National Library of Energy BETA

Sample records for hourly satellite observed

  1. Current and Past 48 Hours HMS Observations - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Meteorological Station Current and Past 48 Hours HMS Observations Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS ...

  2. The seasonal cycle of satellite chlorophyll fluorescence observations and

    Office of Scientific and Technical Information (OSTI)

    its relationship to vegetation phenology and ecosystem-atmosphere carbon exchange (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem-atmosphere carbon exchange Citation Details In-Document Search Title: The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and

  3. Six- and three-hourly meteorological observations from 223 USSR stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A.; Kaiser, D.P.

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  4. The seasonal cycle of satellite chlorophyll fluorescence observations...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: The seasonal cycle of satellite ... Citation Details In-Document Search Title: The seasonal cycle of satellite chlorophyll ...

  5. Contacts / Hours - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Hours Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate ...

  6. Observed Temperature Effects on Hourly Residential Electric LoadReduction in Response to an Experimental Critical Peak PricingTariff

    SciTech Connect (OSTI)

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-11-14

    The goal of this investigation was to characterize themanual and automated response of residential customers to high-price"critical" events dispatched under critical peak pricing tariffs testedin the 2003-2004 California Statewide Pricing Pilot. The 15-monthexperimental tariff gave customers a discounted two-price time-of-userate on 430 days in exchange for 27 critical days, during which the peakperiod price (2 p.m. to 7 p.m.) was increased to about three times thenormal time-of-use peak price. We calculated response by five-degreetemperature bins as the difference between peak usage on normal andcritical weekdays. Results indicatedthat manual response to criticalperiods reached -0.23 kW per home (-13 percent) in hot weather(95-104.9oF), -0.03 kW per home (-4 percent) in mild weather (60-94.9oF),and -0.07 kW per home (-9 percent) during cold weather (50-59.9oF).Separately, we analyzed response enhanced by programmable communicatingthermostats in high-use homes with air-conditioning. Between 90oF and94.9oF, the response of this group reached -0.56 kW per home (-25percent) for five-hour critical periods and -0.89 kW/home (-41 percent)for two-hour critical periods.

  7. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  8. Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Sensing Laboratory Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the Nevada National Security Site (NNSS) in his role as Chief Risk Officer for the Department of Energy. He reviewed the various ways the NNSS contributes to the department's and NNSA's missions, including radiological

    Remote Sensing Observations from MTI Satellites and GMS Over Tropical Island of Nauru W. M. Porch, P.

  9. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G Satyanarayana, M. Krishnakumar, V. Dhaman, Reji k.

    2014-10-15

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  10. Saturn's inner satellites: Orbits, masses, and the chaotic motion of atlas from new Cassini imaging observations

    SciTech Connect (OSTI)

    Cooper, N. J.; Murray, C. D.; Renner, S.; Evans, M. W.

    2015-01-01

    We present numerically derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus, and Epimetheus from a fit to 2580 new Cassini Imaging Science Subsystem astrometric observations spanning 2004 February to 2013 August. The observations are provided as machine-readable and Virtual Observatory tables. We estimate GM{sub Atlas} = (0.384 0.001) 10{sup ?3} km{sup 3} s{sup ?2}, a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM{sub Prometheus} = (10.677 0.006) 10{sup ?3} km{sup 3} s{sup ?2}, GM{sub Pandora} = (9.133 0.009) 10{sup ?3} km{sup 3} s{sup ?2}, GM{sub Janus} = (126.51 0.03) 10{sup ?3} km{sup 3} s{sup ?2}, and GM{sub Epimetheus} = (35.110 0.009) 10{sup ?3} km{sup 3} s{sup ?2}, consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon, and Methone, and possibly Neptune's ring arcs. We further demonstrate that Atlas's orbit is chaotic, with a Lyapunov time of ?10 years, and show that its chaotic behavior is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora, and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignment.

  11. Hopper Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage ... Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in ...

  12. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Office Location & Hours Ombuds Office Location & Hours Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

  13. Franklin Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Franklin Hours Used Franklin Hours Used 2011 Franklin Usage in Hours 2011 Franklin Usage in Hours 2010 2010 Franklin Usage in Hours 2009 2009 Franklin Usage in Hours 2007-2008 2008 Franklin Usage in Hours 2008 Franklin Usage in Hours Date Hours Used (in thousands) Percentage of Maximum Possible (24 hours/day) 04/28/2012 0.00 0.00 04/27/2012 272.62 29.40 04/26/2012 692.81 74.71 04/25/2012 841.60 90.75 04/24/2012 53.86 5.81 04/23/2012 432.01 46.59 04/22/2012 823.23 88.77 04/21/2012 473.95 51.11

  14. Satellite observations of recent power plant construction in Inner Mongolia, China - article no. L15809

    SciTech Connect (OSTI)

    Zhang, Q.; Streets, D.G.; He, K.B.

    2009-08-15

    About 50% of the increase in China's NOx emissions since 2000 can be attributed to the construction of new power plants. We show that the newly added NOx emissions from new power plants in Inner Mongolia, China, were detected by the Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite. Increase rates of NO{sub 2} columns from OMI and NOx emissions from inventories are even in quantitative agreement in cases where new facilities are added to already-developed regions. This study confirms that the OMI products are quite capable of identifying the construction of large new emitting facilities through detection of their NOx emissions.

  15. Edison Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Hours Used 2015 Edison Usage Chart Edison Usage Chart 2014 Edison Usage Chart Edison Usage Chart 2013 Edison Usage Chart Edison Usage Chart 2015 Date Hours Used (in ...

  16. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect (OSTI)

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  17. Interannual variation of the surface temperature of tropical forests from satellite observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability ofmore » cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).« less

  18. Interannual variation of the surface temperature of tropical forests from satellite observations

    SciTech Connect (OSTI)

    Gao, Huilin; Zhang, Shuai; Fu, Rong; Li, Wenhong; Dickinson, Robert E.

    2016-01-01

    Land surface temperatures (LSTs) within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS), providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Lastly, the differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP) reanalysis data).

  19. Allocation of Flight Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocation of Flight Hours for G-1 Pattern Number Name/Description Hours per flight Number of Flights Total # of Hours Fraction of Allotment (60hrs) Likely Start Time Weather Conditions 1 Stack Pattern 1 (Instrument testing) 3.5 1 3.5 6% 10:00-12:00 Shallow clouds, Cu Hu- Cu Me, Ci are okay 2 Stack Pattern 2 Basic OKC Cloudy Air Flight Plan (some in coordination with ER-2) 3.5 5 17.5 30% 10:00-12:00 Shallow clouds, Cu Hu- Cu Me, Ci are okay 3 Stack Pattern 3 Basic OKC Clear Air Flight Plan 3.5 5

  20. Hopper Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours Used Hopper Hours Used 2015 Hopper Usage Chart Hopper Usage Chart 2014 Hopper Usage Chart Hopper Usage Chart 2013 Hopper Usage Chart Hopper Usage Chart 2012 Hopper Usage Chart Hopper Usage Chart 2011 Hopper Usage Chart Hopper Usage Chart 2015 Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 09/20/2015 3.247 88.2 09/19/2015 3.401 92.4 09/18/2015 3.425 93.0 09/17/2015 3.450 93.7 09/16/2015 3.413 92.7 09/15/2015 3.466 94.1 09/14/2015 3.299 89.6 09/13/2015 3.436 93.3

  1. Optimization of satellite coverage in observing cause and effect changes in the ionosphere, magnetosphere, and solar wind. Master's thesis

    SciTech Connect (OSTI)

    Loveless, M.J.

    1993-06-01

    Disturbances in the ionosphere sometimes cause adverse effects to communications systems, power grids, etc. on the earth. Currently, very little, if any, lead time is given to warn of an impending problem. If a forecast could be made of ionospheric occurrences, some lead time may be given to appropriate agencies and equipment may be saved. Most changes that occur in the ionosphere are a result of interaction of energy, currents, etc. between the magnetosphere and/or solar wind. Before a forecast can be made, however, improvement of ionospheric models currently in use need to be made. The models currently depict features in various regions of the ionosphere but not always where these features are actually observed. So an improvement to the model is needed to create an accurate baseline condition, or in other words an accurate depiction of the current ionosphere. Models could be improved by inputting real-time data from the ionosphere into the model. This data would come from satellites and/or ground-based stations.

  2. Carver Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carver Hours Used Carver Hours Used Hopper Usage Chart Hopper Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 12/15/2014 161.25 84.75 12/14/2014 162.32 85.31 12/13/2014 165.95 87.22 12/12/2014 172.69 90.76 12/11/2014 174.45 91.69 12/10/2014 170.09 89.39 12/09/2014 166.50 87.50 12/08/2014 169.20 88.92 12/07/2014 167.44 88.00 12/06/2014 172.83 90.83 12/05/2014 176.73 92.89 12/04/2014 174.69 91.81 12/03/2014 178.77 93.96 12/02/2014 172.30 90.55 12/01/2014 176.12

  3. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  4. Edison Phase I Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edison Phase I Hours Used Edison Phase I Hours Used Edison Usage Chart Edison Usage Chart Date Hours Used (in millions) Percent of Maximum Possible (24 hours/day) 06/23/2013 0.226 88.6 06/22/2013 0.239 93.9 06/21/2013 0.248 97.1 06/20/2013 0.240 94.0 06/19/2013 0.233 91.3 06/18/2013 0.245 96.0 06/17/2013 0.251 98.4 06/16/2013 0.243 95.3 06/15/2013 0.245 95.9 06/14/2013 0.246 96.5 06/13/2013 0.240 94.1 06/12/2013 0.128 50.4 06/11/2013 0.215 84.5 06/10/2013 0.225 88.4 06/09/2013 0.228 89.6

  5. Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Velocity-Independent Electron Transport in the Reversed Field Pinch R. O'Connell, * D. J. Den Hartog, C. B. Forest, J. K. Anderson, T. M. Biewer, † B. E. Chapman, D. Craig, G. Fiksel, S. C. Prager, J. S. Sarff, and S. D. Terry ‡ Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA R.W. Harvey CompX, San Diego, California, USA (Received 16 December 2002; published 24 July 2003) Confinement of runaway electrons has been observed for the first time in a reversed

  6. The Fertilizing Role of African Dust in the Amazon Rainforest. A First Multiyear Assessment Based on Data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

    SciTech Connect (OSTI)

    Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Remer, L. A.; Prospero, J.; Omar, Ali; Winker, D.; Yang, Yuekui; Zhang, Yan; Zhang, Zhibo; Zhao, Chun

    2015-03-18

    The productivity of the Amazon rainforest is constrained by the availability of nutrients, in particular phosphorus (P). Deposition of long-range transported African dust is recognized as a potentially important but poorly quantified source of phosphorus. This study provides a first multiyear satellite-based estimate of dust deposition into the Amazon Basin using three dimensional (3D) aerosol measurements over 2007-2013 from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The 7-year average of dust deposition into the Amazon Basin is estimated to be 28 (8~48) Tg a-1 or 29 (8~50) kg ha-1 a-1. The dust deposition shows significant interannual variation that is negatively correlated with the prior-year rainfall in the Sahel. The CALIOP-based multi-year mean estimate of dust deposition matches better with estimates from in-situ measurements and model simulations than a previous satellite-based estimate does. The closer agreement benefits from a more realistic geographic definition of the Amazon Basin and inclusion of meridional dust transport calculation in addition to the 3D nature of CALIOP aerosol measurements. The imported dust could provide about 0.022 (0.006~0.037) Tg P of phosphorus per year, equivalent to 23 (7~39) g P ha-1 a-1 to fertilize the Amazon rainforest. This out-of-Basin P input is comparable to the hydrological loss of P from the Basin, suggesting an important role of African dust in preventing phosphorus depletion on time scales of decades to centuries.

  7. Happy Birthday Unmet Hours! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Happy Birthday Unmet Hours! Happy Birthday Unmet Hours! September 3, 2015 - 1:43pm Addthis Unmet Hours is a question-and-answer resource for the building energy modeling community. Unmet Hours is a question-and-answer resource for the building energy modeling community. Amir Roth, Ph.D. Amir Roth, Ph.D. Building Energy Modeling Technology Manager A year ago this week, a star was born. Working with IBPSA-USA, the US chapter of the International Building Performance Simulation Association, and Big

  8. EIA-930 Hourly and Daily Balancing ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... file retrieval using business-to-business data transfer or web services technology. ... but are to be included in the posted hourly value for balancing authority net generation. ...

  9. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis Production | Department of Energy Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production Download the presentation slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Wind-to-Hydrogen Cost Modeling and Project Findings," held on January 17, 2013. PDF icon Wind-to-Hydrogen Cost Modeling and Project Findings Webinar

  10. Bradbury Science Museum announces winter opening hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum winter hours Bradbury Science Museum announces winter opening hours Museum will be closed on Christmas Day (December 25) and New Year's Day (January 1, 2011). December 21, 2010 Bradbury Science Museum Bradbury Science Museum Contact Communications Office (505) 667-7000 Often called "a window to the Laboratory," the museum annually attracts thousands of visitors from all over the world. LOS ALAMOS, New Mexico, December 21, 2010-Los Alamos National Laboratory's

  11. Hour of Code | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning Experiences School Competitions Teacher Programs Classroom Resources Undergraduates Graduates Faculty Partners News & Events About Us Staff Directory About Us Staff Directory Argonne National Laboratory Educational Programs Developing the Next Generation of Scientists & Engineers Home Learning Center Undergraduates Graduates Faculty Partners News & Events Learning Center Community Outreach Hour of Code Introduce a Girl to Engineering Science Careers in Search of Women

  12. Team Surpasses 1 Million Hours Safety Milestone

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  13. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  14. Sub-Hour Solar Data for Power System Modeling From Static Spatial Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Ibanez, E.; Brinkman, G.; Lew, D.

    2012-12-01

    High penetration renewable integration studies need high quality solar power data with spatial-temporal correlations that are representative of a real system. This paper will summarize the research relating sequential point-source sub-hour global horizontal irradiance (GHI) values to static, spatially distributed GHI values. This research led to the development of an algorithm for generating coherent sub-hour datasets that span distances ranging from 10 km to 4,000 km. The algorithm, in brief, generates synthetic GHI values at an interval of one-minute, for a specific location, using SUNY/Clean Power Research, satellite-derived, hourly irradiance values for the nearest grid cell to that location and grid cells within 40 km.

  15. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  16. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  17. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  18. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  19. Green Machine Florida Canyon Hourly Data 20130731

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-08-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 7/1/13 to 7/31/13.

  20. 20140430_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-05-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 April to 30 April 2014.

  1. 20130416_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-04-24

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 4/16/13.

  2. Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-07-15

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 6/1/13 to 6/30/13

  3. Energy Savings Performance Contracting 14-hour Agency Onsite...

    Energy Savers [EERE]

    Energy Savings Performance Contracting 14-hour Agency Onsite Workshop Energy Savings Performance Contracting 14-hour Agency Onsite Workshop January 20, 2016 8:30AM PST to January...

  4. Modeling Of Surface Deformation From Satellite Radar Interferometry...

    Open Energy Info (EERE)

    Salton Sea geothermal field is modeled using results from satellite radar interferometry, data from leveling surveys, and observations from the regional GPS network. The field is...

  5. Monitoring objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  6. Science satellites seek Santa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science satellites seek Santa Science satellites seek Santa Los Alamos scientists will use two advanced science satellites to mark the course taken by the elfin traveler. December 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a

  7. 1999 Commercial Buildings Characteristics--Off-Hour Equipment...

    U.S. Energy Information Administration (EIA) Indexed Site

    such programs (Figure 1). About the same amount of floorspace had either heating system or cooling system off-hour reduction. Off-hour reduction was least for office...

  8. BioenergizeME Office Hours Webinar: Integrating Bioenergy into...

    Office of Environmental Management (EM)

    Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom PDF icon...

  9. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of...

  10. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9th-12th Grade Classroom | Department of Energy Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom PDF icon bioenergize_me_ngss_20151210.pdf More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Toolkit

  11. Why baryons matter: The kinematics of dwarf spheroidal satellites

    SciTech Connect (OSTI)

    Brooks, Alyson M. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Zolotov, Adi, E-mail: abrooks@physics.rutgers.edu, E-mail: zolotov@physics.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2014-05-10

    We use high-resolution cosmological simulations of Milky Way (MW) mass galaxies that include both baryons and dark matter (DM) to show that baryonic physics (energetic feedback from supernovae and subsequent tidal stripping) significantly reduces the DM mass in the central regions of luminous satellite galaxies. The reduced central masses of the simulated satellites reproduce the observed internal dynamics of MW and M31 satellites as a function of luminosity. We use these realistic satellites to update predictions for the observed velocity and luminosity functions of satellites around MW-mass galaxies when baryonic effects are accounted for. We also predict that field dwarf galaxies in the same luminosity range as the MW classical satellites should not exhibit velocities as low as the satellites because the field dwarfs do not experience tidal stripping. Additionally, the early formation times of the satellites compared to field galaxies at the same luminosity may be apparent in the star formation histories of the two populations. Including baryonic physics in cold dark matter (CDM) models naturally explains the observed low DM densities in the MWs dwarf spheroidal population. Our simulations therefore resolve the tension between kinematics predicted in CDM theory and observations of satellites, without invoking alternative forms of DM.

  12. Hour of Code sparks interest in computer science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM skills Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Hour of Code sparks interest in computer science Taking the mystery out of programming February 1, 2016 Hour of Code participants work their way through fun computer programming tutorials. Hour of Code participants work their way through fun computer programming tutorials. Contacts Community Programs Director Kathy Keith Email Editor

  13. DOE Awards Over a Billion Supercomputing Hours to Address Scientific

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  14. Hospital Triage in First Hours After Nuclear or Radiological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

  15. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-09-30

    The order establishes policy, requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty.

  16. Department of Energy's Paducah Site Reaches Million-Hour Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    environmental risk. The LATA Environmental Services of Kentucky Team, the Department's prime cleanup contractor, in October reached a milestone of 1 million hours without a lost...

  17. Reformulated Gasoline Use Under the 8-Hour Ozone Rule

    Reports and Publications (EIA)

    2002-01-01

    This paper focuses on the impact on gasoline price and supply when additional ozone non-attainment areas come under the new 8-hour ozone standard.

  18. THE ORBITS OF NEPTUNE'S OUTER SATELLITES

    SciTech Connect (OSTI)

    Brozovic, Marina; Jacobson, Robert A.; Sheppard, Scott S. E-mail: raj@jpl.nasa.gov

    2011-04-15

    In 2009, we used the Subaru telescope to observe all the faint irregular satellites of Neptune for the first time since 2004. These observations extend the data arcs for Halimede, Psamathe, Sao, Laomedeia, and Neso from a few years to nearly a decade. We also report on a search for unknown Neptune satellites in a half-square degree of sky and a limiting magnitude of 26.2 in the R band. No new satellites of Neptune were found. We numerically integrate the orbits for the five irregulars and summarize the results of the orbital fits in terms of the state vectors, post-fit residuals, and mean orbital elements. Sao and Neso are confirmed to be Kozai librators, while Psamathe is a 'reverse circulator'. Halimede and Laomedeia do not seem to experience any strong resonant effects.

  19. V-163: Red Hat Network Satellite Server Inter-Satellite Sync...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Red Hat Network Satellite Server Inter-Satellite Sync Remote Authentication Bypass V-163: Red Hat Network Satellite Server Inter-Satellite Sync Remote Authentication Bypass May...

  20. IKONOS Stereo Satellite Imagery | Open Energy Information

    Open Energy Info (EERE)

    Satellite Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: IKONOS Stereo Satellite Imagery Author Satellite Imaging Corperation Published...

  1. Gate Hours & Services | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gate Hours & Services Sand Hill Road Main Gate Open 24 hours a day, 7 days a week 650-926-2551 Alert URA or User Check-In Coordinator Jackie Kerlegan before traveling to SLAC. SLAC has proximity card readers at the entrances from Sand Hill Road and Alpine Road as well as at Security Gate 17 and Sector 30. If you do not have an ID badge with proximity access issued by Security after October 2014, stop first at the SLAC Security Office Building 235 during office hours which are 7 am-12 noon

  2. Labor Standards/Wage and Hour Laws | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards/Wage and Hour Laws Labor Standards/Wage and Hour Laws Labor Standards and Wage/Hour laws establish minimum wage, overtime pay, recordkeeping, and minimum leave requirements: 40 U.S.C. chapter 31, subchapter IV, (Davis-Bacon Act) 41 U.S.C. chapter 67, (Service Contract Act) Fair Labor Standards Act Family and Medical Leave Act Migrant and Seasonal Agricultural Worker Protection Act DOE training on some of these laws are available below: File Labor Standards 101 PDF icon Davis-Bacon Act

  3. Delayed Start or Cancellation of Business Hours | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the hours of 6:30 a.m. to 6:30 p.m. should report to work as usual. Depending on their job duties and directives from their line management, some employees may be required to...

  4. Balancing Authority Cooperation Concepts - Intra-Hour Scheduling

    SciTech Connect (OSTI)

    Hunsaker, Matthew; Samaan, Nader; Milligan, Michael; Guo, Tao; Liu, Guangjuan; Toolson, Jacob

    2013-03-29

    The overall objective of this study was to understand, on an Interconnection-wide basis, the effects intra-hour scheduling compared to hourly scheduling. Moreover, the study sought to understand how the benefits of intra-hour scheduling would change by altering the input assumptions in different scenarios. This report describes results of three separate scenarios with differing key assumptions and comparing the production costs between hourly scheduling and 10-minute scheduling performance. The different scenarios were chosen to provide insight into how the estimated benefits might change by altering input assumptions. Several key assumptions were different in the three scenarios, however most assumptions were similar and/or unchanged among the scenarios.

  5. DOE ZERH Virtual Office Hours (4 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  6. DOE ZERH Virtual Office Hours (1 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  7. DOE ZERH Virtual Office Hours (3 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  8. DOE ZERH Virtual Office Hours (2 of 4)

    Broader source: Energy.gov [DOE]

    TitleZERH Virtual Office Hours: Get the Answers You Need Quickly & EfficientlyDescriptionWhether you’re new to DOE Zero Energy Ready Home or have been involved for a few years, our partners...

  9. Insights from Smart Meters: The Potential for Peak Hour Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: ...

  10. Commercial and Residential Hourly Load Data Question | OpenEI...

    Open Energy Info (EERE)

    Commercial and Residential Hourly Load Data Question Home Hi, I saw that you were actively replying to the questions on that page, so thought I'd contact you to ask about the data...

  11. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-19

    The order establishes requirements and responsibilities for the management of pay, including overtime pay and compensatory time, leave administration, time and attendance reporting, and hours of duty. Cancels DOE O 322.1B and DOE O 535.1

  12. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-14

    This Order establishes requirements and responsibilities for the management of pay, including overtime and compensatory time, leave administration, and hours of duty. Cancels DOE O 322.1A. Canceled by DOE O 322.1C.

  13. NREL: Education Center - Hours, Directions, and Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hours, Directions, and Contact Information An aerial photo of a tan Education Center. NREL's Education Center Credit: NREL 18591 Hours The Education Center is open Monday through Friday from 9 a.m. to 4 p.m. and closed on weekends and major holidays (New Year's Day, President's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, Day after Thanksgiving, and Christmas Day). Please call in advance or check out our events listing for information on upcoming energy workshops and other

  14. INCITE Program Doles Out Hours on Supercomputers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INCITE Program Doles Out Hours on Supercomputers INCITE Program Doles Out Hours on Supercomputers November 5, 2012 - 1:30pm Addthis Mira, the 10-petaflop IBM Blue Gene/Q system at Argonne National Laboratory, is capable of carrying out 10 quadrillion calculations per second. Each year researchers apply to the INCITE program to get to use this machine's incredible computing power. | Photo courtesy of Argonne National Lab. Mira, the 10-petaflop IBM Blue Gene/Q system at Argonne National

  15. Intra-Hour Dispatch and Automatic Generator Control Demonstration with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting | Department of Energy Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting UCSD logo2.png The University of California at San Diego (UCSD) is leading a project that will reduce power system operation cost by providing a prediction of the generation fleet's behavior in real time for realistic photovoltaic penetration scenarios. APPROACH The primary

  16. Fluor Paducah Deactivation Project Marks 2 Million Safe Work Hours |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fluor Paducah Deactivation Project Marks 2 Million Safe Work Hours Fluor Paducah Deactivation Project Marks 2 Million Safe Work Hours March 31, 2016 - 12:05pm Addthis Fluor maintenance mechanic Robert Fulton lifts equipment at the C-337 former uranium enrichment process building at EM’s Paducah Site. Fluor maintenance mechanic Robert Fulton lifts equipment at the C-337 former uranium enrichment process building at EM's Paducah Site. Dale Bristoe and Kelly Robinson

  17. Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Code' Campaign | Jefferson Lab Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour of Code' Campaign Dana Cochran, Jefferson Lab staff member, helps students as they participate in a coding activity. Dana Cochran, Jefferson Lab staff member, helps students as they participate in a coding activity. Jefferson Lab Groups Encourage Digital Literacy Through Worldwide 'Hour of Code' Campaign To raise awareness of the need for digital literacy and a basic understanding of

  18. Ames Laboratory Scientists Receive Hours through DOE's INCITE Program | The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Ames Laboratory Scientists Receive Hours through DOE's INCITE Program Scientist Mark Gordon was awarded 200 million processor hours through the INCITE program to work on a research project utilizing Argonne National Laboratory's supercomputer. Gordon and his co-investigators will study the behaviors of liquids and their solutes specifically water and ionic liquids. For more information about the team's work with INCITE visit Argonne Leadership Computing Facility

  19. 'Dark' Milky Way Satellite Uncovered - NERSC SCience News March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and location of both of the known satellite galaxies. When she applied this analysis to radio observations of our own Milky Way, the analysis revealed a potential dwarf galaxy,...

  20. 100,000 hour design life of turbo compressor packages

    SciTech Connect (OSTI)

    1998-05-20

    Many turbomachinery manufacturers and operators typically quote 100,000 hours as a design limit for service life of turbo compressor components. The Pipeline Research Committee initiated this study to review the life limiting criteria for certain critical components and determine if the design target of 100,000 hours can be safely and reliably met or extended with special component management practices. The first phase of the project was to select the turbomachinery components that would be included in the review. Committee members were surveyed with a detailed questionnaire designed to identify critical components based on: high hours (e.g. at or approaching 100,000 hours) the most common engine types operated by the member organizations, and the components of greatest concern from a risk and expense point of view. The selection made covers a wide range of engine types that are of interest to most of the committee companies. This selection represents some 78% of the high hour units operated by the committee and includes components from GE Frame 3 and Frame 5, Solar Saturn, Rolls Royce Avon, and Cooper RT56 engines. The report goes into detail regarding the various damage mechanism which can be the main life limiting factor of the component; creep, fatigue, environmental attack, wear and microstructure instability. For each of the component types selected, the study identifies the life limiting criteria and outlines how the components may be managed for extended life. Many of the selected components can be reliably operated beyond 100,000 hours by following the management practices set out in the report.

  1. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  2. Pay and Leave Administration and Hours of Duty

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-19

    The order establishes requirements and responsibilities for the management of pay, including overtime pay and compensatory time, leave administration, time and attendance reporting, and hours of duty. Admin Chg 1, dated 5-10-12, supersedes DOE O 322.1C.

  3. A survey of satellite galaxies around NGC 4258

    SciTech Connect (OSTI)

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 10{sup 12} M {sub ?} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue ur colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  4. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ... Title: Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate ...

  5. Contribution to the development of DOE ARM Climate Modeling Best Estimate Data (CMBE) products: Satellite data over the ARM permanent and AMF sites: Final Report

    SciTech Connect (OSTI)

    Xie, B; Dong, X; Xie, S

    2012-05-18

    To support the LLNL ARM infrastructure team Climate Modeling Best Estimate (CMBE) data development, the University of North Dakota (UND)'s group will provide the LLNL team the NASA CERES and ISCCP satellite retrieved cloud and radiative properties for the periods when they are available over the ARM permanent research sites. The current available datasets, to date, are as follows: the CERES/TERRA during 200003-200812; the CERES/AQUA during 200207-200712; and the ISCCP during 199601-200806. The detailed parameters list below: (1) CERES Shortwave radiative fluxes (net and downwelling); (2) CERES Longwave radiative fluxes (upwelling) - (items 1 & 2 include both all-sky and clear-sky fluxes); (3) CERES Layered clouds (total, high, middle, and low); (4) CERES Cloud thickness; (5) CERES Effective cloud height; (6) CERES cloud microphysical/optical properties; (7) ISCCP optical depth cloud top pressure matrix; (8) ISCCP derived cloud types (r.g., cirrus, stratus, etc.); and (9) ISCCP infrared derived cloud top pressures. (10) The UND group shall apply necessary quality checks to the original CERES and ISCCP data to remove suspicious data points. The temporal resolution for CERES data should be all available satellite overpasses over the ARM sites; for ISCCP data, it should be 3-hourly. The spatial resolution is the closest satellite field of view observations to the ARM surface sites. All the provided satellite data should be in a format that is consistent with the current ARM CMBE dataset so that the satellite data can be easily merged into the CMBE dataset.

