National Library of Energy BETA

Sample records for hot water tank

  1. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  2. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  3. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOE Patents [OSTI]

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  4. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect (OSTI)

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  5. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  6. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update (EIA)

    District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) ... District Hot Water Usage Was district hot water delivered to the building during the ...

  7. HOt Water SavEr (HOWSE) Project. Final report

    SciTech Connect (OSTI)

    Olson, W.R.

    1981-12-31

    The dishwasher effluent is pumped into the flue of the exchange tank by the normal dishwasher pump (or auxiliary pump). The effluent is stored in this tank until next operation of the dishwasher. Thus, thermal equilibrium can be reached between the tank and the effluent, promoting high efficiency. The output from the exchange tank feeds the household normal hot water tank, reducing its requirement for fuel as the input water temperature is higher. Counterflow exchangers may be used for other hot water users where the flow and drain is continuous. In this case the discharged hot (or warm) water flows counter to the flow of cold water into the hot water heater. The two flows are closely coupled thermally but not in direct contract so they cannot mix. Counter flow exchangers and storage type exchangers may be used in the same installation.

  8. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  9. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments [OSTI]

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  10. Commonwealth Solar Hot Water Commercial Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Beginning in August 2011, the Massachusetts Clean Energy Center (MassCEC) will provide grants* for feasibility studies of commercial solar hot water systems through the Commonwealth Solar Hot Wat...

  11. Reduce Hot Water Use for Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Water Heating Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for ... Home Cooling Systems Home Heating Systems Heat Pump Systems Water Heating ...

  12. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect (OSTI)

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

  13. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    SciTech Connect (OSTI)

    Springer, David; Seitzler, Matt; Backman, Christine; Weitzel, Elizabeth

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  14. A Realistic Hot Water Draw Specification for Rating Solar Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Realistic Hot Water Draw Specification for Rating Solar Water Heaters Preprint J. Burch National Renewable Energy Laboratory J. Thornton Thermal Energy System Specialists, Inc. ...

  15. Savings Project: Insulate Your Water Heater Tank | Department...

    Energy Savers [EERE]

    Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings 20-45 annually Time to Complete 1.5 hours Overall Cost 30 ...

  16. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  17. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  18. Commonwealth Solar Hot Water Residential Program

    Broader source: Energy.gov [DOE]

    Since February 2011, the Massachusetts Clean Energy Center (MassCEC) has provided rebates for the installation of residential and small commercial solar hot water systems through the Commonwealth...

  19. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research ...

  20. Solar Hot Water Market Development in Knoxville, TN

    Broader source: Energy.gov [DOE]

    Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county.

  1. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Savers [EERE]

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe ...

  2. DOE ZERH Webinar: Efficient Hot Water Distribution I -- What...

    Energy Savers [EERE]

    DOE ZERH Webinar: Efficient Hot Water Distribution I -- What's At Stake (Text Version) Below is the text version of the webinar, Efficient Hot Water Distribution I -- What's At ...

  3. Direct Use for Building Heat and Hot Water Presentation Slides...

    Energy Savers [EERE]

    Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Download ...

  4. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  5. Heat pump water heater and storage tank assembly

    DOE Patents [OSTI]

    Dieckmann, John T.; Nowicki, Brian J.; Teagan, W. Peter; Zogg, Robert

    1999-09-07

    A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

  6. Residential hot water distribution systems: Roundtablesession

    SciTech Connect (OSTI)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  7. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  8. DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...

    Energy Savers [EERE]

    II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get ... Hot water distribution is one of these critical systems - affecting energy use , water ...

  9. Reduce Hot Water Use for Energy Savings | Department of Energy

    Energy Savers [EERE]

    Water Heating Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings One easy energy lifehack: fix leaky faucets to save money and energy. One easy ...

  10. Reduce Hot Water Use for Energy Savings | Department of Energy

    Energy Savers [EERE]

    Heat & Cool Water Heating Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings One easy energy lifehack: fix leaky faucets to save money and ...

  11. ZERH Webinar: Efficient Hot Water Distribution | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZERH Webinar: Efficient Hot Water Distribution ZERH Webinar: Efficient Hot Water Distribution September 14, 2016 12:00PM to 1:00PM EDT You Know that Hot Water Distribution is Important...Now Learn Design Details for Systems that Work Efficient hot water distribution systems route water more efficiently, with the added convenience of not waiting for hot water. For consumers, this also means a great feeling from not wasting thousands of gallons of water needlessly each year along with money saved

  12. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK ... operating data on combined domestic hot water @HW) and heating systems to be used in ...

  13. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...

    Energy Savers [EERE]

    Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? November 24, ...

  14. Savings Project: Insulate Hot Water Pipes for Energy Savings...

    Energy Savers [EERE]

    Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings 8-12 annually Time to Complete 3 hours ...

  15. DOE ZERH Webinar: Efficient Hot Water Distribution II -- How...

    Energy Savers [EERE]

    DOE ZERH Webinar: Efficient Hot Water Distribution II -- How to Get it Right (Text Version) Below is the text version of the webinar, Efficient Hot Water Distribution II -- How to ...

  16. Affordable Solar Hot Water and Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Water and Power LLC Jump to: navigation, search Name: Affordable Solar Hot Water and Power LLC Place: Dothan, Alabama Zip: 36305 Sector: Solar Product: Solar and Energy Efficiency...

  17. DOE ZERH Webinar: Efficient Hot Water Distribution I: What's...

    Office of Environmental Management (EM)

    Hot water distribution is one of these critical systems - affecting energy use , water consumption, and resident convenience and comfort. In this initial session Gary Klein covers ...

  18. Heat exchanger and water tank arrangement for passive cooling system

    DOE Patents [OSTI]

    Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

    1993-11-30

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

  19. Practical hot oiling and hot watering for paraffin control (Conference...

    Office of Scientific and Technical Information (OSTI)

    VA at www.ntis.gov. One of the common oil-field wellbore problems is paraffin deposition. ... formation. (2) Hot oiling can vaporize oil in the tubing faster than the pump lifts oil. ...

  20. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report

    SciTech Connect (OSTI)

    Lee Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  1. Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request

    SciTech Connect (OSTI)

    L. Davison

    2009-06-30

    This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

  2. Monitoring SERC Technologies - Solar Hot Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Monitoring SERC Technologies - Solar Hot Water On October 27, 2011, Eliza Hotchkiss, an analyst at the National Renewable Energy Laboratory, presented a Webinar about Solar Hot Water systems and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: Database for State Incentives for Renewables and Efficiency NREL Solar Technology Analysis Models and Tools SunShot

  3. Model Simulating Real Domestic Hot Water Use - Building America Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe insulation.jpg As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. This Top Innovation describes Building America research by Alliance for Residential Building Innovation and the

  4. Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  5. Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details...

  6. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) Exploration Activity...

  7. Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details...

  8. Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  9. Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details...

  10. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  11. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  12. Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity...

  13. Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details...

  14. Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  15. Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location...

  16. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    of Water Sample Analysis, Waunita Hot Spring Project, Gunnison County, Colorado Author R. H. Carpenter Organization Colorado Geological Survey in Cooperation with the U.S....

  17. Ch. III, Interpretation of water sample analyses Waunita Hot...

    Open Energy Info (EERE)

    of water sample analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  18. Domestic Hot Water Event Schedule Generator - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Building Energy Efficiency Find More Like This Return to Search Domestic Hot Water Event Schedule Generator National Renewable Energy Laboratory Contact NREL About This...

