordinator Resource Building and National Networking Activities

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Clean...

  14. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  15. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  16. Building America System Research

    SciTech Connect (OSTI)

    2013-04-01

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  17. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  18. Commercial Buildings Consortium

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  19. Build a Network, Cellular Style | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Build a Network, Cellular Style Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 11.01.15 Build a Network, Cellular Style Bio-based molecular machines

  20. Seaborg and Kennedy in the AEC Building | U.S. DOE Office of...

    Office of Science (SC) Website

    Enlarge Photo Sample Horizontal Photo Dr. Seaborg and President Kennedy at the Atomic Energy Commission headquarters building, room A-445, in Germantown MD on February 16, 1961. ...

  1. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ... SEP program, including associated standards, protocols, and application may be used ...

  2. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  3. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

    2011-02-01

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  4. U.S. Department of Energy 2014 Building Technologies Office Program Peer Review Report

    Energy Savers [EERE]

    bottom) 1. Buildings in city setting; photo courtesy of the U.S. Department of Energy. 2. National Renewable Energy Laboratory research scientist manipulates ink-jet sprayer in glove box at the Process Development Integration Laboratory; photo courtesy of the National Renewable Energy Laboratory, images.nrel.gov, image 16937. 3. Residential home; photo courtesy of the U.S. Department of Energy. 4. Worker inspects building construction; photo courtesy of istock.com. U.S. Department of Energy

  5. Seaborg and Kennedy in the AEC Building | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    in the AEC Building Basic Energy Sciences (BES) BES Home About Organization Chart .pdf file (132KB) Staff BES Budget BES Committees of Visitors Directions Jobs Organizational History Germantown Natural History President Kennedy's AEC Briefings Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000

  6. CMTA Office

    High Performance Buildings Database

    Prospect, KY When CMTA outgrew their old office space, the consultant engineering company decided to construct a new building. Not only does the structure provide offices for the firm, it also showcases progressive design elements and allows the firm to test new technologies and demonstrate their effectiveness to clients. The new CMTA office building is located in a live-work development on the outskirts of Louisville, KY. The location was selected to place the office close to where the employees live.

  7. 15 Minutes of Building Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As A System House As A System House As A System Air Leaks to Attic Air Leaks to Attic Anatomy of an Ice Dam House As A System House As A System House As A System * Build Tight - ...

  8. Building America Whole-House Solutions for Existing Homes: 56th and Walnut: A Philly Gut Rehab Development

    Broader source: Energy.gov [DOE]

    In this project, CPM partnered with the Consortium for Advanced Residential Buildings team to renovate 32 units in 11 three-story, historic, brick masonry urban buildings.

  9. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 4,645 824 442 84...

  10. All Office Administrative/ Professional Government All Other

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey All Office Administrative Professional Government All Other Office All Buildings... 64,783 12,208...

  11. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Whole-House Solutions for Existing Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  12. Building America Case Study: Northwest Energy Efficient Manufactured Housing Program High-Performance Test Homes; Whole-House Solutions for New Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-05-01

    ?This project represents the third phase of a multi-year effort to develop and bring to market a High Performance Manufactured Home (HPMH). The scope of this project involved building four HPMH prototypes, resulting in what is expected to be a 30% savings relative to the Building America Benchmark. (The actual % savings varies depending on choice of heating equipment and climate zone). The HPMH home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.
    home is intended to make significant progress toward performing as zero-net-energy ready. Previous phases of this project created a HPMH specification and prototyped individual measures from the package to obtain engineering approvals and develop preliminary factory construction processes. This report describes the project team's work during 2014 to build prototype homes to the HPMH specifications and to monitor the homes for energy performance and durability during 2014. Monitoring is expected to continue into 2016.

  13. Attendees: John Cymbalsky, Equipment and Appliance Standards Program Manager, Building Technologies Office,

    Energy Savers [EERE]

    Attend AMO Program Peer Review May 6 and 7 Attend AMO Program Peer Review May 6 and 7 April 28, 2014 - 1:09pm Addthis DOE's Advanced Manufacturing Office (AMO) will be conducting a Peer Review of its Research and Development (R&D), Facilities, and Technology Assistance activities in Washington, DC, on May 6-7, 2014. You are cordially invited to attend and invite others. Presentations will be given on individual R&D projects, Facilities, and the Technical Assistance activities. Leading

  14. Building America Best Practices Series, Volume 9: Builders Challenge Guide to 40% Whole-House Energy Savings in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Williamson, Jennifer L.; Ruiz, Kathleen A.; Bartlett, Rosemarie; Love, Pat M.