  6. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  7. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  8. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  9. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  10. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  11. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  12. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  13. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  14. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  15. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  16. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  17. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  18. 20130801-0831_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-09-10

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 8/1/13 to 8/31/13.

  19. 20140601-0630_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-06-30

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 June to 30 June 2014.

  20. 20131201-1231_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-01-08

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Dec to 31 Dec 2013.

  1. 20140701-0731_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-07-31

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 July to 31 July 2014.

  2. 20140201-0228_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-03-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Feb to 28 Feb 2014.

  3. 20130501-20130531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Vanderhoff, Alex

    2013-06-18

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from May 2013

  4. 20140301-0331_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-04-07

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Mar to 31 Mar 2014.

  5. 20130901-0930_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2013-10-25

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 September 2013 to 30 September 2013.

  6. 20131101-1130_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2013-12-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Nov to 30 Nov 2013.

  7. 20131001-1031_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2013-11-05

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 1 Oct 2013 to 31 Oct 2013.

  8. 20140501-0531_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-06-02

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 May to 31 May 2014.

  9. 20140101-0131_Green Machine Florida Canyon Hourly Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thibedeau, Joe

    2014-02-03

    Employing innovative product developments to demonstrate financial and technical viability of producing electricity from low temperature geothermal fluids, coproduced in a mining operation, by employing ElectraTherm's modular and mobile heat-to-power "micro geothermal" power plant with output capacity expected in the 30-70kWe range. The Green Machine is an Organic Rankine Cycle power plant. The Florida Canyon machine is powered by geothermal brine with air cooled condensing. The data provided is an hourly summary from 01 Jan to 31 Jan 2014.

  10. Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient 24 Hour SO2 Values: Model vs Monitor Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor Docket No. EO-05-01: Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor, March ...

  11. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  12. satellites | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    display box into a space satellite in 2009, he couldn't have predicted that this assignment would help provide Special Operations Forces with award-winning space capabilities 6 ...

  13. Satellite-Based Solar Resource Data Sets for India 2002-2012

    SciTech Connect (OSTI)

    Sengupta, M.; Perez, R.; Gueymard, C.; Anderberg, M.; Gotseff, P.

    2014-02-01

    A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

  14. BioenergizeME Office Hours Webinar: Biomass Basics

    Broader source: Energy.gov [DOE]

    Many students haven’t thought much about biomass as an option for generating electricity, transportation fuels, and other products. The Biomass Basics Webinar provides general information about bioenergy, its creation, and its potential uses, and is designed to assist teams competing in the 2016 BioenergizeME Infographic Challenge. This challenge, hosted by the U.S. Department of Energy’s Bioenergy Technologies Office (BETO), is a competition for high school students to learn about bioenergy, create infographics to present what they have learned, and share their infographics on social media. This webinar is part of the BioenergizeME Office Hours webinar series developed by BETO in conjunction with the 2016 BioenergizeME Infographic Challenge.

  15. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    SciTech Connect (OSTI)

    Janjai, Serm

    2010-09-15

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)

  16. Scalable Tuning of Building Models to Hourly Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garrett, Aaron; New, Joshua Ryan

    2015-01-01

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The ``Autotune'' project is a novel, model-agnosticmore » methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.« less

  17. Scalable Tuning of Building Models to Hourly Data

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan

    2015-01-01

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The ``Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  18. Autonomous observations of the ocean biological carbon pump

    SciTech Connect (OSTI)

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  19. February 20, 2008: Navy shoots down NASA satellite | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20, 2008: Navy shoots down NASA satellite February 20, 2008: Navy shoots down NASA satellite February 20, 2008: Navy shoots down NASA satellite February 20, 2008 The Navy ...

  20. CCRS Landcover Maps From Satellite Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trishchenko, Alexander

    2008-01-15

    The Canadian Centre for Remote Sensing (CCRS) presents several landcover maps over the SGP CART site area (32-40N, 92-102W) derived from satellite data including AVHRR, MODIS, SPOT vegetation data, and Landsat satellite TM imagery.

  1. A Baryonic Solution to the Missing Satellites Problem

    SciTech Connect (OSTI)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem

  2. Geospatial Visualization of Global Satellite Images with Vis-EROS

    SciTech Connect (OSTI)

    Standart, G. D.; Stulken, K. R.; Zhang, Xuesong; Zong, Ziliang

    2011-04-13

    The Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey is currently managing and maintaining the world largest satellite images distribution system, which provides 24/7 free download service for researchers all over the globe in many areas such as Geology, Hydrology, Climate Modeling, and Earth Sciences. A large amount of geospatial data contained in satellite images maintained by EROS is generated every day. However, this data is not well utilized due to the lack of efficient data visualization tools. This software implements a method for visualizing various characteristics of the global satellite image download requests. More specifically, Keyhole Markup Language (KML) files are generated which can be loaded into an earth browser such as Google Earth. Colored rectangles associated with stored satellite scenes are painted onto the earth browser; and the color and opacity of each rectangle is varied as a function of the popularity of the corresponding satellite image. An analysis of the geospatial information obtained relative to specified time constraints provides an ability to relate image download requests to environmental, political, and social events.

  3. The mass dependence of dwarf satellite galaxy quenching

    SciTech Connect (OSTI)

    Slater, Colin T.; Bell, Eric F. E-mail: ericbell@umich.edu

    2014-09-10

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M {sub *} ≲ 10{sup 7} M {sub ☉}) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  4. Optimized dark matter searches in deep observations of Segue 1 with MAGIC

    SciTech Connect (OSTI)

    Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Collaboration: The The MAGIC Collaboration; and others

    2014-02-06

    We present the results of stereoscopic observations of the satellite galaxy Segue 1 with the MAGIC Telescopes, carried out between 2011 and 2013. With almost 160 hours of good-quality data, this is the deepest observational campaign on any dwarf galaxy performed so far in the very high energy range of the electromagnetic spectrum. We search this large data sample for signals of dark matter particles in the mass range between 100 GeV and 20 TeV. For this we use the full likelihood analysis method, which provides optimal sensitivity to characteristic gamma-ray spectral features, like those expected from dark matter annihilation or decay. In particular, we focus our search on gamma-rays produced from different final state Standard Model particles, annihilation with internal bremsstrahlung, monochromatic lines and box-shaped signals. Our results represent the most stringent constraints to the annihilation cross-section or decay lifetime obtained from observations of satellite galaxies, for masses above few hundred GeV. In particular, our strongest limit (95% confidence level) corresponds to a ∼500 GeV dark matter particle annihilating into τ{sup +}τ{sup −}, and is of order <σ{sub ann}v>≃ 1.2×10{sup −24} cm{sup 3} s{sup −1} — a factor ∼40 above the <σ{sub ann}v>≃ thermal value.

  5. Optimized dark matter searches in deep observations of Segue 1 with MAGIC

    SciTech Connect (OSTI)

    Aleksi?, J.; Blanch, O.; Ansoldi, S.; Antonelli, L.A.; Bonnoli, G.; Antoranz, P.; Babic, A.; Bangale, P.; De Almeida, U. Barres; Bock, R.K.; Borracci, F.; Barrio, J.A.; Bonnefoy, S.; Gonzlez, J. Becerra; Berger, K.; Bednarek, W.; Bernardini, E.; Biland, A.; Bretz, T.; Carmona, E. E-mail: jrico@ifae; and others

    2014-02-01

    We present the results of stereoscopic observations of the satellite galaxy Segue 1 with the MAGIC Telescopes, carried out between 2011 and 2013. With almost 160 hours of good-quality data, this is the deepest observational campaign on any dwarf galaxy performed so far in the very high energy range of the electromagnetic spectrum. We search this large data sample for signals of dark matter particles in the mass range between 100 GeV and 20 TeV. For this we use the full likelihood analysis method, which provides optimal sensitivity to characteristic gamma-ray spectral features, like those expected from dark matter annihilation or decay. In particular, we focus our search on gamma-rays produced from different final state Standard Model particles, annihilation with internal bremsstrahlung, monochromatic lines and box-shaped signals. Our results represent the most stringent constraints to the annihilation cross-section or decay lifetime obtained from observations of satellite galaxies, for masses above few hundred GeV. In particular, our strongest limit (95% confidence level) corresponds to a ?500 GeV dark matter particle annihilating into ?{sup +}?{sup ?}, and is of order (?{sub ann}v)? 1.2נ10{sup ?24}cm{sup 3}s{sup ?1} a factor ? 40 above the (?{sub ann}v)? thermal value.

  6. Aluminum alloys for satellite boxes : engineering guidelines...

    Office of Scientific and Technical Information (OSTI)

    Specific recommendations are made regarding alloy selection, heat treatment, stress ... RESIDUAL STRESSES; SATELLITES; STRESS RELAXATION; MACHINING Material Science ...

  7. EPA ENERGY STAR Webcast- Portfolio Manager Office Hours, Focus Topic: Weather Data and Metrics

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  8. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Sharing Forward and Transfer Ownership

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. In 2014, Office Hours will be held once a month. We...

  9. Kenya Hourly DNI, GHI and Diffuse Solar Data - Datasets - OpenEI...

    Open Energy Info (EERE)

    Kenya Hourly DNI, GHI and Diffuse Solar Data Abstract Each data file is a set of hourly values of solar radiation (DNI, GHI and diffuse) and meteorological elements for a 1-year...

  10. Is the hourly data I get from NREL's PV Watts program adjusted...

    Open Energy Info (EERE)

    Is the hourly data I get from NREL's PV Watts program adjusted for daylight savings time. Home I take the hourly AC output numbers and apply them to a program I built that assigns...

  11. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME ...

  12. Webinar: BioenergizeME Office Hours Webinar: Biomass Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics Webinar: BioenergizeME Office Hours Webinar: Biomass Basics PDF icon biomas_basics_webinar_20150827.pdf More Documents & Publications BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom BioenergizeME Infographic Challenge Annual Update Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

  13. Satellite-based laser windsounder

    SciTech Connect (OSTI)

    Schultz, J.F.; Czuchlewski, S.J.; Quick, C.R.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project`s primary objective is to determine the technical feasibility of using satellite-based laser wind sensing systems for detailed study of winds, aerosols, and particulates around and downstream of suspected proliferation facilities. Extensive interactions with the relevant operational organization resulted in enthusiastic support and useful guidance with respect to measurement requirements and priorities. Four candidate wind sensing techniques were evaluated, and the incoherent Doppler technique was selected. A small satellite concept design study was completed to identify the technical issues inherent in a proof-of-concept small satellite mission. Use of a Mach-Zehnder interferometer instead of a Fabry-Perot would significantly simplify the optical train and could reduce weight, and possibly power, requirements with no loss of performance. A breadboard Mach-Zehnder interferometer-based system has been built to verify these predictions. Detailed plans were made for resolving other issues through construction and testing of a ground-based lidar system in collaboration with the University of Wisconsin, and through numerical lidar wind data assimilation studies.

  14. Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in VolunteerMatch Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours in VolunteerMatch Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Nonprofit Organizations: Have Your Los Alamos Employees/Retirees Log Hours in VolunteerMatch Lab employees and retirees should log their VolunteerMatch hours to benefit local nonprofits. March 1, 2013 Volunteers help fill sandbags

  15. DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Research Projects | Department of Energy 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects DOE Awards 265 Million Hours of Supercomputing Time to Advance Leading Scientific Research Projects January 17, 2008 - 10:38am Addthis WASHINGTON, DC -The U.S. Department of Energy's (DOE) Office of Science today announced that 265 million processor-hours were awarded to 55 scientific projects, the largest amount of supercomputing resource awards

  16. Join the Call: One Million Hours of STEM Volunteer Service | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Call: One Million Hours of STEM Volunteer Service Join the Call: One Million Hours of STEM Volunteer Service June 30, 2015 - 10:19am Addthis Join the Call: One Million Hours of STEM Volunteer Service America's ability to meet the demands of its energy future depends on having a trained, dedicated science, technology, engineering, and mathematics (STEM) workforce. To answer this call, the Energy Department has an obligation to do all that is possible to attract, engage, educate, and

  17. Satellite stories featured in Lab lecture series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite stories featured Satellite stories featured in Lab lecture series Space adventures will be featured in the upcoming Frontiers in Science lecture series "Small Satellites on a Shoestring: The LANL Experience." February 14, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  18. Science satellites scour skies for Santa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science satellites scour skies for Santa Science satellites scour skies for Santa Beginning at 6 a.m. Monday, Dec. 24, scientists will use two advanced science satellites to mark the path of the elfin traveler. December 20, 2007 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  19. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure at ARM-SGP site: How well can we Simulate Clouds from Space? LES Modeling of High Resolution Satellite Cloud Spatial and Thermal Structure at ARM-SGP site: How well can we Simulate Clouds from Space? Dubey, Manvendra DOE/Los Alamos National Laboratory Chylek, Petr DOE/Los Alamos National Laboratory Reisner, Jon Los Alamos National Laboratory Porch, William Los Alamos National Laboratory Category: Cloud Properties We report high fidelity observations of the spatial and thermal

  20. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar...

  1. Museum Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide a listening-assistance system and translations of the script in French and Spanish. Sorry, a local shop has closed The Otowi Bookstore and Museum Shop, which had been...

  2. THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION

    SciTech Connect (OSTI)

    Dong, X. C.; Lin, W. P.; Wang, Yang Ocean; Kang, X.; Dutton, Aaron A.; Macci, Andrea V. E-mail: kangxi@pmo.ac.cn

    2014-08-20

    Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.

  3. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ionmore » flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.« less

  4. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    SciTech Connect (OSTI)

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.

  5. Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Group Gets 10 Million Hours of Supercomputer Time Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time January 25, 2007 XT3 The Cray XT3 at DOE's Oak Ridge National Laboratory. Newport News, Va. - A project led by the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility's Theory Center has been allotted 10 million hours of processing time by DOE's 2007 INCITE program on the Cray XT3 located at Oak Ridge National Laboratory. According to Jefferson Lab

  6. Insights from Smart Meters: The Potential for Peak Hour Savings from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior-Based Programs | Department of Energy The Potential for Peak Hour Savings from Behavior-Based Programs Insights from Smart Meters: The Potential for Peak Hour Savings from Behavior-Based Programs This report focuses on one example of the value that analysis of this data can provide: insights into whether BB efficiency programs have the potential to provide peak-hour energy savings. This is important because there is increasing interest in using BB programs as a stand-alone peak

  7. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Runs | Department of Energy Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs January 22, 2016 - 11:01am Addthis ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of

  8. DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Teams for Large-Scale Scientific Computing | Department of Energy 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing February 1, 2006 - 11:14am Addthis WASHINGTON, D.C. - Secretary of Energy Samuel W. Bodman announced today that DOE's Office of Science has awarded a total of 18.2 million hours of computing time on some of the world's

  9. Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued 10-01-15

    National Nuclear Security Administration (NNSA)

    Supplement to PLAs Hourly Wage and Fringe Benefit Rates FY16 WAGE SUPPLEMENT Issued 10-01-15 Craft Agmt. Type Classification (Alphabetical) BN Job Code Current Hourly Wage Rates (Use most recent 04/01/15 Re- Allocation (increase HW emploee portion) (letter dated 5/1/15 states for April hours) 10/01/15 (Allocation $1.00 wages) $0.00 $1.00 MEE Maintenance Engineer I (ME-I) 037502 28.26 29.26 MEE Maintenance Engineer II (ME-II) 037503 32.40 33.40 MEE Lead Maintenance Engineer (LME) $1.50 over ME-II

  10. WIPP Workers Reach Two Million Man-Hours Without a Lost-Time Accident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workers Reach Two Million Man-Hours Without a Lost-Time Accident CARLSBAD, N.M., February 22, 2001 - Workers at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) reached a safety milestone Feb. 19 by working two million man-hours without a lost-time accident. According to the National Safety Council, facilities with the same industry code as WIPP lose an average of 20.6 workdays (or 164.8 man-hours) a year to accidents. "Safety is at the core of all WIPP

  11. Satellite Data Support for the ARM Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Satellite Data Support for the ARM Climate Research Facility, 8012009 - 7312015 Citation Details In-Document Search Title: Satellite Data Support for the ARM Climate Research ...

  12. Small Burst Data (SBD) Satellite Communications (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Burst Data (SBD) Satellite Communications Citation Details In-Document Search Title: Small Burst Data (SBD) Satellite Communications Authors: Saari, Alexandra 1 ; Proicou, ...

  13. Small burst data (SBD) satellite communications (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    burst data (SBD) satellite communications Citation Details In-Document Search Title: Small burst data (SBD) satellite communications Authors: Saari, Alexandra 1 ; Frigo, Janette ...

  14. NNSA Recognizes the Multispectral Thermal Imager Satellite for...

    National Nuclear Security Administration (NNSA)

    Satellite for a Decade of Innovative Science | National Nuclear Security ... Satellite for a Decade of Innovative Science Press Release Mar 12, 2010 WASHINGTON, ...

  15. Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for 12 hours | Department of Energy Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours Docket No. EO-05-01. Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for 12 hours and at Min Load for 12 hours. Arial photograph showing plant and location of predicted SO2 violations, predicted in 2000. PDF icon Mirant: Case 67a: Units 3 & 4 & 5 at Max Load for

  16. Y-12 Construction hits one million-hour mark without a lost-time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August ... non-manual staff and escorts worked without a lost-time accident during this period. ...

  17. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.34

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.34 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  18. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  19. Workers at Paducah Site Exceed 1.5 Million Hours Without Lost-Time Injury, Illness

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Workers with Paducah site infrastructure contractor Swift & Staley, Inc. recently exceeded 1.5 million hours without lost time away from work due to injury or illness, representing nine years of safe performance.

  20. Department of Energy’s Paducah Site Reaches Million-Hour Safety Milestone

    Broader source: Energy.gov [DOE]

    PADUCAH, KY – The U.S. Department of Energy’s Paducah Site has reached a million hours of safe work toward completing cleanup objectives to reduce environmental risk.

  1. EPA ENERGY STAR Webcast- Portfolio Manager® Office Hours, Focus Topic: Portfolio Manager 2015 Priorities

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  2. SunShot Announces 24-Hour Solar Data Hackathon | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    SunShot will host a 24-hour solar data hackathon at the 2014 SunShot Grand Challenge Summit. ... session at the National Renewable Energy Laboratory's Industry Growth Forum in ...

  3. EPA ENERGY STAR Webinar: Portfolio Manager Office Hours, Focus Topic: Understanding Energy Metrics

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  4. EPA ENERGY STAR Webcast: Portfolio Manager Office Hours, Focus Topic: Responding to a Data Request

    Broader source: Energy.gov [DOE]

    Portfolio Manager "Office Hours" is a live webinar that gives all users an opportunity to ask their questions directly to EPA in an open forum. We will plan to spend the first 20-30 minutes of each...

  5. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  6. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.40

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.40 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  7. Paducah Site Exceeds 2.5 Million Hours Without Lost Workdays

    Broader source: Energy.gov [DOE]

    This month, EM’s cleanup contractor at the Paducah site celebrated surpassing 2.5 million work hours without lost workdays resulting from job-related injury or illness.

  8. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME ...

  9. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.31

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.31 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  10. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  11. DOE's Transuranic Waste Processing Center Surpasses 3 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    Personnel from the U.S. Department of Energy and Wastren Advantage, Inc. met to celebrate the achievement of three million work hours without a lost-time accident at the Transuranic Waste Processing Center.

  12. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  13. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema (OSTI)

    Andy Nonaka

    2010-01-08

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe.

  14. Oak Ridge: Approaching 4 Million Safe Work Hours | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge: Approaching 4 Million Safe Work Hours Oak Ridge: Approaching 4 Million Safe Work Hours March 11, 2013 - 12:03pm Addthis Safety inspections are a key element in a nuclear cleanup environment with large pieces of cleanup equipment. Inspections are essential to continuing safety success and reaching new milestones.| Photo courtesy of Oak Ridge Safety inspections are a key element in a nuclear cleanup environment with large pieces of cleanup equipment. Inspections are essential to continuing

  15. Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioenergizeME Infographic Challenge | Department of Energy Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge PDF icon bioenergizeme_challenge_guide_20151015.pdf More Documents & Publications BioenergizeME Infographic Challenge Rubric BioenergizeME Infographic Challenge Toolkit Webinar:

  16. The reionization of galactic satellite populations

    SciTech Connect (OSTI)

    Ocvirk, P.; Gillet, N.; Aubert, D.; Chardin, J.; Knebe, A.; Yepes, G.; Libeskind, N.; Gottlöber, S.; Hoffman, Y.

    2014-10-10

    We use high-resolution simulations of the formation of the local group, post-processed by a radiative transfer code for UV photons, to investigate the reionization of the satellite populations of an isolated Milky Way-M31 galaxy pair in a variety of scenarios. We use an improved version of ATON which includes a simple recipe for radiative feedback. In our baseline models, reionization is initiated by low-mass, radiatively regulated halos at high redshift, until more massive halos appear, which then dominate and complete the reionization process. We investigate the relation between reionization history and present-day positions of the satellite population. We find that the average reionization redshift (z {sub r}) of satellites is higher near galaxy centers (MW and M31). This is due to the inside out reionization patterns imprinted by massive halos within the progenitor during the epoch of reionization, which end up forming the center of the galaxy. Due to incomplete dynamical mixing during galaxy assembly, these early patterns survive to present day, resulting in a clear radial gradient in the average satellite reionization redshift, up to the virial radius of MW and M31 and beyond. In the lowest emissivity scenario, the outer satellites are reionized about 180 Myr later than the inner satellites. This delay decreases with increasing source model emissivity, or in the case of external reionization by Virgo or M31, because reionization occurs faster overall and becomes spatially quasi-uniform at the highest emissivity.

  17. Identifying clouds over the Pierre Auger Observatory using infrared satellite data

    SciTech Connect (OSTI)

    Abreu, Pedro; et al.,

    2013-12-01

    We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km^2 of the Pierre Auger Observatory twice per hour with a spatial resolution of ~2.4 km by ~5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories.

  18. Method for estimation of ocean current velocity from satellite images

    SciTech Connect (OSTI)

    Mollo-Christensen, E.; Cornillon, P.; Da S. Mascarenhas, A. Jr.

    1981-05-08

    Barotropic instability waves on a shear interface propagate at the average speed of the water on the two sides. Assuming the instability to be excited by tidal oscillations, the phase speed is the wavelength divided by the tidal period. If the water is at rest on one side of the shear layer the current speed on the other side can be calculated. This method, applied to the Gulf Stream beyond Cape Hatteras as seen in satellite images, gives estimates of current speed in general agreement with in situ observations.

  19. Use of annual profiles of hourly data for analyzing DOE-2 building simulation program results

    SciTech Connect (OSTI)

    Haberl, J.; MacDonald, M.; Eden, A.

    1987-06-01

    This paper presents an approach for improving potential building energy analyses using the DOE-2 computer program. The approach makes use of the ability to generate hour-by-hour data results from DOE-2 simulations, and uses a plotting package to generate 3-dimensional annual profiles of the hour-by-hour data for specific quantities of interest. The annual profiles of hourly data provide a graphical check of voluminous data in a condensed form allowing several different types of data to be plotted over a year. These profiles provide the user the opportunity to: check simulation results, check potential problems with simulations, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where weak areas may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential errors in modeling buildings, and better understand how simulations compared with data from real buildings. 14 refs., 24 figs.

  20. Neutrino Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations from the Sudbury Neutrino Observatory A.W.P. Poon 1 Institute for Nuclear and Particle Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Abstract. The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D 2 O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar ν e flux and the total flux of all active neutrino

  1. Workers at EM's West Valley Site Surpass 1 Million Hours without

    Office of Environmental Management (EM)

    Lost-Time Accident | Department of Energy at EM's West Valley Site Surpass 1 Million Hours without Lost-Time Accident Workers at EM's West Valley Site Surpass 1 Million Hours without Lost-Time Accident September 30, 2014 - 12:00pm Addthis Employees of CH2M HILL Babcock & Wilcox and its subcontractors are shown during West Valley Demonstration Project’s Safety Week celebration. Employees of CH2M HILL Babcock & Wilcox and its subcontractors are shown during West Valley

  2. NREL Finds Up to 6-cent per Kilowatt-Hour Extra Value with Concentrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power - News Releases | NREL Finds Up to 6-cent per Kilowatt-Hour Extra Value with Concentrated Solar Power The greater the penetration of renewables in California, the greater the value of CSP with thermal storage capacity June 9, 2014 Concentrating Solar Power (CSP) projects would add additional value of 5 or 6 cents per kilowatt hour to utility-scale solar energy in California where 33 percent renewables will be mandated in six years, a new report by the Energy Department's National

  3. Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours

    ScienceCinema (OSTI)

    Applin, Bradford

    2013-05-29

    The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html

  4. Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market | Department of Energy Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market May 7, 2014 - 2:45pm Addthis Douglas Hitching (left), CEO of Silicon Solar Solutions and Henry Chung, LG, talk during a one-on-one networking session at the National Renewable Energy Laboratory's Industry Growth Forum in 2012. The SunShot Initiative and the National Renewable Energy Laboratory are

  5. Y-12 Construction hits one million-hour mark without a lost-time accident |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Construction hits one ... Y-12 Construction hits one million-hour mark without a lost-time accident Posted: August 30, 2012 - 5:30pm The B&W Y-12 Direct-Hire Construction team has worked one million hours, covering a 633-day period, without a lost-time injury. Some 285 people including building trade crafts, non-manual staff and escorts worked without a lost-time accident during this period. The Construction team's last lost workday was in September 2010. A

  6. After-hours, weekend changes through East Jemez road vehicle access portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begin June 18 After-hours, weekend changes through East Jemez Road Vehicle Access Portal After-hours, weekend changes through East Jemez road vehicle access portal begin June 18 All vehicles entering the portal must use center lane number 4. June 15, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  7. First ultraviolet reflectance measurements of several Kuiper Belt objects, Kuiper Belt object satellites, and new ultraviolet measurements of A Centaur

    SciTech Connect (OSTI)

    Stern, S. A.; Schindhelm, E.; Cunningham, N. J.

    2014-05-01

    We observed the 2600-3200 (hereafter, mid-UV) reflectance of two Kuiper Belt Objects (KBOs), two KBO satellites, and a Centaur, using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS). Other than measurements of the Pluto system, these constitute the first UV measurements obtained of KBOs, and KBO satellites, and new HST UV measurements of the Centaur 2060 Chiron. We find significant differences among these objects, constrain the sizes and densities of Haumea's satellites, and report the detection of a possible spectral absorption band in Haumea's spectrum near 3050 . Comparisons of these objects to previously published UV reflectance measurements of Pluto and Charon are also made here.

  8. PV output variability modeling using satellite imagery.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Reno, Matthew J.

    2010-11-01

    High frequency irradiance variability measured on the ground is caused by the formation, dissipation, and passage of clouds in the sky. If we can identify and associate different cloud types/patterns from satellite imagery, we may be able to predict irradiance variability in areas lacking sensors. With satellite imagery covering the entire U.S., this allows for more accurate integration planning and power flow modeling over wide areas. Satellite imagery from southern Nevada was analyzed at 15 minute intervals over a year. Methods for image stabilization, cloud detection, and textural classification of clouds were developed and tested. High Performance Computing parallel processing algorithms were also investigated and tested. Artificial Neural Networks using imagery as inputs were trained on ground-based measurements of irradiance to model the variability and were tested to show some promise as a means for predicting irradiance variability.

  9. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  10. Fuel Cell Stacks Still Going Strong After 5,000 Hours

    Broader source: Energy.gov [DOE]

    Two fuel cell stacks developed by FuelCell Energy in partnership with Versa Power Systems achieved 5,000 hours of service in February, meeting a goal of the U.S. Department of Energy's Solid State Energy Conversion Alliance.

  11. West Valley Demonstration Project Contractor Reaches 2 Million Safe Work Hours

    Broader source: Energy.gov [DOE]

    WEST VALLEY, N.Y. – EM’s West Valley Demonstration Project (WVDP) contractor CH2M HILL BWXT West Valley (CHBWV) and its subcontractors achieved this month 2 million safe work hours without a lost-time accident over the past 30 months

  12. Tax Deduction Qualified Software: Hourly Analysis Program Version 4.90

    Broader source: Energy.gov [DOE]

    Provides required documentation that the Hourly Analysis Program (HAP) version 4.90 meets Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements.