  19. Solar Hot Water Creates Savings for Homeless Shelters

    Broader source: Energy.gov [DOE]

    The state of Arizona and the House of Refuge Sunnyslope are partnering to install solar hot water systems at five Phoenix-area housing sites for homeless men.

  20. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect (OSTI)

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  1. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  2. Hot New Advances in Water Heating Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency

  3. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank...

    Office of Scientific and Technical Information (OSTI)

    Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm Citation Details In-Document Search Title: Testing of Alternative Abrasives for Water-Jet Cutting at C Tank ...

  4. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  5. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  6. DOE Zero Energy Ready Home Efficient Hot Water Distribution II...

    Broader source: Energy.gov (indexed) [DOE]

    with the Challenge Home program and here to set this up for you. Today's session on hot water distribution is one of a continuing series of tech training webinars to support our...

  7. DOE Zero Energy Ready Home Efficient Hot Water Distribution I...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

  8. Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Solar Hot Water. solar_thermal_presentation.pdf (1.45 MB) More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) Success Story: Montana Sustainable Energy Resources for Consumers (SERC) - Geothermal/Ground-Source Heat

  9. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect (OSTI)

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  10. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E.

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  11. Modeling patterns of hot water use in households

    SciTech Connect (OSTI)

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  12. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water ...

  13. Catalytic Behavior of Dense Hot Water

    SciTech Connect (OSTI)

    Wu, C J; Fried, L E; Yang, L H; Goldman, N; Bastea, S

    2008-06-05

    Water is known to exhibit fascinating physical properties at high pressures and temperatures. Its remarkable structural and phase complexity suggest the possibility of exotic chemical reactivity under extreme conditions, though this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of K and tens of GPa, similar to conditions of giant planetary interiors. These systems thus provide a unique means to elucidate the chemistry of 'extreme water'. Here we show that water plays an unexpected role in catalyzing complex explosive reactions - contrary to the current view that it is simply a stable detonation product. Using first-principles atomistic simulations of the detonation of high explosive pentaerythritol tetranitrate (PETN), we discovered that H{sub 2}O (source), H (reducer) and OH (oxidizer) act as a dynamic team that transports oxygen between reaction centers. Our finding suggests that water may catalyze reactions in other explosives and in planetary interiors.

  14. Thermal overinsulation and the behavior of hot water heating systems

    SciTech Connect (OSTI)

    Casier, Y.

    1982-01-01

    Supported by thermodynamic calculations and field experience G.D.F. disproved the theory that because of their high warm-up/cooldown inertia, hot-water central heating systems are inefficient for insulated dwellings that have low thermal losses, causing overheating in certain situations. With the proper choice of thermostat, water temperature, and piping design, a heating system that uses water as the heat carrier can be responsive to the needs of a tightly insulated residence.

  15. Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake...

  16. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect (OSTI)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  17. CPS Energy- Solar Hot Water Rebate Program

    Broader source: Energy.gov [DOE]

    As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

  18. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A.

    1998-01-01

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  19. Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems

    SciTech Connect (OSTI)

    Lutz, James

    2005-02-26

    Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

  20. Energy-Efficient Controls for Multifamily Domestic Hot Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 Energy-Efficient Controls for Multifamily Domestic Hot Water Jordan Dentz and Eric Ansanelli The Levy Partnership, Inc. New York, NY 2 Research Sponsors * The ARIES Collaborative is a Department of Energy, Building America research team led by The Levy Partnership. * ARIES focuses on reducing energy use in new and existing residential buildings * Research conducted by: 3 Introduction Approach Results Conclusion

  1. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  2. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  3. Getting into hot water: the law of geothermal resources in Colorado...

    Open Energy Info (EERE)

    Getting into hot water: the law of geothermal resources in Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Getting into hot water: the law...

  4. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  5. Direct Use for Building Heat and Hot Water Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

  6. DOE Zero Energy Ready Home Efficient Hot Water Distribution I-- What's At Stake Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Efficient Hot Water Distribution I -- What's At Stake, presented in January 2014.

  7. Cost, Design, and Performance of Solar Hot Water in Cold-Climate Homes

    SciTech Connect (OSTI)

    2006-05-03

    This paper examines long-term performance of two solar hot water heating systems in the northern climate zone.

  8. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    SciTech Connect (OSTI)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heater (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.

  9. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect (OSTI)

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  10. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  11. Using Solar Hot Water to Address Piping Heat Losses in Multifamily...

    Office of Scientific and Technical Information (OSTI)

    Subject: residential; Residential Buildings; ARBI; Building America; TRNSYS; multifamily; domestic hot water; solar water heater; recirculation Word Cloud More Like This Full Text ...

  12. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect (OSTI)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  13. Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980

    SciTech Connect (OSTI)

    Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

    1980-06-01

    A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

  14. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  15. TOXICOLOGICAL AND STRUCTURAL CONSEQUENCES FROM SODIUM-WATER REACTION IN CELL CONTAINING THE SECONDARY SODIUM TANK

    SciTech Connect (OSTI)

    MARUSICH RM

    2008-06-25

    The analysis will show the consequences should the solid sodium in the Secondary Sodium Tank react with a presumed layer of water in the cell. The Peer Review Checklist is attached.

  16. Building America Top Innovations Hall of Fame Profile … Model Simulating Real Domestic Hot Water Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Davis Energy Group used the Domestic Hot Water Event Schedule Generator to accurately quantify effects of low and high water usage on distribution system measures such as pipe insulation, home run plumbing, and demand-controlled recirculation loops. As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot water use so new

  17. DOE ZERH Webinar: Efficient Hot Water Distribution I: What's at Stake |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy I: What's at Stake DOE ZERH Webinar: Efficient Hot Water Distribution I: What's at Stake Watch the video or view the presentation below Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance. Hot water distribution is one of these critical systems - affecting energy use , water consumption, and resident convenience and comfort. In this initial session Gary Klein covers the basics of residential hot water plumbing systems

  18. DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the presentation slides below Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance. Hot water distribution is one of these critical systems - affecting energy use , water consumption, and resident convenience and comfort. In this second session on hot water distribution, Gary Klein will explain design

  19. Optimum hot water temperature for absorption solar cooling

    SciTech Connect (OSTI)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  20. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect (OSTI)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  1. Geodesic-dome tank roof cuts water contamination, vapor losses

    SciTech Connect (OSTI)

    Barrett, A.E. )

    1989-07-10

    Colonial Pipeline Co. has established an ongoing program for using geodesic-dome roofs on tanks in liquid petroleum-product service. As its standard, Colonial adopted geodesicodone roofs, in conjunction with internal floating decks, to replace worn external floating roofs on existing tanks used in gasoline service and for use on new tanks in all types of product service. Geodesic domes are clear-span structures requiring no internal-support columns. This feature allows the associated use of a floating deck that is as vapor tight as is possible to construct. Further, geodesic domes can practically eliminate rainwater contamination, eliminate wind-generated vapor losses, and greatly reduce filling losses associated with conventional external floating roofs.

  2. Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity...

  3. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity

    SciTech Connect (OSTI)

    2009-09-23

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  4. Finite-Element Simulation Of Hot-Water-Type Geothermal Reservoirs...