    2009-10-23

    This best practices guide is the ninth in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-dry and mixed-dry climates can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the hot-dry and mixed-dry climates.

  15. Building America Best Practices Series Volume 11. Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

    2010-09-01

    This best practices guide is the eleventh in a series of guides for builders produced by the U.S. Department of Energy’s Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the marine climate (portions of Washington, Oregon, and California) can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building America’s research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the marine climate. This document is available on the web at www.buildingamerica.gov. This report was originally cleared 06-29-2010. This version is Rev 1 cleared in Nov 2010. The only change is the reference to the Energy Star Windows critieria shown on pg 8.25 was updated to match the criteria - Version 5.0, 04/07/2009, effective 01/04/2010.

  16. Before the House Budget Committee | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Dr. Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency, Office of Energy Efficiency and Renewable Energy Before The Senate Committee on Energy and Natural Resources PDF icon 4-30-15_Kathleen_Hogan FT SENR.pdf More Documents & Publications Before the House Committee on Energy and Commerce Subcommittee on Energy and Power Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Energy Saving Homes, Buildings, and Manufacturing Energy-Saving

  17. WNR Offices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offices, Experimental Areas, Buildings, and Contacts Description Contact Name Bldg/Room Phone Pager/Alt. Phone Group Office Julie Quintana 622/220 667-5377 665-5390 User Office Tanya Herrera 622/212 667-6797 MPF-31 Building Manager Kenny Madrid 31/125 665-0944 664-8327 MPF-17 Building Manager Gene Cartelli 6/133 667-2127 664-4234 MPF-7 Building Manager Bruce Wheeler 622/248 667-6715 664-8336 Property Julie Martinez 24/110 665-2058 664-6775 Waste Manager Lance Kloefkorn 6/236 665-3288 664-5972

  18. Building America Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.

  19. High-Performance Affordable Housing with Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Affordable Housing with Habitat for Humanity - Building America Top Innovation High-Performance Affordable Housing with Habitat for Humanity - Building America Top ...

  20. 2015 Housing Innovation Awards Application Form | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing Innovation Awards Application Form 2015 Housing Innovation Awards Application Form ... The 2015 ceremony will take place at the EEBA Excellence in Building Conference & Expo ...

  1. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  2. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006

    SciTech Connect (OSTI)

    Building America Industrialized Housing Partnership; Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-12-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

  3. Build-

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Cooling Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Build- ings*","Cooled Build- ings","Cooling Equipment (more than one may apply)" ,,,"Resid- ential- Type Central Air Condi- tioners","Heat Pumps","Indiv- idual Air Condi- tioners","District Chilled Water","Central Chillers","Pack- aged Air Condi- tioning Units","Swamp

  4. Reducing Data Center Loads for a Large-Scale, Net Zero Office Building (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Case study highlighting the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. In constructing a new research facility for its campus, the National Renewable Energy Laboratory (NREL) project team identified the opportunity to design a world-class, energy-efficient data center to support its operations. NREL's efforts resulted in a highly efficient data center that demonstrated considerable energy savings in its first 11 months of operations. Using legacy data center performance as a baseline, the new facility cut energy use by nearly 1,450,000 kWh, delivering cost savings of approximately $82,000. The data center's average total load was 165 kW less than the legacy center's average total load, resulting in a 60% reduction in overall power. Finally, the limited use of cooling and fan energy enabled the new data center to achieve a 1.16 average power utilization effectiveness (PUE) rating, compared to the legacy data center's PUE of 2.28. The laboratory had been relying on individual servers with an energy utilization rate of less than 5%. NREL employed building best practices, innovative design techniques and energy-efficient technologies to support its energy goals for the new data center. To counteract the extensive heat generated by data center equipment, the laboratory implemented a cooling system using outdoor air and evaporative cooling to meet most of the center's needs. Inside the data center, NREL replaced much of its legacy equipment with new, energy-efficient technology. By exchanging this infrastructure for virtualized blade servers, NREL reduced its server energy footprint by 96%. Additionally, NREL replaced its 80%-efficient uninterruptible power supply (UPS) with a UPS that is 95% efficient; deployed ultra efficient power distribution units (PDU) to handle higher UPS voltages; and implemented vacancy sensors to drive down lighting loads. Using best practices and energy-efficient technology, NREL was able to successfully design an optimized data center with a minimal energy footprint. At 958,000 kWh, the annual energy use for the RSF data center is approximately 60% less than the legacy data center's annual energy use, surpassing the laboratory's project goal. As specified, the building is equipped with enough onsite renewable energy generation to offset annual energy consumption. The facility has achieved a PUE of 1.16 and ERE of 0.91 in its first 11 months of operation and is using PUE to as a metric to gauge success towards its ultimate goal. Based on the status of its RSF data center project, NREL is advising other government organizations on data center efficiency. The laboratory places great emphasis on the use of key metrics - such as PUE and ERE - to track performance. By carefully monitoring these metrics and making adjustments, NREL is able to continuously improve the performance of its data center operations.

