Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program NV Energy (Northern Nevada) - Solar Hot Water Incentive Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: Lesser of 30% or $3,000 Small commercial gas customers: Lesser of 30% or $7,500 Nonprofits, schools and other public gas customers: Lesser of 50% or $30,000 Program Info Start Date 2/1/2011 State Nevada Program Type Utility Rebate Program Rebate Amount Residential electric customers: Lesser of 50% or $2,000 Residential gas customers: $14.50 per therm Small commercial gas customers: $14.50 per therm

2

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of May 1, 2012, NV Energy electric customers in Southern Nevada who own their...

3

Texas Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

coil hot water storage tank, a backup instantaneous electric water heater, a hydronic fan coil unit for space heating, and an efficient plumbing manifold for domestic hot water...

4

Category:Solar Water Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heating Incentives Jump to: navigation, search Category for Solar Water Heating Incentives. Pages in category "Solar Water Heating Incentives" The following 200 pages...

5

Federal Incentives for Water Power (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the federal incentives available as of April 2013 for the development of water power technologies.

Not Available

2013-05-01T23:59:59.000Z

6

Madrid Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Assessment of Hot Water System Page 1 of 2 HOT WATER SYSTEM In general, the plumbing system in MAGIC BOX is designed to concentrate all devices, be they storage,...

7

Modeling patterns of hot water use in households  

E-Print Network (OSTI)

various usage characteristics associated with electric, gas-Usage: A Review of Published Metered Studies. Prepared for Gasgas, may be an incentive for people with electric water heaters to reduce their hot water usage.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

8

Burbank Water & Power - Green Building Incentive Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Burbank Water & Power - Green Building Incentive Program Burbank Water & Power - Green Building Incentive Program...

9

Solar hot water heater  

SciTech Connect

A solar hot water heater includes an insulated box having one or more hot water storage tanks contained inside and further having a lid which may be opened to permit solar radiation to heat a supply of water contained within the one or more hot water storage tanks. A heat-actuated control unit is mounted on an external portion of the box, such control unit having a single pole double throw thermostat which selectively activates an electric winch gear motor to either open or close the box lid. The control unit operates to open the lid to a predetermined position when exposed to the sun's rays, and further operates to immediately close the lid in response to any sudden drop in temperature, such as might occur during a rainstorm, clouds moving in front of the sun, or the like.

Melvin, H.A.

1982-12-28T23:59:59.000Z

10

Other Incentive | Open Energy Information  

Open Energy Info (EERE)

Other Incentive Other Incentive Jump to: navigation, search Incentive that does not fit under any of the other incentive types. Other Incentive Incentives CSV (rows 1 - 12) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Air-Quality Improvement Tax Incentives (Ohio) Other Incentive Ohio Commercial Industrial Boilers Central Air conditioners Chillers Custom/Others pending approval Lighting Processing and Manufacturing Equipment Biomass CHP/Cogeneration Landfill Gas Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Commercial Solar Hot Water Financing Program (Massachusetts) Other Incentive Massachusetts Commercial Institutional Local Government Nonprofit Schools State Government Solar Thermal Electric

11

Green Systems Solar Hot Water  

E-Print Network (OSTI)

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

Schladow, S. Geoffrey

12

Hot water supply system  

SciTech Connect

A hot water supply system is described which consists of: a boiler having an exhaust; solar panels; and a frame supporting the solar panels and including a compartment beneath the solar panels, the boiler exhaust termining in the compartment beneath the solar panels, the boiler being within the compartment.

Piper, J.R.

1986-06-10T23:59:59.000Z

13

Cornell University Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water System Hot Water System The production and delivery of hot water in the CUSD home is technologically advanced, economical, and simple. Hot water is produced primarily by the evacuated solar thermal tube collectors on the roof of the house. The solar thermal tube array was sized to take care of the majority of our heating and hot water needs throughout the course of the year in the Washington, DC climate. The solar thermal tube array also provides heating to the radiant floor. The hot water and radiant floor systems are tied independently to the solar thermal tube array, preventing the radiant floor from robbing the water heater of much needed thermal energy. In case the solar thermal tubes are not able to provide hot water to our system, the hot water tank contains an electric heating

14

List of Solar Water Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Solar Water Heat Incentives Solar Water Heat Incentives Jump to: navigation, search The following contains the list of 920 Solar Water Heat Incentives. CSV (rows 1-500) CSV (rows 501-920) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - GEOSmart Financing Program (Arizona) Utility Loan Program Arizona Residential Solar Water Heat Photovoltaics No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas

15

Virginia Tech Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

The team chose to use a water-to-water heat pump (WWHP) connected to an earth coupled heat exchanger to provide water heating. This system provides not only domestic hot water...

16

Alternatives for reducing hot-water bills  

DOE Green Energy (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

17

Solar Water Heating: What's Hot and What's Not  

E-Print Network (OSTI)

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management program designed to reduce system demand during peak summer hours. Solar hot water has the potential to generate significant savings during periods of high solar intensity. For summer peaking utilities, these periods of high solar intensity coincide with the overall system peak. This paper discusses the basics of analyzing solar water heaters as a demand-side management measure. In addition, four utility solar water heater incentive programs are studied in detail. The paper describes each program and notes the stage of development. Where such information is available, incentive amounts and cost-effectiveness calculations are included.

Stein, J.

1992-05-01T23:59:59.000Z

18

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

19

Solar Water Heating Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Incentive Program Solar Water Heating Incentive Program Solar Water Heating Incentive Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Varies by sector, location, technology, and electric or gas provider; see below for details Program Info Start Date October 2003 State Oregon Program Type State Rebate Program Rebate Amount Varies by sector, water heating fuel, and electric or gas provider; see below for details Provider Energy Trust of Oregon Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who install solar water or pool

20

Burbank Water and Power - Green Building Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program < Back Eligibility Commercial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Green Building Incentive Provider Rebates The U.S. Green Building Council is a non-profit organization that promotes the design and construction of buildings that are environmentally responsible, profitable, and healthy places to live and work. The Green Building Council developed the Leadership in Energy and Environmental

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

List of Water Heaters Incentives | Open Energy Information  

Open Energy Info (EERE)

Heaters Incentives Heaters Incentives Jump to: navigation, search The following contains the list of 973 Water Heaters Incentives. CSV (rows 1-500) CSV (rows 501-973) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation

22

Commonwealth Solar Hot Water Commercial Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Program Commonwealth Solar Hot Water Commercial Program Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential...

23

dist_hot_water.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Hot Water Usage Form District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

24

Prototype solar heating and hot water systems  

DOE Green Energy (OSTI)

This document is a collection of two quarterly status reports from Colt, Inc., covering the period from October 1, 1977 through June 30, 1978. Colt is developing two prototype solar heating and hot water systems consisting of the following subsystems: collector, storage, control, transport, hot water, and auxiliary energy. The two systems are being installed at Yosemite, California and Pueblo, Colorado.

Not Available

1978-04-01T23:59:59.000Z

25

Domestic Hot Water Event Schedule Generator - Energy ...  

Residential hot water use in the United States accounts for 14-25% of all the energy consumed in a home. With the rise of more advanced water heating ...

26

DOE Solar Decathlon: 2005 Contests and Scoring - Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

teams will install systems that can do even more. The Hot Water contest demonstrates that solar hot water heating systems can supply all the hot water we use daily - to bathe and...

27

Incentives in Water Management Reform: Assessing the Effect on Water Use,  

NLE Websites -- All DOE Office Websites (Extended Search)

Incentives in Water Management Reform: Assessing the Effect on Water Use, Incentives in Water Management Reform: Assessing the Effect on Water Use, Production and Poverty in the Yellow River Basin Speaker(s): Jinixia Wang Date: May 22, 2003 - 12:00pm Location: Bldg. 90 The purpose of this presentation is to better understand water management reform in China's rural communities, focusing on the effect of incentives to water managers on the nation's water resources and the welfare of the rural population. Based on a survey study in the Yellow River Basin, our findings show that Water User Associations and contracting have begun to systematically replace traditional forms of collective management. The analysis demonstrates, however, that it is not a nominal implementation of the reform that matters, but rather it is a creation of new management

28

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the commercial solar hot water industry in Massachusetts. Commercial and non-profit building owners can use the financing program to install solar hot water systems that heat...

29

Direct Use for Building Heat and Hot Water Presentation Slides...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Download...

30

FEMP Solar Hot Water Calculator | Open Energy Information  

Open Energy Info (EERE)

Solar Hot Water Calculator Jump to: navigation, search Name FEMP Solar Hot Water Calculator Abstract Online tool to help Federal agencies meet Energy Independence and Security Act...

31

An incentive mechanism for decentralized water metering decisions  

E-Print Network (OSTI)

Metering water consumption has been long advocated by economists in developing countries as a way to curb waste and prevent resource depletion. However, very few of these economists have studied the inefficiencies brought about by universal metering or the conditions under which decentralized water metering decisions are optimal. If the decision where to install water meters rests on either the consumer or the Company providing the service this paper shows that if left unregulated, both the consumer’s and the Company’s decentralized water metering decisions are sub-optimal. This is because the firm when installing meters, does not take into account the fall in consumer surplus and the consumer, when voluntarily installing a meter in his dwelling, does not take into account the effect of his decision on the Company’s profits. To solve this externality problem and make the decentralized decision optimal, an incentive mechanism is proposed. The mechanism works through a series of Pigouvian taxes imposed by the regulator on the party creating the externality. By means of these taxes, externalities are internalized and both the consumer and the Company reach the socially optimal solution in a decentralized way. The implementation of this mechanism in practice is materialized through a Coasian property rights approach where the parties involved reach the efficient solution by bargaining over welfare gains. The party installing the meter has to buy the “right to meter ” from the metered party by fairly compensating him thus internalizing the externality and reaching the efficient outcome. To illustrate the incentives involved in metering water consumption, the rate structure and metering policies of two water concessions in Argentina are studied: Buenos Aires and Córdoba. Conclusions and policy recommendations are drawn from the theory and the two practical cases.

Andrés Chambouleyron

2003-01-01T23:59:59.000Z

32

Hot tips on water heating  

SciTech Connect

Water-heater manufacturers responded to the call for energy conservation with innovations and efficiency standards for the home, business, and plant. Conventional tank-type water heaters offer better design and insulation, but the heat-pump water heater offers the highest efficiency. Available in add-on units and integral units, they now represent up to 40% of manufacturers' sales. Other advances are the desuperheater devices which recapture air-conditioner waste heat, solar-water-heating systems, instantaneous water heaters, and industrial heat-recovery systems for process water. 1 figure. (DCK)

Forker, J.