    Open Energy Info (EERE)

    differential equations are based upon constant physical parameters (except fluid density) and formulated for hot-water-type geothermal reservoirs. A simultaneous solution...

  5. Demonstration of μCHP in Light Commercial Hot Water Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of CHP in Light Commercial Hot Water Applications 2016 Building Technologies Office Peer Review Kris L. Jorgensen, kjorgensen@aosmith.com A. O. Smith Corporation 2 ...

  6. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  7. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  8. Development of Standardized Domestic Hot Water Event Schedules for Residential Buildings

    SciTech Connect (OSTI)

    Hendron, R.; Burch, J.

    2008-08-01

    The Building America Research Benchmark is a standard house definition created as a point of reference for tracking progress toward multi-year energy savings targets. As part of its development, the National Renewable Energy Laboratory has established a set of domestic hot water events to be used in conjunction with sub-hourly analysis of advanced hot water systems.

  9. Don't Let Your Money and Hot Water Go Down the Drain | Department...

    Energy Savers [EERE]

    Don't Let Your Money and Hot Water Go Down the Drain Don't Let Your Money and Hot Water Go Down the Drain December 9, 2008 - 4:00am Addthis John Lippert Do you look at your ...

  10. Solar Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Water Heating » Solar Water Heaters Solar Water Heaters Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar panels heat water that is delivered to a storage tank.| Photo courtesy of David Springer, National Renewable Energy Laboratory Solar water heaters -- also called solar domestic hot water systems -- can be a cost-effective way to generate hot water for your home. They can be used in

  11. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  12. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect (OSTI)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  13. Experience with thermal storage in tanks of stratified water for solar heating and load management

    SciTech Connect (OSTI)

    Wildin, M.W.; Witkofsky, M.P.; Noble, J.M.; Hopper, R.E.; Stromberg, P.G.

    1982-01-01

    Results have been obtained for performance of stratified tanks of water used to store heating and cooling capacity in a 5574 m/sup 2/ university building. The major sources of energy used to charge the heated tanks were solar energy, obtained via collectors on the roof of the building, and excess heat recovered from the interior of the building via thermal storage and electric-driven heat pump/chillers. Through stratification of the water in the storage tanks and an appropriate system operating strategy, 40 percent of the building's total heating needs were supplied by solar energy during the first four months of 1981. Month-long thermal efficiencies of the storage array ranging from 70 percent during the heating season to nearly 90 percent during the cooling season, were measured. Work is underway to improve the performance of thermal storage.

  14. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    SciTech Connect (OSTI)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  15. Experimental Breeder Reactor-II Primary Tank System Wash Water...

    Office of Environmental Management (EM)

    Pre-Developmental INL EBR-II Wash Water Treatment Technologies (PBS ADSHQTD0100 (0003199)) EBR-II Wash Water Workshop - The majority of the sodium has been removed, remaining ...

  16. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist. SHW-Ready Checklists.pdf (85.65 KB) More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist Renewable Energy Ready Home Solar Photovoltaic Specifications

  17. Crude oil and natural gas dissolved in deep, hot geothermal waters...

    Office of Scientific and Technical Information (OSTI)

    oil and natural gas dissolved in deep, hot geothermal waters of petroleum basins--a possible significant new energy source Citation Details In-Document Search Title: Crude oil and ...

  18. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Mt. Princeton hot water production (4.3-4.9)103m3day at approximately 60-86C). A temperature map indicates that a third upwelling zone termed U4 may exist at the southern...

  19. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Mt. Princeton hot water production (4.3-4.9) 103 m3day at approximately 60-86C). A temperature map indicates that a third upwelling zone termed U4 may exist at the southern...

  20. Building America Top Innovations 2012: Model Simulating Real Domestic Hot Water Use

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

  1. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  3. Recovery of energy from geothermal brine and other hot water sources

    DOE Patents [OSTI]

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  4. Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? 150 new jobs. 1200 solar water heaters installed. In Puerto Rico, solar water heaters have been popular for decades. But even with energy savings, not everyone can afford one. Through a new Recovery Act-funded program for the island, more

  5. Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: Are High Efficiency Hot Water Heating Systems Worth the Cost? Issue #4: Are High Efficiency Hot Water Heating Systems Worth the Cost? What are realistic energy savings associated with the latest advanced and forthcoming water heating technologies and are they cost effective? issue4_gasfired_waterheater.pdf (1.27 MB) issue4_tankless_wh.pdf (510.42 KB) issue4_waterhtg_solutions.pdf (528.96 KB) More Documents & Publications Cost Effective Water Heating Solutions

  6. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

    SciTech Connect (OSTI)

    Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

    2011-10-20

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in

  7. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  8. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect (OSTI)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energys goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (rebar). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less effective

  9. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes

    Broader source: Energy.gov [DOE]

    This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems.

  10. Predictive Control of Hot Water Heaters - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication Full Report on Heat Pump Water Heaters (15,810 KB) Technology Marketing Summary Water heating in residential homes can account for as much as 15% of total energy use. ...

  11. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  12. Sacramento Ordinance to Waive Fees for Solar Hot Water

    Broader source: Energy.gov [DOE]

    An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

  13. FEMP Solar Hot Water Calculator | Open Energy Information

    Open Energy Info (EERE)

    Water Calculator AgencyCompany Organization: Federal Energy Management Program Sector: Energy Focus Area: Buildings Phase: Determine Baseline Topics: Baseline projection...

  14. Ocala Utility Services- Solar Hot Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive...

  15. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are

  16. DOE Zero Energy Ready Home Efficient Hot Water Distribution II-- How to Get it Right Webinar (Text Version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar, Efficient Hot Water Distribution II -- How to Get it Right, presented in January2014.

  17. DOE ZERH Webinar: Efficient Hot Water Distribution I -- What's At Stake

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Text Version) | Department of Energy I -- What's At Stake (Text Version) DOE ZERH Webinar: Efficient Hot Water Distribution I -- What's At Stake (Text Version) Below is the text version of the webinar, Efficient Hot Water Distribution I -- What's At Stake, presented in January 2014. Watch the presentation. Jamie Lyons: We're running a series of four-hour training sessions all around the country and we started that about a year ago, and we're continuing that, and this is our Zero Energy

  18. DOE ZERH Webinar: Efficient Hot Water Distribution II -- How to Get it

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Right (Text Version) | Department of Energy II -- How to Get it Right (Text Version) DOE ZERH Webinar: Efficient Hot Water Distribution II -- How to Get it Right (Text Version) Below is the text version of the webinar, Efficient Hot Water Distribution II -- How to Get it Right, presented in January 2014. Watch the presentation. Lindsay Parker: ... Tech Training webinar series. My name is Lindsay Parker. I'm working with the Challenge Home program and here to set this up for you. Today's

  19. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect (OSTI)

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise, including surface reflections. Experiments were conducted in a deep water tank at the Transdec facility in San Diego, which satisfies these requirements. The Transdec measurements are free of reverberations, but not totally free of acoustic and electrical noise. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve opening sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well. We believe this is because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  20. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  1. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  2. Compliance testing of hot-water and steam boilers, Shaw Afb, South Carolina. Final report

    SciTech Connect (OSTI)

    Garrison, J.A.

    1989-02-01

    At the request of HQ TAC/DEEV, personnel of the USAFOEHL Air Quality Function conducted source testing of eighteen small hot water and steam boilers to determine stack-gas moisture content and velocity. The data obtained during the survey was necessary for boiler operating application.