  5. Building America Whole-House Solutions for Existing Homes: Cascade Apartments- Deep Energy Multifamily Retrofit (Fact Sheet)

    Broader source: Energy.gov [DOE]

    In December of 2009-10, King County Housing Authority implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington, which resulted in annual energy cost savings of 22%, improved comfort and air quality for residents, and increased durability of the units.

  6. Buildings Energy Data Book: 9.1 ENERGY STAR

    Buildings Energy Data Book [EERE]

    3 ENERGY STAR Commercial and Institutional Buildings and Industrial Plants (1) Building Type 1999 Office 2000 K-12 School 2001 Retail 2002 Hospital (General and Surgical) 2003 Supermarket/Grocery 2004 Hotel 2005 Bank/Financial Institution 2006 Warehouse (Unrefrigerated) 2007 Courthouse 2008 Medical Office 2009 Residence Hall/Dormitory 2010 Senior Care Facility 2011 Data Center Total (2) Warehouse (Refrigerated) House of Worship Industrial Plants Total Note(s): Source(s): 1) Data as of February

  7. Building Envelope Stakeholder Workshop

    Broader source: Energy.gov [DOE]

    Oak Ridge National Laboratory is hosting a building envelope stakeholder workshop on behalf of the DOE Building Technologies Office.

  8. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2013 Residential Buildings Integration Program Building Technologies Office ... Overview of the Residential Integration Program Research Implementation tools ...

  9. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  10. Demonstration of a new ICPC design with a double-effect absorption chiller in an office building in Sacramento, California[Integrated Compound Parabolic Concentrator

    SciTech Connect (OSTI)

    Duff, W.S.; Winston, R.; O'Gallagher, J.J.; Henkel, T.; Muschaweck, J.; Christiansen, R.; Bergquam, J.

    1999-07-01

    In 1998 two new technologies, a new ICPC solar collector and the solar operation of a double effect chiller, have been demonstrated for the first in an office building in Sacramento, California. This paper describes the demonstration project and reports on component and system performance.

  11. Building America Whole-House Solutions for Existing Homes: Exterior Insulation Pre- and Post-Retrofit, Syracuse, New York

    Broader source: Energy.gov [DOE]

    IBACOS, in collaboration with GreenHomes America, Inc., was contracted by the New York State Energy Research and Development Authority (NYSERDA) to research exterior wall insulation solutions for enclosure upgrades. This case study describes the deep energy retrofit of three test homes in the Syracuse, New York area and represent these enclosure strategies: rigid foam insulation; spray foam insulation, and a control house that follows Home Performance with ENERGY STAR (HPwES) guidelines.

  12. New Whole-House Solutions Case Study: Heritage Buildings, Inc., and Energy Smart Home Plans, Leland, North Carolina

    SciTech Connect (OSTI)

    none,

    2012-10-01

    PNNL worked with North Carolina Heritage Buildings and Energy Smart Home Plans to design zero-energy ready homes that score under HERS 60 for less than 2% added cost over code construction.