1982-03-01T23:59:59.000Z

33

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

gas water heaters; and pressure loss calculations for residentialgas water heaters; and pressure loss calculations for residential

Lutz, Jim

2012-01-01T23:59:59.000Z

34

University of Colorado Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot water system Brief Contest Report Hot water system Brief Contest Report Recognizing that the sun is an abundant source of clean energy that reaches the earth at an intensity of up to 1000 Watts/m 2 , the University of Colorado will be showcasing top-of-the-line technology in which solar radiation is converted into heat for the purposes of heating the home and providing domestic hot water. Solar Thermal System - Basics Colorado's 2005 Solar Decathlon team has chosen to harness the sun's thermal energy with 4 arrays of 20 Mazdon evacuated tube collectors manufactured by Thermomax, as shown in Figure 1 below. These collectors have incredibly high efficiencies - about 60% over the course of an entire day. In addition, the evacuated tube collectors resist internal condensation and corrosion more effectively than their counterparts

35

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

The effect on water and gas usage from cross-flow betweencontrols have on water and gas usage over a large number ofsystems, and their water and gas usage. Hourly schedules for

Lutz, Jim

2012-01-01T23:59:59.000Z

36

Residential hot water distribution systems: Roundtablesession  

Science Conference Proceedings (OSTI)

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01T23:59:59.000Z

37

STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)  

E-Print Network (OSTI)

: Heater Type CEC Certified Mfr Name & Model Number Distribution Type (Std, Point-of- Use, etc; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements six or fewer dwelling units which have (1) less than 25' of distribution piping outdoors; (2) zero

38

Water Heaters and Hot Water Distribution Systems  

E-Print Network (OSTI)

Water Distribution System Recommendations for the 2008 Title- 24 Residential Building Energy Efficiency Standards .. 4 Multi-FamilyWater Distribution System Recommendations for the 2008 Title- 24 Residential Building Energy Efficiency Standards 11 Multi-FamilyWater Distribution System Recommendations for the 2008 Title- 24 Residential Building Energy Efficiency Standards 48 Multi-Family

Lutz, Jim

2012-01-01T23:59:59.000Z

39

home power 114 / august & september 2006 in Solar Hot Water  

E-Print Network (OSTI)

water entering the heat exchanger, and the hot water being produced. "I don't know..." I replied. The graphs show that the ultimate temperature of the solar-produced hot water is indeed higher therms) Percentage of hot water produced annually: Approximately 70 percent Equipment Collectors: Two

Knowles, David William

40

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network (OSTI)

controls. This response applies to markets that have a demand for central water heating systems Distribution Systems Subtask 2.1 Multifamily Water Heating Construction Practices, Pricing and Availability systems in multifamily buildings. This market characterization study is helping HMG develop

42

Federal Energy Management Program: Solar Hot Water Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

43

Solar-hot-water-heater lease program  

SciTech Connect

Ten domestic hot-water solar systems were installed, leased to homeowners, and monitored for two years. All of the systems were installed as back-ups to electric water heaters. The systems consist of two to four collectors, a solar storage tank (as well as the existing non-solar heater), and a heat exchanger package. Eight are three-collector systems, one is a four-collector and one a two-collector system. The systems were sized according to family size and predicted hot water demand. The monitoring consists of a separate KW reading on the non-solar water heater, a reading of gallons of how water consumed, and hot and cold outlet temperatures. The purpose for the study was fourfold: (1) to determine the level of acceptance by the general public of solar water heaters if available on a lease rather than a purchase basis; (2) to measure the actual energy savings to the average homeowner in central Illinois with a solar water heater; (3) to measure the potential reduction of Cilco's energy production requirements, should there be widespread utilization of these systems; and (4) to determine the feasibility of an entrepreneur making these systems available on a rental basis and remaining a going concern. The results of this study indicate that the leasing of solar equipment to homeowners has a more widespread acceptance than the direct purchase of such systems. Homeowners, however, do not want to spend as much money on monthly lease payments as the supplier of the equipment would deem necessary. This seriously questions the feasibility of an entrepreneurial leasing program.

Rutherford, S.

1983-04-01T23:59:59.000Z

44

Efficiency of Steam and Hot Water Heat Distribution Systems  

E-Print Network (OSTI)

Efficiency of Steam and Hot Water Heat Distribution Systems Gary Phetteplace September 1995- tion medium (steam or hot water) and temperature for heat distribution systems. The report discusses the efficiency of both steam and hot water heat distribution systems in more detail. The results of several field

45

The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control  

E-Print Network (OSTI)

More and more variable frequency devices (VFD) are being installed on the chilled water and hot water pumps on the TAMU campus. Those pump speeds are varied to maintain chilled water or hot water building deferential pressure (DP) or return temperature or flow rate at their setpoints. The chilled water and hot water DP setpoint or return temperature setpoint or flow rate setpoint was a constant value or reset based on outside air temperature. In some buildings, the chilled water and hot water DP setpoints were reset based on flow rate, but in many instances those setpoint schedules were either too low to maintain enough building DP requirement or too high and consumed excess energy. The building DP reset schedule based on flow rate is studied and compared with the other pump speed control methods. Because the building DP setpoint based on flow rate method is achieved by tracking the load change, it saves energy than the other methods. In this paper its calculation procedure is generated and the example of the building DP calculation is given.

Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

2002-01-01T23:59:59.000Z

46

Hot water can freeze faster than cold?!?  

E-Print Network (OSTI)

We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

Monwhea Jeng

2005-12-29T23:59:59.000Z

47

Savings Project: Insulate Hot Water Pipes for Energy Savings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulate Hot Water Pipes for Energy Savings Insulate Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings $8-$12 annually Time to Complete 3 hours for a small house Overall Cost $10-$15 Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating water pipes can save you water, energy, and money. | Photo courtesy of iStockphoto.com/nsj-images Insulating your hot water pipes reduces heat loss and can raise water temperature 2°F-4°F hotter than uninsulated pipes can deliver, allowing for a lower water temperature setting. You also won't have to wait as long for hot water when you turn on a faucet or showerhead, which helps conserve water. Paying for someone to insulate your pipes-as a project on its own-may

48

Geothermal hot water pump. Final report  

DOE Green Energy (OSTI)

The design, testing and performance capabilities of a Geothermal Hot Water Pumping System being developed are described. The pumping system is intended to operate submerged in geothermal brine wells for extended periods of time. Such a system confines the hot brine in a closed-loop under pressure to prevent the liquid from flashing into steam, in addition to providing a means for reinjecting cooled water and the contaminants into a return well. The system consists of a single-stage centrifugal pump driven by an oil-cooled, high-speed electric motor with integral heat exchanger. For testing purposes a diesel engine driven 400 Hz generator is used for supplying power to the motor. In some areas where commercial power may not be available, the diesel-generator unit or either a rotating or solid state frequency converter may be used to produce the high frequency power required by the motor. Fabrication of a prototype system and testing of the electric motor at frequencies up to 250 Hz was completed. While testing at 275 Hz it was necessary to terminate the testing when the motor stator was damaged as a result of a mechanical failure involving the motor-dynamometer drive adaptor. Test results, although limited, confirm the design and indicate that the performance is as good, or better than predicted. These results also indicate that the motor is capable of achieving rated performance.

Not Available

1977-09-30T23:59:59.000Z

49

Geothermal hot water pump. Final report  

SciTech Connect

The design, testing and performance capabilities of a Geothermal Hot Water Pumping System are described. The pumping system is intended to operate submerged in geothermal brine wells for extended periods of time. Such a system confines the hot brine in a closed-loop under pressure to prevent the liquid from flashing into steam, in addition to providing a means for reinjecting cooled water and the contaminates into a return well. The system consists of a single-stage centrifugal pump driven by an oil-cooled, high-speed electric motor with integral heat exchanger. For testing purposes a diesel engine driven 400 Hz generator is used for supplying power to the motor. In some areas where commercial power may not be available, the diesel-generator unit or either a rotating or solid state frequency converter may be used to produce the high frequency power required by the motor. Fabrication of a prototype system and testing of the electric motor at frequencies up to 250 Hz was completed. While testing at 275 Hz it was necessary to terminate the testing when the motor stator was damaged as a result of a mechanical failure involving the motor-dynamometer drive adaptor.

1977-09-30T23:59:59.000Z

50

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Star Hot Water Systems for High Performance Homes Star Hot Water Systems for High Performance Homes 1 | Building America Program www.buildingamerica.gov Buildings Technologies Program Date: September 30, 2011 ENERGY STAR ® Hot Water Systems for High Performance Homes Welcome to the Webinar! We will start at 11:00 AM Eastern. There is no call in number. The audio will be sent through your computer speakers. All questions will be submitted via typing. Video of presenters Energy Star Hot Water Systems for High Performance Homes 2 | Building America Program www.buildingamerica.gov Energy Star Hot Water Systems for High Performance Homes 3 | Building America Program www.buildingamerica.gov Building America Program: Introduction Building Technologies Program Energy Star Hot Water Systems for High Performance Homes

51

Hot New Advances in Water Heating Technology | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY.GOV - Hot New Advances in Water Heating Technology April 18, 2013 Here at the Energy Department, we are working with our National Laboratories, private companies and...

52

HEATING OF OIL WELL BY HOT WATER CIRCULATION  

E-Print Network (OSTI)

HEATING OF OIL WELL BY HOT WATER CIRCULATION Mladen Jurak Department of Mathematics University.prnic@ina.hr Abstract When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solu- tions to this problem is heating of oil well by hot water

Rogina, Mladen

53

Analysis Model for Domestic Hot Water Distribution Systems: Preprint  

DOE Green Energy (OSTI)

A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

Maguire, J.; Krarti, M.; Fang, X.

2011-11-01T23:59:59.000Z

54

Reduce Hot Water Use for Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings Reduce Hot Water Use for Energy Savings June 15, 2012 - 5:51pm Addthis Low-flow fixtures and showerheads can achieve water savings of 25%–60%. | Photo courtesy of ©iStockphoto/DaveBolton. Low-flow fixtures and showerheads can achieve water savings of 25%-60%. | Photo courtesy of ©iStockphoto/DaveBolton. What does this mean for me? Fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer to use less hot water and save money. You can lower your water heating costs by using and wasting less hot water in your home. To conserve hot water, you can fix leaks, install low-flow fixtures, and purchase an energy-efficient dishwasher and clothes washer. Fix Leaks You can significantly reduce hot water use by simply repairing leaks in

55

Solar Hot Water Creates Savings for Homeless Shelters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts? Recovery Act funds are being used to install solar hot water systems at 5 Phoenix shelters. The systems will save Phoenox 33,452 kWh of energy -- about $4,000 -- annually. The systems will reduce about 40,000 pounds of carbon emissions annually. "This project will save us a huge amount of money," says Paul Williams, House of Refuge Sunnyslope's Executive Director. Williams is referring to a recent partnership between the state of Arizona and House of Refuge Sunnyslope to install solar hot water systems at five Phoenix-area housing sites for homeless men, which will make an immediate difference at the

56

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

57

Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint  

SciTech Connect

The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

Hendron, B.; Burch, J.; Barker, G.

2010-08-01T23:59:59.000Z

58

NREL: Learning - Student Resources on Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Photo of a school building next to a pond. Roy Lee Walker Elementary School in Texas incorporates many renewable energy design features, including solar hot water heating. The following resources will help you learn more about solar water heating systems. If you are unfamiliar with this technology, see the introduction to solar hot water. Grades 7-12 NREL Educational Resources Educational resources available to students from the National Renewable Energy Laboratory. High School and College Level U.S. Department of Energy's Energy Savers: Solar Water Heaters Features comprehensive basic information and resources. U.S. Department of Energy's Energy Savers: Solar Swimming Pool Heaters Features comprehensive basic information and resources. U.S. Department of Energy Solar Decathlon

59

HOt Water SavEr (HOWSE) Project. Final report  

SciTech Connect

The dishwasher effluent is pumped into the flue of the exchange tank by the normal dishwasher pump (or auxiliary pump). The effluent is stored in this tank until next operation of the dishwasher. Thus, thermal equilibrium can be reached between the tank and the effluent, promoting high efficiency. The output from the exchange tank feeds the household normal hot water tank, reducing its requirement for fuel as the input water temperature is higher. Counterflow exchangers may be used for other hot water users where the flow and drain is continuous. In this case the discharged hot (or warm) water flows counter to the flow of cold water into the hot water heater. The two flows are closely coupled thermally but not in direct contract so they cannot mix. Counter flow exchangers and storage type exchangers may be used in the same installation.