  13. Tax Deduction Qualified Software: Hourly Analysis Program Version 4.91

    Broader source: Energy.gov [DOE]

    Provides required documentation that the Hourly Analysis Program (HAP) version 4.91 meets Internal Revenue Code §179D (c)(1) and (d) Regulations Notice 2006-52, Section 6 requirements as amplified by Notice 2008-40, Section 4 requirements.

  14. Soviet satellite communications science and technology

    SciTech Connect (OSTI)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  15. New Solar Cells to Boost Satellite Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells to Boost Satellite Power For more information contact: George Douglas (303) 275-4096 e:mail: george_douglas@nrel.gov TECSTAR SIGNS PATENT AGREEMENT WITH NREL Golden, Colo., May 7, 1998 — New solar cells that provide as much as 50 percent more power for satellites are orbiting Earth, helping flash back telephone and television signals. These cells are based on the two-junction, gallium indium phosphide on gallium arsenide designs developed at the U.S. Department of Energy's National

  16. Kudos to "cube" satellite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristina Pflanz About Us Kristina Pflanz - Writer & Contractor, Advanced Research Projects Agency - Energy Kristina Pflanz is a contractor with the Advanced Research Projects Agency-Energy. Most Recent A Liquid Layer Solution for the Grid September 15 Primus Power's Flow Battery Powered by $11 Million in Private Investment June 14 ARPA-E & Stanford University Explore the Hows and Whys of Energy Use May 25

    Kudos to "cube" satellite Kudos to "cube" satellite More

  17. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    SciTech Connect (OSTI)

    Stokes, G.M.; Ekstrom, P.A.

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  18. Satellite Television Industry Meeting Regarding DOE Set-Top Box...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM, ...

  19. ARM - PI Product - CCRS Landcover Maps From Satellite Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    several landcover maps over the SGP CART site area (32-40N, 92-102W) derived from satellite data including AVHRR, MODIS, SPOT vegetation data, and Landsat satellite TM...

  20. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  1. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    17 031007 Firefighter/CIC/EMT $33.13 Engineer/CIC/EMT $19.76 Engineer/CIC/EMT $35.99 Chiefs Aide/CIC/EMT $19.76 Chiefs Aide/CIC/EMT $35.99 Lieutenant/CIC/EMT $20.99 Lieutenant/CIC/EMT $38.21 Captain/CIC/EMT $22.23 Captain/CIC/EMT $40.44 Assistant Chief/CIC/EMT $25.42 Assistant Chief/CIC/EMT $46.18 FP Tech/CIC/EMT $21.13 031019 FP Tech/CIC/EMT $38.47 031049 FP Captain/CIC/EMT $23.60 FP Captain/CIC/EMT $42.91 56-HOUR EMT & HAZ $1.11 10-HOUR EMT & HAZ $2.00 031047 Firefighter/CIC/EMT/HAZ

  2. Job Code Description Hourly Wage TR-I Job Code TR I Wage TR-II

    National Nuclear Security Administration (NNSA)

    71 031007 Firefighter/CIC/EMT $33.67 Engineer/CIC/EMT $20.30 Engineer/CIC/EMT $36.53 Chiefs Aide/CIC/EMT $20.30 Chiefs Aide/CIC/EMT $36.53 Lieutenant/CIC/EMT $21.53 Lieutenant/CIC/EMT $38.75 Captain/CIC/EMT $22.77 Captain/CIC/EMT $40.98 Assistant Chief/CIC/EMT $25.96 Assistant Chief/CIC/EMT $46.72 FP Tech/CIC/EMT $21.67 031019 FP Tech/CIC/EMT $39.01 031049 FP Captain/CIC/EMT $24.14 FP Captain/CIC/EMT $43.45 56-HOUR EMT & HAZ $1.11 10-HOUR EMT & HAZ $2.00 031047 Firefighter/CIC/EMT/HAZ

  3. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  4. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th-12th Grade Classroom

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 10, 2015 BioenergizeME Office Hours Integrating Bioenergy into the 9 th__ 12 th Grade Classroom Alexis Martin Knauss Fellow Bioenergy Technologies Office U.S. Department of Energy Shannon Zaret Contractor, The Hannon Group Bioenergy Technologies Office U.S. Department of Energy 2 | Bioenergy Technologies Office Agenda 1. Overview Of Energy Literacy 2. Overview of Next Generation Science Standards 3. Bioenergy Basics 5. Incorporation of Bioenergy into the Classroom 4. 2016 BioenergizeME

  5. BioenergizeME Office Hours: Guide to the 2016 BioenergizeME Infographic Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 15, 2015 BioenergizeME Office Hours Guide to the 2016 BioenergizeME Infographic Challenge Shannon Zaret Communications Specialist, The Hannon Group Contractor to the U.S. Department of Energy's Bioenergy Technologies Office 2 | Bioenergy Technologies Office | Bioenergy Technologies Office Agenda * Overview * Research Topic Areas And Prompts * Research Resources * Infographic Resources * Rubric * Social Media Campaign * Awards * Registration * Resources for Educators * Questions 3 |

  6. PPPL team wins 80 million processor hours on nation's fastest supercomputer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab team wins 80 million processor hours on nation's fastest supercomputer By John Greenwald January 26, 2016 Tweet Widget Google Plus One Share on Facebook Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014) The U.S Department of Energy (DOE)

  7. THE STRIKINGLY SIMILAR RELATION BETWEEN SATELLITE AND CENTRAL GALAXIES AND THEIR DARK MATTER HALOS SINCE z = 2

    SciTech Connect (OSTI)

    Watson, Douglas F.; Conroy, Charlie

    2013-08-01

    Satellite galaxies in rich clusters are subject to numerous physical processes that can significantly influence their evolution. However, the typical L* satellite galaxy resides in much lower mass galaxy groups, where the processes capable of altering their evolution are generally weaker and have had less time to operate. To investigate the extent to which satellite and central galaxy evolution differs, we separately model the stellar mass-halo mass (M{sub *}-M{sub h} ) relation for these two populations over the redshift interval 0 < z < 1. This relation for central galaxies is constrained by the galaxy stellar mass function while the relation for satellite galaxies is constrained against recent measurements of the galaxy two-point correlation function (2PCF). Our approach does not rely on the abundance matching technique but instead adopts a flexible functional form for the relation between satellite galaxy stellar mass and subhalo mass, where subhalo mass is considered as the maximum mass that a subhalo has ever reached in its merger history, M{sub peak}. At z {approx} 0 the satellites, on average, have {approx}10% larger stellar masses at fixed M{sub peak} compared to central galaxies of the same halo mass (although the two relations are consistent at 2{sigma}-3{sigma} for M{sub peak} {approx}> 10{sup 13} M{sub Sun }). This is required in order to reproduce the observed stellar mass-dependent 2PCF and satellite fractions. At low masses our model slightly under-predicts the correlation function at {approx}1 Mpc scales. At z {approx} 1 the satellite and central galaxy M{sub *}-M{sub h} relations are consistent within the errors, and the model provides an excellent fit to the clustering data. At present, the errors on the clustering data at z {approx} 2 are too large to constrain the satellite model. A simple model in which satellite and central galaxies share the same M{sub *}-M{sub h} relation is able to reproduce the extant z {approx} 2 clustering data. We speculate that the striking similarity between the satellite and central galaxy M{sub *}-M{sub h} relations since z {approx} 2 arises because the central galaxy relation evolves very weakly with time and because the stellar mass of the typical satellite galaxy has not changed significantly since it was accreted. The reason for this last point is not yet entirely clear, but it is likely related to the fact that the typical {approx}L* satellite galaxy resides in a poor group where transformation processes are weak and lifetimes are short.

  8. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-06-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue is computed.

  9. Optimizing hourly hydro operations at the Salt Lake City Area Integrated Projects

    SciTech Connect (OSTI)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-10-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado River Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. The Hydro LP (Linear Program) model, which was developed by Argonne National Laboratory (ANL), was used to analyze a broad range of issues associated with many possible future operational restrictions at SLCA/IP power plants. With technical assistance from Western, the Hydro LP model was configured to simulate hourly power plant operations for weekly periods with the objective of maximizing Western`s net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) operating reserve requirements, and Western`s purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation was simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western`s net revenue was computed.

  10. Identifying Challenging Operating Hours for Solar Intergration in the NV Energy System

    SciTech Connect (OSTI)

    Etingov, Pavel V.; Lu, Shuai; Guo, Xinxin; Ma, Jian; Makarov, Yuri V.; Chadliev, Vladimir; Salgo, Richard

    2012-05-09

    Abstract-- In this paper, the ability of the Nevada (NV) Energy generation fleet to meet its system balancing requirements under different solar energy penetration scenarios is studied. System balancing requirements include capacity, ramp rate, and ramp duration requirements for load following and regulation. If, during some operating hours, system capability is insufficient to meet these requirements, there is certain probability that the balancing authoritys control and reliability performance can be compromised. These operating hours are considered as challenging hours. Five different solar energy integration scenarios have been studied. Simulations have shown that the NV Energy system will be potentially able to accommodate up to 942 MW of solar photovoltaic (PV) generation. However, the existing generation scheduling procedure should be adjusted to make it happen. Fast-responsive peaker units need to be used more frequently to meet the increasing ramping requirements. Thus, the NV Energy system operational cost can increase. Index TermsSolar Generation, Renewables Integration, Balancing Process, Load Following, Regulation.

  11. Fast Company: Satellite imaging startup takes step forward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite imaging startup takes step forward Fast Company: Satellite imaging startup takes step forward A Los Alamos startup that uses satellite images to decipher changes on the Earth's surface has received a new round of venture capital. December 6, 2015 Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Agricultural corn yields mapped by Descartes Labs. From Descartes. Fast Company: Satellite imaging startup takes step forward

  12. Arctic Lower Troposphere Observed Structure (ALTOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Troposphere Observed Structure (ALTOS) will raise and lower a heavily instrumented tethered balloon system at regular intervals in the lower 2 kilometers of the atmosphere at Oliktok Point. Data obtained during the ALTOS campaign will provide a statistically significant set of observed in situ cloud properties for validating retrieval algorithms and help scientists reduce the uncertainty in the radiative forcing and heating rates on hourly time scales. The data will also help researchers

  13. Observations of tropical clouds from the upgraded MMCR at Darwin and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    comparisons with C-Pol and satellite observations Observations of tropical clouds from the upgraded MMCR at Darwin and comparisons with C-Pol and satellite observations Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Vogelmann, Andrew Brookhaven National Laboratory Mather, James Pacific Northwest National Laboratory May, Peter Bureau or Meteorology Research Centre Category: Instruments The upgrade of the processor for the millimeter cloud radar

  14. A THOUSAND SHADOWS OF ANDROMEDA: ROTATING PLANES OF SATELLITES IN THE MILLENNIUM-II COSMOLOGICAL SIMULATION

    SciTech Connect (OSTI)

    Ibata, Rodrigo A.; Martin, Nicolas F.; Ibata, Neil G.; Lewis, Geraint F.; Conn, Anthony; Elahi, Pascal; Arias, Veronica; Fernando, Nuwanthika

    2014-03-20

    In a recent contribution, Bahl and Baumgardt investigated the incidence of planar alignments of satellite galaxies in the Millennium-II simulation and concluded that vast, thin planes of dwarf galaxies, similar to that observed in the Andromeda galaxy (M31), occur frequently by chance in ?-cold dark matter cosmology. However, their analysis did not capture the essential fact that the observed alignment is simultaneously radially extended, yet thin, and kinematically unusual. With the caveat that the Millennium-II simulation may not have sufficient mass resolution to identify confidently simulacra of low-luminosity dwarf galaxies, we re-examine that simulation for planar structures, using the same method as employed by Ibata etal. on the real M31 satellites. We find that 0.04% of host galaxies display satellite alignments that are at least as extreme as the observations, when we consider their extent, thickness, and number of members rotating in the same sense. We further investigate the angular momentum properties of the co-planar satellites, and find that the median of the specific angular momentum derived from the line-of-sight velocities in the real M31 structure (1.3 10{sup 4} km s{sup 1} kpc) is very high compared to systems drawn from the simulations. This analysis confirms that it is highly unlikely that the observed structure around the Andromeda galaxy is due to a chance occurrence. Interestingly, the few extreme systems that are similar to M31 arise from the accretion of a massive sub-halo with its own spatially concentrated entourage of orphan satellites.

  15. Surface Radiation Budget from ARM Satellite Retrievals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Radiation Budget from ARM Satellite Retrievals P. Minnis, D. P. Kratz, and T. P. charlock Atmospheric Sciences National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. R. Doelling, M. L. Nordeen, M. M. Khaiyer, S. K. Gupta, and D. Rutan Analytical Service and Materials, Inc. Hampton, Virginia Introduction Since the Atmospheric Radiation Measurement (ARM) Program measurements of the surface radiation budget (SRB) are confined to the various central and

  16. WIPP Satellite Tracking System Relocates to Carlsbad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Immediate Release WIPP Satellite Tracking System Relocates to Carlsbad Carlsbad, N.M., December 7, 2005 - The U.S. Department of Energy's (DOE) Carlsbad Field Office has announced that effective December 2, the DOE Transportation Tracking and Communication System (TRANSCOM) is fully staffed and operational in Carlsbad, N.M. The TRANSCOM system, previously based in Albuquerque, N.M, is used to track transuranic waste shipments to the Waste Isolation Plant (WIPP) near Carlsbad and other DOE

  17. Sub-Hourly Impacts of High Solar Penetrations in the Western United States: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hummon, M.; Hodge, B. M.; Heaney, M.; King, J.

    2012-09-01

    This paper presents results of analysis on the sub-hourly impacts of high solar penetrations from the Western Wind and Solar Integration Study Phase 2. Extreme event analysis showed that most large ramps were due to sunrise and sunset events, which have a significant predictability component. Variability in general was much higher in the high-solar versus high-wind scenario. Reserve methodologies that had already been developed for wind were therefore modified to take into account the predictability component of solar variability.

  18. SeizAlert could give patients 4.5 hour warning of seizure

    ScienceCinema (OSTI)

    Dr. Lee Hively and Kara Kruse

    2010-01-08

    One percent of Americans, 3 million people, suffer from epilepsy. And their lives are about to be dramatically changed by scientists at Oak Ridge National Laboratory. For 15 years, Dr. Lee Hively has been working on "SeizAlert", a seizure-detecting device that resembles a common PDA. "It allows us to analyze scalp brain waves and give us up to 4.5 hours' forewarning of that event," he said. With the help of partner Kara Kruse, he's now able to help patients predict the previously unpredictable.

  19. 20K Hour GATEWAY Testing Results for I-35W Bridge Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country’s oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a third luminaire that was not installed on the bridge but was tested for 6,000 hours in a laboratory for comparison purposes.

  20. Customer Strategies for Responding to Day-Ahead Market HourlyElectricity Pricing

    SciTech Connect (OSTI)

    Goldman, Chuck; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Boisvert, Dick; Cappers, Peter; Pratt, Donna; Butkins, Kim

    2005-08-25

    Real-time pricing (RTP) has been advocated as an economically efficient means to send price signals to customers to promote demand response (DR) (Borenstein 2002, Borenstein 2005, Ruff 2002). However, limited information exists that can be used to judge how effectively RTP actually induces DR, particularly in the context of restructured electricity markets. This report describes the second phase of a study of how large, non-residential customers' adapted to default-service day-ahead hourly pricing. The customers are located in upstate New York and served under Niagara Mohawk, A National Grid Company (NMPC)'s SC-3A rate class. The SC-3A tariff is a type of RTP that provides firm, day-ahead notice of hourly varying prices indexed to New York Independent System Operator (NYISO) day-ahead market prices. The study was funded by the California Energy Commission (CEC)'s PIER program through the Demand Response Research Center (DRRC). NMPC's is the first and longest-running default-service RTP tariff implemented in the context of retail competition. The mix of NMPC's large customers exposed to day-ahead hourly prices is roughly 30% industrial, 25% commercial and 45% institutional. They have faced periods of high prices during the study period (2000-2004), thereby providing an opportunity to assess their response to volatile hourly prices. The nature of the SC-3A default service attracted competitive retailers offering a wide array of pricing and hedging options, and customers could also participate in demand response programs implemented by NYISO. The first phase of this study examined SC-3A customers' satisfaction, hedging choices and price response through in-depth customer market research and a Constant Elasticity of Substitution (CES) demand model (Goldman et al. 2004). This second phase was undertaken to answer questions that remained unresolved and to quantify price response to a higher level of granularity. We accomplished these objectives with a second customer survey and interview effort, which resulted in a higher, 76% response rate, and the adoption of the more flexible Generalized Leontief (GL) demand model, which allows us to analyze customer response under a range of conditions (e.g. at different nominal prices) and to determine the distribution of individual customers' response.

  1. Daily/Hourly Hydrosystem Operation : How the Columbia River System Responds to Short-Term Needs.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1994-02-01

    The System Operation Review, being conducted by the Bonneville Power Administration, the US Army Corps of Engineers, and the US Bureau of Reclamation, is analyzing current and potential future operations of the Columbia River System. One goal of the System Operations Review is to develop a new System Operation Strategy. The strategy will be designed to balance the many regionally and nationally important uses of the Columbia River system. Short-term operations address the dynamics that affect the Northwest hydro system and its multiple uses. Demands for electrical power and natural streamflows change constantly and thus are not precisely predictable. Other uses of the hydro system have constantly changing needs, too, many of which can interfere with other uses. Project operators must address various river needs, physical limitations, weather, and streamflow conditions while maintaining the stability of the electric system and keeping your lights on. It takes staffing around the clock to manage the hour-to-hour changes that occur and the challenges that face project operators all the time.

  2. An overview of 3-D graphical analysis using DOE-2 hourly simulation data

    SciTech Connect (OSTI)

    Haberl, J.S.; MacDonald, M.; Eden, A.

    1988-01-01

    This paper presents an overview of a 3-D graphical approach for improving the potential of building energy analyses using the DOE-2 computer program. The approach produces 3-D annual profiles from hourly data generated by DOE-2 simulations using a statistical plotting package for specific quantities of interest. The annual profiles of hourly data provide a useful graphical check of voluminous data in a condensed form, allowing several different types of data to be plotted over a year. These profiles provide the user with the opportunity to check simulation results, check for potential problems with user input, provide graphs to customers who may want a simpler presentation, visualize interactions in simulations, and understand where inappropriate modeling conditions may exist in simulations. Future analysis, using such profiles, may allow methods to be developed to check consistency between simulations, check for potential hidden errors in modeling buildings, and better understand how simulations compare with data from real buildings. 22 refs., 23 figs., 1 tab.

  3. NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

    2013-01-02

    The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the system’s generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

  4. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; et al

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less

  5. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    SciTech Connect (OSTI)

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; Fennell, Joseph F.; Spence, Harlan E.

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution, and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

  6. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  7. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  8. BioenergizeME Office Hours Webinar: Integrating Bioenergy into the 9th–12th Grade Classroom

    Broader source: Energy.gov [DOE]

    Biofuel is the only viable substitute for petroleum-based liquid transportation fuel in the near term. It is, therefore, increasingly relevant to enhance conceptual knowledge of biofuels and other types of bioenergy in today’s classroom environment. Bioenergy has applications across multiple science and engineering disciplines and also provides opportunities for real-world learning. This webinar is designed to support high school educators in planning activities for their classrooms that integrate bioenergy topics with the life sciences, physical sciences, earth and space sciences, and engineering and technology. This information can also help support advisors who are interested in participating in the 2016 BioenergizeME Infographic Challenge. This webinar is part of the BioenergizeME Office Hours webinar series developed by the U.S. Department of Energy’s Bioenergy Technologies Office.

  9. Performance of Blackglas{trademark} composites in 4000-hour oxidation study

    SciTech Connect (OSTI)

    Campbell, S.; Gonczy, S.; McNallan, M.; Cox, A.

    1996-12-31

    The effect of long term (4000 hour) oxidation on the mechanical properties of Blackglas{trademark}-Nitrided Nextel{trademark}312 Ceramic Matrix Composites in the temperature range of 500{degrees} - 700{degrees}C was investigated. Flexure specimens of the title composites prepared using three different pyrolysis processes were subjected to oxidation in flowing dry air at 500{degrees}, 600{degrees}C, and 700{degrees}C. Samples were removed at several different time intervals for 3-point flexure analysis. Results indicate that processing conditions had very little effect on the oxidation resistance of this system. At 600{degrees} and 700{degrees}C the mechanical properties degrade continuously to a steady value about half the original flexure strength. At 500{degrees}C, material properties initially improve then begin to slowly degrade. Optical microscopy indicates that oxidation of the matrix begins at the matrix/fiber interface and microcracks and proceeds into the bulk of the matrix.

  10. Satellite determination of stratus cloud microphysical properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Satellite determination of stratus cloud microphysical properties Citation Details In-Document Search Title: Satellite determination of stratus cloud microphysical properties Satellite measurements of liquid water path from SSM/I, broadband albedo from ERBE, and cloud characteristics from ISCCP are used to study stratus regions. An average cloud liquid water path of 0.120{+-}0.032 kg m{sup {minus}2} is derived by dividing the average liquid water path for stratus

  11. Using ARM data to correct plane-parallel satellite retrievals of cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties Using ARM data to correct plane-parallel satellite retrievals of cloud properties Dong, Xiquan University of North Dakota Minnis, Patrick NASA Langley Research Center Xi, Baike University of North Dakota Khaiyer, Mandana Analytical Services and Material, Inc. Category: Cloud Properties The angular variations of cloud properties derived from GOES data are examined using simultaneously collocated ARM surface observations/retrievals at the DOE ARM SGP site during the 6-yr period from

  12. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING...

    Office of Scientific and Technical Information (OSTI)

    These products and raw satellite images can be accessed at http:cloudsgate2.larc.nasa.gov... Authors: Minnis, Patrick 1 + Show Author Affiliations NASA Langley Research ...

  13. Surface Deformation from Satellite Data and Geothermal Assessment...

    Open Energy Info (EERE)

    Deformation from Satellite Data and Geothermal Assessment, Exploration and Mitigation in Imperial Valley Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  14. PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

    Open Energy Info (EERE)

    the corrected monthly maps (see Fig. 3). 4. DISCUSSION We have presented a robust, straightforward two-step approach to correct irradiance estimated from weather satellites'...

  15. A NEW OPERATIONAL MODEL FOR SATELLITE-DERIVED IRRADIANCES DESCRIPTION...

    Open Energy Info (EERE)

    by solving radiation transfer equations - this requires absolute satellite calibration knowledge and precise information on the composition of the atmosphere. At the other end...

  16. Hydrogen peroxide propulsion for smaller satellites (SSC98-VIII...

    Office of Scientific and Technical Information (OSTI)

    ... Resource Relation: Conference: 12th Annual American Institute of Aeronautics and AstronauticsUtah State University Conference on Small Satellite, Logan, UT, August 31-September 3, ...

  17. Remote Detection of Quaternary Borate Deposits with ASTER Satellite...

    Open Energy Info (EERE)

    Deposits with ASTER Satellite Imagery as a Geothermal Exploration Tool Abstract In the Great Basin of the western United States, geothermal fluids are sometimes associated with...

  18. Assessing deforestation and habitat fragmentation in Uganda using satellite observations and fractal analysis

    SciTech Connect (OSTI)

    Hlavka, C.A.; Strong, L.L. )

    1992-10-01

    The MSS, SPOT, and AVHRR imagery of Ugandan forests were analyzed to assess the information content related to deforestation and tropical habitat fragmentation, focusing primarily on the Kibale and Mabira Forests. Analysis of actual and simulated AVHRR imagery showed that it might be possible to monitor major changes in forest extent with the relatively coarse spatial resolution of AVHRR imagery (about 1 km) provided ancillary data were available. The fractal dimension of the forest edges, measured with the Landsat and SPOT imagery, was consistently about 1.7 or 1.8. This high fractal dimension was due to the coplex pattern of clearings, remnant forest stands, and jagged forest edges caused by repeated human encroachment over centuries. 28 refs.

  19. DOE's Office of Science Awards 95 Million Hours of Supercomputing Time to Advance Research in Science, Academia and Industry

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) Office of Science announced today that 45 projects were awarded a total of 95 million hours of computing time on some of the world's most...

  20. Three-Stage Production Cost Modeling Approach for Evaluating the Benefits of Intra-Hour Scheduling between Balancing Authorities

    SciTech Connect (OSTI)

    Samaan, Nader A.; Milligan, Michael; Hunsaker, Matthew; Guo, Tao

    2015-07-30

    This paper introduces a Production Cost Modeling (PCM) approach to evaluate the benefits of intra-hour scheduling between Balancing Authorities (BAs). The system operation is modeled in a three-stage sequential manner: day ahead (DA)-hour ahead (HA)-real time (RT). In addition to contingency reserve, each BA will need to carry out “up” and “down” load following and regulation reserve capacity requirements in the DA and HA time frames. In the real-time simulation, only contingency and regulation reserves are carried out as load following is deployed. To model current real-time operation with hourly schedules, a new constraint was introduced to force each BA net exchange schedule deviation from HA schedules to be within NERC ACE limits. Case studies that investigate the benefits of moving from hourly exchange schedules between WECC BAs into 10-min exchange schedules under two different levels of wind and solar penetration (11% and 33%) are presented.

  1. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    SciTech Connect (OSTI)

    Todd, Annika; Perry, Michael; Smith, Brian; Sullivan, Michael; Cappers, Peter; Goldman, Charles

    2014-03-25

    The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What can we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry previously was unable to answer; • Proof-of-concept analytics tools that can be adapted and used by others; and • Guidelines and protocols that summarize analytical best practices. This report focuses on one example of the kind of value that analysis of this data can provide: insights into whether behavior-based (BB) efficiency programs have the potential to provide peak-hour energy savings.

  2. ISDAC - NRC Convair-580 Flight Hours Date Flight From To Start

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - NRC Convair-580 Flight Hours Date Flight From To Start End hrs 03/21/08 F01-Test-01 Ottawa Ottawa 16:15Z 18:15Z 2.2 03/22/08 F02-Test-02 Ottawa Ottawa 12:45Z 15:50Z 3.3 03/28/08 F03-Transit-01 Ottawa, ON Kenora, ON 12:23Z 15:44Z 3.6 03/28/08 F04-Transit-02 Kenora, ON Calgary, AB 16:30Z 19:36Z 3.3 03/28/08 F05-Transit-03 Calgary, AB Comox, BC 20:24Z 22:17Z 2.1 03/29/08 F06-Transit-04 Comox, BC Whitehorse, YK 17:43Z 20:50Z 3.3 03/29/08 F07-Transit-05 Whitehorse, YK Fairbanks 21:51Z 23:42Z 2.1

  3. Pollution solution. From the Landsat -- a satellite for all seasons

    SciTech Connect (OSTI)

    1994-12-31

    The video shows how Landsat`s remote sensing capabilities can aid in resolving environmental quality problems. The satellite can locate and monitor strip mining operations to facilitate land reclamation programs. The satellite helps solve some meteorological mysteries by taking the path of airborne pollution. It can also monitor the course of industrial wastes and garbage dumped into lakes, rivers, and coastal areas.

  4. First observations of tracking clouds using scanning ARM cloud radars

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: First observations of tracking clouds using scanning ARM cloud radars Citation Details In-Document Search Title: First observations of tracking clouds using scanning ARM cloud radars Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (''first echo''). These measurements complement cloud and precipitation tracking using geostationary satellites and

  5. After-hours Power Status of Office Equipment and Inventory of Miscellaneous Plug-load Equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Margaret J.; Busch, John F.

    2004-01-22

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of ''miscellaneous'' plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from twelve commercial buildings in California, Georgia, and Pennsylvania: two health care buildings, two large offices (> 500 employees each), three medium offices (50-500 employees), four education buildings, and one ''small office'' that is actually an aggregate of five small businesses. Two buildings are in the San Francisco Bay area of California, five are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  6. PDSF Office Hours 1/23/14 from 2:30 to 4:00 pm at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /23/14 from 2:30 to 4:00 pm at LBNL PDSF Office Hours 1/23/14 from 2:30 to 4:00 pm at LBNL January 22, 2014 PDSF office hours will be from 2:30 to 4:00 pm in 50B-2222 tomorrow. Subscribe via RSS Subscribe Browse by Date February 2014 January 2014 November 2013 October 2013 September 2013 August 2013 March 2012 February 2012 January 2012 October 2011 July 2011 May 2011 April 2011 March 2011 February 2011 January 2011 December 2010 Last edited: 2014-01-22 16:33:02

  7. Validation of the SUNY Satellite Model in a Meteosat Evironment

    SciTech Connect (OSTI)

    Perez, R.; Schlemmer, J.; Renne, D.; Cowlin, S.; George, R.; Bandyopadhyay, B.