  13. Winchester Homes and Camberley Homes, Silver Spring, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    EFFICIENCY MEASURESS * Single seasonal energy efficiency ratio 15 AC; 2-stage 92.5% annual fuel utilization efficiency furnace with electronically commutated motor (ECM) blower * Continuously operating ECM air handler motor * Duct system entirely in conditioned space. Duct leakage to outside = 43 cfm @ 25 Pa * Supply-only ventilation; fresh air introduced in return ducts, damper programmed to open 60% of time ENVELOPE * 2×6 frame, 24-in. on-center with structural rim headers, R-24 blown

  14. Winchester Homes and Camberley Homes, Silver Spring, Maryland (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    EFFICIENCY MEASURES * Single seasonal energy efficiency ratio 15 AC; 2-stage 92.5% annual fuel utilization efficiency furnace with electronically commutated motor (ECM) blower * Continuously operating ECM air handler motor * Duct system entirely in conditioned space. Duct leakage to outside = 43 cfm @ 25 Pa * Supply-only ventilation; fresh air introduced in return ducts, damper programmed to open 60% of time ENVELOPE * 2×6 frame, 24-in. on-center with structural rim headers, R-24 blown

  15. 56th and Walnut: A Philly Gut Rehab Development, Philadelphia, Pennsylvania (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    of Energy 4.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings 54.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings December 12, 2012 - 10:30am Addthis This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. Rebecca Matulka Rebecca Matulka

  16. Transformations, Inc. Net Zero Energy Communities, Devens, Easthampton, Townsend, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Transformations, Inc. Net Zero Energy Communities Devens, Easthampton, Townsend, Massachusetts PROJECT INFORMATION Construction: New home Type: Single-family, market-rate and affordable Builder: Transformations, Inc. www.transformations-inc.com Size: 1,064 to 2,365 ft 2 Price Range: $125,000-$400,000 Date Completed: 2010-ongoing Climate Zone: Cold PERFORMANCE DATA HERS Index Range: -21 to 43 Projected annual energy cost: $88* Incremental cost of energy efficiency measures: $3/ft 2 * Incremental

  17. National Grid Deep Energy Retrofit Pilot, Massachusetts and Rhode Island (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    (NGDS) Fact Sheet National Geothermal Data System (NGDS) Fact Sheet Industry has named one of the largest barriers to widespread adoption of geothermal technologies: the lack of quantifiable, geothermal-relevant data in the subsurface. The Department of Energy has answered the call with a mammoth resource of geoscience information that contains enough raw data points to pinpoint the elusive sweet spots of geothermal energy. NGDS is an interoperable networked system of distributed data

  18. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  19. Build-

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Cooling Equipment, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Build- ings*","Cooled Build- ings","Cooling Equipment (more than one may apply)" ,,,"Resid- ential- Type Central Air Condi- tioners","Heat Pumps","Indiv- idual Air Condi- tioners","District Chilled Water","Central Chillers","Pack- aged Air Condi- tioning Units","Swamp

  20. Before the House Transportation and Infrastructure Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public ...

  1. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Communicate the value of energy efficiency to encourage adoption of technologies (lower the risk). * THOUSANDS of ... and our Environment 17 Measuring R&D Impacts BTO Impact ...

  2. Types of Lighting in Commercial Buildings - Building Size and...

    U.S. Energy Information Administration (EIA) Indexed Site

    commercial buildings. Note: Data are for non-mall buildings. Source: Energy Information Administration, 2003 Commercial Buildings Energy Consumption Survey. Office buildings and...

  3. 2015 Peer Review Agenda for the Geothermal Technologies Office | Department

    Broader source: Energy.gov (indexed) [DOE]

    The 2015 Housing Innovation Awards ceremony was held on October, 6th 2015, at EEBA's Excellence in Building Conference in Denver, Colorado. The awards recognized 27 industry leaders from the Building Technologies Office DOE Zero Energy Ready Home Program as well as the Legacy Award, given to an individual who has had a strong influence in paving the way towards high-performance homes. Custom Category Addison Homes, Greer, SC Amaris Custom Homes, Maplewood, MN BPC Green Builders, Wilton, CT

  4. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect (OSTI)

    Simon, J.