  3. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    SciTech Connect (OSTI)

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-01-01

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  4. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    SciTech Connect (OSTI)

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-12-31

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  5. Thermal performance of a full-scale stratified chilled-water thermal storage tank

    SciTech Connect (OSTI)

    Bahnfleth, W.P.; Musser, A.

    1998-12-31

    The thermal performance of a full-scale 1.47 million gallon (5300 m{sup 3}), 44.5 ft (13.6 m) water-depth, naturally stratified chilled-water thermal storage tank with radial diffusers is analyzed. Controlled, constant inlet flow rate tests covering the full range of the system have been performed for both charge and discharge processes. Thermal performance for these half-cycle tests is quantified using performance metrics similar to the figure of merit (FOM). Lost capacity, a new measure of performance with practical significance, is also presented. Uncertainty analysis shows that under some circumstances, particularly for tall tanks, lost capacity allows thermal performance to be quantified with less experimental uncertainty than FOM. Results of these tests indicate that discharge cycles performance is not as good as charge cycle performance at the same flow rate. However, the half-cycle figure of merit for all cycles tested was in excess of 90%, despite the fact that the inlet Reynolds number exceeded that recommended in the literature by up to a factor of five.

  6. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura

    2009-09-15

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  7. Promising Technology: Tankless Gas Water Heaters

    Broader source: Energy.gov [DOE]

    A tankless gas water heater does not have a storage tank, as a conventional water heater does. Instead, a tankless water heater instantaneously heats water flowing over the heat exchanger coils when there is hot water demand. Because there is no tank, tankless water heaters have no standby energy losses that are associated with storage units. Another non-energy saving benefit is that a tankless water heater is much more compact.

  8. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    SciTech Connect (OSTI)

    Parazin, R.J.

    1998-07-31

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline.

  9. Field-measured performance of four full-scale cylindrical stratified chilled-water thermal storage tanks

    SciTech Connect (OSTI)

    Musser, A.; Bahnfleth, W.P.

    1999-07-01

    Results are presented for controlled flow rate tests in four full-scale cylindrical chilled-water storage tanks. The tanks range in volume from 1.15 to 5.18 million gallons (4.35 to 19.61 million liters) and have water depths of 40 to 65 ft (12.2 to 19.8 m). Water is introduced into and withdrawn from two of these tanks using radial parallel plate diffusers, while the remaining two tanks utilize octagonal slotted pipe diffuser designs. Thermal performance is quantified for full cycles in terms of Figure of Merit, for single charge and discharge processes as half-cycle Figure of Merit, and for incomplete charge and discharge processes as Lost Capacity. Results show that the thermal performance of all four tanks is excellent, with less than 4% of theoretical cooling capacity lost to inlet mixing and other degradation mechanisms for flow rates less than or equal to design. Based on these results, the appropriateness of current design guidance is discussed. Operational issues that affect implementation of controlled flow rate full-scale tests are also identified, and measurement issues are addressed.

  10. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    SciTech Connect (OSTI)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-11-14

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106.

  11. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  12. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  13. Classification of heart valve sounds from experiments in an anechoic water tank

    SciTech Connect (OSTI)

    Axelrod, M C; Clark, G A; Scott, D

    1999-06-01

    In vivo studies in both sheep and humans were plagued by a number of problems including movement artifacts, biological noise, low signal-to-noise ratio (SNR), chest-wall reverberation, and limited bandwidth recordings as discussed by [1]. To overcome these problems it was decided to record heart valve sounds under controlled conditions deep in an anechoic water tank, free from reverberation noise. The main goal of this experiment was to obtain measurements of ''pure'' heart valve sounds free of the scattering effects of the body. Experiments were conducted at the Transdec facility in San Diego [2]. We used a high quality hydrophone together with a wide-band data acquisition system [2]. We recorded sounds from 100 repetitions of the opening-closing cycles on each of 50 different heart valves, including 21 SLS valves and 29 intact valves. The power spectrum of the opening and closing phases of each cycle were calculated and outlier spectra removed as described by Candy [2]. In this report, we discuss the results of our classification of the heart valve sound measurements. The goal of this classification task was to apply the fundamental classification algorithms developed for the clinical data in 1994 and 1996 to the measurements from the anechoic water tank. From the beginning of this project, LLNL's responsibility has been to process and classify the heart valve sounds. For this experiment, however, we processed both the opening sounds and closing sounds for comparison purposes. The results of this experiment show that the classifier did not perform well because of low signal-to-noise ratio and excessive variability in signal power from beat-to-beat for a given valve.

  14. SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Using SolOPT (835 KB) Technology Marketing Summary In order to increase the speed and scale of Renewable Energy (RE) solar project deployment on buildings, energy savings

  15. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Solar Hot Water-Ready Checklist (Encouraged) DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist. Although the checklist is always encouraged, the following three conditions could be considered when deciding on using the checklist. Where all three conditions of the following conditions are met DOE encourages use of this checklist: 1. Location, based on zip code has at least 5 kWh/m 2 /day average daily solar

  16. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect (OSTI)

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  17. Hanford Technology Development (Tank Farms) - 12509

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. The millions of gallons of tank waste are a byproduct of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. One key part of the ongoing work at Hanford is retrieving waste from the single-shell tanks, some of which have leaked in the past, and transferring that waste to the double-shell tanks - none of which have ever leaked. The 56 million gallons of radioactive tank waste is stored in 177 underground tanks, 149 of which are single-shell tanks built between 1943 and 1964. The tanks sit approximately 250 feet above the water table. Hanford's single-shell tanks are decades past their 20-year design life. In the past, up to 67 of the single-shell tanks are known or suspected to have leaked as much as one million gallons of waste to the surrounding soil. Starting in the late 1950's, waste leaks from dozens of the single-shell tanks were detected or suspected. Most of the waste is in the soil around the tanks, but some of this waste is thought to have reached groundwater. The Vadose Zone Project was established to understand the radioactive and chemical contamination in the soil beneath the tanks as the result of leaks and discharges from past plutonium-production operations. The vadose zone is the area of

  18. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, E.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  19. Solar-heated hot water instrumentation project for EPRI Headquarters complex, Palo Alto, California. Final report

    SciTech Connect (OSTI)

    Whitehouse, H.T.; Ortiz, P.

    1981-01-01

    A data acquisition and analysis effort charted the performance of a solar-assisted, hot water preheat system supplying a portion of the service water needs at the EPRI Headquarters complex in Palo Alto, California. The project commenced in June of 1978, with active data acquisition transpiring over a 12-month period from December 1, 1978, to November 30, 1979. Detailed load and performance data for the system are presented, the merits of the data acquisition system employed are discussed, and recommendations for future monitoring efforts are provided.