    2009-01-01

    The paper presents a validation of the SUNY satellite-to-irradiance model against four ground-truth stations from the Indian solar radiation network located in and around the province of Rajasthan, India. The SUNY model had initially been developed and tested to process US weather satellite data from the GOES series and has been used as part of the production of the US National Solar Resource Data Base (NSRDB). Here the model is applied to processes data from the European weather satellites Meteosat 5 and 7.

  8. Equatorial hydrology studies by satellite telemetry

    SciTech Connect (OSTI)

    Clegg, B.; Koranda, J.; Robison, W.; Holladay, G.

    1980-12-30

    We are using a geostationary satellite functioning as a transponder to collect surface environmental data to describe the fate of soil-borne radionuclides. The remote, former atomic testing grounds at the Enewetak and Bikini Atolls present a difficult environment in which to collect continuous field data. Our land-based, solar-powered microprocessor and environmental data systems remotely measure net and total solar radiation, rain, humidity, temperature, and soil-water potentials. For the past year, our water-flux model predicted wet season plant-transpiration rates nearly equal to the 6- to 7-mm/d evaporation-pan rate, which decreases to 2 to 3 mm/d for the dry season. From the microclimate data we estimated a 1:3 and 1:20 /sup 137/Cs dry-matter concentration ratio, which was later confirmed by radioisotopic analysis. This ratio exacerbates the dose to man from intake of food plants. Nephelometer measurements of airborne particulates presently indicate a minimum respiratory radiological dose.

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hourly observations of 6.7 micron water vapor radiances from geostationary satellites are combined with radiosonde observations and Raman lidar measurements to document the diurnal...

  10. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    SciTech Connect (OSTI)

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ?10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ?} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  11. Simultaneous hierarchical segmentation and vectorization of satellite images through combined data sampling and anisotropic triangulation

    SciTech Connect (OSTI)

    Grazzini, Jacopo; Prasad, Lakshman; Dillard, Scott

    2010-10-21

    The automatic detection, recognition , and segmentation of object classes in remote sensed images is of crucial importance for scene interpretation and understanding. However, it is a difficult task because of the high variability of satellite data. Indeed, the observed scenes usually exhibit a high degree of complexity, where complexity refers to the large variety of pictorial representations of objects with the same semantic meaning and also to the extensive amount of available det.ails. Therefore, there is still a strong demand for robust techniques for automatic information extraction and interpretation of satellite images. In parallel, there is a growing interest in techniques that can extract vector features directly from such imagery. In this paper, we investigate the problem of automatic hierarchical segmentation and vectorization of multispectral satellite images. We propose a new algorithm composed of the following steps: (i) a non-uniform sampling scheme extracting most salient pixels in the image, (ii) an anisotropic triangulation constrained by the sampled pixels taking into account both strength and directionality of local structures present in the image, (iii) a polygonal grouping scheme merging, through techniques based on perceptual information , the obtained segments to a smaller quantity of superior vectorial objects. Besides its computational efficiency, this approach provides a meaningful polygonal representation for subsequent image analysis and/or interpretation.

  12. Gambit Satellite Work Declassified After 25 Years | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gambit Satellite Work Declassified After 25 Years Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

  13. Gamma-ray burst data from DMSP satellites

    SciTech Connect (OSTI)

    Terrell, J.; Klebesadel, R.W.; Lee, P. ); Griffee, J.W. )

    1991-01-01

    A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

  14. Gamma-ray burst data from DMSP satellites

    SciTech Connect (OSTI)

    Terrell, J.; Klebesadel, R.W.; Lee, P.; Griffee, J.W.

    1991-12-31

    A number of gamma-ray bursts have been detected by means of gamma-ray detectors aboard three Air Force Defense Meteorological Satellite Program (DMSP) satellites, in polar orbits at 800 km altitude. The gamma-ray data have a 2-second resolving time, and are usually telemetered in 5 energy bins in the range 50--1000 keV. Although it is not possible to detect gamma-ray bursts when the DMSP satellites are passing through the radiation belt or the South Atlantic Anomaly, or when the source is obscured by the Earth, a number of gamma-ray bursts have been detected by two or even three of the satellites. The DMSP data may be of considerable, assistance in evaluating time histories, locations, and spectra of gamma-ray bursts.

  15. Fluidized-bed combustion 1000-hour test program. Volume IV. Engineering details and post-test inspections

    SciTech Connect (OSTI)

    Roberts, A. G.; Barker, S. N.; Phillips, R. N.; Pillai, K. K.; Raven, P.; Wood, P.

    1981-09-01

    Volume IV of the report on the 1000 hour programme consists of three appendices giving details of the enginmering/construction aspects of the plant and reports from Stal-Laval Turbin A.B. Appendix N has been entered individually. (LTN)

  16. Accurate, practical simulation of satellite infrared radiometer spectral data

    SciTech Connect (OSTI)

    Sullivan, T.J.

    1982-09-01

    This study's purpose is to determine whether a relatively simple random band model formulation of atmospheric radiation transfer in the infrared region can provide valid simulations of narrow interval satellite-borne infrared sounder system data. Detailed ozonesondes provide the pertinent atmospheric information and sets of calibrated satellite measurements provide the validation. High resolution line-by-line model calculations are included to complete the evaluation.

  17. Sea ice - atmosphere interaction: Application of multispectral satellite

    Office of Scientific and Technical Information (OSTI)

    data in polar surface energy flux estimates. Semiannual Progress Report (Technical Report) | SciTech Connect ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates. Semiannual Progress Report Citation Details In-Document Search Title: Sea ice - atmosphere interaction: Application of multispectral satellite data in polar surface energy flux estimates. Semiannual Progress Report In the past six months, work has continued on energy flux

  18. Sea ice-atmospheric interaction: Application of multispectral satellite

    Office of Scientific and Technical Information (OSTI)

    data in polar surface energy flux estimates. Annual progress report (Technical Report) | SciTech Connect ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates. Annual progress report Citation Details In-Document Search Title: Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates. Annual progress report This is the third annual report on: Sea Ice-Atmosphere Interaction -

  19. ARM Intensive Operational Period Scheduled to Validate New NASA Satellite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Intensive Operational Period Scheduled to Validate New NASA Satellite Beginning in July, all three ARM sites (Southern Great Plains [SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched

  20. GALAXIES IN X-RAY GROUPS. III. SATELLITE COLOR AND MORPHOLOGY TRANSFORMATIONS

    SciTech Connect (OSTI)

    George, Matthew R.; Ma, Chung-Pei; Bundy, Kevin; Leauthaud, Alexie; Vulcani, Benedetta; Tinker, Jeremy; Wechsler, Risa H.; Finoguenov, Alexis

    2013-06-20

    While the star formation rates and morphologies of galaxies have long been known to correlate with their local environment, the process by which these correlations are generated is not well understood. Galaxy groups are thought to play an important role in shaping the physical properties of galaxies before entering massive clusters at low redshift, and transformations of satellite galaxies likely dominate the buildup of local environmental correlations. To illuminate the physical processes that shape galaxy evolution in dense environments, we study a sample of 116 X-ray selected galaxy groups at z = 0.2-1 with halo masses of 10{sup 13}-10{sup 14} M{sub Sun} and centroids determined with weak lensing. We analyze morphologies based on Hubble Space Telescope imaging and colors determined from 31 photometric bands for a stellar mass-limited population of 923 satellite galaxies and a comparison sample of 16,644 field galaxies. Controlling for variations in stellar mass across environments, we find significant trends in the colors and morphologies of satellite galaxies with group-centric distance and across cosmic time. Specifically at low stellar mass (log (M{sub *}/M{sub Sun }) = 9.8-10.3), the fraction of disk-dominated star-forming galaxies declines from >50% among field galaxies to <20% among satellites near the centers of groups. This decline is accompanied by a rise in quenched galaxies with intermediate bulge+disk morphologies, and only a weak increase in red bulge-dominated systems. These results show that both color and morphology are influenced by a galaxy's location within a group halo. We suggest that strangulation and disk fading alone are insufficient to explain the observed morphological dependence on environment, and that galaxy mergers or close tidal encounters must play a role in building up the population of quenched galaxies with bulges seen in dense environments at low redshift.

  1. Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heymann, J.; Reuter, M.; Hilker, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J. P.; Kuze, A.; Suto, H.; Deutscher, N. M.; et al

    2015-02-13

    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched in Januarymore » 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (±2 h, 10° × 10° around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future.« less

  2. Respiratory effects of two-hour exposure with intermittent exercise to ozone, sulfur dioxide and nitrogen dioxide alone and in combination in normal subjects

    SciTech Connect (OSTI)

    Kagawa, J.

    1983-01-01

    Seven adult male healthy volunteer subjects were exposed to 0.15 ppm each of O/sub 3/, SO/sub 2/ and NO/sub 2/ alone and in combination, with intermittent light exercise for two hours. Three of the 7 subjects developed cough during deep inspiration and one subject had chest pain during exposure to O/sub 3/ alone. Among the various indices of pulmonary function tests, specific airway conductane (G/sub aw//V/sub tg/) was the most sensitive index to examine the changes produced by the exposure to O/sub 3/ and other pollutants. Significant decrease of G/sub aw//V/sub tg/ in comparison with control measurements was observed in 6 of 7 subjects during exposure to O/sub 3/ alone, and in all subjects during exposures to the mixture of O/sub 3/ and other pollutants. However, no significant enhancement of effect was observed in the mixture of O/sub 3/ and other pollutants, although a slightly greater decrease of airway resistance/volume of thoracic gas (G/sub aw//V/sub tg/) was observed for the mixture of O/sub 3/ and other pollutants than for O/sub 3/ alone.

  3. Optimal observation time window for forecasting the next earthquake

    SciTech Connect (OSTI)

    Omi, Takahiro; Shinomoto, Shigeru; Kanter, Ido

    2011-02-15

    We report that the accuracy of predicting the occurrence time of the next earthquake is significantly enhanced by observing the latest rate of earthquake occurrences. The observation period that minimizes the temporal uncertainty of the next occurrence is on the order of 10 hours. This result is independent of the threshold magnitude and is consistent across different geographic areas. This time scale is much shorter than the months or years that have previously been considered characteristic of seismic activities.

  4. PDSF Office Hours 10/17/13 from 2:00 to 4:00 pm at LBNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0/17/13 from 2:00 to 4:00 pm at LBNL PDSF Office Hours 10/17/13 from 2:00 to 4:00 pm at LBNL October 7, 2013 I have biweekly office hours on Thursdays at LBNL. The next one is Thursday 10/17/13 from 2:00 - 4:00 pm in the NERSC drop in office at 050A-0143A (in the basement by the bus offices). Please feel free to stop by if you have any questions or want some hands on help with PDSF issues. Subscribe via RSS Subscribe Browse by Date February 2014 January 2014 November 2013 October 2013 September

  5. Real-time Global Flood Estimation using Satellite-based Precipitation and a Coupled Land Surface and Routing Model

    SciTech Connect (OSTI)

    Wu, Huan; Adler, Robert F.; Tian, Yudong; Huffman, George; Li, Hongyi; Wang, Jianjian

    2014-04-09

    A community land surface model, the Variable Infiltration Capacity (VIC) model, is coupled with a newly developed hierarchical dominant river tracing-based runoff-routing model to form the Dominant river tracing-Routing Integrated with VIC Environment (DRIVE) model system, which serves as the new core of the real-time Global Flood Monitoring System (GFMS). The GFMS uses real-time satellite-based precipitation to derive flood-monitoring parameters for the latitude-band 50{degree sign}N-50{degree sign}S at relatively high spatial (~12km) and temporal (3-hourly) resolution. Examples of model results for recent flood events are computed using the real-time GFMS (http://flood.umd.edu). To evaluate the accuracy of the new GFMS, the DRIVE model is run retrospectively for 15 years using both research-quality and real-time satellite precipitation products. Statistical results are slightly better for the research-quality input and significantly better for longer duration events (three-day events vs. one-day events). Basins with fewer dams tend to provide lower false alarm ratios. For events longer than three days in areas with few dams, the probability of detection is ~0.9 and the false alarm ratio is ~0.6. In general, these statistical results are better than those of the previous system. Streamflow was evaluated at 1,121 river gauges across the quasi-global domain. Validation using real-time precipitation across the tropics (30ºS-30ºN) gives positive daily Nash-Sutcliffe Coefficients for 107 out of 375 (28%) stations with a mean of 0.19 and 51% of the same gauges at monthly scale with a mean of 0.33. There were poorer results in higher latitudes, probably due to larger errors in the satellite precipitation input.

  6. Tracking target objects orbiting earth using satellite-based telescopes

    DOE Patents [OSTI]

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  7. Satellite remote sensing of global rainfall using passive microwave radiometry

    SciTech Connect (OSTI)

    Ferriday, J.G.

    1994-12-31

    Global rainfall over land and ocean is estimated using measurements of upwelling microwaves by a satellite passive microwave radiometer. Radiative transfer calculations through a cloud model are used to parameterize an inversion technique for retrieving rain rates from brightness temperatures measured by the Special Sensor Microwave Imager (SSM/I). The rainfall retrieval technique is based on the interaction between multi-spectral microwave radiances and millimeter sized liquid and frozen hydrometeors distributed in the satellite`s field of view. The rain rate algorithm is sensitive to both hydrometeor emission and scattering while being relatively insensitive to extraneous atmospheric and surface effects. Separate formulations are used over ocean and land to account for different background microwave characteristics and the algorithm corrects for inhomogeneous distributions of rain rates within the satellite`s field of view. Estimates of instantaneous and climate scale rainfall are validated through comparisons with modeled clouds, surface radars, rain gauges and alternative satellite estimates. The accuracy of the rainfall estimates is determined from a combination of validation comparisons, theoretical sampling error calculations, and modeled sensitivity to variations in atmospheric and surface radiative properties. An error budget is constructed for both instantaneous rain rates and climate scale global estimates. At a one degree resolution, the root mean square errors in instantaneous rain rate estimates are 13% over ocean and 20% over land. The root mean square errors in global rainfall totals over a four month period are found to be 46% over ocean and 63% over land. Global rainfall totals are computed on a monthly scale for a three year period from 1987 to 1990. The time series is analyzed for climate scale rainfall distribution and variability.

  8. Wireless power transmission: The key to solar power satellites

    SciTech Connect (OSTI)

    Nansen, R.H.

    1995-12-31

    In the years following the OPEC oil embargo of 1973--74, the US aggressively researched alternative energy options. Among those studied was the concept of Solar Power Satellites -- generating electricity in space from solar energy on giant satellites and sending the energy to the earth with wireless power transmission. Much has happened in the fifteen years since the studies were terminated. Maturing of the enabling technologies has provided much of the infrastructure to support the development of a commercial Solar Power Satellite program. All of this will reduce the cost by one to two orders of magnitude so development can now be undertaken by industry instead of relying on a massive government program. Solar Space Industries was formed to accomplish this goal. The basis of their development plan for Solar Power Satellites is to build a Ground Test Installation that will duplicate, in small scale on the earth, all aspects of the power generating and power transmission systems for the Solar Power Satellite concept except for the space environment and the range and size of the energy beam. Space operations issues will be separated from the power generation function and verified by testing using the NASA Space Station and Space Shuttle. Solar Space Industries` concept is to built a Ground Test Installation that couples an existing 100 kW terrestrial solar cell array, furnished by an interested utility, to a phased-array wireless power transmitter based on the subarray developed by William Brown and The Center for Space Power. Power will be transmitted over a 1 1/4 mile range to a receiving antenna (rectenna) and then fed into a commercial utility power grid. The objective is to demonstrate the complete function of the Solar Power Satellites, with the primary issue being the validation of practical wireless power transmission. The key features to demonstrate are; beam control, stability, steering, efficiency, reliability, cost, and safety.

  9. Geo-neutrino Observation

    SciTech Connect (OSTI)

    Dye, S. T.; Alderman, M.; Batygov, M.; Learned, J. G.; Matsuno, S.; Mahoney, J. M.; Pakvasa, S.; Rosen, M.; Smith, S.; Varner, G.; McDonough, W. F.

    2009-12-17

    Observations of geo-neutrinos measure radiogenic heat production within the earth, providing information on the thermal history and dynamic processes of the mantle. Two detectors currently observe geo-neutrinos from underground locations. Other detection projects in various stages of development include a deep ocean observatory. This paper presents the current status of geo-neutrino observation and describes the scientific capabilities of the deep ocean observatory, with emphasis on geology and neutrino physics.

  10. ARM Observations Projected

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations Projected onto ARM States CCSM Results Projected onto ARM States 1 Oak Ridge National Laboratory, 2 Texas A&M University, 3 USDA Forest Service, 4 NASA GISS A Cluster Analysis Approach to Comparing Atmospheric Radiation Measurement (ARM) Data with Global Climate Model (GCM) Results Atmospheric state contained only in model results Atmospheric states contained only in ARM observations ARM Observations Projected onto Combined ARM-CCSM States CCSM Results Projected onto Combined

  11. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  12. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  13. Satellite-based snow identification and its impact on monitoring photovoltaic systems

    SciTech Connect (OSTI)

    Wirth, Georg; Zehner, Mike; Becker, Gerd [University of Applied Sciences - Munich, Department of Electrical Engineering, Solar Technology Laboratory, Lothstrasse. 64, 80323 Munich (Germany); Schroedter-Homscheidt, Marion [German Aerospace Center (DLR), German Remote Sensing Data Center (DFD), Oberpfaffenhofen, P.O. Box 1116, 82234 Wessling (Germany)

    2010-02-15

    Earth observation allows the separation of snow cover and cloudiness using multispectral measurements. Several satellite-based snow monitoring services are available, ranging from regional to world-wide scales. Using these data enables photovoltaic (PV) plant management to differentiate between failures due to snow coverage on a PV system and other error sources. Additionally, yield estimates for solar siting are improved. This paper presents a validation study from January to April 2006 comparing satellite-based datasets with ground measurements from German and Swiss meteorological stations. A false alarm rate, an error due to irradiance underestimation, the availability of daily data, and the classification accuracy are introduced as quality metrics. Compared to Switzerland, generally a higher accuracy is found in all datasets for Southern Germany. The most significant difference among the datasets is found in the error pattern shifting from too much snow (which results in an error due to underestimation of irradiance) to too little snow detection, causing a false alarm in PV monitoring. Overall, the data records of the Land Surface Analysis Satellite Application Facility (LSA SAF), the German Aerospace Center (DLR) and the Interactive Multisensor Snow and Ice Mapping System (IMS) are found to be most suitable for solar energy purposes. The IMS dataset has a low false alarm rate (4%) and a good data availability (100%) making it a good choice for power plant monitoring, but the error due to underestimation relevant in site auditing is large with 59%. If a cumulative snow cover algorithm is applied to achieve information every day as needed both for power plant monitoring and site auditing, both the DLR and the LSA SAF datasets are comparable with classification accuracies of 70%, false alarm rates of 37% and 34%, respectively, and errors due to irradiance underestimation in 26% and 27% of all coincidences. (author)

  14. Measurements of the radiation environment on the APEX satellite

    SciTech Connect (OSTI)

    Sims, A.J.; Dyer, C.S.; Watson, C.J.; Peerless, C.L.

    1996-06-01

    The Cosmic Radiation Environment and Dosimetry experiment was built to accompany the CRUX (Cosmic Ray Upset) experiment on the USAF APEX satellite, launched in August 1994. Results of measurements of the space radiation environment are presented here while a companion paper presents CRUX measurements of upsets correlated with proton flux.

  15. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect (OSTI)

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  16. Hours of Duty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Careers Find & Apply Benefits & New...

  17. Intra-Hour Scheduling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Finance & Rates Involvement & Outreach Expand Involvement & Outreach Doing Business Expand Doing Business Skip navigation links Initiatives Columbia River Treaty Non...

  18. Carver Hours Used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 174.69 91.81 12032014 178.77 93.96 12022014 172.30 90.55 12012014 176.12 92.56 11302014 170.11 89.40 11292014 162.74 85.53 11282014 168.71 88.67 11272014...

  19. Hours Available FY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE-RM 201 RF Replacement Module 2 Sectors AJ HVAC LANSCE-RM 201 RF Replacement Module 3 LANSCE-RM 201 RF Replacement Module 4 Routine Maintenance BGS 12232015 LA-UR-15-29688...

  20. Hours Available FY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE-RM 201 RF Replacement Module 2 Sectors AJ HVAC LANSCE-RM 201 RF Replacement Module 3 LANSCE-RM 201 RF Replacement Module 4 Routine Maintenance BGS 782015 LA-UR-15-25395...

  1. The orbits of the uranian satellites and rings, the gravity field of the uranian system, and the orientation of the pole of Uranus

    SciTech Connect (OSTI)

    Jacobson, R. A.

    2014-11-01

    French et al. determined the orbits of the Uranian rings, the orientation of the pole of Uranus, and the gravity harmonics of Uranus from Earth-based and Voyager ring occultations. Jacobson et al. determined the orbits of the Uranian satellites and the masses of Uranus and its satellites from Earth-based astrometry and observations acquired with the Voyager 2 spacecraft; they used the gravity harmonics and pole from French et al. Jacobson and Rush reconstructed the Voyager 2 trajectory and redetermined the Uranian system gravity parameters, satellite orbits, and ring orbits in a combined analysis of the data used previously augmented with additional Earth-based astrometry. Here we report on an extension of that work that incorporates additional astrometry and ring occultations together with improved data processing techniques.

  2. X-ray line polarization spectroscopy of Li-like satellite line...

    Office of Scientific and Technical Information (OSTI)

    spectroscopy of Li-like satellite line spectra Citation Details In-Document Search Title: X-ray line polarization spectroscopy of Li-like satellite line spectra We apply the ...

  3. X-ray line polarization spectroscopy of Li-like satellite line...

    Office of Scientific and Technical Information (OSTI)

    X-ray line polarization spectroscopy of Li-like satellite line spectra Citation Details In-Document Search Title: X-ray line polarization spectroscopy of Li-like satellite line ...

  4. Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM, representatives of the U.S. satellite television industry, listed below, met with the DOE officials, listed below, at the Forestall Building to discuss matters of concern to the U.S. satellite television industry regarding the pending DOE rulemaking to establish energy conservation standards

  5. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    SciTech Connect (OSTI)

    Springer, H K; Miller, W O; Levatin, J L; Pertica, A J; Olivier, S S

    2010-09-06

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.

  6. Aerosol Observing System Upgraded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Aerosol Observing System Upgraded The Aerosol Observing System (AOS) at the SGP central facility recently received maintenance and was upgraded to improve its performance. The AOS measures the properties of the aerosol particles around it. Several AOS components were removed, repaired, and calibrated to operate within specifications. The system continuously gathers information about the way minute aerosol particles interact with solar radiation. A better understanding of these interactions

  7. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model

    SciTech Connect (OSTI)

    Ruiz-Arias, Jose A.; Tovar-Pescador, Joaquin; Cebecauer, Tomas; Suri, Marcel

    2010-09-15

    Downscaling of the Meteosat-derived solar radiation ({proportional_to}5 km grid resolution) is based on decomposing the global irradiance and correcting the systematic bias of its components using the elevation and horizon shadowing that are derived from the SRTM-3 digital elevation model (3 arc sec resolution). The procedure first applies the elevation correction based on the difference between coarse and high spatial resolution. Global irradiance is split into direct, diffuse circumsolar and diffuse isotropic components using statistical models, and then corrections due to terrain shading and sky-view fraction are applied. The effect of reflected irradiance is analysed only in the theoretical section. The method was applied in the eastern Andalusia, Spain, and the validation was carried out for 22 days on April, July and December 2006 comparing 15-min estimates of the satellite-derived solar irradiance and observations from nine ground stations. Overall, the corrections of the satellite estimates in the studied region strongly reduced the mean bias of the estimates for clear and cloudy days from roughly 2.3% to 0.4%. (author)

  8. The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling

    SciTech Connect (OSTI)

    Feingold, Graham; McComiskey, Allison

    2013-09-25

    Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

  9. Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect

    SciTech Connect (OSTI)

    Heller, Ren

    2014-05-20

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in the phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.

  10. Modeling tropical Pacific sea surface temperature with satellite-derived solar radiative forcing

    SciTech Connect (OSTI)

    Seager, R.; Blumenthal, M.B.

    1994-12-01

    Two independent datasets for the solar radiation at the surface derived from satellites are compared. The data derived from the Earth Radiation Budget Experiment (ERBE) is for the net solar radiation at the surface whereas the International Satellite Cloud Climatology Project (ISCCP) data is for the downward flux only and was corrected with a space- and time-varying albedo. The ISCCP net flux is at all times higher than the ERBE flux. The difference can be divided into an offset that decreases with latitude and another component that correlates with high tropical cloud cover. With this latter exception the two datasets provide spatial patterns of solar flux that are very similar. A tropical Pacific Ocean model is forced with these two datasets and observed climatological winds. The upward heat flux is parameterized taking into account separately the longwave radiative, latent, and sensible heat fluxes. Best fit values for the uncertain parameters are found using an optimization procedure that seeks to minimize the difference between model and observed SST by varying the parameters within a reasonable range of uncertainty. The SST field the model produces with the best fit parameters is the best the model can do. If the differences between the model and data are larger than can be accounted for by remaining uncertainties in the heat flux parameterization and forcing data then the ocean model must be held to be at fault. Using this method of analysis, a fundamental model fault is identified. Inadequate treatment of mixed layer/entrainment processes in upwelling regions of the eastern tropical Pacific leads to a large and seasonally varying error in the model SST. Elsewhere the model SST is insufficiently different from observed to be able to identify model errors.

  11. Observational constraints on Tachyon and DBI inflation

    SciTech Connect (OSTI)

    Li, Sheng; Liddle, Andrew R. E-mail: arl@roe.ac.uk

    2014-03-01

    We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. For DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed c{sub s}{sup 2}?1) and relativistic behaviour (c{sub s}{sup 2}||1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic c{sub s}{sup 2}?1 case, determined by the competition of model parameters, while for the relativistic case c{sub s}{sup 2}?0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.

  12. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    Infographics are a useful visual tool for explaining complex information, numbers, or data quickly and effectively. However, you do not need to be an experienced graphic designer to make an eye-catching infographic. To assist student teams with the 2016 BioenergizeME Infographic Challenge, this webinar will highlight strategies for designing engaging infographics and will provide creative approaches that can bring attention to your infographic and motivate others to share it across their social media networks. The webinar will also include lessons learned from previous challenges and tips from last year’s winning team. The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge engages 9th–12th-grade high school teams to research one of four cross-curricular bioenergy topics and design an infographic to share what they have learned. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  13. Using ARM Data to Evaluate Satellite Surface Solar Flux Retrievals

    SciTech Connect (OSTI)

    Hinkelman, L.M.; Stackhouse, P.W.; Young, D.F.; Long, C.N.; Rutan, D.

    2005-03-18

    The accurate, long-term radiometric data collected by Atmospheric Radiation Measurement (ARM) has become essential to the evaluation of surface radiation budget data from satellites. Since the spatial and temporal characteristics of data from these two sources are very different, the comparisons are typically made for long-term average values. While such studies provide a general indication of the quality of satellite flux products, more detailed analysis is required to understand specific retrieval algorithm weaknesses. Here we show how data from the ARM shortwave flux analysis (SFA) value added product (VAP) are being used to assess solar fluxes in the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB), release 2.5.

  14. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect (OSTI)

    Mullens, Joshua G; Wiest, Heather K; Mascarenas, David D; Park, Gyuhae

    2011-01-24

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. The harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  15. Dynamic characterization of satellite components through non-invasive methods

    SciTech Connect (OSTI)

    Mullins, Joshua G; Wiest, Heather K; Mascarenas, David D. L.; Macknelly, David

    2010-10-21

    The rapid deployment of satellites is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to launch loads during testing. This harsh testing environment increases the risk of component damage during qualification. The focus of this research effort was to assess the performance of Structural Health Monitoring (SHM) techniques as a replacement for traditional vibration testing. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates, which was assembled using bolted joints. Multiple piezoelectric patches were bonded to the test structure and acted as combined actuators and sensors. Various methods of SHM were explored including impedance-based health monitoring, wave propagation, and conventional frequency response functions. Using these methods in conjunction with finite element modelling, the dynamic properties of the test structure were established and areas of potential damage were identified and localized. The adequacy of the results from each SHM method was validated by comparison to results from conventional vibration testing.

  16. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect (OSTI)

    Kaftan, V. I.; Ustinov, A. V.