Olson, W.R.

1981-12-31T23:59:59.000Z

60

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Contractor Licensing Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Arkansas Program Type Solar/Wind Contractor Licensing Arkansas offers several limited, specialty licenses for solar thermal installers under the general plumbing license. There are three specialty classifications available for solar thermal installers: a Restricted Solar Mechanic license, a Supervising Solar Mechanic license, and a Solar Mechanic Trainee classification. Installers with a Restricted Solar Mechanic license can install and maintain systems used to heat domestic hot water, but are not allowed to perform any other plumbing work. Individuals holding a Supervising Solar Mechanic license are able to supervise, install

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Circulo: Saving Energy with Just-In-Time Hot Water Recirculation  

Science Conference Proceedings (OSTI)

The average home in the US flushes 1000's of gallons of water down the drain each year while standing at the fixture and waiting for hot water. Some households use a pump for hot water recirculation (HWR) to ensure that hot water is always immediately ... Keywords: Energy and Water Conservation, Hot Water Recirculation

Andrew Frye, Michel Goraczko, Jie Liu, Anindya Prodhan, Kamin Whitehouse

2013-11-01T23:59:59.000Z

62

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements Eligibility Commercial...

63

Domestic Hot Water Consumption in Four Low-Income Apartment Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Domestic Hot Water Consumption in Four Low-Income Apartment Buildings Title Domestic Hot Water Consumption in Four Low-Income Apartment Buildings Publication Type Conference...

64

High Performance Building Incentives Program (Pennsylvania) ...  

Open Energy Info (EERE)

Water Heat, Wind, Bio-gas Active Incentive Yes Implementing Sector StateTerritory Energy Category Energy Efficiency Incentive Programs, Renewable Energy Incentive Programs...

65

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Below you will find Solar Decathlon news from the Hot Water archive, sorted by date. New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example,

66

An Energy Policy Perspective on Solar Hot Water Equipment Mandates  

E-Print Network (OSTI)

An Energy Policy Perspective on Solar Hot Water EquipmentU.S. OIL VULNERABILITY: ENERGY POLICY FOR THE 1980's, DOE/cited as Langston]. ENERGY POLICY tween a new house with

Williams, Stephen F.

1981-01-01T23:59:59.000Z

67

Observations from the field: Solar domestic hot water installation recommendations  

SciTech Connect

The Florida Solar Energy Center (FSEC) was ten years old in 1984. Constant contact has been maintained between the Center and solar businesses selling and installing domestic hot water systems in Florida and throughout the Southern states of the Caribbean. FSEC has thus had the opportunity to visit or discuss thousands of DHW system installations with homeowners and installers. This paper provides an overview of lessons learned and some of the resulting installation recommendations for direct, open-loop domestic hot water systems.

Cromer, C.J.

1985-01-01T23:59:59.000Z

68

Burbank Water & Power - Green Building Incentive Program (California...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

69

Solar Water Heating Incentive Program (Oregon) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

70

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

71

Hot New Advances in Water Heating Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency Questions? Our energy efficiency and renewable energy experts will answer your questions about ways to save money and incorporate renewable energy into your home during our Earth Day Google+ Hangout on April 22 at 3 pm ET. Submit your questions on Twitter, G+ and YouTube using #askEnergy,

72

Agricultural nonpoint source pollution and economic incentive policies. Issues in the reauthorization of the Clean Water Act. Staff report  

SciTech Connect

The limited success of command-and-control policies for reducing nonpoint source (NPS) water pollution mandated under the Federal Water Pollution Control Act (FWPCA) has prompted increased interest in economic incentive policies as an alternative control mechanism. No single policy, however, is likely to be effective in reducing all NPS pollution. Economic incentives may be effective in some cases, command-and-control practices in others.

Malik, A.S.; Larson, B.A.; Ribaudo, M.

1992-11-01T23:59:59.000Z

73

Commonwealth Solar Hot Water Residential Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program Commonwealth Solar Hot Water Residential Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Maximum Rebate $3,500 per building or 25% of total installed costs Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 02/07/2011 Expiration Date 12/31/2016 State Massachusetts Program Type State Rebate Program Rebate Amount Base rate: $45 X SRCC rating in thousands btu/panel/day (Category D, Mildly Cloudy Day) Additional $200/system for systems with parts manufactured in Massachusetts Additional $1,500/system for metering installation Adder for natural disaster relief of twice the base rebate.

74

Modeling patterns of hot water use in households  

Science Conference Proceedings (OSTI)

This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

1996-11-01T23:59:59.000Z

75

Modeling patterns of hot water use in households  

SciTech Connect

This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

76

Solar Hot Water Contractor Licensing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing Solar Hot Water Contractor Licensing < Back Eligibility Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Maine Program Type Solar/Wind Contractor Licensing In order to be eligible for Maine's solar thermal rebate program, systems must be installed by licensed plumbers who have received additional certification for solar thermal systems from the North American Board of Certified Energy Practitioners (NABCEP). The state solar thermal rebate program maintains a list of Efficiency Maine registered vendors/installers. In addition, Efficiency Maine has information for vendors interested in becoming registered and listed on the [http://www.efficiencymaine.com/at-home/registered-vendor-locator web

77

Commonwealth Solar Hot Water Commercial Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program Commonwealth Solar Hot Water Commercial Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Feasibility study: $5,000; Construction: 25% system costs or $50,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 08/04/2011 State Massachusetts Program Type State Rebate Program Rebate Amount Feasibility study: $5,000; Construction grants: $45*number of collectors*SRCC Rating (Private); $55*number of collectors*SRCC Rating (Public/Non-Profit) Massachusetts Manufactured adder: $200-$500 Metering adder: Up to $1,500

78

A model of the domestic hot water load  

SciTech Connect

The electrical load required to supply domestic hot water is an important load for two reasons: (1) It represents a large portion (30 to 50%) of the domestic load; (2) It is a load which can easily be controlled by the consumer or the supplier, because the use of the hot water need not coincide with the heating of hot water. A model representing the electrical system load due to hot water consumption from storage water heaters is provided. Variable parameters include the average amount of water used, the mean and deviation of distributions of usage times, thermostat settings, inlet water temperature and electrical heating element ratings. These parameters are used to estimate the after diversity electricity demand profile, and were verified for accuracy by comparison with measurements. The model enables this prediction of the effects of load control, examples of which are given in this paper. The model is also useful for evaluation of the response which could be expected from demand-side management options. These include changing the size of heating elements, reduction in water consumption and reduction in thermostat settings.

Lane, I.E. [Energy Efficiency Enterprises, Lynnwood Manor (South Africa); Beute, N. [Cape Technikon, Cape Town (South Africa)

1996-11-01T23:59:59.000Z

79

Solar Hot Water for Your Home  

DOE Green Energy (OSTI)

A brochure describing the cost-saving and energy-saving benefits of using solar heated water in your home.

American Solar Energy Society

2001-06-19T23:59:59.000Z

80

Solar diffusion and public incentives  

Science Conference Proceedings (OSTI)

Institutional arrangements for the commercialization of solar technologies cover a variety of incentives. Although this book concentrates on one such incentive, a grant awarded to homeowners purchasing an approved solar hot water heater, the concluding discussion suggests alternative inducements. The empirical work is based on data collected in Connecticut, but attention is given to national- and state-level studies addressing various aspects of the solar-diffusion process. The authors begin by examining public acceptance and various social-science models for diffusion processes. They conclude that the importance of social and behavioral factors in accelerating the energy transition should not be underestimated. Eight appendices include survey and application forms, information releases, and information about the incentive program. 81 references, 4 figures, 33 tables.

Warkov, S.; Meyer, J.W.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Commonwealth Solar Hot Water Residential Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Water Heating Maximum Rebate 3,500 per building or 25% of total installed costs Program Information Funding Source Massachusetts Renewable Energy Trust Fund Start Date...

82

Residential hot water distribution systems: Roundtable session  

E-Print Network (OSTI)

include: combustion and standby losses from water heaters,System Efficiency Losses Standby Loss Combustion LossBecause of their very low standby losses they can achieve

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-01-01T23:59:59.000Z

83

DOE Solar Decathlon: News Blog » Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

'Hot Water' 'Hot Water' New Contest Data Displays Provide Insight into Competition Scoring Saturday, October 5, 2013 By Solar Decathlon New contest data displays are now available on the U.S. Department of Energy Solar Decathlon website. If you are interested in the real-time performance of each house and want to keep a close eye on the competition, check out the Contests section pages. In the Contests section, the pages for the measured contests (Comfort Zone, Hot Water, Appliances, Home Entertainment, and Energy Balance) explain the contest requirements and provide real-time graphical displays of the accumulated measurements/scores for each team. Roll your cursor over the graphics to see more detailed information about each contest. For example, in the Appliances Contest graphic, the scores for running the refrigerator,

84

Catalytic Behavior of Dense Hot Water  

DOE Green Energy (OSTI)

Water is known to exhibit fascinating physical properties at high pressures and temperatures. Its remarkable structural and phase complexity suggest the possibility of exotic chemical reactivity under extreme conditions, though this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of K and tens of GPa, similar to conditions of giant planetary interiors. These systems thus provide a unique means to elucidate the chemistry of 'extreme water'. Here we show that water plays an unexpected role in catalyzing complex explosive reactions - contrary to the current view that it is simply a stable detonation product. Using first-principles atomistic simulations of the detonation of high explosive pentaerythritol tetranitrate (PETN), we discovered that H{sub 2}O (source), H (reducer) and OH (oxidizer) act as a dynamic team that transports oxygen between reaction centers. Our finding suggests that water may catalyze reactions in other explosives and in planetary interiors.

Wu, C J; Fried, L E; Yang, L H; Goldman, N; Bastea, S

2008-06-05T23:59:59.000Z

85

Solar hot water system installed at Anderson, South Carolina  

DOE Green Energy (OSTI)

The solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina is described. The building is a low-rise two-story 114-room motel. The solar components were partly funded by the Department of Energy. The solar system was designed to provide 40% of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

Not Available

1978-12-01T23:59:59.000Z

86

CPS Energy- Solar Hot Water Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

87

Commonwealth Solar Hot Water Residential Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

88

Commonwealth Solar Hot Water Commercial Program (Massachusetts...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

89

LARGO hot water system thermal performance test report  

DOE Green Energy (OSTI)

The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions are presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The tests and evaluation were performed at the Marshall Space Flight Center solar test facility. The Solar Hot Water system is termed a ''Dump-type'' because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

Not Available

1978-11-01T23:59:59.000Z

90

Waste heat from kitchen cuts hot water electricity 23%  

SciTech Connect

Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

Barber, J.

1984-05-21T23:59:59.000Z

91

New hot-water use data for commercial buildings  

Science Conference Proceedings (OSTI)

This article reports that researchers have found that hot water usage in certain commercial buildings may be significantly higher than designers expect. ASHRAE Technical Committee 6.6, Service Water Heating, recognized the need for a comprehensive compilation and evaluation of available hot water usage information in residential and commercial installations. The bulk of the commercial building hot water demand and sizing information presented in Chapter 44 of the 1991 ASHRAE Handbook--HVAC Application is based on a comprehensive study published in 1969. However, information received by members of TC 6.6 and data appearing in some of the current literature suggest that the Handbook values may be too conservative. Because of conflicting information in the literature and possible variations in lifestyles and use patterns since the Handbook values were originally published, ASHRAE sponsored research project RP-600 to study and review these issues. In this research project, domestic hot water consumption was monitored at five separate commercial buildings in four building category types: one nursing home, two dormitories (one coed and one women's), one full-service restaurant and one hotel.