  20. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  1. Hot Showers, Fresh Laundry, Clean Dishes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes March 5, 2013 - 11:17am Addthis The GE GeoSpring™ Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into

  2. Hot Topics Summer Workshops | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Showers, Fresh Laundry, Clean Dishes Hot Showers, Fresh Laundry, Clean Dishes March 5, 2013 - 11:17am Addthis The GE GeoSpring™ Electric Heat Pump Water Heater is readily integrated into new and existing home designs. Taking up the same footprint as a traditional 50-gallon tank water heater, the Electric Heat Pump Water Heater uses the existing water heater's plumbing and electrical connections. Credit: GE The GE GeoSpring(tm) Electric Heat Pump Water Heater is readily integrated into

  3. NREL Helping the Bureau of Land Management Dive Further into Hot Water -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Feature | NREL Helping the Bureau of Land Management Dive Further into Hot Water May 16, 2016 A woman wearing a hard hat stands in a field near an oil and gas well. NREL researcher Katherine Young visits an IPT Energy Services oil and gas well site near Denver. NREL will be providing technical assistance to the BLM for its geothermal program, adapting knowledge, materials, and lessons learned from the agency's oil and gas programs. Photo by Dennis Schroeder Geothermal energy is there

  4. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  5. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  6. Identification of mixing effects in stratified chilled-water storage tanks by analysis of time series temperature data

    SciTech Connect (OSTI)

    Caldwell, J.S.; Bahnfleth, W.P.

    1998-12-31

    Several one-dimensional models of mixing in stratified chilled-water thermal energy storage tanks have been proposed. In the simplest models, mixing is assumed to be uniform throughout the tank. Other models permit spatial variation of mixing intensity. Published models were developed by adjusting model parameters to achieve qualitative agreement with measured profiles. The literature does not describe quantitative criteria for evaluating the performance of mixing models. This paper describes a method that can be used to determine the relative spatial distribution of mixing effects directly from experimental data. It also illustrates a method for quantitative comparison of experimental and modeled temperature profiles. The mixing calculation procedure may be applied to instantaneous spatial temperature data if temperature sensor spacing is sufficiently small. When sensors are widely spaced, time series data taken at individual sensors provide better accuracy. A criterion for maximum sensor spacing is proposed. The application of these procedures to time series charge-cycle operating data from a full-scale chilled-water thermal storage system serving a large medical center is described. Results of this analysis indicate that mixing is localized near the inlet diffuser and that one-dimensional flow with streamwise conduction predominates in most of the tank.

  7. Evolution of temperature distributions in a full-scale stratified chilled-water storage tank with radial diffusers

    SciTech Connect (OSTI)

    Musser, A.; Bahnfleth, W.P.

    1998-10-01

    Temperature profiles in a full-scale, naturally stratified, chilled-water thermal storage tank are described. Tests were performed using a 1.4 million gallon (5,300 m{sup 3}), 44.5 ft (13.56 m) water depth cylindrical tank with radial diffusers. Nine charge and discharge cycle tests were performed for various flow rates, covering and extending beyond the normal operating range of the system. A method for obtaining thermocline thickness from field data was derived, and a relationship between inlet flow rate and initial thermocline thickness was established. Significant differences between profiles obtained for charge and discharge cycles at similar flow rates suggest that the free surface at the top of the tank allows more mixing to occur near the upper diffuser. A study of thermocline growth compares measured temperature profiles with those predicted by a numerical conduction model that uses temperature profiles measured early in the cycle as an initial condition. Comparison with the numerical study shows that, for high flow rate tests, large-scale mixing induced by the inlet diffuser can have significant effects on thermocline development, even after the thermocline has moved away from the inlet diffuser.

  8. wave tank

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tank - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

  10. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  11. A rating procedure for solar domestic hot water systems based on ASHRAE-95 test results

    SciTech Connect (OSTI)

    Minnerly, B.V.; Klein, S.A.; Beckman, W.A. )

    1991-01-01

    A rating method for solar domestic hot water (SDHW) systems is presented that provides site-specific annual performance estimates based on ASHRAE-95 test results. An overall loss and overall gain coefficient are estimated by lumping the entire thermal behavior of the actual system exhibited during the ASHRAE-95 test into the collector parameters of a simplified system model. The performance of the simplified model can then be predicted using either the F-chart or TRNSYS and presented as an estimate of the annual performance of the actual system. Experimental performance measurements taken from relevant literature as well as extensive simulations, indicate that this method is capable of predicting the annual performance of a wide range of SDHW system types to within 5%, independent of location.

  12. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  13. Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems

    SciTech Connect (OSTI)

    Hooks, Ronald; Montoya, Valerie

    2008-03-26

    Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPIs student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

  14. Assembly and comparison of available solar hot water system reliability databases and information.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2009-05-01

    Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

  15. Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California

    SciTech Connect (OSTI)

    Warner, J.L.; Lutz, J.D.

    2006-01-01

    Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

  16. Conventional Storage Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another

  17. Tank Closure

    Office of Environmental Management (EM)

    of SRS Tank Closure Program Two Tank Farms - F Area and H Area Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act Three agency Federal...

  18. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Metzger, C.; Puttagunta, S.; Williamson, J.

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  19. Technology Solutions Case Study: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida

    SciTech Connect (OSTI)

    2013-11-01

    Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

  20. INJECTION PROFILE MODIFICATION IN A HOT, DEEP MINNELUSA WATER INJECTION PROJECT

    SciTech Connect (OSTI)

    Lyle A. Johnson Jr.

    2001-09-01

    As oil fields in the United States age, production enhancements and modifications will be needed to increase production from deeper and hotter oil reservoirs. New techniques and products must be tested in these areas before industry will adapt them as common practice. The Minnelusa fields of northeastern Wyoming are relatively small, deep, hot fields that have been developed in the past ten to twenty years. As part of the development, operators have established waterfloods early in the life of the fields to maximize cumulative oil production. However, channeling between injectors and producers does occur and can lead to excessive water production and bypassed oil left in the reservoir. The project evaluated the use of a recently developed, high-temperature polymer to modify the injection profiles in a waterflood project in a high-temperature reservoir. The field is the Hawk Point field in Campbell County, Wyoming. The field was discovered in 1986 and initially consisted of eight producing wells with an average depth of 11,500 feet and a temperature of 260 F (127 C). The polymer system was designed to plug the higher permeable channels and fractures to provide better conformance, i.e. sweep efficiency, for the waterflood. The project used a multi-well system to evaluate the treatment. Injection profile logging was used to evaluate the injection wells both before and after the polymer treatment. The treatment program was conducted in January 2000 with a treatment of the four injection wells. The treatment sizes varied between 500 bbl and 3,918 bbl at a maximum allowable pressure of 1,700 psig. Injection in three of the wells was conducted as planned. However, the injection in the fourth well was limited to 574 bbl instead of the planned 3,750 bbl because of a rapid increase in injection pressure, even at lower than planned injection rates. Following completion of polymer placement, the injection system was not started for approximately one week to permit the gel to

  1. Perched-Water Evaluation for the Deep Vadose Zone Beneath the B, BX, and BY Tank Farms Area of the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Carroll, KC; Chronister, Glen B.

    2013-06-28

    Perched-water conditions have been observed in the vadose zone above a fine-grained zone that is located a few meters above the water table within the B, BX, and BY Tank Farms area. The perched water contains elevated concentrations of uranium and technetium-99. This perched-water zone is important to consider in evaluating the future flux of contaminated water into the groundwater. The study described in this report was conducted to examine the perched-water conditions and quantitatively evaluate 1) factors that control perching behavior, 2) contaminant flux toward groundwater, and 3) associated groundwater impact.