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  17. Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm

    SciTech Connect (OSTI)

    Heymann, J.; Reuter, M.; Hilker, M.; Buchwitz, M.; Schneising, O.; Bovensmann, H.; Burrows, J. P.; Kuze, A.; Suto, H.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kawakami, S.; Kivi, R.; Morino, I.; Petri, C.; Roehl, C.; Schneider, M.; Sherlock, V.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wunch, D.

    2015-02-13

    Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002April 2012) and TANSO-FTS on-board GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System (IFS). We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between the SCIAMACHY and the GOSAT XCO2. For example, we found a mean difference for daily averages of ?0.60 1.56 ppm (mean difference standard deviation) for GOSAT-SCIAMACHY (linear correlation coefficient r = 0.82), ?0.34 1.37 ppm (r = 0.86) for GOSAT-TCCON and 0.10 1.79 ppm (r = 0.75) for SCIAMACHY-TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (2 h, 10 10 around TCCON sites), i.e., the observed air masses are not exactly identical, but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by using also data from other missions (e.g., OCO-2, GOSAT-2, CarbonSat) in the future.

  18. Basic visual observation skills training course: Appendix B. Final report

    SciTech Connect (OSTI)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the in-class exercises in the five skill areas; pre- and post-course exercises in closure, hidden figures, map memory, and mental rotations; the final examination; a training evaluation form; and the integrating exercise.

  19. A PECULIAR FAINT SATELLITE IN THE REMOTE OUTER HALO OF M31

    SciTech Connect (OSTI)

    Mackey, A. D.; Dotter, A.; Huxor, A. P.; Martin, N. F.; Ibata, R. A.; Ferguson, A. M. N.; McConnachie, A. W.; Irwin, M. J.; Lewis, G. F.; Sakari, C. M.; Venn, K. A.; Tanvir, N. R.

    2013-06-20

    We present Hubble Space Telescope imaging of a newly discovered faint stellar system, PAndAS-48, in the outskirts of the M31 halo. Our photometry reveals this object to be comprised of an ancient and very metal-poor stellar population with age {approx}> 10 Gyr and [Fe/H] {approx}< -2.3. Our inferred distance modulus (m - M){sub 0} = 24.57 {+-} 0.11 confirms that PAndAS-48 is most likely a remote M31 satellite with a three-dimensional galactocentric radius of 149{sup +19}{sub -8} kpc. We observe an apparent spread in color on the upper red giant branch that is larger than the photometric uncertainties should allow, and briefly explore the implications of this. Structurally, PAndAS-48 is diffuse, faint, and moderately flattened, with a half-light radius r{sub h}=26{sup +4}{sub -3} pc, integrated luminosity M{sub V} = -4.8 {+-} 0.5, and ellipticity {epsilon}=0.30{sup +0.08}{sub -0.15}. On the size-luminosity plane it falls between the extended globular clusters seen in several nearby galaxies and the recently discovered faint dwarf satellites of the Milky Way; however, its characteristics do not allow us to unambiguously classify it as either type of system. If PAndAS-48 is a globular cluster then it is among the most elliptical, isolated, and metal-poor of any seen in the Local Group, extended or otherwise. Conversely, while its properties are generally consistent with those observed for the faint Milky Way dwarfs, it would be a factor of {approx}2-3 smaller in spatial extent than any known counterpart of comparable luminosity.

  20. THE ZURICH ENVIRONMENTAL STUDY (ZENS) OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. II. GALAXY STRUCTURAL MEASUREMENTS AND THE CONCENTRATION OF MORPHOLOGICALLY CLASSIFIED SATELLITES IN DIVERSE ENVIRONMENTS

    SciTech Connect (OSTI)

    Cibinel, A.; Carollo, C. M.; Lilly, S. J.; Miniati, F.; Cameron, E.; Peng, Y.; Pipino, A.; Rudick, C. S.; Silverman, J. D.; Van Gorkom, J. H.; Finoguenov, A.; Norberg, P. E-mail: marcella@phys.ethz.ch

    2013-10-20

    We present structural measurements for the galaxies in the 0.05 < z < 0.0585 groups of the Zurich Environmental Study, aimed at establishing how galaxy properties depend on four environmental parameters: group halo mass (M{sub GROUP}), group-centric distance (R/R{sub 200}), ranking into central or satellite, and large-scale structure density (?{sub LSS}). Global galaxy structure is quantified both parametrically and non-parametrically. We correct all these measurements for observational biases due to point-spread function blurring and surface brightness effects as a function of galaxy size, magnitude, steepness of light profile, and ellipticity. Structural parameters are derived also for bulges, disks, and bars. We use the galaxy bulge-to-total ratios (B/T) together with the calibrated non-parametric structural estimators to implement a quantitative morphological classification that maximizes purity in the resulting morphological samples. We investigate how the concentration C of satellite galaxies depends on galaxy mass for each Hubble type and on M{sub GROUP}, R/R{sub 200}, and ?{sub LSS}. At galaxy masses M ? 10{sup 10} M{sub ?}, the concentration of disk satellites increases with increasing stellar mass separately within each morphological bin of B/T. The known increase in concentration with stellar mass for disk satellites is thus due, at least in part, to an increase in galaxy central stellar density at constant B/T. The correlation between concentration and galaxy stellar mass becomes progressively steeper for later morphological types. The concentration of disk satellites shows a barely significant dependence on ?{sub LSS} or R/R{sub 200}. The strongest environmental effect is found with group mass for >10{sup 10} M{sub ?} disk-dominated satellites, which are ?10% more concentrated in high mass groups than in lower mass groups.

  1. Safety Observations Achieve Results

    Energy Science and Technology Software Center (OSTI)

    2000-01-16

    The SOAR web application provides a multi-checklist capability where focused observations can be created to address risk-likely work environments, tasks, etc. The SOAR web application has numerous reports to sort the data by key word, multiple factors (i.e., location, team, behavior, checklist, work environment, etc.), and the highest frequency of behaviors and error-likely predecessors, etc. Other performance indicators are also provided.

  2. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Earth System Observations Research comprises Earth, ocean, and atmospheric sciences to better understand and predict climate change's impact on ecosystems and to study subsurface geological materials and their interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader Claudia Mora Email Deputy Group Leader Bob Roback Email Profile pages header Search our Profile pages Investigating carbon

  3. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    SciTech Connect (OSTI)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Deformation in the material overlying an active reservoir is used to monitor pressure change at depth. A sequence of pressure field estimates, eleven in all, allow us to construct a measure of diffusive travel time throughout the reservoir. The dense distribution of travel time values means that we can construct an exactly linear inverse problem for reservoir flow properties. Application to Interferometric Synthetic Aperture Radar (InSAR) data gathered over a CO{sub 2} injection in Algeria reveals pressure propagation along two northwest trending corridors. An inversion of the travel times indicates the existence of two northwest-trending high permeability zones. The high permeability features trend in the same direction as the regional fault and fracture zones. Model parameter resolution estimates indicate that the features are well resolved.

  4. FORMATION OF MULTIPLE-SATELLITE SYSTEMS FROM LOW-MASS CIRCUMPLANETARY PARTICLE DISKS

    SciTech Connect (OSTI)

    Hyodo, Ryuki; Ohtsuki, Keiji; Takeda, Takaaki E-mail: ohtsuki@tiger.kobe-u.ac.jp

    2015-01-20

    Circumplanetary particle disks would be created in the late stage of planetary formation either by impacts of planetary bodies or disruption of satellites or passing bodies, and satellites can be formed by accretion of disk particles spreading across the Roche limit. Previous N-body simulation of lunar accretion focused on the formation of single-satellite systems from disks with large disk-to-planet mass ratios, while recent models of the formation of multiple-satellite systems from disks with smaller mass ratios do not take account of gravitational interaction between formed satellites. In the present work, we investigate satellite accretion from particle disks with various masses, using N-body simulation. In the case of accretion from somewhat less massive disks than the case of lunar accretion, formed satellites are not massive enough to clear out the disk, but can become massive enough to gravitationally shepherd the disk outer edge and start outward migration due to gravitational interaction with the disk. When the radial location of the 2:1 mean motion resonance of the satellite reaches outside the Roche limit, the second satellite can be formed near the disk outer edge, and then the two satellites continue outward migration while being locked in the resonance. Co-orbital satellites are found to be occasionally formed on the orbit of the first satellite. Our simulations also show that stochastic nature involved in gravitational interaction and collision between aggregates in the tidal environment can lead to diversity in the final mass and orbital architecture, which would be expected in satellite systems of exoplanets.

  5. Satellite image analysis for surveillance, vegetation and climate change

    SciTech Connect (OSTI)

    Cai, D Michael

    2011-01-18

    Recently, many studies have provided abundant evidence to show the trend of tree mortality is increasing in many regions, and the cause of tree mortality is associated with drought, insect outbreak, or fire. Unfortunately, there is no current capability available to monitor vegetation changes, and correlate and predict tree mortality with CO{sub 2} change, and climate change on the global scale. Different survey platforms (methods) have been used for forest management. Typical ground-based forest surveys measure tree stem diameter, species, and alive or dead. The measurements are low-tech and time consuming, but the sample sizes are large, running into millions of trees, covering large areas, and spanning many years. These field surveys provide powerful ground validation for other survey methods such as photo survey, helicopter GPS survey, and aerial overview survey. The satellite imagery has much larger coverage. It is easier to tile the different images together, and more important, the spatial resolution has been improved such that close to or even higher than aerial survey platforms. Today, the remote sensing satellite data have reached sub-meter spatial resolution for panchromatic channels (IKONOS 2: 1 m; Quickbird-2: 0.61 m; Worldview-2: 0.5 m) and meter spatial resolution for multi-spectral channels (IKONOS 2: 4 meter; Quickbird-2: 2.44 m; Worldview-2: 2 m). Therefore, high resolution satellite imagery can allow foresters to discern individual trees. This vital information should allow us to quantify physiological states of trees, e.g. healthy or dead, shape and size of tree crowns, as well as species and functional compositions of trees. This is a powerful data resource, however, due to the vast amount of the data collected daily, it is impossible for human analysts to review the imagery in detail to identify the vital biodiversity information. Thus, in this talk, we will discuss the opportunities and challenges to use high resolution satellite imagery and machine learning theory to monitor tree mortality at the level of individual trees.

  6. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect (OSTI)

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  7. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    SciTech Connect (OSTI)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla; Cote, Patrick; Stetson, Peter; Simon, Joshua D.; Djorgovski, S. G. E-mail: rmunoz@das.uchile.cl

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed for inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.

  8. PERSEUS I: A DISTANT SATELLITE DWARF GALAXY OF ANDROMEDA

    SciTech Connect (OSTI)

    Martin, Nicolas F.; Laevens, Benjamin P. M.; Schlafly, Edward F.; Rix, Hans-Walter; Slater, Colin T.; Bell, Eric F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Finkbeiner, Douglas P.; Burgett, William S.; Chambers, Kenneth C.; Hodapp, Klaus W.; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Tonry, John L.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2013-12-10

    We present the discovery of a new dwarf galaxy, Perseus I/Andromeda XXXIII, found in the vicinity of Andromeda (M31) in stacked imaging data from the Pan-STARRS1 3? survey. Located 27.9 away from M31, Perseus I has a heliocentric distance of 785 65 kpc, compatible with it being a satellite of M31 at 374{sub ?10}{sup +14} kpc from its host. The properties of Perseus I are typical for a reasonably bright dwarf galaxy (M{sub V} = 10.3 0.7), with an exponential half-light radius of r{sub h} = 1.7 0.4 arcmin or r{sub h}=400{sub ?85}{sup +105} pc at this distance, and a moderate ellipticity (?=0.43{sub ?0.17}{sup +0.15}). The late discovery of Perseus I is due to its fairly low surface brightness (?{sub 0}=25.7{sub ?0.9}{sup +1.0}magarcsec{sup 2}), and to the previous lack of deep, high quality photometric data in this region. If confirmed to be a companion of M31, the location of Perseus I, far east from its host, could place interesting constraints on the bulk motion of the satellite system of M31.

  9. Umatilla Satellite and Release Sites Project : Final Siting Report.

    SciTech Connect (OSTI)

    Montgomery, James M.

    1992-04-01

    This report presents the results of site analysis for the Umatilla Satellite and Release Sites Project. The purpose of this project is to provide engineering services for the siting and conceptual design of satellite and release facilities for the Umatilla Basin hatchery program. The Umatilla Basin hatchery program consists of artificial production facilities for salmon and steelhead to enhance production in the Umatilla River as defined in the Umatilla master plan approved in 1989 by the Northwest Power Planning Council. Facilities identified in the master plan include adult salmon broodstock holding and spawning facilities, facilities for recovery, acclimation, and/or extended rearing of salmon juveniles, and development of river sites for release of hatchery salmon and steelhead. The historic and current distribution of fall chinook, summer chinook, and coho salmon and steelhead trout was summarized for the Umatilla River basin. Current and future production and release objectives were reviewed. Twenty seven sites were evaluated for the potential and development of facilities. Engineering and environmental attributes of the sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  10. ERS 14.1 Satellite Accumulation Ares (RCRA Compliance), 4/30/13

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's management of hazardous and mixed wastes in satellite accumulation areas.  The Facility Representative...

  11. NERSC User Group 2013 Big Bang, Big Data, Big Iron Planck Satellite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Big Bang, Big Data, Big Iron Planck Satellite Data Analysis At NERSC Julian Borrill Computational Cosmology Center, Berkeley Lab & Space Sciences Laboratory, UC Berkeley NERSC ...

  12. Cumulus Geometry from Satellite and Surface Data at the ARM TWP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cumulus Geometry from Satellite and Surface Data at the ARM TWP Site E. I. Kassianov, T. P. Ackerman, and R. T. Marchand Pacific Northwest National Laboratory Richland, Washington...

  13. After-hours power status of office equipment and energy use of miscellaneous plug-load equipment

    SciTech Connect (OSTI)

    Roberson, Judy A.; Webber, Carrie A.; McWhinney, Marla C.; Brown, Richard E.; Pinckard, Marageret J.; Busch, John F.

    2004-05-27

    This research was conducted in support of two branches of the EPA ENERGY STAR program, whose overall goal is to reduce, through voluntary market-based means, the amount of carbon dioxide emitted in the U.S. The primary objective was to collect data for the ENERGY STAR Office Equipment program on the after-hours power state of computers, monitors, printers, copiers, scanners, fax machines, and multi-function devices. We also collected data for the ENERGY STAR Commercial Buildings branch on the types and amounts of miscellaneous plug-load equipment, a significant and growing end use that is not usually accounted for by building energy managers. For most types of miscellaneous equipment, we also estimated typical unit energy consumption in order to estimate total energy consumption of the miscellaneous devices within our sample. This data set is the first of its kind that we know of, and is an important first step in characterizing miscellaneous plug loads in commercial buildings. The main purpose of this study is to supplement and update previous data we collected on the extent to which electronic office equipment is turned off or automatically enters a low power state when not in active use. In addition, it provides data on numbers and types of office equipment, and helps identify trends in office equipment usage patterns. These data improve our estimates of typical unit energy consumption and savings for each equipment type, and enables the ENERGY STAR Office Equipment program to focus future effort on products with the highest energy savings potential. This study expands our previous sample of office buildings in California and Washington DC to include education and health care facilities, and buildings in other states. We report data from sixteen commercial buildings in California, Georgia, and Pennsylvania: four education buildings, two medical buildings, two large offices (> 500 employees each), three medium offices (50-500 employees each), and five small business offices (< 50 employees each). Two buildings are in the San Francisco Bay are a of California, nine (including the five small businesses) are in Pittsburgh, Pennsylvania, and five are in Atlanta, Georgia.

  14. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsSatellite Observations

  15. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXI. A GAS-GIANT PLANET IN A ONE YEAR ORBIT AND THE HABITABILITY OF GAS-GIANT SATELLITES

    SciTech Connect (OSTI)

    Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; Horner, J.; Butler, R. Paul; Jones, Hugh R. A.; O'Toole, Simon J.; Carter, Brad D.

    2011-05-01

    We have detected the Doppler signature of a gas-giant exoplanet orbiting the star HD 38283, in an eccentric orbit with a period of almost exactly one year (P = 363.2 {+-} 1.6 d, m sin i = 0.34 {+-} 0.02 M{sub Jup}, e = 0.41 {+-} 0.16). The detection of a planet with period very close to one year critically relied on year-round observation of this circumpolar star. Discovering a planet in a 1 AU orbit around a G dwarf star has prompted us to look more closely at the question of the habitability of the satellites of such planets. Regular satellites orbit all the giant planets in our solar system, suggesting that their formation is a natural by-product of the planet formation process. There is no reason for exomoon formation not to be similarly likely in exoplanetary systems. Moreover, our current understanding of that formation process does not preclude satellite formation in systems where gas giants undergo migration from their formation locations into the terrestrial planet habitable zone. Indeed, regular satellite formation and Type II migration are both linked to the clearing of a gap in the protoplanetary disk by a planet, and so may be inextricably linked. Migration would also multiply the chances of capturing both irregular satellites and Trojan companions sufficiently massive to be habitable. The habitability of such exomoons and exo-Trojans will critically depend on their mass, whether or not they host a magnetosphere, and (for the exomoon case) their orbital radius around the host exoplanet.

  16. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    SciTech Connect (OSTI)

    Niederman, Robert A.; Blankenship, Robert E.; Frank, Harry A.

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees represented a diverse international and multidisciplinary group, with over 160 individuals attending from a total of 17 different countries. Attendees came from a wide range of fields assuring that the widest possible interdisciplinary exchanges. They included prominent biochemists, biophysicists, plant physiologists, chemical physicists, as well as theoretical and computational physical chemists, who presented their research findings or to hear the latest advances in this very dynamic field. In the choice of speakers, a balance was created between established scientists and young, emerging researchers, given this opportunity to showcase their results. Sessions were held on electronic and vibrational coherence including coherent sharing of excitations among donor and acceptor molecules during excitation energy transfer, nonphotochemical quenching, acclimation to light environments, evolution, adaptation and biodiversity of light-harvesting pigment-protein complexes, their structure and membrane organization, spectroscopy and dynamics, as well as artificial antenna systems. A joint session was also held with the participants from the Cyanobacterial Satellite Conference. A special issue of Photosynthesis Research devoted to light harvesting (Volume 121, Issue No. 1, July 2014) has recently appeared which contains peer-reviewed original research contributions arising from talks and posters presented at the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems. Edited by the Organizers of the Workshop, Robert E. Blankenship, Harry A. Frank and Robert A. Niederman, it includes topics ranging from the isolation of new bacteriochlorophyll species from green bacteria, temperature effects on the excited states of the newly discovered chlorophyll (Chl) ƒ, new architectures for enhancing energy capture by biohybrid light-harvesting complexes, forces governing the formation of light-harvesting rings, spectroscopy of carotenoids of algae and diatoms and the supramolecular organization of caroteno-Chl proteins in diatoms, the molecular basis for urea dissociation of phycocyanin trimers and the role of vibronic molecular excitation theory in describing the spectral dynamics of pigment-protein complexes.

  17. Magnetohydrodynamic turbulence: Observation and experiment

    SciTech Connect (OSTI)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  18. Gravitational waves and stalled satellites from massive galaxy mergers at z ? 1

    SciTech Connect (OSTI)

    McWilliams, Sean T.; Pretorius, Frans; Ostriker, Jeremiah P.

    2014-07-10

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ? 1) implied by this model, and find that this population has a signal-to-noise ratio 2 to 5 larger than previous estimates for pulsar timing arrays, with a (2?, 3?) lower limit within this model of h{sub c}(f = 1 yr{sup 1}) = (1.1 10{sup 15}, 6.8 10{sup 16}). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ?2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  19. Observation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tearing mode deceleration and locking due to eddy currents induced in a conducting shell B. E. Chapman Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 R. Fitzpatrick Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712 D. Craig Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 P. Martin Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, 35127 Padova, Italy

  20. Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Multiple Magnetic Islands in the Core of a Reversed Field Pinch P. Franz, 1,2 L. Marrelli, 1,2 P. Piovesan, 1,2 B. E. Chapman, 3 P. Martin, 1,2 I. Predebon, 1,2 G. Spizzo, 1 R. B. White, 4 and C. Xiao 3,5 1 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti, 4 35127 Padova, Italy * 2 Istituto Nazionale di Fisica della Materia, UdR Padova, Italy 3 Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA 4 Plasma

  1. Observation

    Office of Scientific and Technical Information (OSTI)

    to an Orbital-Selective Mott Phase in A x Fe 2-y Se 2 (AK, Rb) Superconductors M. Yi, 1, 2 D. H. Lu, 3 R. Yu, 4 S. C. Riggs, 1, 2 J.-H. Chu, 1, 2 B. Lv, 5 Z. Liu, 1, 2 M. Lu,...

  2. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

  3. Small solar wind transients: Stereo-A observations in 2009

    SciTech Connect (OSTI)

    Yu, W.; Farrugia, C. J.; Galvin, A. B.; Simunac, K. D. C.; Popecki, M. A.; Lugaz, N.; Kilpua, E. K. J.; Moestl, C.; Luhmann, J. G.; Opitz, A.; Sauvaud, J.-A.

    2013-06-13

    Year 2009 was the last year of a long and pronounced solar activity minimum. In this year the solar wind in the inner heliosphere was for 90% of the time slow (< 450 km s{sup -1}) and with a weaker magnetic field strength compared to the previous solar minimum 1995-1996. We choose this year to present the results of a systematic search for small solar wind transients (STs) observed by the STEREO-Ahead (ST-A) probe. The data are from the PLASTIC and IMPACT instrument suites. By 'small' we mean a duration from {approx}1 to 12 hours. The parameters we search for to identify STs are (i) the total field strength, (ii) the rotation of the magnetic field vector, (iii) its smoothness, (iv) proton temperature, (v) proton beta, and (vi) Alfven Mach number. We find 45 examples. The STs have an average duration of {approx}4 hours. Ensemble averages of key quantities are: (i) maximum B = 7.01 nT; (ii) proton {beta}= 0.18; (iii) proton thermal speed = 20.8 km s{sup -1}; and (iv) Alfven Mach number = 6.13. No distinctive feature is found in the pitch angle distributions of suprathermal electrons. Our statistical results are compared with those of STs observed near Earth by Wind during 2009.

  4. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  5. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B

    2010-01-01

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  6. Pulmonary function and symptom responses after 6. 6-hour exposure to 0. 12-ppm ozone with moderate exercise (journal version)

    SciTech Connect (OSTI)

    Folinsbee, L.J.; Horstman, D.H.; McDonnell, W.F.

    1988-01-01

    Episodes occasionally occur when ambient ozone (O/sub 3/) levels remain at or near 0.12 ppm for more than 6 h. The hypothesis that prolonged exposure to 0.12 ppm O/sub 3/ would result in progressively larger changes in respiratory function and symptoms over time was tested. Ten nonsmoking males (18-35 yr) were exposed once to clear air (CA) and once to 0.12 pp, O/sub 3/ for 6.75 h. Exposures consisted of six 50-min exercise periods, each followed by 10-min rest and measurement; a 45-min lunch period followed the third exercise period. Exercise ventilation averaged approximately 40 1/min. Forced expiratory and inspiratory spirometry and respiratory symptoms were measured prior to exposure and after each exercise. Increases in the symptom ratings of cough and pain on deep inspiration were observed with O/sub 3/ exposure but not with CA. Airway reactivity to methacholine was approximately doubled following O/sub 3/ exposure. Spirometry results indicate that prolonged exposure to 0.12 ppm O/sub 3/ results in a marked increase in non-specific airway reactivity and progressive changes in respiratory function.

  7. Probing baryonic processes and gastrophysics in the formation of the Milky Way dwarf satellites. I. Metallicity distribution properties

    SciTech Connect (OSTI)

    Hou, Jun; Yu, Qingjuan [Kavli Institute for Astronomy and Astrophysics, and School of Physics, Peking University, Beijing 100871 (China); Lu, Youjun, E-mail: yuqj@pku.edu.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-08-10

    The Milky Way (MW) dwarf satellites, as the smallest galaxies discovered in the present-day universe, are potentially powerful probes to various baryonic processes in galaxy formation occurring in the early universe. In this paper, we study the chemical properties of the stars in the dwarf satellites around the MW-like host galaxies, and explore the possible effects of several baryonic processes, including supernova (SN) feedback, the reionization of the universe, and H{sub 2} cooling, and how current and future observations may put some constraints on these processes. We use a semianalytical model to generate MW-like galaxies, for which a fiducial model can reproduce the luminosity function and the stellar metallicity-stellar mass correlation of the MW dwarfs. Using the simulated MW-like galaxies, we focus on investigating three metallicity properties of their dwarfs: the stellar metallicity-stellar mass correlation of the dwarf population, and the metal-poor and metal-rich tails of the stellar metallicity distribution in individual dwarfs. We find that (1) the slope of the stellar metallicity-stellar mass correlation is sensitive to the SN feedback strength and the reionization epoch; (2) the extension of the metal-rich tails is mainly sensitive to the SN feedback strength; (3) the extension of the metal-poor tails is mainly sensitive to the reionization epoch; (4) none of the three chemical properties are sensitive to the H{sub 2} cooling process; and (5) a comparison of our model results with the current observational slope of the stellar metallicity-stellar mass relation suggests that the local universe is reionized earlier than the cosmic average, local sources may have a significant contribution to the reionization in the local region, and an intermediate to strong SN feedback strength is preferred. Future observations of metal-rich and metal-poor tails of stellar metallicity distributions will put further constraints on the SN feedback and the reionization processes.

  8. State observer for synchronous motors

    DOE Patents [OSTI]

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  9. Sox2 promotes survival of satellite glial cells in vitro

    SciTech Connect (OSTI)

    Koike, Taro Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  10. ,"Table 3A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    A.1. January Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area," ,"1996-2010 Actual, 2011-2012 Projected" ,"(Megawatts)" ,"January","NERC Regional Assesment Area" ,,,"Actual",,,,,,,,,,,,,,,"Projected" ,,,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"2011E","2012E" ,"Eastern

  11. ,"Table 3B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area,"

    U.S. Energy Information Administration (EIA) Indexed Site

    B.1. FRCC Monthly Peak Hour Demand, by North American Electric Reliability Corporation Assesment Area," ,"1996-2010 Actual, 2011-2012 Projected" ,"(Megawatts)" ,"FRCC","Year","January","February","March","April","May","June","July","August","September","October","November","December"

  12. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    January 2010" ,"Next Update: October 2010" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2008 and Projected 2009 through 2010 " ,"(Megawatts and 2008 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  13. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"1996 through 2003 and Projected 2004 through 2005 " ,"(Megawatts and 2003 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  14. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"2005 and Projected 2006 through 2010 " ,"(Megawatts and 2005 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  15. Pulmonary function and symptom responses after 6. 6-hour exposure to 0. 12 ppm ozone with moderate exercise

    SciTech Connect (OSTI)

    Folinsbee, L.J.; McDonnell, W.F.; Horstman, D.H.

    1988-01-01

    Episodes occasionally occur when ambient ozone (O/sub 3/) levels remain at or near 0.12 ppm for more than 6 h. Small decrements in lung function have been reported following 2-h exposures to 0.12 ppm O/sub 3/. For short exposures to higher O/sub 3/ concentrations, lung function decrements are a function of exposure duration. Thus, we investigated the hypothesis that prolonged exposure to 0.12 ppm O/sub 3/ would result in progressively larger changes in respiratory function and symptoms over time. Ten nonsmoking males were exposed once to clean air and once to 0.12 ppm O/sub 3/ for 6.6 h. Exposures consisted of six 50-min exercise periods, each followed by 10-min rest and measurement; a 35-min lunch period followed by the third exercise period. Exercise ventilation averaged approximately 40 L/min. Forced expiratory and inspiratory spirometry and respiratory symptoms were measured prior to exposure and after each exercise. Airway reactivity to methacholine was determined after each exposure. After correcting for the air exposures, FEV 1.0 was found to decrease linearly during the O/sub 3/ exposure and was decreased by an average of 13.0 percent at the end of exposure. Decreases in FVC and FEF24-75% were also linear and averaged 8.3 and 17.4 percent, respectively, at the end of exposure. On forced inspiratory tests, the FIVC and FIV05 were decreased 12.6 and 20.7 percent, respectively. Increases in the symptom ratings of cough and pain on deep inspiration were observed with O/sub 3/ exposure but not with clean air. Airway reactivity to methacholine was approximately doubled following O/sub 3/ exposure.

  16. X-ray line polarization spectroscopy of Li-like satellite line spectra

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: X-ray line polarization spectroscopy of Li-like satellite line spectra Citation Details In-Document Search Title: X-ray line polarization spectroscopy of Li-like satellite line spectra We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of

  17. Preliminary materials assessment for the Satellite Power System (SPS)

    SciTech Connect (OSTI)

    Teeter, R.R.; Jamieson, W.M.