Thrasher, W.H.; DeWerth, D.W. (American Gas Association Lab., Cleveland, OH (United States))

1994-09-01T23:59:59.000Z

92

Estimating Energy and Water Losses in Residential Hot Water Distribution Systems  

E-Print Network (OSTI)

For dishwashers, not only is energy wasted as the hot waterhas the energy used to heat this water been wasted, but thewasted heat as water cools down in the distribution system after a draw; and the energy

Lutz, James

2005-01-01T23:59:59.000Z

93

Estimating Energy and Water Losses in Residential Hot WaterDistribution Systems  

DOE Green Energy (OSTI)

Residential single family building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include; the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy needed to reheat water that was already heated once before. Average losses of water are estimated to be 6.35 gallons (24.0 L) per day. (This is water that is rundown the drain without being used while waiting for hot water.) The amount of wasted hot water has been calculated to be 10.9 gallons (41.3L) per day. (This is water that was heated, but either is not used or issued after it has cooled off.) A check on the reasonableness of this estimate is made by showing that total residential hot water use averages about 52.6 gallons (199 L) per day. This indicates about 20 percent of average daily hot water is wasted.

Lutz, James

2005-02-26T23:59:59.000Z

94

Active space heating and hot water supply with solar energy  

DOE Green Energy (OSTI)

Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

Karaki, S.; Loef, G. O.G.

1981-04-01T23:59:59.000Z

95

Solar heating/cooling and domestic hot-water systems  

Science Conference Proceedings (OSTI)

Increasing awareness of global warming forces policy makers and industries to face two challenges: reducing greenhouse gas emissions and securing stable energy supply against ever-increasing world energy consumption, which is projected to increase by ... Keywords: buildings heating, domestic hot-water, energetical analysis, renewable energy sources, solar cooling technologies, solar energy collection, solar thermal systems

Ioan Sârbu; Marius Adam

2011-02-01T23:59:59.000Z

96

Large scale solar hot water heating systems for green hospital  

Science Conference Proceedings (OSTI)

Concerns over the impact of the environment on the massive usage of fossil fuels, combined with soaring energy prices, triggered increased interest in the use of solar energy. Solar energy is abundant, provides an important saving to the consumer, and ... Keywords: energy savings, evacuated tubes, greenhouse gas reduction, solar assisted hot water heaters

Poorya Ooshaksaraei; Baharudin Ali; Sohif Mat; M. Yahya; Kamaruzaman Ibrahim; Azami Zaharim; Kamaruzaman Sopian

2010-01-01T23:59:59.000Z

97

Design and installation package for solar hot water system  

DOE Green Energy (OSTI)

This report contains the design and installation procedure for the Solar Engineering and Manufacturing Company's solar hot water system. Included are the system performance specifications, system design drawings, hazard analysis and other information necessary to evaluate the design and instal the system.

Not Available

1978-12-01T23:59:59.000Z

98

Ocala Utility Services - Solar Hot Water Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Ocala Utility Services - Solar Hot Water Heating Rebate Program Ocala Utility Services - Solar Hot Water Heating Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate One rebate per account Program Info State Florida Program Type Utility Rebate Program Rebate Amount $450 per system Provider Ocala Utility Services The Solar Water Heater Rebate Program is offered to residential retail electric customers by the City of Ocala Utility Services. Interested customers must complete an application and receive approval from the Ocala Utility Services before installing equipment. The application can be found on the [http://www.ocalafl.org/COO3.aspx?id=947 program web site.] The system must be installed by a licensed Florida contractor on the customer's

99

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

hot water draw and energy usage for household samples,Support Document [10]. Energy usage for tankless watersuch a large population, energy usage would be reduced and

Lu, Alison

2011-01-01T23:59:59.000Z

100

A Realistic Hot Water Draw Specification for Rating Solar Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

thornton@tess-inc.com ABSTRACT In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. Bias...

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former...

102

Evaluation of Residential Hot Water Distribution Ssytems by Numeric Simulation  

SciTech Connect

The objective of this project was to evaluate the performance and economics of various domestic hot water distribution systems in representative California residences. While the greatest opportunities for improved efficiency occur in new construction, significant improvements can also be made in some existing distribution systems. Specific objectives of the project tasks were: (1) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to alternative new systems. (2) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to maintenance, repair, and retrofit modifications of existing systems. (3) Evaluate potential impact of adopting alternative hot water distribution systems and report project findings. The outcome of this project is to provide homeowners, homebuilders, systems suppliers, municipal code officials and utility providers (both electric and water/sewer) with a neutral, independent, third party, cost-benefit analysis of alternative hot water distribution systems for use in California. The results will enable these stakeholders to make informed decisions regarding which system is most appropriate for use.

Wendt, ROBERT

2005-08-17T23:59:59.000Z

103

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Office of Indian Energy webinar on direct use for building heat and hot water.

104

Water Heating: Energy-efficient strategies for supplying hot water in the home (BTS Technology Fact Sheet)  

SciTech Connect

Fact sheet for homeowners and contractors on how to supply hot water in the home while saving energy.

NAHB Research Center; Southface Energy Institute; U.S. Department of Energy' s Oak Ridge Laboratory; U.S. Department of Energy' s National Renewable Energy Laboratory

2001-08-15T23:59:59.000Z

105

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

Science Conference Proceedings (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

106

High Performance Buildings Incentive Program | Open Energy Information  

Open Energy Info (EERE)

Water Heat, Wind, Bio-gas Active Incentive Yes Implementing Sector StateTerritory Energy Category Energy Efficiency Incentive Programs, Renewable Energy Incentive Programs...

107

Controllers for solar domestic hot-water systems  

SciTech Connect

This document is intended as a resource for designers and installers of solar domestic hot water systems. It provides key functional control strategy and equipment alternatives and equipment descriptions adequate for writing effective DHW controller specifications. It also provides the installer with adequate technical background to understand the functional aspects of the controller. Included are specific instructions to install, check out, and troubleshoot the controller installation.

1981-10-01T23:59:59.000Z

108

Solar domestic hot water system inspection and performance evaluation handbook  

DOE Green Energy (OSTI)

A reference source and procedures are provided to a solar technician for inspecting a solar domestic hot water system after installation and for troubleshooting the system during a maintenance call. It covers six generic DHW systems and is designed to aid the user in identifying a system type, diagnosing a system's problem, and then pinpointing and evaluating specific component problems. A large amount of system design and installation information is also included.

Not Available

1981-10-01T23:59:59.000Z

109

Heating of Oil Well by Hot Water Circulation  

E-Print Network (OSTI)

When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solutions to this problem is heating of oil well by hot water recycling. We construct and analyze a mathematical model of oil-well heating composed of three linear parabolic PDE coupled with one Volterra integral equation. Further on we construct numerical method for the model and present some simulation results.

Mladen Jurak; Zarko Prnic

2005-03-04T23:59:59.000Z

110

Solar heating and hot water system installed at Listerhill, Alabama  

DOE Green Energy (OSTI)

The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

Not Available

1978-12-01T23:59:59.000Z

111

Property:Incentive/SWHComYears | Open Energy Information  

Open Energy Info (EERE)

SWHComYears SWHComYears Jump to: navigation, search Property Name Incentive/SWHComYears Property Type String Description The number of years of energy production to which the commercial incentive applies. For commercial/Non-profit/gov't systems, this is may be an upfront rebate based on an estimate of first-year production or this may be actual measured output over several years. Ex: APS's (AZ) RE incentive for commercial SWH is $0.057/kWh over 10 years. Format: 10.0 [1] References ↑ DSIRE Pages using the property "Incentive/SWHComYears" Showing 21 pages using this property. A APS - Renewable Energy Incentive Program (Arizona) + 1 + C CPS Energy - Solar Hot Water Rebate Program (Texas) + 1 + California Solar Initiative - Solar Thermal Program (California) + 1 +

112

Hotel in the Bahamas profits from solar hot water system  

SciTech Connect

On Paradise Island, located in the Bahamas, American Energy Technologies Inc. (AET) recently designed and supplied a domestic solar water heating system for the new Comfort Suites Hotel. AET is a Florida manufacturer of solar thermal collectors. The hotel has 150 rooms. Hot water usage entails the laundry facilities and the limited kitchen facilities. Access to hot showers is more of a luxury in some places, but guests at the Comfort Suites Hotel need not be concerned. During the development of the hotel, it was noted that the high heating costs of the propane-fueled hotel boiler were somewhat prohibitive. Propane cost approximately $1.67/gallon, causing the cost of heating water for the hotel to be estimated at over $1,000 per month. To offset the high heating costs, a 49-collector system on a 3200 gallon storage tank was designed into the plans for the new facility. The 49 roof mounted collectors were placed on a direct solar link to the 3200 gallon storage tank. The water is preheated before it gets to the boiler, cutting costs tremendously.

1993-01-01T23:59:59.000Z

113

JEA - Solar Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Incentive Program JEA - Solar Incentive Program Eligibility Commercial Residential Schools Savings For Heating & Cooling Solar Water Heating Maximum Rebate Residential: 800...

114

Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters  

DOE Green Energy (OSTI)

The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

None

1983-02-01T23:59:59.000Z

115

Pumped Solar Domestic Hot Water (SDHW) system design guidelines  

SciTech Connect

This article provides practical guidelines based on experience gained from the design, installation, and commissioning of a pumped Solar Domestic Hot Water (SDHW) system in Saudi Arabia. The authors believe that such information is not readily available and will be useful to designers and installers of SDHW systems within the region. Since the current motivation for buying SDHW systems in Saudi Arabia is not strictly economic, it is imperative that a professional reference be available, against which the soundness of any technical decisions could be confirmed prior to their implementation. The intent is to ensure that systems designed and installed will operate reliably, therefore enhancing customer satisfaction.

Arshad, K.; Said, S.A.M. (King Fahd Univ. of Petroleum Minerals, Dhahran (Saudi Arabia))

1989-01-01T23:59:59.000Z

116

Residential hot water usage: A review of published metered studies. Topical report, August-December 1994  

SciTech Connect

The report presents a review of residential hot water usage studies. The studies included were published and publicly available, they measured actual hot water usage or energy usage, and they had sufficient demographic information to determine the number of people per household. The available hot water usage data were normalized to a 135 F setpoint temperature to eliminate the variations in usage caused by different water heater thermostat settings. Typical hot water usage as a function of family size was determined from linear regression analyses of the normalized metered studies` data points. A national average hot water usage of 53 gallons per day was determined from the regression analyses and census data on average household size. The review of metered studies also shows that there is no discernible difference in hot water usage for households with either electric or gas water heaters.

Paul, D.D.; Ide, B.E.; Hartford, P.A.

1994-12-01T23:59:59.000Z

117

Optimum hot water temperature for absorption solar cooling  

SciTech Connect

The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

2009-10-15T23:59:59.000Z

118

Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint  

DOE Green Energy (OSTI)

In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

Burch, J.