  2. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  3. Report on the analysis of field data relating to the reliability of solar hot water systems.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2011-07-01

    Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

  4. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    SciTech Connect (OSTI)

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    necessary to de-rate critical components. There are currently no tools that automatically convert the NDE data to formats compatible with structural analysis programs. While radiographic techniques still provide significant advantages in spatial resolution, non-ionizing techniques are still preferred. Radar imagining in the 1–5 GHz has become the most useful. Unfortunately the algorithms and underlying assumptions used in these reconstructions are proprietary, and it is not possible to assess the quality and limitations of the analytical methods used to generate the derived structural data. The hypothesis that water intrusion may contribute to potential rebar corrosion of the tank domes provided the primary guidance in reviewing and evaluating available NDE technologies. Of primary concern is the need to employ technologies that provide the best opportunity for visualizing the rebar and providing quantitative data that can be integrated into structural analysis efforts to better understand and quantify the structural capacity of the domes. The conclusion is that an imaging system capable of locating and quantifying the distribution and conditions of the cement, aggregate, and rebar will provide the most valuable baseline upon which to build a case for the integrity of the structure. If successful, such a system would fulfill the need to incorporate valuable data into current structural load capacity analysis.

  5. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  6. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    SciTech Connect (OSTI)

    Nydahl, J.E.; Carlson, B.O.

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  7. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, Tod H.; Ott, Howard L.

    1994-01-01

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90.degree. intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure.

  8. Pressurizer tank upper support

    DOE Patents [OSTI]

    Baker, T.H.; Ott, H.L.

    1994-01-11

    A pressurizer tank in a pressurized water nuclear reactor is mounted between structural walls of the reactor on a substructure of the reactor, the tank extending upwardly from the substructure. For bearing lateral loads such as seismic shocks, a girder substantially encircles the pressurizer tank at a space above the substructure and is coupled to the structural walls via opposed sway struts. Each sway strut is attached at one end to the girder and at an opposite end to one of the structural walls, and the sway struts are oriented substantially horizontally in pairs aligned substantially along tangents to the wall of the circular tank. Preferably, eight sway struts attach to the girder at 90[degree] intervals. A compartment encloses the pressurizer tank and forms the structural wall. The sway struts attach to corners of the compartment for maximum stiffness and load bearing capacity. A valve support frame carrying the relief/discharge piping and valves of an automatic depressurization arrangement is fixed to the girder, whereby lateral loads on the relief/discharge piping are coupled directly to the compartment rather than through any portion of the pressurizer tank. Thermal insulation for the valve support frame prevents thermal loading of the piping and valves. The girder is shimmed to define a gap for reducing thermal transfer, and the girder is free to move vertically relative to the compartment walls, for accommodating dimensional variation of the pressurizer tank with changes in temperature and pressure. 10 figures.

  9. Ohmsett Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing...

  10. In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996

    SciTech Connect (OSTI)

    Smith, T.R.

    1997-03-01

    Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

  11. Tank characterization data report: Tank 241-C-112

    SciTech Connect (OSTI)

    Simpson, B.C.; Borsheim, G.L.; Jensen, L.

    1993-04-01

    Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

  12. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency

  13. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  14. Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in #EnergyFaceoff Round 4?

    Broader source: Energy.gov [DOE]

    In the final #EnergyFaceoff round, the electric kettle takes on the microwave for the honor of heating your water.

  15. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    checklist. PDF icon SHW-Ready Checklists.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist ...

  16. CenterPoint Energy (Gas)- Residential Heating and Hot Water Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

  17. Testing and development strategy for the tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W.

    1995-05-10

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities.

  18. Testing and development strategy for the tank waste remediation system

    SciTech Connect (OSTI)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities.

  19. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    SciTech Connect (OSTI)

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B.; Désert, Jean-Michel; Line, Michael R.; Fortney, Jonathan J.; Madhusudhan, Nikku; Showman, Adam P.; Kataria, Tiffany; Charbonneau, David; McCullough, Peter R.; Seager, Sara; Burrows, Adam; Henry, Gregory W.; Williamson, Michael; Homeier, Derek

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  20. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOE Patents [OSTI]

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  1. Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use

    SciTech Connect (OSTI)

    McCoskey, Jacob K.

    2014-01-22

    This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 °C and 60 °C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

  2. Dual Tank Fuel System

    SciTech Connect (OSTI)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  3. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  4. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37C. Other definitions:Wikipedia Reegle Modern Geothermal...

  5. Tank 241-U-204 tank characterization plan

    SciTech Connect (OSTI)

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  6. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste...

    Office of Environmental Management (EM)

    Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS Hanford Tank Waste Review Environmental Management Advisory Board EM ...

  7. HUD (Housing and Urban Development) Intermediate Minimum Property Standards Supplement 4930. 2 (1989 edition). Solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Minimum Property Standards for Housing 4910.1 were developed to provide a sound technical basis for housing under numerous programs of the Department of Housing and Urban Development (HUD). These Intermediate Minimum Property Standards for Solar Heating and Domestic Hot Water Systems are intended to provide a companion technical basis for the planning and design of solar heating and domestic hot water systems. These standards have been prepared as a supplement to the Minimum Property Standards (MPS) and deal only with aspects of planning and design that are different from conventional housing by reason of the solar systems under consideration. The document contains requirements and standards applicable to one- and two-family dwellings, multifamily housing, and nursing homes and intermediate care facilities references made in the text to the MPS refer to the same section in the Minimum Property Standards for Housing 4910.1.

  8. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  9. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo; Vorobieff, Peter V.; Menicucci, David; Mammoli, Andrea A.; Carlson, Jeffrey J.

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific

  10. ANALYSIS OF SAMPLES FROM TANK 6F CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2010-02-02

    Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. In mechanical sludge removal, personnel add liquid (e.g., inhibited water or supernate salt solution) to the tank to form a slurry. They mix the liquid and sludge with pumps, and transfer the slurry to another tank for further processing. Mechanical sludge removal effectively removes the bulk of the sludge from a tank, but is not able to remove all of the sludge. In Tank 6F, SRR estimated a sludge heel of 5,984 gallons remained after mechanical sludge removal. To remove this sludge heel, SRR performed chemical cleaning. The chemical cleaning included two oxalic acid strikes, a spray wash, and a water wash. SRR conducted the first oxalic acid strike as follows. Personnel added 110,830 gallons of 8 wt % oxalic acid to Tank 6F and mixed the contents of Tank 6F with two submersible mixer pumps (SMPs) for approximately four days. Following the mixing, they transferred 115,903 gallons of Tank 6F material to Tank 7F. The SMPs were operating when the transfer started and were shut down approximately five hours after the transfer started. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 2,400 gallons of solids remained in the tank. SRR conducted the second oxalic acid strike as follows. Personnel added 28,881 gallons of 8 wt % oxalic acid to Tank 6F. Following the acid addition, they visually inspected the tank and transferred 32,247 gallons of Tank 6F material to Tank 7F. SRR collected a sample of the liquid from Tank 6F and submitted it to SRNL for analysis. Mapping of the tank following the transfer indicated that 3,248 gallons of solids remained in the tank. Following the oxalic acid strikes, SRR performed Spray Washing with oxalic acid to remove waste collected on internal structures, cooling coils, tank top internals, and tank

  11. Insulated solar storage tanks

    SciTech Connect (OSTI)

    Eldighidy, S.M. )

    1991-01-01

    This paper presents the theoretical and experimental investigation of an insulated parallelepiped, outdoor solar, water-filled storage tank of size 1 m {times} 0.5 m {times} 0.3 m, that is made from galvanized iron. The absorption coefficient of the insulating material has been determined. The effects of plastic covers and insulation thickness on the water temperature and the energy gained or lost by water are investigated. Moreover, the effects of insulation thickness on the temperature profiles of the insulating material are discussed. The results show that the absorption coefficient decreases as the insulation thickness increases. Also, it is found that the glass wool insulation of 2.5 cm thickness has the best results compared with the other thicknesses (5 cm, 7.5 cm, and 10 cm) as far as the water temperature and the energy gained by water are concerned.