    1980-01-01

    Presently, there are two SPS reference design concepts (one using silicon solar cells; the other using gallium arsenide solar cells). A materials assessment of both systems was performed based on the materials lists set forth in the DOE/NASA SPS Reference System Report: Concept Development and Evaluation Program. This listing identified 22 materials (plus miscellaneous and organics) used in the SPS. Tracing the production processes for these 22 materials, a total demand for over 20 different bulk materials (copper, silicon, sulfuric acid, etc.) and nealy 30 raw materials (copper ore, sand, sulfur ore, etc.) was revealed. Assessment of these SPS material requirements produced a number of potential material supply problems. The more serious problems are those associated with the solar cell materials (gallium, gallium arsenide, sapphire, and solar grade silicon), and the graphite fiber required for the satellite structure and space construction facilities. In general, the gallium arsenide SPS option exhibits more serious problems than the silicon option, possibly because gallium arsenide technology is not as well developed as that for silicon. Results are presented and discussed in detail. (WHK)

  18. NS&T MANAGEMENT OBSERVATIONS

    SciTech Connect (OSTI)

    Gianotto, David

    2014-06-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of managements observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&Ts MOP.

  19. NS&T Management Observations

    SciTech Connect (OSTI)

    Gianotto, David

    2014-09-01

    The INL Management Observation Program (MOP) is designed to improve managers and supervisors understanding of work being performed by employees and the barriers impacting their success. The MOP also increases workers understanding of managements expectations as they relate to safety, security, quality, and work performance. Management observations (observations) are designed to improve the relationship and trust between employees and managers through increased engagement and interactions between managers and researchers in the field. As part of continuous improvement, NS&T management took initiative to focus on the participation and quality of observations in FY 14. This quarterly report is intended to (a) summarize the participation and quality of managements observations, (b) assess observations for commonalities or trends related to facility or process barriers impacting research, and (c) provide feedback and make recommendations for improvements NS&Ts MOP.

  20. IBEX satellite finds ribbon-like structure at edge of heliosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBEX satellite finds ribbon-like structure at edge of heliosphere The NASA IBEX mission ... Using the High Energy Neutral Atom Imager, led by Los Alamos National Laboratory, the NASA ...

  1. Compressed Air System Optimization Improves Production and saves energy at a Satellite Manufacturer

    SciTech Connect (OSTI)

    2002-05-01

    In 2001, a compressed air improvement project was implemented following an audit on the compressed air system at Boeing Satellite Systems (formerly Hughes Space & Communications Company) in Los Angeles, California.

  2. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  3. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and

    Office of Scientific and Technical Information (OSTI)

    the Metallicity Distribution of Accreted Stars (Journal Article) | SciTech Connect The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars Citation Details In-Document Search Title: The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars Authors: Deason, Alis J. ; Mao, Yao-Yuan ; Wechsler, Risa H. ; /KIPAC, Menlo Park /SLAC Publication Date: 2016-02-02 OSTI

  4. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and

    Office of Scientific and Technical Information (OSTI)

    the Metallicity Distribution of Accreted Stars (Journal Article) | SciTech Connect The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars Citation Details In-Document Search Title: The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  5. Validation of Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers M. M. Khaiyer and J. Huang Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis, B. Lin, and W. L. Smith, Jr. National Aeronautics and Space Administration Langley Research Center Hampton, Virginia A. Fan Science Applications International Corporation Hampton, Virginia A. Rapp Colorado State University Fort Collins, Colorado Introduction Satellites are useful for monitoring climatological parameters over

  6. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  7. OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT

    SciTech Connect (OSTI)

    Warren, Harry P.; Doschek, George A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mariska, John T. [School of Physics, Astronomy, and Computational Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2013-06-20

    One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

  8. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    6" ,"Released: February 7, 2008" ,"Next Update: October 2008" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2006 and Projected 2007 through 2011 " ,"(Megawatts and 2006 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  9. ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, "

    U.S. Energy Information Administration (EIA) Indexed Site

    7" ,"Released: February 2009" ,"Next Update: October 2009" ,"Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Corporation Region, " ,"2007 and Projected 2008 through 2009 " ,"(Megawatts and 2007 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

  10. THE DISTRIBUTION OF FAINT SATELLITES AROUND CENTRAL GALAXIES IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    SciTech Connect (OSTI)

    Jiang, C. Y.; Jing, Y. P.; Li, Cheng

    2012-11-20

    We investigate the radial number density profile and the abundance distribution of faint satellites around central galaxies in the low-redshift universe using the Canada-France-Hawaii Telescope (CFHT) Legacy Survey. We consider three samples of central galaxies with magnitudes of M {sub r} = -21, -22, and -23 selected from the Sloan Digital Sky Survey group catalog of Yang et al. The satellite distribution around these central galaxies is obtained by cross-correlating these galaxies with the photometric catalog of the CFHT Legacy Survey. The projected radial number density of the satellites obeys a power-law form with the best-fit logarithmic slope of -1.05, independent of both the central galaxy luminosity and the satellite luminosity. The projected cross-correlation function between central and satellite galaxies exhibits a non-monotonic trend with satellite luminosity. It is most pronounced for central galaxies with M {sub r} = -21, where the decreasing trend of clustering amplitude with satellite luminosity is reversed when satellites are fainter than central galaxies by more than 2 mag. A comparison with the satellite luminosity functions in the Milky Way (MW) and M31 shows that the MW/M31 system has about twice as many satellites as around a typical central galaxy of similar luminosity. The implications for theoretical models are briefly discussed.

  11. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; et al

    2015-06-30

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to estimate global and North American methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. GEOS-Chem and GOSAT data are first evaluated with atmospheric methane observations from surface and tower networks (NOAA/ESRL, TCCON) and aircraft (NOAA/ESRL, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. Our global adjoint-based inversion yields a totalmore » methane source of 539 Tg a−1 with some important regional corrections to the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a−1, as compared to 24.9–27.0 Tg a−1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a−1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the southern–central US, the Central Valley of California, and Florida wetlands; large isolated point sources such as the US Four Corners also contribute. Using prior information on source locations, we attribute 29–44 % of US anthropogenic methane emissions to livestock, 22–31 % to oil/gas, 20 % to landfills/wastewater, and 11–15 % to coal. Wetlands contribute an additional 9.0–10.1 Tg a−1.« less

  12. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; et al

    2015-02-18

    We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently usedmore » for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a−1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a−1, as compared to 24.9–27.0 Tg a−1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a−1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29–44% of US anthropogenic methane emissions to livestock, 22–31% to oil/gas, 20% to landfills/waste water, and 11–15% to coal with an additional 9.0–10.1 Tg a−1 source from wetlands.« less

  13. Stacking the invisibles: A guided search for low-luminosity Milky Way satellites

    SciTech Connect (OSTI)

    Sesar, Branimir; Banholzer, Sophianna R.; Cohen, Judith G.; Levitan, David; Kulkarni, Shrinivas R.; Prince, Thomas A.; Martin, Nicolas F.; Rix, Hans-Walter; Grillmair, Carl J.; Laher, Russ R.; Surace, Jason A.; Ofek, Eran O.

    2014-10-01

    Almost every known low-luminosity Milky Way dwarf spheroidal (dSph) satellite galaxy contains at least one RR Lyrae star. Assuming that a fraction of distant (60 < d {sub helio} < 100 kpc) Galactic halo RR Lyrae stars are members of yet to be discovered low-luminosity dSph galaxies, we perform a guided search for these low-luminosity dSph galaxies. In order to detect the presence of dSph galaxies, we combine stars selected from more than 123 sightlines centered on RR Lyrae stars identified by the Palomar Transient Factory. We find that this method is sensitive enough to detect the presence of Segue 1-like galaxies (M{sub V}=?1.5{sub ?0.8}{sup +0.6}, r{sub h} = 30 pc) even if only ?20 sightlines were occupied by such dSph galaxies. Yet, when our method is applied to the Sloan Digital Sky Survey Data Release 10 imaging catalog, no signal is detected. An application of our method to sightlines occupied by pairs of close (<200 pc) horizontal branch stars, also did not yield a detection. Thus, we place upper limits on the number of low-luminosity dSph galaxies with half-light radii from 30 pc to 120 pc, and in the probed volume of the halo. Stronger constraints on the luminosity function may be obtained by applying our method to sightlines centered on RR Lyrae stars selected from the Pan-STARRS1 survey, and eventually, from the Large Synoptic Survey Telescope. In Appendix A, we present spectroscopic observations of an RRab star in the Botes 3 dSph and a light curve of an RRab star near the Botes 2 dSph.

  14. Observations of giant pulses from pulsar B0950+08 using LWA1

    SciTech Connect (OSTI)

    Tsai, Jr-Wei; Simonetti, John H.; Bear, Brandon; Akukwe, Bernadine; Quezada, Leandro; Kavic, Michael; Cutchin, Sean E.; Dowell, Jayce; Schinzel, Frank K.; Taylor, Gregory B.; Gough, Jonathan D.; Kanner, Jonah; Kassim, Namir E.; Shawhan, Peter; Yancey, Cregg C.

    2015-02-01

    We report the detection of giant pulse (GP) emission from PSR B0950+08 in 24 hours of observations made at 39.4 MHz, with a bandwidth of 16 MHz, using the first station of the Long Wavelength Array. We detected 119 GPs from PSR B0950+08 (at its dispersion measure (DM)), which we define as having a signal-to-noise ratio at least 10 times larger than for the mean pulse in our data set. These 119 pulses are 0.035% of the total number of pulse periods in the 24 hours of observations. The rate of GPs is about 5.0 per hour. The cumulative distribution of pulse strength S is a steep power law, N(>S)?S{sup ?4.7}, but much less steep than would be expected if we were observing the tail of a Gaussian distribution of normal pulses. We detected no other transient pulses in a DM range from 1 to 90 pc cm{sup ?3}, in the beam tracking PSR B0950+08. The GPs have a narrower temporal width than the mean pulse (17.8 ms, on average, versus 30.5 ms). The pulse widths are consistent with a previously observed weak dependence on observing frequency, which may be indicative of a deviation from a Kolmogorov spectrum of electron density irregularities along the line of sight. The rate and strength of these GPs is less than has been observed at ?100 MHz. Additionally, the mean (normal) pulse flux density we observed is less than at ?100 MHz. These results suggest this pulsar is weaker and produces less frequent GPs at 39 MHz than at 100 MHz.

  15. High-resolution in situ observations of electron precipitation-causing EMIC waves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; Kletzing, Craig A.; Brundell, James B.; Reeves, Geoffrey D.

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size,more » and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.« less

  16. High-resolution in situ observations of electron precipitation-causing EMIC waves

    SciTech Connect (OSTI)

    Rodger, Craig J.; Hendry, Aaron T.; Clilverd, Mark A.; Kletzing, Craig A.; Brundell, James B.; Reeves, Geoffrey D.

    2015-11-21

    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. As a result, these observations will better constrain modeling into the importance of EMIC wave-particle interactions.

  17. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect (OSTI)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.

  18. On identifying the specular reflection of sunlight in earth-monitoring satellite data.

    SciTech Connect (OSTI)

    Nelsen, James M., Jr.; Hohlfelder, Robert James; Jackson, Dale Clayton; Longenbaugh, Randolph S.

    2009-03-01

    Among the background signals commonly seen by Earth-monitoring satellites is the specular reflection of sunlight off of Earth's surface, commonly referred to as a glint. This phenomenon, involving liquid or ice surfaces, can result in the brief, intense illumination of satellite sensors appearing from the satellite perspective to be of terrestrial origin. These glints are important background signals to be able to identify with confidence, particularly in the context of analyzing data from satellites monitoring for transient surface or atmospheric events. Here we describe methods for identifying glints based on the physical processes involved in their production, including spectral fitting and polarization measurements. We then describe a tool that, using the WGS84 spheroidal Earth model, finds the latitude and longitude on Earth where a reflection of this type could be produced, given input Sun and satellite coordinates. This tool enables the user to determine if the surface at the solution latitude and longitude is in fact reflective, thus identifying the sensor response as a true glint or an event requiring further analysis.

  19. Surface reflectance retrieval from satellite and aircraft sensors: Results of sensor and algorithm comparisons during FIFE

    SciTech Connect (OSTI)

    Markham, B.L. ); Halthore, R.N.; Goetz, S.J. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. This paper reports on comparison of measurement systems which were deployed to measure surface reflectance factors, from aircraft or satellites. These instruments look over the general range of 0.4 to 2.5[mu]m. Instruments studied include Landsat 5 thematic mapper (TM), the SPOT 1 high-resolution visible sensor (HRV) 1, the NS001 thematic mapper simulator, and the modular multispectral radiometers (MMRs). The study looked at the radiometric consistency of the different instruments, and the adequacy of the atmospheric correction routines applied to data analysis.

  20. Real time cumulant approach for charge-transfer satellites in x-ray photoemission spectra

    SciTech Connect (OSTI)

    Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Chambers, Scott A.

    2015-03-01

    X-ray photoemission spectra generally exhibit satellite features in addition to quasi-particle peaks due to many-body excitations which have been of considerable theoretical and experimental interest. However, the satellites attributed to charge-transfer (CT) excitations in correlated materials have proved difficult to calculate from first principles. Here we report a real-time, real-space approach for such calculations based on a cumulant representation of the core-hole Green’s function and time-dependent density functional theory. This approach also yields an interpretation of CT satellites in terms of a complex oscillatory, transient response to a suddenly created core hole. Illustrative results for TiO2 and NiO are in good agreement with experiment.

  1. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    SciTech Connect (OSTI)

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  2. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    SciTech Connect (OSTI)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W.; Bussey, D. Ben J.; Breiner, Jonathan

    2014-06-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  3. Intensive Observation Period Projects Scheduled

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Intensive Observation Period Projects Scheduled Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the

  4. Shortwave Hyperspectral Observations during MAGIC

    Office of Scientific and Technical Information (OSTI)

    4 Shortwave Hyperspectral Observations During MAGIC Final Campaign Summary PJ McBride W Yang A Marshak March 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  5. Observations Modeling GoAmazon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report P Buseck March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  6. Observations Modeling GoAmazon

    Office of Scientific and Technical Information (OSTI)

    80 Observations and Modeling of the Green Ocean Amazon 2014/15: Transmission Electron Microscopy Analysis of Aerosol Particles Field Campaign Report P Buseck March 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  7. ARM - Surface Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011

  8. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    SciTech Connect (OSTI)

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  9. Observation of Nonlinear Compton Scattering

    SciTech Connect (OSTI)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  10. Category:Observation Wells | Open Energy Information

    Open Energy Info (EERE)

    Observation Wells Jump to: navigation, search Geothermalpower.jpg Looking for the Observation Wells page? For detailed information on Observation Wells, click here....

  11. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect (OSTI)

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for enhanced H2 production profiles using selected culture conditions and inhibitors of specific pathways in WT cells and an NDH-1 mutant; 3. Create Synechocystis PCC 6803 mutant strains with modified hydrogenases exhibiting increased O2 tolerance and greater H2 production; and 4. Integrate enhanced hydrogenase mutants and culture and metabolic factor studies to maximize 24-hour H2 production.

  12. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  13. Thermal design of the fast-on-orbit recording of transient events (FORTE) satellite

    SciTech Connect (OSTI)

    Akau, R.L.; Behr, V.L.; Whitaker, R.

    1994-10-01

    Analytical tools were used to design a thermal control system for the FORTE satellite. An overall spacecraft thermal model was developed to provide boundary temperatures for detailed thermal models of the FORTE instruments. The thermal design will be presented and thermal model results discussed.

  14. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    SciTech Connect (OSTI)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

  15. Comet tail formation: Giotto observations

    SciTech Connect (OSTI)

    Wilken, B.; Jockers, K.; Johnstone, A.; Coates, A.; Heath, J.; Formisano, V.; Amata, E.; Winningham, J.D.; Thomsen, M.; Bryant, D.A.

    1986-01-01

    The process of mass loading of the solar wind by cometary ions, which forms comet tails, has been observed throughout the coma of comet Halley. Three distinct regimes were found where the nature of the energy and momentum coupling between solar wind and cometary ions is different. Outside the bow shock, where there is little angular scattering of the freshly ionized particles, the coupling is described by the simple pickup trajectory and the energy is controlled by the angle between the flow and the magnetic field. Just inside the bow shock, there is considerable scattering accompanied by another acceleration process which raises some particle energies well above the straightforward pickup value. Finally, closer to the nucleus, the amount of scattering decreases and the coupling is once more controlled by the magnetic field direction. 4 refs., 3 figs.

  16. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earths radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  17. The Potential Uses of Commercial Satellite Imagery in the Middle East

    SciTech Connect (OSTI)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  18. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; et al

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less

  19. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    SciTech Connect (OSTI)

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C. J.; Turunen, E.; Tsuchiya, F.

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

  20. New photodisintegration threshold observable in

    SciTech Connect (OSTI)

    E.A. Wulf; R.S. Canon; Sally J. Gaff; J.H. Kelley; R.M. Prior; E.C. Schreiber; M. Spraker; D.R. Tilley; H.R. Weller; M. Viviani; A. Kievsky; S. Rosati; Rocco Schiavilla

    2000-02-01

    Measurements of the cross section, vector, and tensor analyzing powers, and linear gamma-ray polarization in the radiative capture reactions D(p,y){sup 3} He and p(d,y){sup 3}He at c.m. energies in the range 0-53 keV allow the determination of the reduced matrix elements (RMEs) relevant for these transitions. From these RMEs the value of the integral which determines the Gerasimov-Drell-Hearn sum rule for He is obtained in the threshold region, corresponding to two-body breakup, and compared with the results of an ab initio microscopic three-body model calculation.The theoretical predictions for the value of this integral based on a ''nucleons-only'' assumption are an order of magnitude smaller than experiment. The discrepancy is reduced to about a factor of 2 when two-body currents are taken into account. This factor of 2 is due to an almost exact cancellation between the dominant E1 RMEs in the theoretical calculation. The excess E1 strength observed experimentally could provide useful insights into the nuclear interaction at low energies.

  1. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    SciTech Connect (OSTI)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.

  2. Special Emphasis Observances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diversity and Inclusion » Special Emphasis Observances Special Emphasis Observances The Energy Department celebrates special emphasis observances regularly, inviting guest speakers to highlight how the agency's mission benefits from diversity and inclusion. The Energy Department celebrates special emphasis observances regularly, inviting guest speakers to highlight how the agency's mission benefits from diversity and inclusion. The Department of Energy observes special days, weeks, and months

  3. GNEP Partners and Observers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GNEP Partners and Observers GNEP Partners and Observers A list of GNEP partners and observers. PDF icon GNEP Partners and Observers More Documents & Publications Microsoft PowerPoint - GNEP PARTNERS CANDIDATE PARTNERS AND OBSERVERS.PPT Senior Delegation Officials From All GNEP Participants Meeting Materials: April 21, 2008

  4. Observing Emissions of Air Pollutants from Space | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to study the future turnover of vehicle fleets around the world and the likely effects on air pollution and climate. This project has used satellite data to monitor CO, CO2,...

  5. Enterprise Assessments Operational Awareness Record of Observations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Observations of the Design and Modification Progress of the Waste Isolation Pilot Plant ... Enterprise Assessments Operational Awareness Record of Observations of the Design and ...

  6. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene First Observation of Plasmarons in Graphene Print Wednesday, 30 June 2010 00:00 An international team of scientists performing...

  7. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect (OSTI)

    Cheriyadat, Anil M

    2011-01-01

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  8. On-orbit flight results from the reconfigurable cibola flight experiment satellite (CFEsat)

    SciTech Connect (OSTI)

    Caffrey, Michael; Morgan, Keith; Roussel-dupre, Diane; Robinson, Scott; Nelson, Anthony; Salazar, Anthony; Wirthlin, Michael; Howes, William; Richins, Daniel

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite developed at the Los Alamos National Laboratory to demonstrate the feasibility of using FPGA-based reconfigurable computing for sensor processing in a space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  9. THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA

    SciTech Connect (OSTI)

    Brown, M. E.; Rhoden, A. R. E-mail: Alyssa.Rhoden@jhuapl.edu

    2014-10-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 μm spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 μm absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  10. Autonomous Sub-Pixel Satellite Track Endpoint Determination for Space Based Images

    SciTech Connect (OSTI)

    Simms, L M

    2011-03-07

    An algorithm for determining satellite track endpoints with sub-pixel resolution in spaced-based images is presented. The algorithm allows for significant curvature in the imaged track due to rotation of the spacecraft capturing the image. The motivation behind the subpixel endpoint determination is first presented, followed by a description of the methodology used. Results from running the algorithm on real ground-based and simulated spaced-based images are shown to highlight its effectiveness.

  11. Physics-Based GOES Satellite Product for Use in NREL's National Solar Radiation Database: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Habte, A.; Gotseff, P.; Weekley, A.; Lopez, A.; Molling, C.; Heidinger, A.

    2014-07-01

    The National Renewable Energy Laboratory (NREL), University of Wisconsin, and National Oceanic Atmospheric Administration are collaborating to investigate the integration of the Satellite Algorithm for Shortwave Radiation Budget (SASRAB) products into future versions of NREL's 4-km by 4-km gridded National Solar Radiation Database (NSRDB). This paper describes a method to select an improved clear-sky model that could replace the current SASRAB global horizontal irradiance and direct normal irradiances reported during clear-sky conditions.

  12. ARMIUnmanned Air VehicielSatellites W. R. Bolton Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VehicielSatellites W. R. Bolton Sandia National Laboratories Livermore, CA 94550 Introduction The Atmospheric Radiation Measurement/Unmanned Aerospace Vehicle (ARM/UAV) Program has as a major mission to support the ARM Cloud and Radiation Testbed (CART) sites with an airborne measurement capability. The UA V capability will complement piloted aircraft and supplement the capabilities of ground-based CART instru- ments. The ARM/UAV Program strategy emphasizes meaningful scientific activity

  13. Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Mesurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Measurements Z. Li, M. C. Cribb, and F.-L. Chang Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Radiation measurements have been widely employed for evaluating cloud parameterization schemes and model simulation results. As the most comprehensive program aiming to improve cloud

  14. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)’s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9°×2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1° x 1°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4º by 5º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between “clean marine” aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses were carried out over 15 regions selected to be representative of different areas of the global ocean for the time period from June 2006 to April 2011. We show that for very low (less than 4 m s-1) and very high (more than 12 m s-1) wind speed conditions the mean CALIPSO-derived aerosol optical depth (AOD) has little dependency on the surface wind speed. For an intermediate (between 4 and 12 m s-1) marine AOD was linearly correlated with the surface wind speed values, with a slope of 0.0062 s m-1. Results of our study suggest that considerable improvements to both optical properties of marine aerosols and their production mechanisms can be achieved by discriminating “clean marine” aerosols (or sea salt particles) from all other types of aerosols present over the ocean.

  15. Marine boundary layer structure as observed by space-based Lidar

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Luo, T.; Wang, Z.; Zhang, D.

    2015-12-03

    The marine boundary layer (MBL) structure is important to the exchange of heat, momentum, and moisture between oceans and the low atmosphere and to the marine low cloud processes. This paper explores MBL structure over the eastern Pacific region with a new 4 year satellite-based dataset. The MBL aerosol lidar backscattering from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) was used to identify the MBL top (BLH) and the mixing layer height (MLH). Results showed that MBL is generally decoupled with MLH / BLH ratio ranging from ? 0.5 to ? 0.8 and the MBL decoupling magnitude ismoremainly controlled by estimated inversion strength (EIS) that affects the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops, which may relate to the meso-scale circulations or gravity wave in MBL, also show dependence on EIS. Further analysis indicated that the MBL shows similar decoupled structure for clear sky and cumulus cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.less

  16. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    SciTech Connect (OSTI)

    De Mooij, E. J. W.; Lpez-Morales, M.; Karjalainen, R.; Hrudkova, M.; Jayawardhana, Ray

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55Cnce using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ?700 and ?250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub ?0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub ?0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub ?0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55Cnce in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  17. Advanced Petroleum-Based Fuels - Diesel Emissions Project (APBF-DEC): 2,000-Hour Performance of a NOx Adsorber Catalyst and Diesel Particle Filter System for a Medium-Duty, Pick-Up Diesel Engine Platform; Final Report

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    Presents the results of a 2,000-hour test of an emissions control system consisting of a nitrogen oxides adsorber catalyst in combination with a diesel particle filter, advanced fuels, and advanced engine controls in an SUV/pick-up truck vehicle platform.

  18. Evaluation of and Suggested Improvements to the WSM6 Microphysics in WRF- ARW Using Synthetic and Observed GOES-13 Imagery

    SciTech Connect (OSTI)

    Grasso, Lewis; Lindsey, Daniel T.; Lim, Kyo-Sun; Clark, Adam; Bikos, Dan; Dembek, Scott R.

    2014-10-01

    Synthetic satellite imagery can be employed to evaluate simulated cloud fields. Past studies have revealed that the Weather Research and Forecasting (WRF) WRF Single-Moment 6-class (WSM6) microphysics in WRF-ARW produces less upper level ice clouds within synthetic images compared to observations. Synthetic Geostationary Operational Environmental Satellite (GOES)-13 imagery at 10.7 ?m of simulated cloud fields from the 4 km National Severe Storms Laboratory (NSSL) WRF-ARW is compared to observed GOES-13 imagery. Histograms suggest that too few points contain upper level simulated ice clouds. In particular, side-by-side examples are shown of synthetic and observed convective anvils. Such images illustrate the lack of anvil cloud associated with convection produced by the NSSL WRF-ARW. A vertical profile of simulated hydrometeors suggests that too much cloud water mass may be converted into graupel mass, effectively reducing the main source of ice mass in a simulated anvil. Further, excessive accretion of ice by snow removes ice from an anvil by precipitation settling. Idealized sensitivity tests reveal that a 50% reduction of the conversion of cloud water mass to graupel and a 50% reduction of the accretion rate of ice by snow results in a significant increase in anvil ice of a simulated storm. Such results provide guidance as to which conversions could be reformulated, in a more physical manner, to increase simulated ice mass in the upper troposphere.

  19. Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Calhoun, Ron; Ligon, David; Allwine, K Jerry

    2008-04-01

    Dual-Doppler lidar observations are used to investigate the structure and evolution of surface layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City in the summer of 2003. This study focuses specifically on a 10-hour sequence of scan data beginning shortly after noon local time on July 7, 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma Citys central business district (CBD). Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and evening transition periods. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-hour study period. As the stratification changed from unstable to weakly stable the turbulence structures became increasingly more linearly organized, and the cross-stream separation between high- and low-speed regoins decreased. The spatially resolved velocity fields are used to estimate streamwise and cross-stream turbulence length scales as functions of stability.

  20. SEU results from the Advanced Photovoltaic and Electronics Experiments (APEX) satellite

    SciTech Connect (OSTI)

    Mullen, E.G.; Ray, K.P.; Koga, R.; Holeman, E.G.; Delorey, D.E.

    1995-12-01

    The APEX satellite, launched in August of 1994, had a solid state data recorder (SSDR) as its onboard data storage system. The recorder contained 220 4Mbit X 1 Hitachi DRAMs of which 176 were routinely interrogated for SEUs and corrected with an EDAC code. Corrections were recorded in the spacecraft housekeeping files and are the basis of this study. The SEU rates and spatial locations are compared to in-situ particle measurements and to ground test results from devices from the same lot flown. The results show that properly designed SSDRs are a viable alternative to conventional tap recording systems for all orbits in near-Earth space.

  1. Detection of the Cosmic ?-Ray Horizon From Multiwavelength Observations of Blazars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dominguez, A.; Finke, J. D.; Prada, F.; Primack, J. R.; Kitaura, F. S.; Siana, B.; Paneque, D.

    2013-05-24

    The first statistically significant detection of the cosmic ?-ray horizon (CGRH) that is independent of any extragalactic background light (EBL) model is presented. The CGRH is a fundamental quantity in cosmology. It gives an estimate of the opacity of the Universe to very high energy (VHE) ?-ray photons due to photon-photon pair production with the EBL. The only estimations of the CGRH to date are predictions from EBL models and lower limits from ?-ray observations of cosmological blazars and ?-ray bursts. Here, we present homogeneous synchrotron/synchrotron self-Compton (SSC) models of the spectral energy distributions of 15 blazars based on (almost)moresimultaneous observations from radio up to the highest energy ?-rays taken with the Fermi satellite. These synchrotron/SSC models predict the unattenuated VHE fluxes, which are compared with the observations by imaging atmospheric Cherenkov telescopes. This comparison provides an estimate of the optical depth of the EBL, which allows a derivation of the CGRH through a maximum likelihood analysis that is EBL-model independent. We find that the observed CGRH is compatible with the current knowledge of the EBL.less

  2. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  3. Unsupervised individual tree crown detection in high-resolution satellite imagery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skurikhin, Alexei N.; McDowell, Nate G.; Middleton, Richard S.