2012-06-01T23:59:59.000Z

119

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network (OSTI)

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

120

Direct uses of hot water (geothermal) in dairying  

DOE Green Energy (OSTI)

Digital computer simulation was used to investigate the peak, steady energy utilization of a geothermal energy-supported dairy. A digital computer program was also written to assess the lifetime economics of the dairy operation. A dynamic simulation program was written to design water storage tanks under diurnal transient loading. The geothermal site specified is the artesian spring named Hobo Wells near Susanville, California. The dairy configuration studies are unique, but consist of conventional processing equipment. In the dairy, cattle waste would be used to generate methane and carbon dioxide by anaerobic digestion. Some carbon dioxide would be removed from the gas stream with a pressurized water scrubber to raise the heating value. The product gas would be combusted in a spark ignition engine connected to an electric generator. The electrical power produced would be used for operation of fans, pumps, lights and other equipment in the dairy. An absorption chiller using a geothermal water driven generator would provide milk chilling. Space heating would be done with forced air hot water unit heaters.

Barmettler, E.R.; Rose, W.R. Jr.

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

122

Feasibility study and roadmap to improve residential hot water distribution systems  

DOE Green Energy (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

123

EERE Roofus' Solar and Efficient Home: Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

of Roofus, a golden retriever, sitting in front of three black, rectangular solar collectors. Sunshine is really hot, and it makes my roof get hot, too So I use a...

124

Affordable Solar Hot Water and Power LLC | Open Energy Information  

Open Energy Info (EERE)

Water and Power LLC Water and Power LLC Jump to: navigation, search Name Affordable Solar Hot Water and Power LLC Place Dothan, Alabama Zip 36305 Sector Solar Product Solar and Energy Efficiency for buildings and homes Year founded 2006 Number of employees 1-10 Phone number 334-828-1024 Website http://www.asolarpro.com Coordinates 31.2070554°, -85.4994192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2070554,"lon":-85.4994192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Building America Top Innovations Hall of Fame Profile Â… Model Simulating Real Domestic Hot Water Use  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the Davis Energy Group used the and the Davis Energy Group used the Domestic Hot Water Event Schedule Generator to accurately quantify effects of low and high water usage on distribution system measures such as pipe insulation, home run plumbing, and demand-controlled recirculation loops. As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot water use so new hot water technologies can be more accurately assessed and more readily integrated into high-performance homes. Energy savings for certain residential building technologies depend greatly on occupant behavior. Domestic hot water use is a good example. Simulating

126

Prototype solar heating and cooling systems including potable hot water. Quarterly reports  

DOE Green Energy (OSTI)

The activities conducted by Solaron Corporation from November 1977 through September 1978 are summarized and the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is covered. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Williamson, R.

1978-10-01T23:59:59.000Z

127

Prototype solar heating and cooling systems including potable hot water. Quarterly reports, November 1976--June 1977  

DOE Green Energy (OSTI)

This report covers the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

Not Available

1978-12-01T23:59:59.000Z

128

Development of Standardized Domestic Hot Water Event Schedules for Residential Buildings  

SciTech Connect

The Building America Research Benchmark is a standard house definition created as a point of reference for tracking progress toward multi-year energy savings targets. As part of its development, the National Renewable Energy Laboratory has established a set of domestic hot water events to be used in conjunction with sub-hourly analysis of advanced hot water systems.

Hendron, R.; Burch, J.

2008-08-01T23:59:59.000Z

129

Minnesota/Incentives | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Incentives Minnesota/Incentives < Minnesota Jump to: navigation, search Contents 1 Financial Incentive Programs for Minnesota 2 Rules, Regulations and Policies for Minnesota Download All Financial Incentives and Policies for Minnesota CSV (rows 1 - 267) Financial Incentive Programs for Minnesota Download Financial Incentives for Minnesota CSV (rows 1 - 171) Incentive Incentive Type Active Agricultural Improvement Loan Program (Minnesota) State Loan Program Yes Alexandria Light and Power - Commercial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Yes Alexandria Light and Power - Energy Efficient Water Heater Rebate Program (Minnesota) Utility Rebate Program No Alexandria Light and Power - Residential Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Yes

130

Validation of a Hot Water Distribution Model Using Laboratory and Field Data  

SciTech Connect

Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

Backman, C.; Hoeschele, M.

2013-07-01T23:59:59.000Z

131

Hot Corrosion of Shipboard Turbine Components in High Water ...  

Science Conference Proceedings (OSTI)

While the resulting degradation for the two types of hot corrosion has been well documented for traditional fuel ... Hardware Materials in Carbonate Fuel Cell.

132

Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect  

DOE Green Energy (OSTI)

On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

Vuataz, F.D.; Goff, F.

1987-12-01T23:59:59.000Z

133

Hot Water Draw Patterns in Single-Family Houses: Findings from Field  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies Title Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies Publication Type Report LBNL Report Number LBNL-4830E Year of Publication 2011 Authors Lutz, James D., Renaldi, Alexander B. Lekov, Yining Qin, and Moya Melody Document Number LBNL-4830E Pagination 26 Date Published 05/2011 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This report describes data regarding hot water draw patterns that Lawrence Berkeley National Laboratory obtained from 10 studies. The report describes our purposes in collecting the data; the ways in which we managed, cleaned, and analyzed the data; and the results of our data analysis. We found that daily hot water use is highly variable both among residences and within the same residence. We also found that the distributions of daily hot water use are not symmetrical normal distributions. Thus we used median, not average, values to characterize typical daily hot water use. This report presents summary information that illustrates the results of our data collection and some initial analysis.

134

Waters of Hot Springs National Park, Arkansas: their nature and origin  

DOE Green Energy (OSTI)

The 47 hot springs of Hot Springs National Park, Arkansas, issue from the plunging crestline of a large overturned anticline, along the southern margin of the Ouachita anticlinorium, in the Zigzag Mountains. The combined flow of the hot springs ranges from 750,000 to 950,000 gallons per day (3.29 x 10/sup -2/ to 4.16 x 10/sup -2/ cubic meters per second). The radioactivity and chemical composition of the hot-water springs are similar to that of the cold-water springs and wells in the area. The tritium and carbon-14 analyses of the water indicate that the water is a mixture of a very small amount of water less than 20 years old and a preponderance of water about 4400 years old. The presence of radium and radon in the hot-springs waters has been established by analyses. Mathematical models were employed to test various conceptual models of the hot-springs flow system. The geochemical data, flow measurements, and geologic structure of the region support the concept that virtually all the hot-springs water is of local, meteoric origin. Recharge to the hot-springs artesian-flow system is by infiltration of rainfall in the outcrop areas of the Bigfork Chert and the Arkansas Novaculite. The water moves slowly to depth where it is heated by contact with rocks of high temperature. Highly permeable zones, related to jointing or faulting, collect the heated water in the aquifer and provide avenues for the water to travel rapidly to the surface.

Bedinger, M.S.; Pearson, F.J. Jr.; Reed, J.E.; Sniegocki, R.T.; Stone, C.G.

1979-01-01T23:59:59.000Z

135

A search for the Mpemba effect: When hot water freezes faster then cold water James D. Brownridge  

E-Print Network (OSTI)

..." and "...Preheating the melt produces no certain effect upon it ..."6 In other words, if a specimen of water voltage produced the when latent heat of freezing is released. (A) Glass tube and water, (B) 500k, (CA search for the Mpemba effect: When hot water freezes faster then cold water James D. Brownridge

Suzuki, Masatsugu

136

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Direct Use for Building Heat and Hot Water Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Direct Use for Building Heat and Hot Water." Slide 1 Amy Hollander: Hello, I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Building Heat and Hot Water sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's new state-of-the-art net zero

137

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

138

Delmarva Power - Green Energy Program Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delmarva Power - Green Energy Program Incentives Delmarva Power - Green Energy Program Incentives Delmarva Power - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: 15,000 for residential, 24,000 for non-residential, 48,000 for non-profits Solar Thermal (domestic hot water): 5,000 for residential, 10,000 for non-residential Solar Thermal (radiant heating): 5,000 for residential, 10,000 for non-residential Wind: 15,000 for residential, 24,000 for non-residential, 48,000 for non-profits Fuel Cells: Under review Geothermal Heat Pumps: 5,000 for residential, 30,000 for non-residential

139

Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report  

Science Conference Proceedings (OSTI)

The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

Not Available

1980-08-01T23:59:59.000Z

140

Final report : testing and evaluation for solar hot water reliability.  

DOE Green Energy (OSTI)

Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal: Sponsored by OSTI -- Residential hot water distribution...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

142

ConEd (Gas) - Multi-family Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Multi-family Energy Efficiency Incentives Program ConEd (Gas) - Multi-family Energy Efficiency Incentives Program ConEd (Gas) - Multi-family Energy Efficiency Incentives Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Manufacturing Appliances & Electronics Water Heating Maximum Rebate Steam Boiler: $2500 Energy Management System: 70% of total cost Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Hot Water Gas Boilers (85%-89% TE): $1000-$3500/boiler Hot Water Gas Condensing Boilers (90%+ TE): $2000-$15,000/boiler Gas Steam Boilers: $700/boiler (300 MBH) Heating System Clean and Tune: $225/boiler

143

Estimating market penetration of steam, hot water and chilled water in commercial sector using a new econometric model  

SciTech Connect

For the first time in the public domain, we have estimated the energy consumption and expenditures of district steam, hot water, and chilled water. Specifically, the combined energy consumption and expenditures of steam, hot water, and chilled water in 1989 were approximately 800 trillion Btu and 7 billion dollars, respectively. The purpose of this paper is to introduce a new model developed at Argonne National Laboratory (ANL) for estimating market penetration of steam, hot water, and chilled water systems in commercial buildings over the next 20 years. This research sponsored by the US Department of Energy (DOE) used the 1989 Commercial Building Energy Consumption Surveys (CBECS) to provide information on energy consumption and expenditures and related factors in about 6000 buildings. A general linear model to estimated parameters for each of the three equations for steam, hot water, and chilled water demand in the buildings. A logarithmic transformation was made for the dependent variable and most of the explanatory variables. The model provides estimates of building steam, hot water, and chilled water consumption and expenditures between now and the year 2010. This model should be of interest to policymakers, researchers, and market participants involved with planning and implementing community-based energy-conserving and environmentally beneficial energy systems.

Teotia, A.P.S.; Karvelas, D.E.; Daniels, E.J.; Anderson, J.L.

1993-08-01T23:59:59.000Z

144

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

145

Tribal Renewable Energy Foundational Course: Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on direct use for building heat and hot water by clicking on the .swf link below. You can also download the...

146

Water Sampling At Hot Lake Area (Wood, 2002) | Open Energy Information  

Open Energy Info (EERE)

Hot Lake Area (Wood, 2002) Hot Lake Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hot Lake Area (Wood, 2002) Exploration Activity Details Location Hot Lake Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

147

Water Sampling At Crane Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Hot Springs Area (Wood, 2002) Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Crane Hot Springs Area (Wood, 2002) Exploration Activity Details Location Crane Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

148

Water Sampling At Mccredie Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mccredie Hot Springs Area (Wood, 2002) Mccredie Hot Springs Area (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mccredie Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mccredie Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

149

Florida/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Florida/Incentives < Florida Jump to: navigation, search Contents 1 Financial Incentive Programs for Florida 2 Rules, Regulations and Policies for Florida Download All Financial Incentives and Policies for Florida CSV (rows 1 - 200) Financial Incentive Programs for Florida Download Financial Incentives for Florida CSV (rows 1 - 125) Incentive Incentive Type Active Beaches Energy Services - Residential Energy Efficiency Rebate Program (Florida) Utility Rebate Program No Beaches Energy Services - Solar Water Heating Rebate Program (Florida) Utility Rebate Program Yes

150

Installation package for a domestic solar heating and hot water system  

DOE Green Energy (OSTI)

Fern Engineering Company, Inc. has developed two prototype solar heating and hot water systems. The systems have been installed at Tunkhannock, Pennsylvania, and Lansing, Michigan. The system consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy. General guidelines which may be utilized in development of detailed installation plans and specifications are presented. In addition, instruction on operation, maintenance, and repair of a solar heating and hot water system is provided.