  12. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots'' from the concrete vault, and the drilling

  13. Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility

    SciTech Connect (OSTI)

    Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.

    2008-07-01

    Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

  14. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management ...

  15. Tank Farms - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Protection About ORP ORP Projects & Facilities Tank Farms Retrieval Activities PHOENIX - Tank Monitoring Waste Treatment & Immobilization Plant 222-S Laboratory 242-A...

  16. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  17. Hanford waste tank bump accident analysis

    SciTech Connect (OSTI)

    MALINOVIC, B.

    2003-03-21

    This report provides a new evaluation of the Hanford tank bump accident analysis (HNF-SD-Wh4-SAR-067 2001). The purpose of the new evaluation is to consider new information and to support new recommendations for final safety controls. This evaluation considers historical data, industrial failure modes, plausible accident scenarios, and system responses. A tank bump is a postulated event in which gases, consisting mostly of water vapor, are suddenly emitted from the waste and cause tank headspace pressurization. A tank bump is distinguished from a gas release event in two respects: First, the physical mechanism for release involves vaporization of locally superheated liquid, and second, gases emitted to the head space are not flammable. For this reason, a tank bump is often called a steam bump. In this report, even though non-condensible gases may be considered in bump models, flammability and combustion of emitted gases are not. The analysis scope is safe storage of waste in its current configuration in single-shell tanks (SSTs) and double-shell tanks (DSTs). The analysis considers physical mechanisms for tank bump to formulate criteria for bump potential, application of the criteria to the tanks, and accident analysis of bump scenarios. The result of consequence analysis is the mass of waste released from tanks for specific scenarios where bumps are credible; conversion to health consequences is performed elsewhere using standard Hanford methods (Cowley et al. 2000). The analysis forms a baseline for future extension to consider waste retrieval.

  18. Tank 241-A-105 leak assessment

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    Tank 241-A-105 is one of 149 single shell tanks constructed at Hanford to contain and store highly radioactive wastes originating from the processing of spent nuclear reactor fuel. Radiation detection and temperature monitoring devices installed beneath the tank indicate that several episodes of leakage of waste from the tank have occurred. The aim of this study was to evaluate the previous estimates and reanalyze the data to provide a more accurate estimate of leakage from the tank. The principal conclusions of this study are as follows: Earlier investigators estimated leakage prior to August 1968 at 5,000 to 15,000 gallons. Their estimate appears reasonable. Leakage while the tank was being sluiced (8/68--11/70) probably exceeded 5,000 gallons, but probably did not exceed 30,000 gallons. Insufficient data are available to be more precise. Cooling water added to the tank during the sprinkling phase (11/70 -- 12/78) was approximately 610,000 gallons. Sufficient heat was generated in the tank to evaporate most, and perhaps nearly all, of this water. Radionuclides escaping into the soil under the tank cannot be estimated directly because of many uncertainties. Based on a range of leakage from 10,000 to 45,000 gallons, assumed compositions, and decayed to 1/1/91, radioactivity under the tank is expected to be in the range of 85,000--760,000 curies. Measured radiation peaks were nearly all located directly below the perimeter of the tank and, except in rare cases, they showed no tendency to spread horizontally. Moreover, the maximum radiation readings detected are a very small fraction of the radiation reading in the tank. This is the basis for the conclusion that the rate of leakage and, most likely, the quantity leaked, was small. 51 refs., 5 figs., 3 tabs.

  19. Housing standards: change to HUD 4930. 2 Intermediate Minimum Property Standard (IMPS) supplement for solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1982-08-17

    This rule is made to provide an updating, clarification, and improvement of requirements contained in HUD Handbook 4930.2, Intermediate Minimum Property Standards (IMPS) Supplement concerning solar heating and domestic hot water systems. Changes pertain to fire protection, penetration, roof covering, conditions of use, thermal stability, rain resistance, ultraviolet stability, and compatibility with transfer medium. Additional changes cover applicable standards, labeling, flash point, chemical and physical commpatibility, flame spread classification, lightening protection, and parts of a solar energy system. Altogether, there are over 50 changes, some of which apply to tables and worksheets. Footnotes are included.

  20. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    SciTech Connect (OSTI)

    Geoghegan, Patrick J; Shen, Bo; Keinath, Christopher M.; Garrabrant, Michael A.

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  1. AX Tank Farm tank removal study

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  2. ICPP tank farm closure study. Volume 2: Engineering design files

    SciTech Connect (OSTI)

    1998-02-01

    Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-grouted polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.

  3. HANFORD TANK CLEANUP UPDATE

    SciTech Connect (OSTI)

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  4. MIT Tow Tank | Open Energy Information

    Open Energy Info (EERE)

    Institute of Technology Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 2.4 Depth(m) 1.2 Water Type Saltwater Cost(per day) 750 Towing...

  5. Tank waste concentration mechanism study

    SciTech Connect (OSTI)

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities.

  6. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  7. Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing

    SciTech Connect (OSTI)

    Ries, R.; Walters, R.; Dwiantoro, D.

    2013-01-01

    This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida.The gas-fired tank type water heaters in the housing units were replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

  8. Influence of mobile ion concentrations on the chemical composition of geothermal waters in granitic areas; Example of hot springs form Piemonte Italy

    SciTech Connect (OSTI)

    Michard, G.; Grimaud, D. ); D'Amore, F.; Fancelli, R. )

    1989-01-01

    The six hot springs from Vinadio and the springs from Valdieri (Piemonte, Italy) have similar emergence temperatures ({approximately}50{degrees} C), similar deep temperatures ({approximately}115{degrees} C) and their chloride content varies from 0.9 to 30 mmol/kg. Major elements and some trace elements concentrations (Li, Rb, Cs, Sr, Ba, Mn) correlate closely with Na concentrations. The correlations in a log-log diagram are linear with a slope close to the electric charge of the ion. This is explained, for major elements, by an equilibrium between a complete assemblage of minerals and a water containing varying amounts of chloride. It is suggested, from the Cl/Br ratio, that chloride originates by halite dissolution during the descent of the water.

  9. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of a Heat Pump Water Heater in the Hot-Humid Climate Windermere, Florida Over recent years, heat pump water heaters (HPWHs) have become more read- ily available and more widely adopted in the marketplace. A key feature of an HPWH unit is that it is a hybrid system. When conditions are favorable, the unit will operate in heat pump mode (using a vapor compression system that extracts heat from the surrounding air) to effciently provide domestic hot water (DHW). Homeowners need not

  10. District cooling gets hot

    SciTech Connect (OSTI)

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  11. Tank evaluation system shielded annular tank application

    SciTech Connect (OSTI)

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  12. Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of...

    Office of Environmental Management (EM)

    Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule Hanford Tank Farm Workers Begin Tank Waste Retrieval Ahead of Schedule March 16, 2016 - 12:35pm Addthis Workers ...