    2016-01-26

    Rapidly and accurately detecting individual tree crowns in satellite imagery is a critical need for monitoring and characterizing forest resources. We present a two-stage semiautomated approach for detecting individual tree crowns using high spatial resolution (0.6 m) satellite imagery. First, active contours are used to recognize tree canopy areas in a normalized difference vegetation index image. Given the image areas corresponding to tree canopies, we then identify individual tree crowns as local extrema points in the Laplacian of Gaussian scale-space pyramid. The approach simultaneously detects tree crown centers and estimates tree crown sizes, parameters critical to multiple ecosystem models. Asmore » a demonstration, we used a ground validated, 0.6 m resolution QuickBird image of a sparse forest site. The two-stage approach produced a tree count estimate with an accuracy of 78% for a naturally regenerating forest with irregularly spaced trees, a success rate equivalent to or better than existing approaches. In addition, our approach detects tree canopy areas and individual tree crowns in an unsupervised manner and helps identify overlapping crowns. Furthermore, the method also demonstrates significant potential for further improvement.« less

  4. SPECTROSCOPY OF THE THREE DISTANT ANDROMEDAN SATELLITES CASSIOPEIA III, LACERTA I, AND PERSEUS I

    SciTech Connect (OSTI)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Chambers, Kenneth C.; Flewelling, Heather; Kaiser, Nicholas; Magnier, Eugene A.; Tonry, John L.; Wainscoat, Richard J.; Collins, Michelle L. M.; Rich, R. Michael; Bell, Eric F.; Bernard, Edouard J.; Ferguson, Annette M. N.

    2014-09-20

    We present Keck II/DEIMOS spectroscopy of the three distant dwarf galaxies of M31 Lacerta I, Cassiopeia III, and Perseus I, recently discovered within the Pan-STARRS1 3? imaging survey. The systemic velocities of the three systems (v {sub r,} {sub helio} = 198.4 1.1 km s{sup 1}, 371.6 0.7 km s{sup 1}, and 326 3 km s{sup 1}, respectively) confirm that they are satellites of M31. In the case of Lacerta I and Cassiopeia III, the high quality of the data obtained for 126 and 212 member stars, respectively, yields reliable constraints on their global velocity dispersions (?{sub vr} = 10.3 0.9 km s{sup 1} and 8.4 0.6 km s{sup 1}, respectively), leading to dynamical-mass estimates for both of ?4 10{sup 7} M {sub ?} within their half-light radius. These translate to V-band mass-to-light ratios of 15{sub ?9}{sup +12} and 8{sub ?5}{sup +9} in solar units. We also use our spectroscopic data to determine the average metallicity of the three dwarf galaxies ([Fe/H] = 2.0 0.1, 1.7 0.1, and 2.0 0.2, respectively). All these properties are typical of dwarf galaxy satellites of Andromeda with their luminosity and size.

  5. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  6. Posters Ground-Based Radiometric Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data have also complemented other remote sensors such as K-band cloud Doppler radar and Doppler lidar. In addition, radiometric observations compose a database of ground- truth...

  7. Rapid Scan AERI Observations: Benefits and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Scan AERI Observations: Benefits and Analysis W. F. Feltz, D. D. Turner, R. O. ... Madison, Wisconsin D. D. Turner Pacific Northwest National Laboratory ...

  8. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1...

  9. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  10. Radioactivity in Precipitation: Methods and Observations from...

    Office of Environmental Management (EM)

    Radioactivity in Precipitation: Methods & Observations from Savannah River Site Dennis Jackson ...operatingops- experiencetritiumplant-info.html 14 15 DOE Nuclear & NRC ...

  11. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  12. EA-1964: National Ecological Observation Network (NEON)

    Broader source: Energy.gov [DOE]

    The National Science Foundation (NSF) prepared an EA that evaluated potential environmental impacts of the proposed National Ecological Observation Network (NEON), a continental-scale network of...

  13. Class Deviation by General Services Administration (GSA) to Federal Acquisition Regulation (FAR) 51.1, Contractor Use of Government Supply Sources, for Time and Material or Labor Hour Procurements

    Broader source: Energy.gov [DOE]

    The attached GSA class deviation to FAR Part 51, Contractor Use of Government Supply Sources, dated October 8,2009, permits contracting officers to authorize all GSA contractors, who are performing an order on a time and material (T&M) or labor-hour (LH) basis, to purchase supplies and service from other schedule contractors or process requisitions through the GSA Supply Program. This deviation is effective for five years to October 7,2014, unless otherwise revised or rescinded.

  14. Observed Increase of TTL Temperature and Water Vapor in Polluted Couds over Asia

    SciTech Connect (OSTI)

    Su, Hui; Jiang, Jonathan; Liu, Xiaohong; Penner, J.; Read, William G.; Massie, Steven T.; Schoeberl, Mark R.; Colarco, Peter; Livesey, Nathaniel J.; Santee, Michelle L.

    2011-06-01

    Aerosols can affect cloud particle size and lifetime, which impacts precipitation, radiation and climate. Previous studies1-4 suggested that reduced ice cloud particle size and fall speed due to the influence of aerosols may increase evaporation of ice crystals and/or cloud radiative heating in the tropical tropopause layer (TTL), leading to higher water vapor abundance in air entering the stratosphere. Observational substantiation of such processes is still lacking. Here, we analyze new observations from multiple NASA satellites to show the imprint of pollution influence on stratospheric water vapor. We focus our analysis on the highly-polluted South and East Asia region during boreal summer. We find that "polluted" ice clouds have smaller ice effective radius than "clean" clouds. In the TTL, the polluted clouds are associated with warmer temperature and higher specific humidity than the clean clouds. The water vapor difference between the polluted and clean clouds cannot be explained by other meteorological factors, such as updraft and detrainment strength. Therefore, the observed higher water vapor entry value into the stratosphere in the polluted clouds than in the clean clouds is likely a manifestation of aerosol pollution influence on stratospheric water vapor. Given the radiative and chemical importance of stratospheric water vapor, the increasing emission of aerosols over Asia may have profound impacts on stratospheric chemistry and global energy balance and water cycle.

  15. Observing System Simulation Experiments (OSSEs) for the Mid-Columbia Basin

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E J; Knowe, G V; Waight, K; Manobianco, J; Hanley, D; Kamath, C

    2011-09-13

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region, which encompasses the Bonneville Power Administration (BPA) wind generation area (Figure 1) that includes the Klondike, Stateline, and Hopkins Ridge wind plants. There are two tasks in the current project effort designed to validate the Ensemble Sensitivity Analysis (ESA) observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach. The results of this task are presented in a separate report. (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. This report presents the results of the OSSE task. The specific objective is to test strategies for future deployment of observing systems in order to suggest the best and most efficient ways to improve wind forecasting at BPA wind farm locations. OSSEs have been used for many years in meteorology to evaluate the potential impact of proposed observing systems, determine tradeoffs in instrument design, and study the most effective data assimilation methodologies to incorporate the new observations into numerical weather prediction (NWP) models (Atlas 1997; Lord 1997). For this project, a series of OSSEs will allow consideration of the impact of new observing systems of various types and in various locations.

  16. Total Ozone Mapping Spectrometer (TOMS) Derived Data, Global Earth Coverage (GEC) from NASA's Earth Probe Satellite

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This is data from an external datastream processed through the ARM External Data Center (XDC) at Brookhaven National Laboratory. The XDC identifies sources and acquires data, called "external data", to augment the data being generated within the ARM program. The external data acquired are usually converted from native format to either netCDF or HDF formats. The GEC collection contains global data derived from the Total Ozone Mapping Spectrometer (TOMS) instrument on the Earth Probe satellite, consisting of daily values of aerosol index, ozone and reflectivity remapped into a regular 1x1.25 deg grid. Data are available from July 25, 1996 - December 31, 2005, but have been updated or replaced as of September 2007. See the explanation on the ARM web site at http://www.arm.gov/xds/static/toms.stm and the information at the NASA/TOMS web site: http://toms.gsfc.nasa.gov/ (Registration required)

  17. Environmental assessment for the satellite power system concept development and evaluation program-electromagnetic systems compatibility

    SciTech Connect (OSTI)

    Davis, K A; Grant, W B; Morrison, E L; Juroshek, J R

    1981-01-01

    The EMC analysis addressed only the direct effects of electromagnetic emissions from the SPS on other technological systems. Emissions were defined quite broadly, including not only those from the microwave system, but also thermal blackbody emission and scattered sunlight from the satellite. The analysis is based on the design for an SPS as described in the Reference System Report and some quantitative conclusions, e.g., ranges from rectenna sites at which effects are expected are specific to that design. The methodology and qualitative conclusions, however, apply to an SPS concept using microwave power transmission. Quantitative conclusions have been obtained parametrically and can be adjusted as SPS designs change. The electromagnetic environment that the Reference System would produce, and in which other systems would have to function, is described. As an early part of the EMC Assessment, the problems expected for a hypothetical rectenna site, in the Mojave Desert of southern California, were analyzed in detail. This effort provided an initial quantitative indication of the scope of potential EMC problems and indicated the importance of EMC considerations in rectenna site selection. The results of this analysis are presented. The effects of SPS microwave emissions on important categories of electronic systems and equipment are summarized, with many examples of test results and demonstrated techniques for mitigation of problems encountered. SPS effects on other satellite systems are presented. Astronomical research frequently involves measurement of extremely low levels of electromagnetic radiation and is thus very susceptible to interference. The concerns of both radio astronomy with microwave emissions from SPS and optical astronomy with sunlight scattered from SPS spacecraft are discussed. Summaries of mitigation techniques, cost estimates, and conclusions are presented. (WHK)

  18. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure has remained elusive. Working at the ALS, a team of researchers from Korea, Japan, and the U.S. has now observed electron spin-charge separation in a one-dimensional...

  19. Collaborative Research: ARM observations for the development...

    Office of Scientific and Technical Information (OSTI)

    The principal focus of the observational component of this collaborative study during this funding period was on stratocumulus clouds over the SGP site and fair-weather cumuli over ...

  20. ARM - Field Campaign - Biomass Burning Observation Project -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BBOP Website ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or...

  1. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    check on the interpretation of the data-were not available. The current observations are direct and the results are unambiguous because they were obtained from a simple material...

  2. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  3. Observing AAPI Heritage Month | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Observing AAPI Heritage Month Observing AAPI Heritage Month May 1, 2012 - 4:42pm Addthis Bill Valdez Bill Valdez Director of Workforce Management What are the key facts? President Obama has also appointed a historic number of highly qualified Asian Americans and Pacific Islanders to senior positions in his Administration Throughout May,the White House Initiative on Asian Americans and Pacific Islanders will be sharing the many ways in which the Obama Administration has helped the Asian American

  4. Observations and simulations improve space weather models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations improve space weather models Observations and simulations improve space weather models Researchers used data from the Van Allen Probes to improve a three-dimensional model created by Los Alamos scientists called DREAM3D. June 25, 2014 NASA's Van Allen Probes sample the Earth's magnetosphere. NASA's Van Allen Probes sample the Earth's magnetosphere. The work demonstrated that DREAM3D accurately simulated the behavior of a complex and dynamic event in the radiation belt that was

  5. Observation of stars produced during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-12-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed.

  6. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons First Direct Observation of Spinons and Holons Print Wednesday, 30 August 2006 00:00 Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single

  7. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene First Observation of Plasmarons in Graphene Print Wednesday, 30 June 2010 00:00 An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were

  8. T-649: Red Hat Network Satellite Server Request Validation Flaw Permits Cross-Site Request Forgery Attacks

    Broader source: Energy.gov [DOE]

    The Red Hat Network (RHN) Satellite and Spacewalk services do not properly validate user-supplied. A remote user can create specially crafted HTML that, when loaded by a target authenticated user, will take actions on the target site acting as the target user.

  9. Observations and Modeling of the Green Ocean Amazon 2014/15....

    Office of Scientific and Technical Information (OSTI)

    Another important application that requires this knowledge is satellite precipitation estimation. The analysis will be performed focusing on the microphysical evolution and cloud ...

  10. Correlation between human observer performance and model observer performance in differential phase contrast CT

    SciTech Connect (OSTI)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD curves tended to be steeper. The CHO generated the best quantitative agreement with human observers with its CD curve overlapping with that of human observer. Statistical equivalence between CHO and humans can be claimed within 11% of the human observer results, including both the disk and lesion detection experiments.Conclusions: The model observer method can be used to accurately represent human observer performance with the stochastic DPC-CT noise for SKE tasks with sizes ranging from 8 to 128 pixels. The incorporation of the anatomical noise remains to be studied.

  11. Selecting Observation Platforms for Optimized Anomaly Detectability under Unreliable Partial Observations

    SciTech Connect (OSTI)

    Wen-Chiao Lin; Humberto E. Garcia; Tae-Sic Yoo

    2011-06-01

    Diagnosers for keeping track on the occurrences of special events in the framework of unreliable partially observed discrete-event dynamical systems were developed in previous work. This paper considers observation platforms consisting of sensors that provide partial and unreliable observations and of diagnosers that analyze them. Diagnosers in observation platforms typically perform better as sensors providing the observations become more costly or increase in number. This paper proposes a methodology for finding an observation platform that achieves an optimal balance between cost and performance, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, an observation platform optimization algorithm is utilized that uses two greedy heuristics, one myopic and another based on projected performances. These heuristics are sequentially executed in order to find best observation platforms. The developed algorithm is then applied to an observation platform optimization problem for a multi-unit-operation system. Results show that improved observation platforms can be found that may significantly reduce the observation platform cost but still yield acceptable performance for correctly inferring the occurrences of special events.

  12. Singular behavior of jet substructure observables

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Larkoski, Andrew J.; Moult, Ian

    2016-01-20

    Jet substructure observables play a central role at the Large Hadron Collider for identifying the boosted hadronic decay products of electroweak scale resonances. The complete description of these observables requires understanding both the limit in which hard substructure is resolved, as well as the limit of a jet with a single hard core. In this paper we study in detail the perturbative structure of two prominent jet substructure observables, N-subjettiness and the energy correlation functions, as measured on background QCD jets. In particular, we focus on the distinction between the limits in which two-prong structure is resolved or unresolved. Dependingmore » on the choice of subjet axes, we demonstrate that at fixed order, N-subjettiness can manifest myriad behaviors in the unresolved region: smooth tails, end-point singularities, or singularities in the physical region. The energy correlation functions, by contrast, only have non-singular perturbative tails extending to the end point. We discuss the effect of hadronization on the various observables with Monte Carlo simulation and demonstrate that the modeling of these effects with non-perturbative shape functions is highly dependent on the N-subjettiness axes definitions. Lastly, our study illustrates those regions of phase space that must be controlled for high-precision jet substructure calculations, and emphasizes how such calculations can be facilitated by designing substructure observables with simple singular structures.« less

  13. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect (OSTI)

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  14. Testing the copernican principle via cosmological observations

    SciTech Connect (OSTI)

    Bolejko, Krzysztof; Wyithe, J. Stuart B. E-mail: swyithe@unimelb.edu.au

    2009-02-15

    Observations of distances to Type-Ia supernovae can be explained by cosmological models that include either a gigaparsec-scale void, or a cosmic flow, without the need for Dark Energy. Instead of invoking dark energy, these inhomogeneous models instead violate the Copernican Principle. we show that current cosmological observations (Supernovae, Baryon Acoustic Oscillations and estimates of the Hubble parameters based on the age of the oldest stars) are not able to rule out inhomogeneous anti-Copernican models. The next generation of surveys for baryonic acoustic oscillations will be sufficiently precise to either validate the Copernican Principle or determine the existence of a local Gpc scale inhomogeneity.

  15. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A.

    2013-11-13

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  16. LED Solutions for the Dark Hours

    Energy Savers [EERE]

    technologies 5 LEDs for Street and Roadway Lighting Portland, OR Philadelphia, PA New York, NY Kansas City, MO 6 Boston Las Vegas Seattle Number of LED Replacements to Date (4...

  17. Property:OperatingHours | Open Energy Information

    Open Energy Info (EERE)

    B Blundell 1 Geothermal Facility + 8,587 + Blundell 2 Geothermal Facility + 7,883 + R Raft River Geothermal Facility + 8,338 + Retrieved from "http:en.openei.orgw...

  18. Fermilab | Visit Fermilab | Hours, Maps and Directions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab visitors are allowed to visit two buildings on their own: Wilson Hall and the Leon Lederman Science Education Center. The ground and first floor of Wilson Hall are open to ...

  19. Cold fusion observed with ordinary water

    SciTech Connect (OSTI)

    Matsumoto, T. )

    1990-05-01

    This paper describes a cold fusion electrolysis experiment using ordinary water. A Ge(Li) detector is used to observe signals up to {approx}130 keV; these signals show the occurrence of fusion reactions in ordinary water. The mechanism for the emission of radiation is discussed by the Nattoh model.

  20. Interference phenomena observed during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. )

    1992-03-01

    In this paper the interference phenomena of waves observed during a cold fusion experiment are described. Nuclear emissions have successfully recorded two different interference phenomena of waves from an electrolyzing cell. It is inferred that the waves might be gravitational and antigravitational waves, which can be expected to be radiated from gravity decays of quad-neutrons.

  1. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables affecting LE Fluxes in global semiarid ecosystem.« less

  2. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    SciTech Connect (OSTI)

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables affecting LE Fluxes in global semiarid ecosystem.

  3. THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR-MAGNITUDE INFORMATION

    SciTech Connect (OSTI)

    Martin, Nicolas F.; Ibata, Rodrigo A.; McConnachie, Alan W.; Mackey, A. Dougal; Ferguson, Annette M. N.; Irwin, Michael J.; Lewis, Geraint F.; Fardal, Mark A.

    2013-10-20

    We present a generic algorithm to search for dwarf galaxies in photometric catalogs and apply it to the Pan-Andromeda Archaeological Survey (PAndAS). The algorithm is developed in a Bayesian framework and, contrary to most dwarf galaxy search codes, makes use of both the spatial and color-magnitude information of sources in a probabilistic approach. Accounting for the significant contamination from the Milky Way foreground and from the structured stellar halo of the Andromeda galaxy, we recover all known dwarf galaxies in the PAndAS footprint with high significance, even for the least luminous ones. Some Andromeda globular clusters are also recovered and, in one case, discovered. We publish a list of the 143 most significant detections yielded by the algorithm. The combined properties of the 39 most significant isolated detections show hints that at least some of these trace genuine dwarf galaxies, too faint to be individually detected. Follow-up observations by the community are mandatory to establish which are real members of the Andromeda satellite system. The search technique presented here will be used in an upcoming contribution to determine the PAndAS completeness limits for dwarf galaxies. Although here tuned to the search of dwarf galaxies in the PAndAS data, the algorithm can easily be adapted to the search for any localized overdensity whose properties can be modeled reliably in the parameter space of any catalog.

  4. Far-ultraviolet observations of comet C/2001 Q4 (NEAT) with FIMS/SPEAR

    SciTech Connect (OSTI)

    Lim, Y.-M.; Min, K.-W.; Feldman, P. D.; Han, W.; Edelstein, J.

    2014-02-01

    We present the results of far-ultraviolet observations of comet C/2001 Q4 (NEAT) that were made with the Far-Ultraviolet Imaging Spectrograph on board the Korean satellite STSAT-1. The observations were conducted in two campaigns during its perihelion approach between 2004 May 8 and 15. Based on the scanning mode observations in the wavelength band of 1400-1700 , we have constructed an image of the comet with an angular size of 55, which corresponds to the central coma region. Several important fluorescence emission lines were detected including S I multiplets at 1429 and 1479 , C I multiplets at 1561 and 1657 , and the CO A{sup 1}?-X{sup 1}?{sup +} Fourth Positive system; we have estimated the production rates of the corresponding species from the fluxes of these emission lines. The estimated production rate of CO was Q {sub CO} = (2.65 0.63) 10{sup 28} s{sup 1}, which is 6.2%-7.4% of the water production rate and is consistent with earlier predictions. The average carbon production rate was estimated to be Q{sub C} = ?1.59 10{sup 28} s{sup 1}, which is ?60% of the CO production rate. However, the observed carbon profile was steeper than that predicted using the two-component Haser model in the inner coma region, while it was consistent with the model in the outer region. The average sulfur production rate was Q{sub S} = (4.031.03) 10{sup 27} s{sup 1}, which corresponds to ?1% of the water production rate.

  5. SWIFT X-RAY OBSERVATIONS OF CLASSICAL NOVAE. II. THE SUPER SOFT SOURCE SAMPLE

    SciTech Connect (OSTI)

    Schwarz, Greg J.; Ness, Jan-Uwe; Osborne, J. P.; Page, K. L.; Evans, P. A.; Beardmore, A. P.; Walter, Frederick M.; Andrew Helton, L.; Woodward, Charles E.; Bode, Mike; Starrfield, Sumner; Drake, Jeremy J.

    2011-12-01

    The Swift gamma-ray burst satellite is an excellent facility for studying novae. Its rapid response time and sensitive X-ray detector provides an unparalleled opportunity to investigate the previously poorly sampled evolution of novae in the X-ray regime. This paper presents Swift observations of 52 Galactic/Magellanic Cloud novae. We included the X-Ray Telescope (0.3-10 keV) instrument count rates and the UltraViolet and Optical Telescope (1700-8000 A) filter photometry. Also included in the analysis are the publicly available pointed observations of 10 additional novae the X-ray archives. This is the largest X-ray sample of Galactic/Magellanic Cloud novae yet assembled and consists of 26 novae with Super Soft X-ray emission, 19 from Swift observations. The data set shows that the faster novae have an early hard X-ray phase that is usually missing in slower novae. The Super Soft X-ray phase occurs earlier and does not last as long in fast novae compared to slower novae. All the Swift novae with sufficient observations show that novae are highly variable with rapid variability and different periodicities. In the majority of cases, nuclear burning ceases less than three years after the outburst begins. Previous relationships, such as the nuclear burning duration versus t{sub 2} or the expansion velocity of the eject and nuclear burning duration versus the orbital period, are shown to be poorly correlated with the full sample indicating that additional factors beyond the white dwarf mass and binary separation play important roles in the evolution of a nova outburst. Finally, we confirm two optical phenomena that are correlated with strong, soft X-ray emission which can be used to further increase the efficiency of X-ray campaigns.

  6. Observation on the role of chlorine in high temperature erosion-corrosion of alloys in an AFBC system

    SciTech Connect (OSTI)

    Xie, W.; Orndorff, W.; Smith, J.; Pan, W.P.; Riley, J.T.; Anderson, K.; Smith, S.; Ho, K.

    1997-12-31

    Two 1,000-hour burns were conducted with the 12-inch (0.3m) laboratory AFBC system at Western Kentucky University. Operating conditions similar to those used at the 160 MW AFBC system at the TVA Shawnee Steam Plant located near Paducah, KY were used. A 1,000-hour burn was done with a low-chlorine (0.012% Cl and 3.0% S) Western Kentucky No.9 coal. A second 1,000-hour burn was conducted with high-chlorine (0.28% Cl and 2.4% S) Illinois No.6 coal. Four different metal alloys [carbon steel C1020 (0.18% C and 0.05% Cr), 304 SS (18.39% Cr and 8.11% Ni), 309 SS (23.28% Cr and 13.41% Ni), and 347 SS (18.03% Cr and 9.79% Ni)] were exposed uncooled in the freeboard at the entrance to the convection pass, where the metal temperature was approximately 900K. The carbon steel samples were essentially destroyed. However, it was expected that C1020 carbon steel samples would not withstand the high temperatures selected for the testing. A small amount of scale failure was observed on the other three samples in both test runs. Based on the SEM-EDS mapping results, there is no localized chloride distribution observed on the surface of the coupons, neither in the scale failure area nor on the rest of the metal part. Some trace amounts of chloride was found, but it was evenly distributed on the surface of the coupons. There is no concentration of chloride on the spot of scale failure. The scale failure might be due to sulfur attack and/or the effect of erosion. Further study with higher chlorine content coals for more conclusive information is needed.

  7. 150K - 200K miniature pulse tube cooler for micro satellites

    SciTech Connect (OSTI)

    Chassaing, Clément; Butterworth, James; Aigouy, Gérald; Daniel, Christophe; Crespin, Maurice; Duvivier, Eric

    2014-01-29

    Air Liquide is working with the CNES and Steel électronique in 2013 to design, manufacture and test a Miniature Pulse Tube Cooler (MPTC) to cool infrared detectors for micro-satellite missions. The cooler will be particularly adapted to the needs of the CNES MICROCARB mission to study atmospheric Carbon Dioxide which presents absorption lines in the thermal near infrared, at 1.6 μm and 2.0 μm. The required cooler temperature is from 150 to 200K with cooling power between 1 and 3 watts. The overall electrical power budget including electronics is less than 20W with a 288-300K rejection temperature. Particular attention is therefore paid to optimizing overall system efficiency. The active micro vibration reduction system and thermal control systems already developed for the Air Liquide Large Pulse Tube Cooler (LPTC) are currently being implemented into a new high efficiency electronic architecture. The presented work concerns the new cold finger and electronic design. The cooler uses the compressor already developed for the 80K Miniature Pulse Tube Cryocooler. This Pulse Tube Cooler addresses the requirements of space missions where extended continuous operating life time (>5 years), low mass and low micro vibration levels are critical.

  8. Ground truth measurements plan for the Multispectral Thermal Imager (MTI) satellite

    SciTech Connect (OSTI)

    Garrett, A.J.

    2000-01-03

    Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and the Savannah River Technology Center (SRTC) have developed a diverse group of algorithms for processing and analyzing the data that will be collected by the Multispectral Thermal Imager (MTI) after launch late in 1999. Each of these algorithms must be verified by comparison to independent surface and atmospheric measurements. SRTC has selected 13 sites in the continental U.S. for ground truth data collections. These sites include a high altitude cold water target (Crater Lake), cooling lakes and towers in the warm, humid southeastern US, Department of Energy (DOE) climate research sites, the NASA Stennis satellite Validation and Verification (V and V) target array, waste sites at the Savannah River Site, mining sites in the Four Corners area and dry lake beds in the southwestern US. SRTC has established mutually beneficial relationships with the organizations that manage these sites to make use of their operating and research data and to install additional instrumentation needed for MTI algorithm V and V.

  9. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    SciTech Connect (OSTI)

    Quinn, N.W.T.; Epshtein, O.

    2013-12-15

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands areal footprint during the periods of flood-up and drawdown. In this study we present a data-lean solution to this problem using an example application in the San Joaquin River Basin of California, USA. Through analysis of high-resolution (30 meter) Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric for more fully capturing the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets at two separate wetlands within the study area. Based on this record, the proposed classification using a Landsat ETM+ Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30-50% relative to previous attempts at wetland delineation. Requiring modest ancillary data, the results of our study provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.

  10. First direct observation of muon antineutrino disappearance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamson, P.

    2011-07-05

    This letter reports the first direct observation of muon antineutrino disappearance. The MINOS experiment has taken data with an accelerator beam optimized for ν̄μ production, accumulating an exposure of 1.71 x 1020 protons on target. In the Far Detector, 97 charged current ν̄μ events are observed. The no-oscillation hypothesis predicts 156 events and is excluded at 6.3σ. The best fit to oscillation yields |Δm̄2| = (3.36-0.40 +0.46(stat.) ± 0.06(syst.)) x 10-3 eV2, sin2(2 θ̄) = 0.86-0.12+0.11 (stat.) ± 0.01(syst.). The MINOS νμ and ν̄μ measurements are consistent at the 2.0% confidence level, assuming identical underlying oscillation parameters.

  11. Marginal Ice Zone Observations and Processes Experiment

    Office of Scientific and Technical Information (OSTI)

    46 Investigations of Spatial and Temporal Variability of Ocean and Ice Conditions in and Near the Marginal Ice Zone: The "Marginal Ice Zone Observations and Processes Experiment" (MIZOPEX) Final Campaign Summary JA Maslanik February 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

  12. ARM - Arctic Lower Troposphere Observed Structure (ALTOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govField CampaignsArctic Lower Troposphere Observed Structure (ALTOS) Related Links ALTOS Home ISDAC Home ARM Field Campaigns Home News Department of Energy Announces $7 Million in Funding for Climate Research Field Studies October 23, 2008 Tethered Balloon Headlines Field Campaign at North Slope of Alaska October 28, 2010 Arctic Campaign Cut Short; Spring Restart A Possibility November 3, 2010 ALTOS Backgrounder (PDF, 1.3MB) Experiment Planning Proposal Abstract Science Plan (PDF, 902KB)

  13. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons Print Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single quasiparticle peak splits into a spinon-holon two-peak structure. However, despite

  14. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  15. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  16. LNG Observer: Second Qatargas train goes onstream

    SciTech Connect (OSTI)

    1997-01-01

    The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

  17. Observational Approach to Chromium Site Remediation - 13266

    SciTech Connect (OSTI)

    Scott Myers, R.