Not Available

1978-08-01T23:59:59.000Z

151

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents (OSTI)

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

152

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico Tapping Solar for Hot Water and Cheaper Bills for Puerto Rico November 3, 2010 - 10:00am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? 150 new jobs. 1200 solar water heaters installed. In Puerto Rico, solar water heaters have been popular for decades. But even with energy savings, not everyone can afford one. Through a new Recovery Act-funded program for the island, more families are showering with water heated by the sun. The U.S. Department of Energy's new Weatherization Assistance Program (WAP) in Puerto Rico has made it a priority to install the systems in homes of income-eligible residents, as part of its weatherization assistance services. The Puerto Rico Energy Affairs Administration (PREAA), which

153

Water Sampling At Alvord Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Alvord Hot Springs Area (Wood, Water Sampling At Alvord Hot Springs Area (Wood, 2002) Exploration Activity Details Location Alvord Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

154

Water Sampling At Beowawe Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Beowawe Hot Springs Area (Wood, Water Sampling At Beowawe Hot Springs Area (Wood, 2002) Exploration Activity Details Location Beowawe Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

155

New Hampshire Electric Co-Op - Solar Hot Water | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Hampshire Electric Co-Op - Solar Hot Water New Hampshire Electric Co-Op - Solar Hot Water New Hampshire Electric Co-Op - Solar Hot Water < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,500 Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount 20% of installed costs Provider New Hampshire Electric Co-Op New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum award of $1,500. Systems must be pre-approved, and installed in NHEC's service territory by a qualified installer. Program funds are available on a first-come, first-served basis. See the program web site listed above for more information, an application

156

Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report  

DOE Green Energy (OSTI)

The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

Not Available

1980-11-01T23:59:59.000Z

157

Measured electric hot water standby and demand loads from Pacific Northwest homes  

SciTech Connect

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

158

New Infographic and Projects to Keep Your Energy Bills Out of Hot Water |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Infographic and Projects to Keep Your Energy Bills Out of Hot Infographic and Projects to Keep Your Energy Bills Out of Hot Water New Infographic and Projects to Keep Your Energy Bills Out of Hot Water April 19, 2013 - 3:21pm Addthis New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a high-resolution version of the infographic. | Infographic by Sarah Gerrity. New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a high-resolution version of the infographic. | Infographic by Sarah Gerrity. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

159

Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Buffalo Valley Hot Springs Area Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

160

Solar heating and hot water system installed at Cherry Hill, New Jersey. [Hotels  

DOE Green Energy (OSTI)

The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system went into operation November 8, 1978 and is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are General Electric Company liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

Not Available

1979-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility study and roadmap to improve residential hot water distribution systems  

E-Print Network (OSTI)

dishwashers, not only is the energy wasted by the hot waterwasted heat as water cools down in the distribution system after a draw; and the energywasted heat as water cools down in the distribution system after a draw; and the energy

Lutz, James D.

2004-01-01T23:59:59.000Z

162

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

SciTech Connect

Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

2008-08-13T23:59:59.000Z

163

Commissioning the Domestic Hot Water System on a Large University Campus: A Case Study  

E-Print Network (OSTI)

The Texas A&M University (TAMU) main campus in College Station consists of 110 buildings with 12.5 million square feet of gross building space. Seventy-one of these buildings are connected to the main campus domestic hot water (DHW) distribution system. The DHW loop is more than 50 years old and has had continuing distribution problems. The main problems reported from several buildings were low hot water temperature and long delays in obtaining hot water at fixtures. The objective of this study was to investigate the causes of these problems and help determine how to best operate the system. It was found that reported problems of low flows, low temperatures and long hot water lag time resulted from reverse flows and no hot water circulation caused by: 1) Unadjusted return pumps with heads too high. 2) Pumps not installed or not running where needed. 3) Pumps with heads too low. 4) Check valves not installed where needed. 5) Insufficient piping capacity in two locations. This paper presents possible control strategies to alleviate these problems identified during the field investigation.

Chen, H.; Bensouda, N.; Claridge, D.; Bruner, H.

2004-01-01T23:59:59.000Z

164

Irregular incentives  

Science Conference Proceedings (OSTI)

Public utility regulation lacks a formal proxy for the economic profits that can be earned in an effectively competitive market if a firm is efficient or innovative. After all, public utility regulation operated on cost-plus basis. If a utility is efficient or innovative and lowers its costs, its typical reward is to have its rates reduced. This is a perverse incentive to motivate a utility to produce at the most efficient level. In addition, since regulation operates on this cost-plus basis, a utility can increase its net income, all other things being equal, by overinvesting in (or [open quotes]gold-plating[close quotes]) its system, another perverse incentive. Recognizing these flaws of regulation, academicians, utility executives, regulators, and legislators have tried over the last several years to implement incentive regulation plans that correct such perverse incentives. However, under many of the earnings-sharing or price-regulation incentive plans, the rewards for efficient production are not tied directly to measures under a company's control. In fact, such plans could prove highly detrimental to ratepayers and competitors of the regulated company and its affiliates. An incentive regulation plan that ties an appropriate reward for efficient production to specific efficiency gains is a better proxy of an effectively competitive environment. What's more, it is superior to an incentive plan that rewards circumstances beyond the company's control or self-serving manipulation. This is particularly true if no earnings cap is associated with the reward for efficiency. Rewards for efficient production should be tied to specific actions. A suitable incentive plan does not preclude appropriately derived flexible prices for certain products or services where warranted.

Cicchetti, M.A.

1993-06-15T23:59:59.000Z

165

Category:Financial Incentives Incentive Types | Open Energy Informatio...  

Open Energy Info (EERE)

Financial Incentives Incentive Types Jump to: navigation, search Financial Incentive Types. Pages in category "Financial Incentives Incentive Types" The following 14 pages are in...

166

North Carolina/Incentives | Open Energy Information  

Open Energy Info (EERE)

North Carolina/Incentives North Carolina/Incentives < North Carolina Jump to: navigation, search Contents 1 Financial Incentive Programs for North Carolina 2 Rules, Regulations and Policies for North Carolina Download All Financial Incentives and Policies for North Carolina CSV (rows 1 - 149) Financial Incentive Programs for North Carolina Download Financial Incentives for North Carolina CSV (rows 1 - 96) Incentive Incentive Type Active Active Solar Heating and Cooling Systems Exemption (North Carolina) Property Tax Incentive Yes Blue Ridge EMC - Residential Solar Water Heating Rebate Program (North Carolina) Utility Rebate Program No Blue Ridge Mountain EMC - Residential Energy Efficiency Rebate Program (North Carolina) Utility Rebate Program No Blue Ridge Mountain EMC - Residential Heat Pump Loan Program (North Carolina) Utility Loan Program No

167

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonprofit Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Water Heating Program Info State Massachusetts...

168

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

169

Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of  

Open Energy Info (EERE)

Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of Geothermal Systems in the Northwestern Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Why Is Nevada in Hot Water? Structural Controls and Tectonic Model of Geothermal Systems in the Northwestern Great Basin Abstract In the western Great Basin, the Walker Lane is a system of right-lateral strike-slip faults accommodating ~15-25% of relative motion between the Pacific and North American plates. Relatively high rates of recent (<10 Ma) west-northwest extension absorb northwestward declining dextral motion in the Walker Lane, diffusing that motion into the Basin-Range. Abundant geothermal fields cluster in several northeasttrending belts in the

170

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

171

Experience on design and operation of hotel/motel solar hot water systems  

SciTech Connect

The use of solar energy to preheat domestic hot water in hotels and motels has many advantages. Year long use of these solar systems provides shorter payback periods. Temperature requirements for hotel/motel use are relatively low and are compatible with low cost flat plate collectors. Simple controls relate to higher reliability in both drain-down and heat exchanger configurations. Solar systems are easily retrofitted to most existing hotel/motel hot water systems and there are many hotels and motels across the country with roof area sufficient in size to hold the required collector arrays. Hotel/motel systems with payback periods of less than four years, which provide 70% of the total hot water load, are discussed.

Brohl, E.C.; Struss, R.G.; Sidles, P.H.

1978-01-01T23:59:59.000Z

172

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

173

List of Microturbines Incentives | Open Energy Information  

Open Energy Info (EERE)

Microturbines Incentives Microturbines Incentives Jump to: navigation, search The following contains the list of 66 Microturbines Incentives. CSV (rows 1 - 66) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics Renewable Fuels Solar Pool Heating

174

Economic Development Incentive Program (Massachusetts) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Corporate Tax Incentive Provider Office of Business Development The Economic Development Incentive Program (EDIP) is a tax incentive program designed to foster job creation and stimulate business growth throughout the Commonwealth. Participating companies may receive state and

175

List of Daylighting Incentives | Open Energy Information  

Open Energy Info (EERE)

Daylighting Incentives Daylighting Incentives Jump to: navigation, search The following contains the list of 166 Daylighting Incentives. CSV (rows 1 - 166) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative and Clean Energy State Grant Program (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Local Government Multi-Family Residential Nonprofit Schools Boilers

176

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

177

Solar heating of buildings and domestic hot water  

SciTech Connect

Design criteria and cost analysis methods are presented for the sizing and justification of solar heat collectors for augmentation of potable water heaters and space heaters. Sufficient information is presented to enable engineers to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (WDM)

Beck, E.J. Jr.; Field, R.L.

1976-01-01T23:59:59.000Z

178

Opportunities for utility involvement with solar domestic hot water  

SciTech Connect

Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

Carlisle, N.; Christensen, C. [National Renewable Energy Lab., Golden, CO (United States); Barrett, L. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

1992-05-01T23:59:59.000Z

179

Hot water system is energized by exhaust gas  

Science Conference Proceedings (OSTI)

The combustion of hydrocarbon fuels (natural gas or oil) results in the formation of carbon dioxide and water (water vapor). This water vapor contains approximately 1000 Btu/lb. as latent heat and amounts to 10% of all the heat input to the boiler (combustion). This means that for an 80% efficient boiler operation, 50% of the heat wasted in the flue gas is latent heat - which can only be recovered by condensing the water vapor. Since the dew point of the flue gases is approximately 130/sup 0/F, it is necessary to cool the gases to ambient temperature for complete heat recovery. By reducing these gases to within 10/sup 0/ of the incoming cold water, this Eldon Corporation heat reclaimer can achieve temperatures as low as 45/sup 0/ in winter.

Not Available

1985-09-01T23:59:59.000Z

180

Prototype solar heating and cooling systems, including potable hot water. Quarterly report  

DOE Green Energy (OSTI)

The progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. Included is a comparison of the proposed Solaron-Heat Pump and Solaron-Desiccant Heating and Cooling Systems, Installation Drawings, data on the Akron House at Akron, Ohio, and other program activities from July 1, 1977 through November 9, 1977.

Not Available

1977-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

System design package for SIMS Prototype System 2, solar hot water  

DOE Green Energy (OSTI)

This report is a collection of documents and drawings that describe a solar hot water system. The necessary information to evaluate the design and with information sufficient to assemble a similar system is presented. The International Business Machines Corporation developed prototype system 2 solar hot water for use in a single family dwelling. The system has been installed in Building Number 20, which is a single family residence on the grounds of the Veterans Administration Hospital at Togus, Maine. It consists of the following subsystems: collector, storage, energy transport, and control. It is a design with wide-spread application potential with only slight adjustments necessary in system size.