  13. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  14. STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114

    SciTech Connect (OSTI)

    Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

    2008-12-31

    Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

  15. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  16. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect (OSTI)

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  17. Tank 241-A-105 evaporation estimate, 1970 through 1978

    SciTech Connect (OSTI)

    Allen, G.K.

    1991-09-01

    Tank 241-A-105 was subjected to a severe steam explosion in January 1965 that caused the metal liner on the bottom to bulge upward approximately 8 feet above its concrete foundation. Shortly after this event, radiation was detected in drywells around the tank and it was declared a leaker. Sluicing operations to remove material from the tank began in August 1968 and continued through August 1970. After sluicing was completed, a significant amount of heat generating material still remained in the tank. To keep tank temperatures below operating limits, the water level in the tank was maintained at an approximate depth of 1.5 feet. This practice was continued until January 1979 when it was believed that the contents had decayed sufficiently to discontinue the water addition and put the tank on a portable exhauster system. Recent concern has focused on what portion of this cooling water added to Tank 241-A-105 actually evaporated and how much leaked into the soil during the nine year time period. This report presents the results of a study that estimates the amount of water evaporated from Tank 241-A-105 between 1970 and 1979. The problem was completed in two parts. The first part involved development of a three dimensional heat transfer model which was used to establish the tank heat load. The results of this model were validated against thermocouple data from Tank 241-A-105. The heat removed from the tank by the ventilation air was then used as input to a second computer code, which calculated the water evaporation. Based upon these two models, the amount of water evaporated from Tank 241-A-105, between 1970 and 1979, was between 378,000 and 410,000 gallons. 9 refs., 17 figs., 7 tabs.

  18. Mixing liquid holding tanks for uniform concentration

    SciTech Connect (OSTI)

    Sprouse, K.M.

    1988-01-01

    Achieving uniform concentration within liquid holding tanks can often times be a difficult task for the nuclear chemical process industry. This is due to the fact that nuclear criticality concerns require these tanks to be designed with high internal aspect ratios such that the free movement of fluid is greatly inhibited. To determine the mixing times required to achieve uniform concentrations within these tanks, an experimental program was conducted utilizing pencil tanks, double-pencil tanks, and annular tanks of varying geometries filled with salt-water solutions (simulant for nitric acid actinide solutions). Mixing was accomplished by air sparging and/or pump recirculation. Detailed fluid mechanic mixing models were developed --from first principles--to analyze and interpret the test results. These nondimensional models show the functionality of the concentration inhomogeneity (defined as the relative standard deviation of the true concentration within the tank) in relationship to the characteristic mixing time--among other variables. The results can be readily used to scale tank geometries to sizes other than those studied here.

  19. Feed tank transfer requirements

    SciTech Connect (OSTI)

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  20. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  1. Water and Sediment Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MDC Blank 7222014 Below MDC Below MDC Water Sampling Results Location Sample Date WIPP ... Tut Tank 3132014 Below MDC Below MDC Fresh Water Tank 3122014 Below MDC Below MDC Hill ...

  2. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  3. Tank 241-BY-103 tank characterization plan

    SciTech Connect (OSTI)

    Homi, C.S., Westinghouse Hanford

    1996-05-10

    This document is a plan that identifies the information needed to address relevant issues concerning short-term and long-term storage and long-term management of single-shell tank 241-BY-103.

  4. Impact of zeolite aging in hot liquid water on activity for acid-catalyzed dehydration of alcohols

    SciTech Connect (OSTI)

    Vjunov, Aleksei; Derewinski, Miroslaw A.; Fulton, John L.; Camaioni, Donald M.; Lercher, Johannes A.

    2015-08-19

    The catalytic performance of zeolite in aqueous medium depends on a multitude of factors, such as the concentration and distribution of active sites and framework integrity. Al K–edge extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations are used to determine the distribution of tetrahedral Al sites both qualitatively and quantitatively for both parent and 48 h 160 ºC water treated HBEA catalysts. There is no evidence of Al coordination modification after aging in water. The distribution and concentration of Al T–sites, active centers for the dehydration of cyclohexanol, do not markedly impact the catalytic performance in water, because the Brønsted acidic protons are present in the form of hydrated hydronium ions and thus have very similar acid properties. The results suggest that all Brønsted acid sites are equally active in aqueous medium. The decrease of zeolite catalytic performance after water treatment is attributed to the reduced concentration of Brønsted acid sites. Increasing the stability of pore walls and decreasing the rate of Si–O–Si group hydrolysis may result in improved apparent zeolite catalytic performance in aqueous medium. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland), J. Z. Hu and S. D. Burton (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. MD acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. HIM imaging and NMR experiments were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Science, Office of Biological

  5. Hanford tanks initiative plan

    SciTech Connect (OSTI)

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  6. Recent reservoir engineering developments at Brady Hot Springs...

    Office of Scientific and Technical Information (OSTI)

    acreage's wells to provide the requisite water flow rate, temperature, and composition ... FLOW RATE; FOOD; HOT SPRINGS; LEASES; LIFETIME; MAGMA; RESERVOIR ENGINEERING; WATER

  7. The elimination of the reverse circulation in thermosiphon solar water heaters

    SciTech Connect (OSTI)

    Prapas, D.E.; Sotiropoulos, B.A. )

    1991-01-01

    Thermosiphon solar water heaters (TSWH), employing either closed or open collector loops, are widely used today to cover a substantial part of the hot water needs, mostly in residential small scale applications. Their cost is lower in comparison to pumped systems, because no pumps, controls etc. are required. However, the storage tank has to be mounted above the collector in order to promote the thermosiphon flow; this could be a serious drawback in some applications. An undesirable characteristic of TSWH is the reverse circulation (RC) of the working liquid when the temperature of the collector is lower than that of the storage tank. The causes of reverse circulation in thermosyphon solar water heaters, the geometry of the systems, and the affects of nocturnal radiative cooling of the collector are discussed. A means of interconnecting collector and tank to drastically reduce reverse circulation is presented.

  8. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  9. Compressed/Liquid Hydrogen Tanks

    Broader source: Energy.gov [DOE]

    Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

  10. Revisions included in HUD Intermediate Minimum Property Standards Supplement 4930. 2, 1977 edition: solar heating and domestic hot-water systems

    SciTech Connect (OSTI)

    Not Available

    1984-04-01

    This addendum to a 1977 HUD publication contains revisions and additions to the existing intermediate minimum property standards supplment for solar heating and cooling systems. Building design revisions cover fire protection, penetrations, and roof coverings. Changes to guidelines for materials, such as those for thermal and ultraviolet stability and moisture resistance, are detailed. Flash points of toxic and combustive fluids, chemical and physical compatibility, and flame spread and resistance of insulation materials are also explained. Construction standards were revised for hail loads; waterproofing insulated exterior storage containers, pipes, and ducts; and for passive systems. Standards also were revised for power-operated protection, dust and dirt prevention, and chimney and vent heights. Radiation temperature, draft control, and thermal energy storage and loss standards were deleted. Other standards for insulation values for thermal devices, lighting protection, and sealing and testing air distribution systems were added. Appended materials contain revisions to calculation procedures for determining the thermal performance of active, solar space heating, and domestic hot water systems. A revised materials list for properties of typical cover materials, absorptive coatings, thermal storage unit containers, and heat-transfer liquids is provided. Revisions to acceptable engineering practice standards are also included.