    2013-07-01

    Production reactors at the U.S. Department of Energy's (DOE) Hanford Site in Richland, Washington, required massive quantities of water for reactor cooling and material processing. To reduce corrosion and the build-up of scale in pipelines and cooling systems, sodium dichromate was added to the water feedstock. Spills and other releases at the makeup facilities, as well as leaks from miles of pipelines, have led to numerous areas with chromium-contaminated soil and groundwater, threatening fish populations in the nearby Columbia River. Pump-and-treat systems have been installed to remove chromium from the groundwater, but significant contamination remain in the soil column and poses a continuing threat to groundwater and the Columbia River. Washington Closure Hanford, DOE, and regulators are working on a team approach that implements the observational approach, a strategy for effectively dealing with the uncertainties inherent in subsurface conditions. Remediation of large, complex waste sites at a federal facility is a daunting effort. It is particularly difficult to perform the work in an environment of rapid response to changing field and contamination conditions. The observational approach, developed by geotechnical engineers to accommodate the inherent uncertainties in subsurface conditions, is a powerful and appropriate method for site remediation. It offers a structured means of quickly moving into full remediation and responding to the variations and changing conditions inherent in waste site cleanups. A number of significant factors, however, complicate the application of the observational approach for chromium site remediation. Conceptual models of contamination and site conditions are difficult to establish and get consensus on. Mid-stream revisions to the design of large excavations are time-consuming and costly. And regulatory constraints and contract performance incentives can be impediments to the flexible responses required under the observational approach. The WCH project team is working closely with stakeholders and taking a number of steps to meet these challenges in a continuing effort to remediate chromium contaminated soil in an efficient and cost-effective manner. (authors)

  18. Report: Human Capital Discussion and Observations

    Office of Environmental Management (EM)

    Human Capital Discussion, Observations, and Recommendations August 24, 2006 Submitted by: Mr. A. James Barnes and Mr. Dennis Ferrigno Background: During the March 23-24, 2006 EMAB Public Meeting, Assistant Secretary for Environmental Management (EM-1), James Rispoli, asked the EMAB members to pursue a review of EM Human Capital issues. Although the National Academy of Public Administration (NAPA) is also conducting a review of this topic - the results of which will be available in October 2007 -

  19. Self-potential observations during hydraulic fracturing

    SciTech Connect (OSTI)

    Moore, Jeffrey R.; Glaser, Steven D.

    2007-09-13

    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  20. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons Print Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single quasiparticle peak splits into a spinon-holon two-peak structure. However, despite

  1. First Direct Observation of Spinons and Holons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Direct Observation of Spinons and Holons Print Spin and charge are inseparable traits of an electron, but in one-dimensional solids, a 40-year-old theory predicts their separation into "collective" modes-as independent excitation quanta called spinons and holons. Angle-resolved photoemission spectroscopy (ARPES) should provide the most direct evidence of this spin-charge separation, as the single quasiparticle peak splits into a spinon-holon two-peak structure. However, despite

  2. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  3. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  4. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  5. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  6. First Observation of Plasmarons in Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Observation of Plasmarons in Graphene Print An international team of scientists performing angle-resolved photoemission spectroscopy (ARPES) experiments at ALS Beamline 7.0.1 have found that composite particles called plasmarons play a vital role in determining graphene's properties. A plasmaron consists of a charge carrier (electron or hole) coupled with a plasmon-an electron density wave. Although plasmarons were proposed theoretically in the late 1960s, and indirect evidence of them has

  7. Aircraft S-HIS Observations during MPACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aircraft S-HIS Observations during MPACE DeSlover, Daniel University of Wisconsin Holz, Robert University of Wisconsin, CIMMS Turner, David University of Wisconsin-Madison Revercomb, Henry University of Wisconsin-Madison Category: Field Campaigns We will focus on retrieval of cloud optical properties derived from the aircraft-based Scanning-High Resolution Interferometer Sounder (S-HIS) measurements during the 2004 MPACE field campaign. Data will be compared to simultaneous measurements from the

  8. Quantum mechanics problems in observer's mathematics

    SciTech Connect (OSTI)

    Khots, Boris; Khots, Dmitriy

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, and {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.

  9. Evaluate the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction The earth's radiation budget is sensitive to changes in the microphysical properties of low-level stratiform clouds. Their extensive coverage can significantly reduce the solar energy

  10. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  11. Satellite and Surface Data Synergy for Developing a 3D Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Despite our expectation, we didn't observe SZA dependency due to the predominant number of ... imply strong dependency on cloud amounts, surface temperatures, and atmospheric state. ...

  12. Final Scientific/Technical Report to the U.S. Department of Energy on NOVA's Einstein's Big Idea (Project title: E-mc2, A Two-Hour Television Program on NOVA)

    SciTech Connect (OSTI)

    Susanne Simpson

    2007-05-07

    Executive Summary A woman in the early 1700s who became one of Europe’s leading interpreters of mathematics and a poor bookbinder who became one of the giants of nineteenth-century science are just two of the pioneers whose stories NOVA explored in Einstein’s Big Idea. This two-hour documentary premiered on PBS in October 2005 and is based on the best-selling book by David Bodanis, E=mc2: A Biography of the World’s Most Famous Equation. The film and book chronicle the scientific challenges and discoveries leading up to Einstein’s startling conclusion that mass and energy are one, related by the formula E = mc2.

  13. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect (OSTI)

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-?m infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  14. William Herschel, the First Observational Cosmologist

    ScienceCinema (OSTI)

    Lemonick, Michael [Princeton University and Time Magazine, Princeton, New Jersey, United States

    2010-01-08

    In the late 1700s, a composer, orchestra director and soloist named William Herschel became fascinated with astronomy, and, having built his own reflecting telescope, went out in his garden in Bath, England, one night and discovered Uranus?the first planet in human history ever found by an individual. The feat earned him a lifetime pension from King George III. But Herschel considered the discovery to be relatively unimportant in comparison to his real work: understanding the composition, structure and evolution of the universe. In pursuing that work, he became the first observational cosmologist.

  15. Direct Observation of Paramagnons in Palladium

    SciTech Connect (OSTI)

    Doubble, R.; Hayden, S M.; Dai, Pengcheng; Mook Jr, Herbert A; Thompson, James R; Frost, C.

    2010-01-01

    We report an inelastic neutron scattering study of the spin fluctuations in the nearly ferromagnetic element palladium. Dispersive over-damped collective magnetic excitations or 'paramagnons' are observed up to 128 meV. We analyze our results in terms of a Moriya-Lonzarich-type spin-fluctuation model and estimate the contribution of the spin fluctuations to the low-temperature heat capacity. In spite of the paramagnon excitations being relatively strong, their relaxation rates are large. This leads to a small contribution to the low-temperature electronic specific heat.

  16. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect (OSTI)

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  17. Fermi LAT Observations of LS 5039

    SciTech Connect (OSTI)

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  18. Reported Significant Observation (RSO) studies. Revision 1

    SciTech Connect (OSTI)

    Eicher, R.W.

    1992-12-01

    The Reported Significant Observation (RSO) study used in the field of safety is an information-gathering technique where employee-participants describe situations they have personally witnessed involving good and bad practices and safe and unsafe conditions. This information is useful in the risk assessment process because it focuses on hazards and thereby facilitates their elimination. However, RSO cannot be the only component in a risk assessment program. Used by the Air Force in their aviation psychology program and further developed by John C. Flanagan, RSO is more commonly known as the ``Critical Incident Technique.`` However, the words ``Critical`` and ``Incident`` had other connotations in nuclear safety, prompting early users within the Aerojet Nuclear Company to coin the more fitting title of ``Reported Significant Observations.`` The technique spread slowly in the safety field primarily because the majority of users were researchers interested in after-the-fact data, with application to everyday problems and behavioral factors. RSO was formally recognized as a significant hazard reduction tool during the development of the Management Oversight and Risk Tree (MORT) program for the US Atomic Energy Commission. The Department of Energy (DOE) has, in turn, adopted MORT for its system safety program, and this has resulted in RSO being a modern and viable technique for DOE contractor safety programs.

  19. Pyroshock simulation for satellite components using a tunable resonant fixture - phase 2

    SciTech Connect (OSTI)

    Davie, N.T.; Bateman, V.I.

    1997-04-01

    Aerospace components are often subjected to pyroshock events during flight and deployment, and must be qualified to this frequently severe environment. Laboratory simulation of pyroshock using a mechanically excited resonant fixture, has gained favor at Sandia for testing small (<8 inch cube) weapon components. With this method, each different shock environment required a different resonant fixture that was designed such that it`s response matched the environment. In Phase 1 (SAND92-2135) of this research, a new test method was developed which eliminated the need to have a different resonant fixture for each test requirement. This was accomplished by means of a tunable resonant fixture that has a response which is adjustable over a wide frequency range. The adjustment of the fixture`s response is done in a simple and deterministic way. This report covers Phase 2 of this research, in which several ideas were explored to extend the Phase 1 results to a larger scale. The test apparatus developed in Phase 1 was capable of testing components with up to a 10 inches x 10 inches base. The goal of the Phase 2 research was to produce an apparatus capable of testing components with up to a 20 inches x 20 inches mounting base. This size capability would allow the testing of most satellite and missile components which frequently consist of large electronic boxes. Several methods to attain this goal were examined, including scaling up the Phase 1 apparatus. Only one of these proved capable of meeting the Phase 2 goals. This report covers all details from concept through fabrication and testing of this Phase 2 apparatus.

  20. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; et al

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a bandedmore » chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  1. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    SciTech Connect (OSTI)

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ?r < ?e, where ?e is the electron cyclotron frequency, and a characteristic spectral gap at ?r ? ?e/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~?e/2 is a natural consequence of the growth of two whistler modes with different properties.

  2. DETECTION OF SUBSTRUCTURE IN THE GRAVITATIONALLY LENSED QUASAR MG0414+0534 USING MID-INFRARED AND RADIO VLBI OBSERVATIONS

    SciTech Connect (OSTI)

    MacLeod, Chelsea L. [Physics Department, United States Naval Academy, Annapolis, MD 21403 (United States); Jones, Ramsey; Agol, Eric [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Kochanek, Christopher S., E-mail: macleod@usna.edu [Department of Astronomy and the Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States)

    2013-08-10

    We present 11.2 {mu}m observations of the gravitationally lensed, radio-loud z{sub s} = 2.64 quasar MG0414+0534, obtained using the Michelle camera on Gemini North. We find a flux ratio anomaly of A2/A1 = 0.93 {+-} 0.02 for the quasar images A1 and A2. When combined with the 11.7 {mu}m measurements from Minezaki et al., the A2/A1 flux ratio is nearly 5{sigma} from the expected ratio for a model based on the two visible lens galaxies. The mid-IR flux ratio anomaly can be explained by a satellite (substructure), 0.''3 northeast of image A2, as can the detailed very long baseline interferometry (VLBI) structures of the jet produced by the quasar. When we combine the mid-IR flux ratios with high-resolution VLBI measurements, we find a best-fit mass between 10{sup 6.2} and 10{sup 7.5} M{sub Sun} inside the Einstein radius for a satellite substructure modeled as a singular isothermal sphere at the redshift of the main lens (z{sub l} = 0.96). We are unable to set an interesting limit on the mass to light ratio due to its proximity to the quasar image A2. While the observations used here were technically difficult, surveys of flux anomalies in gravitational lenses with the James Webb Space Telescope will be simple, fast, and should well constrain the abundance of substructure in dark matter halos.

  3. Estimation of total cloud cover from solar radiation observations at Lake Rotorua, New Zealand

    SciTech Connect (OSTI)

    Luo, Liancong; Hamilton, David; Han, Boping

    2010-03-15

    The DYRESM-CAEDYM model is a valuable tool for simulating water temperature for biochemical studies in aquatic ecosystem. The model requires inputs of surface short-wave radiation and long-wave radiation or total cloud cover fraction (TC). Long-wave radiation is often not measured directly so a method to determine TC from commonly measured short-wave solar irradiance (E{sub 0}) and theoretical short-wave solar irradiance under a clear sky (E{sub c}) has broad application. A more than 17-year (15 November 1991 to 20 February 2009) hourly solar irradiance data set was used to estimate the peak solar irradiance for each ordinal date over one year, which was assumed to be representative of solar irradiance in the absence of cloud. Comparison between these daily observed values and the modelled clear-sky solar radiation over one year was in close agreement (Pearson correlation coefficient, r = 0.995 and root mean squared error, RMSE = 12.54 W m{sup -2}). The downloaded hourly cloudiness measurements from 15 November 1991 to 20 February 2009 was used to calculate the daily values for this period and then the calculated daily values over the 17 years were used to calculate the average values for each ordinal date over one year. A regression equation between (1 - E{sub 0}/E{sub c}) and TC produced a correlation coefficient value of 0.99 (p > 0.01, n = 71). The validation of this cloud cover estimation model was conducted with observed short-wave solar radiation and TC at two sites. Values of TC derived from the model at the Lake Rotorua site gave a reasonable prediction of the observed values (RMSE = 0.10, r = 0.86, p > 0.01, n = 61). The model was also tested at Queenstown (South Island of New Zealand) and it provided satisfactory results compared to the measurements (RMSE = 0.16, r = 0.67, p > 0.01, n = 61). Therefore the model's good performance and broad applicability will contribute to the DYRESM-CAEDYM accuracy of water temperature simulation when long-wave radiation is not available. (author)

  4. Global Volunteer Observing Ship (VOS) Program Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Volunteer Observing Ship (VOS) Program. The VOS project is coordinated by the UNESCO International Ocean Carbon Coordination Project (IOCCP). The international groups from 14 countries have been outfitting research ships and commercial vessels with automated CO2 sampling equipment to analyze the carbon exchange between the ocean and atmosphere. [copied from http://cdiac.ornl.gov/oceans/genInfo.html] CDIAC provides a map interface with the shipping routes of the 14 countries involved marked in different colors. Clicking on the ship's name on that route brings up information about the vessel, the kinds of measurements collected and the timeframe, links to project pages, and, most important, the links to the data files themselves. The 14 countries are: United States, United Kingdom, Japan, France, Germany, Australia, Canada, Spain, Norway, New Zealand, China (including Taiwan), Iceland, and the Netherlands. Both archived and current, underway data can be accessed from the CDIAC VOS page.

  5. Head Observation Organizer (HObO)

    SciTech Connect (OSTI)

    Steven Predmore

    2008-03-06

    The Head Observation Organizer, HObO, is a computer program that stores and manages measured ground-water levels. HObO was developed to help ground-water modelers compile, manage, and document water-level data needed to calibrate ground-water models. Well-construction and water-level data from the U.S. Geological Survey National Water Database (NWIS) easily can be imported into HObO from the NWIS web site (NWISWeb). The water-level data can be flagged to determine which data will be included in the calibration data set. The utility program HObO_NWISWeb was developed to simplify the down loading of well and water-level data from NWISWeb. An ArcGIS NWISWeb Extension was developed to retrieve site information from NWISWeb. A tutorial is presented showing the basic elements of HObO.

  6. Observable effects of anisotropic bubble nucleation

    SciTech Connect (OSTI)

    Blanco-Pillado, Jose J.; Salem, Michael P. E-mail: salem@cosmos.phy.tufts.edu

    2010-07-01

    Our universe may have formed via bubble nucleation in an eternally-inflating background. Furthermore, the background may have a compact dimension — the modulus of which tunnels out of a metastable minimum during bubble nucleation — which subsequently grows to become one of our three large spatial dimensions. Then the reduced symmetry of the background is equivalent to anisotropic initial conditions in our bubble universe. We compute the inflationary spectrum in such a scenario and, as a first step toward understanding the effects of anisotropy, project it onto spherical harmonics. The resulting spectrum exhibits anomalous multipole correlations, their relative amplitude set by the present curvature parameter, which appear to extend to arbitrarily large multipole moments. This raises the possibility of future detection, if slow-roll inflation does not last too long within our bubble. A full understanding of the observational signal must account for the effects of background anisotropy on photon free streaming, and is left to future work.

  7. Observed parity-odd CMB temperature bispectrum

    SciTech Connect (OSTI)

    Shiraishi, Maresuke; Liguori, Michele; Fergusson, James R. E-mail: michele.liguori@pd.infn.it

    2015-01-01

    Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: ℓ{sub 1} + ℓ{sub 2} + ℓ{sub 3} = odd. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

  8. Resolved multifrequency radio observations of GG Tau

    SciTech Connect (OSTI)

    Andrews, Sean M.; Birnstiel, T.; Rosenfeld, K. A.; Wilner, D. J.; Chandler, Claire J.; Pérez, L. M.; Isella, Andrea; Ricci, L.; Carpenter, J. M.; Calvet, N.; Corder, S. A.; Deller, A. T.; Dullemond, C. P.; Greaves, J. S.; Harris, R. J.; Henning, Th.; Linz, H.; Kwon, W.; Lazio, J.; Mundy, L. G.; and others

    2014-06-01

    We present subarcsecond resolution observations of continuum emission associated with the GG Tau quadruple star system at wavelengths of 1.3, 2.8, 7.3, and 50 mm. These data confirm that the GG Tau A binary is encircled by a circumbinary ring at a radius of 235 AU with a FWHM width of ∼60 AU. We find no clear evidence for a radial gradient in the spectral shape of the ring, suggesting that the particle size distribution is spatially homogeneous on angular scales ≳0.''1. A central point source, likely associated with the primary component (GG Tau Aa), exhibits a composite spectrum from dust and free-free emission. Faint emission at 7.3 mm is observed toward the low-mass star GG Tau Ba, although its origin remains uncertain. Using these measurements of the resolved, multifrequency emission structure of the GG Tau A system, models of the far-infrared to radio spectrum are developed to place constraints on the grain size distribution and dust mass in the circumbinary ring. The non-negligible curvature present in the ring spectrum implies a maximum particle size of 1-10 mm, although we are unable to place strong constraints on the distribution shape. The corresponding dust mass is 30-300 M {sub ⊕}, at a temperature of 20-30 K. We discuss how this significant concentration of relatively large particles in a narrow ring at a large radius might be produced in a local region of higher gas pressures (i.e., a particle 'trap') located near the inner edge of the circumbinary disk.

  9. Constraint effects observed in crack initiation stretch

    SciTech Connect (OSTI)

    Lambert, D.M.; Ernst, H.A.

    1995-12-31

    The current paper characterizes constraint in fracture: J-modified resistance (Jr) curves were developed for two tough structural materials, 6061-T651 (aluminum) and IN718-STA1 (nickel-base superalloy). A wide variety of configurations was tested to consider load configurations from bending to tension including three specimen types (compact tension, center-crack tension, and single-edge notched tension), and a range of ligament lengths and thicknesses, as well as side-grooved and smooth-sided ligaments. The Jr curves exhibited an inflection point after some crack extension, and the data were excluded beyond the inflection. Qualified Jr curves for the two materials showed similar behavior, but R-curves were identical for equal ligament length-to-thickness ratio (RL), for the aluminum alloy, with increasing slope for increasing RL, while for the nickel, the resistance curves aligned for equal ligament thickness, B, and the slope increased for decreasing B. Displacements at the original crack tip (CToD) were recorded throughout the test for several specimens. CToD-versus-crack extension curves were developed, and data were excluded beyond the inflection point (as with the Jr curves). The data collapsed into two distinct curves, thought to represent the surface, plane stress effect and the central, plane strain effect. This was observed for both materials. A technique called profiling is presented for the aluminum alloy only, where the crack face displacements are recorded at the final point of the test as a function of the position throughout the crack cavity, along with an effort to extract the observations in a usable form. Displacements were consistent throughout the cross-section at and behind the original crack tip. In the region where the crack grew, this displacement was developed by a combination of stretch and crack growth. The stretch required to initiate crack extension was a function of the depth beneath the surface into the cross-section.

  10. Whistler mode waves and the electron heat flux in the solar wind: cluster observations

    SciTech Connect (OSTI)

    Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.; Matteini, L.; Santolík, O.

    2014-11-20

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ∼10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β {sub e∥} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β {sub e∥} ≥ 3, in slow wind at 1 AU.

  11. RELICS OF GALAXY MERGING: OBSERVATIONAL PREDICTIONS FOR A WANDERING MASSIVE BLACK HOLE AND ACCOMPANYING STAR CLUSTER IN THE HALO OF M31

    SciTech Connect (OSTI)

    Kawaguchi, Toshihiro; Saito, Yuriko; Miki, Yohei; Mori, Masao

    2014-07-01

    Galaxies and massive black holes (BHs) presumably grow via galactic merging events and subsequent BH coalescence. As a case study, we investigate the merging event between the Andromeda galaxy (M31) and a satellite galaxy. We compute the expected observational appearance of the massive BH that was at the center of the satellite galaxy prior to the merger and is currently wandering in the M31 halo. We demonstrate that a radiatively inefficient accretion flow with a bolometric luminosity of a few tens of solar luminosities develops when Hoyle-Lyttleton accretion onto the BH is assumed. We compute the associated broadband spectrum and show that the radio band (observable with EVLA, ALMA, and the Square Kilometre Array) is the best frequency range in which to detect the emission. We also evaluate the mass and the luminosity of the stars bound by the wandering BH and find that such a star cluster is sufficiently luminous that it could correspond to one of the star clusters found by the PAndAS survey. The discovery of a relic massive BH wandering in a galactic halo will provide a direct means of investigating in detail the coevolution of galaxies and BHs. It also means a new population of BHs (off-center massive BHs) and offers targets for clean BH imaging that avoid strong interstellar scattering in the centers of galaxies.

  12. Observational tests for ?(t)CDM cosmology

    SciTech Connect (OSTI)

    Pigozzo, C.; Carneiro, S.; Dantas, M.A.; Alcaniz, J.S. E-mail: aldinez@on.br E-mail: alcaniz@on.br

    2011-08-01

    We investigate the observational viability of a class of cosmological models in which the vacuum energy density decays linearly with the Hubble parameter, resulting in a production of cold dark matter particles at late times. Similarly to the flat ?CDM case, there is only one free parameter to be adjusted by the data in this class of ?(t)CDM scenarios, namely, the matter density parameter. To perform our analysis we use three of the most recent SNe Ia compilation sets (Union2, SDSS and Constitution) along with the current measurements of distance to the BAO peaks at z = 0.2 and z = 0.35 and the position of the first acoustic peak of the CMB power spectrum. We show that in terms of ?{sup 2} statistics both models provide good fits to the data and similar results. A quantitative analysis discussing the differences in parameter estimation due to SNe light-curve fitting methods (SALT2 and MLCS2k2) is studied using the current SDSS and Constitution SNe Ia compilations. A matter power spectrum analysis using the 2dFGRS is also performed, providing a very good concordance with the constraints from the SDSS and Constitution MLCS2k2 data.

  13. Optical monitor for observing turbulent flow

    DOE Patents [OSTI]

    Albrecht, Georg F.; Moore, Thomas R.

    1992-01-01

    The present invention provides an apparatus and method for non-invasively monitoring turbulent fluid flows including anisotropic flows. The present invention uses an optical technique to filter out the rays travelling in a straight line, while transmitting rays with turbulence induced fluctuations in time. The output is two dimensional, and can provide data regarding the spectral intensity distribution, or a view of the turbulence in real time. The optical monitor of the present invention comprises a laser that produces a coherent output beam that is directed through a fluid flow, which phase-modulates the beam. The beam is applied to a temporal filter that filters out the rays in the beam that are straight, while substantially transmitting the fluctuating, turbulence-induced rays. The temporal filter includes a lens and a photorefractive crystal such as BaTiO.sub.3 that is positioned in the converging section of the beam near the focal plane. An imaging system is used to observe the filtered beam. The imaging system may take a photograph, or it may include a real time camera that is connected to a computer. The present invention may be used for many purposes including research and design in aeronautics, hydrodynamics, and combustion.

  14. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    SciTech Connect (OSTI)

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-10

    We examine the connection between the observed star-forming sequence (SFR ? M {sup ?}) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope ? ? 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M {sub ?}) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that ? = 1 at log (M/M {sub ?}) < 10.5 and ? = 0.7-0.13z (Whitaker et al.) at log (M/M {sub ?}) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ?0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al.

  15. Frequency sweep rates of rising tone electromagnetic ion cyclotron waves: Comparison between nonlinear theory and Cluster observation

    SciTech Connect (OSTI)

    He, Zhaoguo; Zong, Qiugang Wang, Yongfu; Liu, Siqing; Lin, Ruilin; Shi, Liqin

    2014-12-15

    Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (??=?9.3) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.

  16. Constraints on dark energy from new observations including Pan-STARRS

    SciTech Connect (OSTI)

    Zheng, Wei [Department of Physics, Nanjing University, Nanjing, 210093 China (China); Li, Si-Yu [Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing, 100049 (China); Li, Hong; Xia, Jun-Qing [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-3, Beijing, 100049 (China); Li, Mingzhe [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui, 230026 China (China); Lu, Tan, E-mail: physicsweiwei@gmail.com, E-mail: lisy@ihep.ac.cn, E-mail: hongli@ihep.ac.cn, E-mail: xiajq@ihep.ac.cn, E-mail: limz@ustc.edu.cn, E-mail: t.lu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 China (China)

    2014-08-01

    In this paper, we set the new limits on the equation of state parameter (EoS) of dark energy with the observations of cosmic microwave background radiation (CMB) from Planck satellite, the type Ia supernovae from Pan-STARRS and the baryon acoustic oscillation (BAO). We consider two parametrization forms of EoS: a constant w and time evolving w(a)=w{sub 0}+w{sub a}(1-a). The results show that with a constant EoS, w=-1.1410.075 68% C.L.), which is consistent with ?CDM at about 2? confidence level. For a time evolving w(a) model, we get w{sub 0}=-1.09{sup +0.16}{sub -0.18} 1? C.L.), w{sub a}=-0.34{sup +0.87}{sub -0.51} 1? C.L.), and in this case ?CDM can be comparable with our observational data at 1? confidence level. In order to do the parametrization independent analysis, additionally we adopt the so called principal component analysis (PCA) method, in which we divide redshift range into several bins and assume w as a constant in each redshift bin (bin-w). In such bin-w scenario, we find that for most of the bins cosmological constant can be comparable with the data, however, there exists few bins which give w deviating from ?CDM at more than 2? confidence level, which shows a weak hint for the time evolving behavior of dark energy. To further confirm this hint, we need more data with higher precision.

  17. Observing and modeling Earths energy flows

    SciTech Connect (OSTI)

    Stevens B.; Schwartz S.

    2012-05-11

    This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

  18. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... costs of 2.76kg to 4.79kg 5. The combined effects of the production tax credit (PTC), Investment Tax Credit (ITC), and Treasury Grant reduce wind electricity prices 0.02kWh. ...

  19. Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water...

    Broader source: Energy.gov (indexed) [DOE]

    NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation Liquid Hydrogen Production and Delivery from a Dedicated Wind Power Plant Final ...

  20. Observation and modeling of geocoronal charge exchange X-ray emission during solar wind gusts

    SciTech Connect (OSTI)

    Wargelin, B. J.; Kornbleuth, M.; Juda, M.; Martin, P. L.

    2014-11-20

    Solar wind charge exchange (SWCX) X-rays are emitted when highly charged solar wind ions such as O{sup 7{sup +}} collide with neutral gas, including the Earth's tenuous outer atmosphere (exosphere or geocorona) and hydrogen and helium from the local interstellar medium drifting through the heliosphere. This geocoronal and heliospheric emission comprises a significant and varying fraction of the soft X-ray background (SXRB) and is seen in every X-ray observation, with the intensity dependent on solar wind conditions and observation geometry. Under the right conditions, geocoronal emission can increase the apparent SXRB by roughly an order of magnitude for an hour or more. In this work, we study a dozen occasions when the near-Earth solar wind flux was exceptionally high. These gusts of wind lead to abrupt changes in SWCX X-ray emission around Earth, which may or may not be seen by X-ray observatories depending on their line of sight. Using detailed three-dimensional magnetohydrodynamical simulations of the solar wind's interaction with the Earth's magnetosphere, and element abundances and ionization states measured by ACE, we model the time-dependent brightness of major geocoronal SWCX emission lines during those gusts and compare with changes in the X-ray background measured by the Chandra X-ray Observatory. We find reasonably good agreement between model and observation, with measured geocoronal line brightnesses averaged over 1 hr of up to 136 photons s{sup 1} cm{sup 2} sr{sup 1} in the O VII K? triplet around 564 eV.