    2012-01-01

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  5. Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies

    SciTech Connect (OSTI)

    Weijo, R.O. ); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. )

    1991-03-01

    This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

  6. On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    522 August 2010 On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building Preprint Rob Guglielmetti, Shanti Pless, and Paul Torcellini Presented at SimBuild 2010 New York, New York August 15-19, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance

  7. Building America Case Study: Evaluation of the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate, New Orleans, Louisiana (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    the Performance of Houses With and Without Supplemental Dehumidification in a Hot-Humid Climate New Orleans, Louisiana PROJECT INFORMATION Project Name: New Orleans Dehumidification Study Location: New Orleans, LA Partners: Project Home Again Building Science Corporation, buildingscience.com National Renewable Energy Laboratory, nrel.gov Mountain Energy Partnership Building Component: Supplemental dehumidification Application: New; single- and multifamily homes Year Tested: 2012-2013 Applicable

  8. Buildings Performance Database- 2013 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  9. Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in the Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Building Industry Research Alliance; Building Science Consortium; Consortium for Advanced Residential Buildings; Davis Energy Group; Florida Solar Energy Center; IBACOS; National Association of Home Builders Research Center; National Renewable Energy Laboratory

    2006-01-01

    The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost neutral basis.

  10. Funding Opportunity Webinar - Building America Industry Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar - Building America Industry Partnerships for High Performance Housing Innovations (Text Version) Funding Opportunity Webinar - Building America Industry Partnerships for ...

  11. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    SciTech Connect (OSTI)

    Anderson, Temashio

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  12. Before the House Subcommittee on National Parks Committee on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Subcommittee on National Parks Committee on Energy and Commerce Testimony of Ingrid Kolb, Director Office of Management Before the House Subcommittee on National ...

  13. Before the House Subcommittee on Energy - Committee on Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Before the House Subcommittee on Energy - Committee on Science, Space, and Technology Testimony of Dr. Patricia Dehmer, Acting Director of the Office of Science Before the House ...

  14. Buildings Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

  15. Hydronic Systems: Designing for Setback Operation, Ithaca, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Hydronic Systems: Designing for Setback Operation Ithaca, New York PROJECT INFORMATION Project Name: Condensing Boilers- Optimizing Efficiency and Response Time During Setback Operation Location: Ithaca, NY Partners: Ithaca Neighborhood Housing Services, www.ithacanhs.org Appropriate Designs, www.hydronicpros.com HTP, www.htproducts.com Peerless, www.peerlessboilers.com Grundfos, www.grundfos.com Bell & Gossett, www.bell-gossett.com Emerson Swan, www.emersonswan.com Consortium for Advanced

  16. Stand-Off Furring in Deep Energy Retrofits, Syracuse, New York (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Stand-Off Furring in Deep Energy Retrofits Syracuse, New York PROJECT INFORMATION Project Name: Deep Energy Retrofit Location: Syracuse, NY Project Partners: GreenHomes America, www.greenhomesamerica.com/ IBACOS, www.ibacos.com Building Component: Building envelope Application: Single-family retrofit Year Tested: 2012 Applicable Climate Zone(s): Cold PERFORMANCE DATA Cost of energy efficiency measure (including labor): $23,518 Projected energy savings: Approximately 50% overall savings Exterior

  17. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Retrofit Integrated Space and Water Heating: Field Assessment Minneapolis, Minnesota PROJECT INFORMATION Project Name: Retrofit Integrated Space and Water Heating: Field Assessment Location: Minneapolis, MN Partners: Center for Energy and Environment, www.mncee.org/ Sustainable Resources Center, www.src-mn.org/ University of Minnesota, www.bbe.umn.edu/index.htm NorthernSTAR Building America Partnership Building Component: HVAC Application: Retrofit; single family Year Tested: 2012 Climate

  18. White House Forum on Minorites in Energy

    Broader source: Energy.gov [DOE]

    On November 13, 2013, the Department of Energy and the White House Office of Science and Technology Policy, the Council for Environmental Quality, and the White House Office of Public Engagement co-hosted the White House Forum on Minorities in Energy. The event included the announcement of the Ambassadors for the Minorities in Energy Initiative.

  19. DOE Zero Energy Ready Home Case Study 2013: Ithaca Neighborhood Housing Services, Ithaca, NY

    Energy Savers [EERE]

    Ithaca Neighborhood Housing Services Ithaca, NY BUILDING TECHNOLOGIES OFFICE The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specifi ed in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Advanced technologies are designed in to

  20. DOE Zero Energy Ready Home Case Study 2013: Transformation, Inc., Production House, Devens, MA

    Energy Savers [EERE]

    Production House Devens, MA BUILDING TECHNOLOGIES OFFICE The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR for Homes Version 3 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you superior