Not Available

1977-12-01T23:59:59.000Z

182

Performance of active solar domestic hot water heating systems. Comparative report, 1979-1980 season  

Science Conference Proceedings (OSTI)

The most recent composite results of analysis performed by Vitro Laboratories of solar hot water heating data for selected hot water sites in the National Solar Data Network (NSDN) are presented. Results presented have been developed on the basis of analysis of instrumented sites monitored through 1979-1980. A total of 45 sites in the National Solar Data Network (NSDN) were examined for this study. Eighteen of these were selected for in-depth treatment because of the availability of valid long term data. System descriptions, schematic diagrams and energy flow diagrams for these 18 sites are presented in Appendices A, B, and C, respectively. (WHK)

Cramer, M.A.; Kendall, P.W.; Rosenbusch, J.M.; Weinstein, R.A.

1980-01-01T23:59:59.000Z

183

System design package for SIMS prototype system 3, solar heating and domestic hot water  

DOE Green Energy (OSTI)

This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using liquid flat plat collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system. The SIMS Prototype Heating and Hot Water System, Model Number 3 has been installed in a residence at Glendo State Park, Glendo, Wyoming.

Not Available

1978-11-01T23:59:59.000Z

184

Water Sampling At Mickey Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Mickey Hot Springs Area (Wood, Mickey Hot Springs Area (Wood, 2002) Exploration Activity Details Location Mickey Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

185

Water Sampling At Umpqua Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Umpqua Hot Springs Area (Wood, Umpqua Hot Springs Area (Wood, 2002) Exploration Activity Details Location Umpqua Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from

186

Savings Project: Insulate Hot Water Pipes for Energy Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

the insulation done during new construction of a home, during other work on your water heater or pipes, or insulating the pipes yourself, is well worth the effort. In special...

187

CPS Energy - Solar Hot Water Rebate Program (Texas) | Open Energy...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

188

Orange County - Solar Hot Water Rebate Program (Florida) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

189

Measurements of the Electrical Conductivities of Air over Hot Water  

Science Conference Proceedings (OSTI)

Measurements of the conduction current between two electrodes in air over recently boiled water have been interpreted by Carlon as indicating that the humidified air became highly conductive and that large numbers of ions were produced in the air ...

C. B. Moore; B. Vonnegut

1988-03-01T23:59:59.000Z

190

Solar hot water pays off for commercial enterprises  

SciTech Connect

Two solar water heating systems in Florida are described. One system supplies a motel for guest rooms, laundry, and kitchen. The other system serves a coin-operated laundry. (WDM)

Jones, H.

1976-05-01T23:59:59.000Z

191

Solar Hot Water Contractor Licensing (Arkansas) | Open Energy...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

192

Commercial Solar Hot Water Financing Program | Open Energy Information  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

193

Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) | Open  

Open Energy Info (EERE)

2002) 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Zim's Hot Springs Geothermal Area (Wood, 2002) Exploration Activity Details Location Zim's Hot Springs Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

194

Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) | Open Energy  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Breitenbush Hot Springs Area (Wood, 2002) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

195

Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) |  

Open Energy Info (EERE)

Wood, 2002) Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Belknap-Foley-Bigelow Hot Springs Area (Wood, 2002) Exploration Activity Details Location Belknap-Foley-Bigelow Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the

196

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents (OSTI)

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

197

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents (OSTI)

A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, John W. (Sag Harbor, NY)

1983-06-28T23:59:59.000Z

198

List of Biodiesel Incentives | Open Energy Information  

Open Energy Info (EERE)

List of Biodiesel Incentives List of Biodiesel Incentives Jump to: navigation, search The following contains the list of 74 Biodiesel Incentives. CSV (rows 1 - 74) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alternative Fuel Tax Exemption (Idaho) Corporate Exemption Idaho Ethanol

199

List of Ethanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Ethanol Incentives Ethanol Incentives Jump to: navigation, search The following contains the list of 67 Ethanol Incentives. CSV (rows 1 - 67) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol

200

NORTH PORTAL-HOT WATER CALCULATION-SHOP BUILDING #5006  

SciTech Connect

The purpose of this design analysis and calculation is to determine the demand for domestic cold water and to size the supply main for the Shop Building No.5006 in accordance with the Uniform Plumbing Code (UPC) (Section 4.4.1) and the U.S. Department of Energy, Order 6430.1A-1540 (Section 4.4.2).

R. Blackstone

2006-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana  

DOE Green Energy (OSTI)

Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross activity and the concentration of radium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60/sup 0/C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background radioactivity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from fractured siliceous veins by ascending thermal waters, and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

Leonard, R.B.; Janzer, W.J.

1977-08-01T23:59:59.000Z

202

INSTALLATION CERTIFICATE CF-6R-MECH-01 Domestic Hot Water (DHW) (Page 1 of 2)  

E-Print Network (OSTI)

: Heater Type CEC Certified Mfr Name & Model Number Distribution Type (Std, Point-of- Use, etc; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements or fewer dwelling units which have (1) less than 25' of distribution piping outdoors; (2) zero distribution

203

LARGO hot water system long range thermal performance test report. Addendum  

DOE Green Energy (OSTI)

The test procedure used and the test results obtained during the long range thermal performance tests of the LARGO Solar Hot Water System under natural environmental conditions are presented. Objectives of these tests were to determine the amount of energy collected, the amount of power required for system operation, system efficiency temperature distribution and system performance degradation.

Not Available

1978-11-01T23:59:59.000Z

204

Improved Airborne Hot-Wire Measurements of Ice Water Content in Clouds  

Science Conference Proceedings (OSTI)

Airborne measurements of ice water content (IWC) in both ice and mixed phase clouds remain one of the long standing problems in experimental cloud physics. For nearly three decades, IWC has been measured with the help of the Nevzorov hot-wire ...

A. Korolev; J. W. Strapp; G. A. Isaac; E. Emery

205

Solar heating and hot water system installed at St. Louis, Missouri. Final report  

DOE Green Energy (OSTI)

Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

Not Available

1980-04-01T23:59:59.000Z

206

Operation manual: solar hot water preheat, Henry's Lake State Park. Final technical report  

DOE Green Energy (OSTI)

Instructions for the assembling of the panel array and start-up procedures for the water heater are provided. The preheat system is designed for the months of May through September and provides 75% of hot water for an 800 gal/day use. The panels are disassembled and stored during the winter months. Information on troubleshooting the system, a set of as built plans and warranty material are included.

Not Available

1985-01-01T23:59:59.000Z

207

Don't Let Your Money and Hot Water Go Down the Drain | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Don't Let Your Money and Hot Water Go Down the Drain Don't Let Your Money and Hot Water Go Down the Drain Don't Let Your Money and Hot Water Go Down the Drain December 9, 2008 - 4:00am Addthis John Lippert Do you look at your retirement savings statements and feel like you're sending your money down the drain? Do you deposit more money each paycheck into your retirement account, but find the balance goes down, not up? Pssst, want to invest in a "sure thing?" No, this isn't a scam. It's a device that has no moving parts to break down, but is certain to save you energy, and thus save you money by lowering your utility bills. When we all take showers and baths, wash the dishes or clothes, and wash our hands, we send heated water literally down the drain. That typically represents 80%-90% of the energy used to heat water in a home. Drain-water (or

208

Catawba County - Green Construction Permitting Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State North Carolina Program Type Green Building Incentive Provider...

209

Low rank coal upgrading in a flow of hot water  

Science Conference Proceedings (OSTI)

Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

2009-09-15T23:59:59.000Z

210

Promising freeze protection alternatives in solar domestic hot water systems  

DOE Green Energy (OSTI)

Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

Bradley, D.E.

1997-12-31T23:59:59.000Z

211

Oregon/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oregon/Incentives < Oregon Jump to: navigation, search Contents 1 Financial Incentive Programs for Oregon 2 Rules, Regulations and Policies for Oregon Download All Financial Incentives and Policies for Oregon CSV (rows 1 - 171) Financial Incentive Programs for Oregon Download Financial Incentives for Oregon CSV (rows 1 - 143) Incentive Incentive Type Active Ashland Electric Utility - Bright Way to Heat Water Loan (Oregon) Utility Loan Program Yes Ashland Electric Utility - Bright Way to Heat Water Rebate (Oregon) Utility Rebate Program Yes Ashland Electric Utility - Commercial Conservation Loan Program (Oregon) Utility Loan Program Yes

212

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

213

List of Dishwasher Incentives | Open Energy Information  

Open Energy Info (EERE)

Dishwasher Incentives Dishwasher Incentives Jump to: navigation, search The following contains the list of 364 Dishwasher Incentives. CSV (rows 1 - 364) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Alabama - Residential Energy-Efficient Appliance Rebate Program (Alabama) State Rebate Program Alabama Residential Clothes Washers Dishwasher Refrigerators No Alaska - Residential Energy-Efficient Appliance Rebate Program (Alaska) State Rebate Program Alaska Residential Clothes Washers

214

List of Doors Incentives | Open Energy Information  

Open Energy Info (EERE)

Doors Incentives Doors Incentives Jump to: navigation, search The following contains the list of 290 Doors Incentives. CSV (rows 1 - 290) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Oklahoma Residential Building Insulation Central Air conditioners Comprehensive Measures/Whole Building Doors Duct/Air sealing Equipment Insulation Heat pumps Lighting Refrigerators Water Heaters Windows Yes Adams Electric Cooperative - Energy Efficiency Loan Program (Pennsylvania) Utility Loan Program Pennsylvania Residential Rural Electric Cooperative Building Insulation Caulking/Weather-stripping Central Air conditioners Doors Equipment Insulation

215

List of Siding Incentives | Open Energy Information  

Open Energy Info (EERE)

Siding Incentives Siding Incentives Jump to: navigation, search The following contains the list of 45 Siding Incentives. CSV (rows 1 - 45) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Anaheim Public Utilities - Commercial & Industrial New Construction Rebate Program Utility Rebate Program California Commercial Industrial Institutional Boilers Building Insulation Caulking/Weather-stripping Central Air conditioners Chillers Comprehensive Measures/Whole Building Compressed air Duct/Air sealing Energy Mgmt. Systems/Building Controls Equipment Insulation Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Processing and Manufacturing Equipment Roofs Siding Water Heaters Windows Yes Anaheim Public Utilities - Green Building Rebate Program (California) Utility Rebate Program California Commercial

216

Enterprise Zone Incentives (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentives (Florida) Incentives (Florida) Enterprise Zone Incentives (Florida) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Retail Supplier Systems Integrator Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Enterprise Zone Provider Florida Department of Economic Opportunity Enterprise Zone Incentives encourage business growth within certain geographic areas targeted for economic revitalization. Businesses which create jobs within a designated zone are eligible for several tax incentives, including sales and use tax credit, tax refunds for machinery or equipment, sales tax refund for building materials, and a sales tax exemption for electrical energy

217

incentive2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-98-03 0-98-03 INSPECTION REPORT The Fiscal Year 1996 Performance Based Incentive Program at the Savannah River Operations Office May 1998 U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS TABLE OF CONTENTS Overview Introduction and Objective ....................................................1 Observations and Conclusions .............................................3 Findings and Recommendations .......................................4 Savannah River PBI Program Experienced Similar Problems ...............................................................................4 Questionable PBI Fee Payments ..........................................7

218

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

1980-07-01T23:59:59.000Z

219

Cost effective solar hot water system for econo-travel motor hotel located at Hampton, VA  

SciTech Connect

This paper gives the final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 2708 Mercury Boulevard, Hampton, Virginia. The description of the system along with the final cost breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1978-11-01T23:59:59.000Z

220

Cost effective solar hot water system for Econo-Travel Motor Hotel, Chesapeake, Virginia. Final report  

SciTech Connect

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 4725 W. Military Highway, Chesapeake, Virginia, is presented. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cost effective solar hot water system for econo-travel motor hotel located at Hampton, VA  

DOE Green Energy (OSTI)

This paper gives the final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 2708 Mercury Boulevard, Hampton, Virginia. The description of the system along with the final cost breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

Not Available

1978-11-01T23:59:59.000Z

222

Cost effective solar hot water system for Econo-Travel Motor Hotel, Chesapeake, Virginia. Final report  

DOE Green Energy (OSTI)

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 4725 W. Military Highway, Chesapeake, Virginia, is presented. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

Not Available

1978-12-01T23:59:59.000Z

223

Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project  

DOE Green Energy (OSTI)

It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

Jager, A.R.

1996-03-01T23:59:59.000Z

224

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network (OSTI)

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more comfortable. First, the authors devised an experimental scheme and set up the laboratory. Second, we collected a great deal of data on the system in different situations. Finally, we conclude that such heating system is feasible and one of the best heating methods.

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

225

Consumer thermal energy storage costs for residential hot water, space heating and space cooling systems  

DOE Green Energy (OSTI)

The cost of household thermal energy storage (TES) in four utility service areas that are representative for hot water, space heating, and space cooling systems in the United States is presented. There are two major sections of the report: Section 2.0 is a technology characterization of commercially available and developmental/conceptual TES systems; Section 3.0 is an evaluation of the consumer cost of the three TES systems based on typical designs in four utility service areas.

None

1976-11-30T23:59:59.000Z

226

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

227

List of Whole House Fans Incentives | Open Energy Information  

Open Energy Info (EERE)

Whole House Fans Incentives Whole House Fans Incentives Jump to: navigation, search The following contains the list of 26 Whole House Fans Incentives. CSV (rows 1 - 26) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives (Iowa) Utility Rebate Program Iowa Agricultural Agricultural Equipment Ceiling Fan Clothes Washers Custom/Others pending approval Dishwasher Doors Heat recovery Lighting Motor VFDs Motors Refrigerators Water Heaters Windows Whole House Fans Room Air Conditioners Ground Source Heat Pumps Yes Alliant Energy Interstate Power and Light - Farm Equipment Energy Efficiency Incentives (Minnesota) Utility Rebate Program Minnesota Agricultural Agricultural Equipment

228

South Carolina/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » South Carolina/Incentives < South Carolina Jump to: navigation, search Contents 1 Financial Incentive Programs for South Carolina 2 Rules, Regulations and Policies for South Carolina Download All Financial Incentives and Policies for South Carolina CSV (rows 1 - 110) Financial Incentive Programs for South Carolina Download Financial Incentives for South Carolina CSV (rows 1 - 61) Incentive Incentive Type Active Aiken Electric Cooperative - EC Home Improvement Loan Program (South Carolina) Utility Loan Program No Aiken Electric Cooperative Inc - Residential Water Heater Rebate Program (South Carolina) Utility Rebate Program Yes

229

Solar production of industrial process hot water: operation and evaluation of the Campbell Soup hot water solar facility. Final report, September 1, 1979-December 10, 1980  

DOE Green Energy (OSTI)

The operation and evaluation of a solar hot water facility designed by Acurex Corporation and installed (November 1977) at the Campbell Soup Company Sacramento, California canning plant is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation 99% of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large-scale solar facilities based on this project's experience are given, and an environmental impact assessment for the Campbell Soup solar facility is provided. (WHK)

Kull, J. I.; Niemeyer, W. N.; Youngblood, S. B.

1980-12-01T23:59:59.000Z

230

Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah  

DOE Green Energy (OSTI)

Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

1980-02-01T23:59:59.000Z

231

Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10  

DOE Green Energy (OSTI)

The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

None

1977-09-01T23:59:59.000Z

232

Estimating Energy and Water Losses in Residential Hot Water Distribution Systems  

E-Print Network (OSTI)

by showers, faucets, and dishwashers. (Actual leaks of hotdraws for sinks and dishwashers may not waste water, from anheat the water. For dishwashers, not only is energy wasted

Lutz, James

2005-01-01T23:59:59.000Z

233

List of Renewable Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 97 Renewable Fuels Incentives. CSV (rows 1 - 97) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial

234

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

235

DOE Office of Indian Energy Foundational Course on Direct Use for Building Heat and Hot Water  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DIRECT USE FOR BUILDING HEAT & HOT WATER Presented by the National Renewable Energy Laboratory Course Outline 2 What we will cover...  About the DOE Office of Indian Energy Education Initiative  Course Introduction  Solar Thermal and Solar Ventilation Air Pre-Heat - Resources, Technology, Examples & Cost, and References  Biomass Heat - Resources, Technology, Examples & Cost, and References  Geothermal Building Heat - Resources, Technology, Examples & Cost, and References  Additional Information & Resources Introduction The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs is responsible for assisting Tribes with energy planning and development, infrastructure, energy costs, and electrification of Indian

236

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network (OSTI)

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads are high and the cooling season is long. Because commercial kitchens and laundry facilities have simultaneous water heating and cooling needs, they are excellent applications for heat pump water heaters. Typical heat pump water heaters (HPWHs) operate at an annual coefficient of performance (COP) of approximately 3.0 for water heating alone. Space conditioning benefits of about 0.67 Btu are delivered at no additional cost for each Btu of water heating output. In situations in which this cooling output is valued, the dual thermal outputs for heating and cooling make heat pump water heaters particularly attractive. The comfort value of added cooling in overheated facilities and the resulting increase in employee and customer satisfaction are frequently cited as additional benefits. This paper describes currently available heat pump water heating equipment and offers guidelines for successful applications in commercial facilities. The results of field test programs involving more than 100 units in Alabama, Georgia, Mississippi, Tennessee, South Carolina, and other areas are incorporated. Initial conclusions are drawn from a reliability database, and interviews with utility applications specialists and manufacturers are discussed. Design tools are reviewed, including a new comprehensive computer simulation model. Emphasis is placed on identifying sound candidates for installations and on application and design considerations. A brief survey is provided of environmental implications of heat pump water heaters and new developments in heat pump water heater equipment.

Johnson, K. F.; Shedd, A. C.

1992-05-01T23:59:59.000Z

237

Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program  

SciTech Connect

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

238

List of Photovoltaics Incentives | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Incentives Photovoltaics Incentives Jump to: navigation, search The following contains the list of 2359 Photovoltaics Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-2000) CSV (rows 2001-2359) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) Performance-Based Incentive Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes AEP Ohio - Renewable Energy Technology Program (Ohio) Utility Rebate Program Ohio Agricultural

239

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

Study on Eco-Design of Water Heaters, Van Holstein en Kemnaand Assessment” in Water Heating Rulemaking TechnicalG. Smith, Tankless Gas Water Heaters: Oregon Market Status,

Lu, Alison

2011-01-01T23:59:59.000Z

240

High performance in low-flow solar domestic hot water systems  

DOE Green Energy (OSTI)

Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

Dayan, M.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of economics of hotel/motel solar hot water projects  

SciTech Connect

Experience gained by the Ames Laboratory in managing projects in the Solar Hotel/Motel Hot Water initiative is used to evaluate economic factors. The analysis studies costs and trends from a limited number of projects. Initial analysis, based on cost data presented in the project proposals, shows that cost estimates vary widely for various reasons. Further analysis, based on incurred costs as projects are completed, is a continuing process. These actual costs are normalized to the extent possible to provide consistent comparisons between the systems of various projects. Correlations between proposed costs and actual costs are made to assist future evaluation of similar projects. Several projects, which were offered a grant to participate in these Hotel/Motel demonstrations, have declined to accept the grant on economic grounds. Economic analysis of these projects provides rationale for the apparent cost ineffectiveness. Systems now in operation have provided fuel cost savings data which are presented to show system payback periods. Finally, results of economic analysis of these projects are presented together with initial conclusions regarding cost-effective solar hot water system design.

Struss, R.G.; Brohl, E.C.; Sidles, P.H.

1978-01-01T23:59:59.000Z

242

Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: Performance Results from Long-Term Monitoring  

SciTech Connect

Ground source heat pumps (GSHPs) show promise for reducing house energy consumption, and a desuperheater can potentially further reduce energy consumption where the heat pump from the space conditioning system creates hot water. Two unoccupied houses were instrumented to document the installed operational space conditioning and water heating efficiency of their GSHP systems. This paper discusses instrumentation methods and field operation characteristics of the GSHPs, compares manufacturers' values of the coefficients of performance calculated from field measured data for the two GSHPs, and compares the measured efficiency of the desuperheater system to other domestic hot water systems.

Stecher, D.; Allison, K.

2012-11-01T23:59:59.000Z

243

System design package for SIMS Prototype System 4, solar heating and domestic hot water  

DOE Green Energy (OSTI)

This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

Not Available

1978-11-01T23:59:59.000Z

244

Cold-Climate Solar Domestic Hot Water Systems: Cost/Benefit Analysis and Opportunities for Improvement  

DOE Green Energy (OSTI)

To determine potential for reduction in the cost of saved energy (COSE) for cold-climate solar domestic hot water (SDHW) systems, COSE was computed for three types of cold climate water heating systems. For each system, a series of cost-saving measures was considered: (1) balance of systems (BOS): tank, heat exchanger, and piping-valving measures; and (2) four alternative lower-cost collectors. Given all beneficial BOS measures in place, >50% reduction of COSE was achievable only with selective polymer collectors at half today's selective collector cost. In all three system types, today's metal-glass selective collector achieved the same COSE as the hypothesized non-selective polymer collector.

Burch, J.; Hillman, T.; Salasovich, J.

2005-01-01T23:59:59.000Z

245

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

Science Conference Proceedings (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

246

List of CHP/Cogeneration Incentives | Open Energy Information  

Open Energy Info (EERE)

CHP/Cogeneration Incentives CHP/Cogeneration Incentives Jump to: navigation, search The following contains the list of 279 CHP/Cogeneration Incentives. CSV (rows 1 - 279) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor Retail Supplier CHP/Cogeneration Geothermal Electric Photovoltaics

247

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

248

List of Anaerobic Digestion Incentives | Open Energy Information  

Open Energy Info (EERE)

Anaerobic Digestion Incentives Anaerobic Digestion Incentives Jump to: navigation, search The following contains the list of 285 Anaerobic Digestion Incentives. CSV (rows 1 - 285) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Job Stimulus Program (Ohio) Industry Recruitment/Support Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government

249

List of Personal Computing Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Personal Computing Equipment Incentives Personal Computing Equipment Incentives Jump to: navigation, search The following contains the list of 21 Personal Computing Equipment Incentives. CSV (rows 1 - 21) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alexandria Light and Power - Commercial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Commercial Industrial Central Air conditioners Chillers Compressed air Custom/Others pending approval Heat pumps Lighting Motor VFDs Motors Programmable Thermostats Water Heaters Windows Commercial Refrigeration Equipment Personal Computing Equipment Ground Source Heat Pumps Yes Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program (Idaho) Utility Rebate Program Idaho Commercial

250

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

251

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

252

EWEB - Solar Electric Program (Performance-Based Incentive) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Solar Electric Program (Performance-Based Incentive) EWEB - Solar Electric Program (Performance-Based Incentive) EWEB - Solar Electric Program (Performance-Based Incentive) < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 1/25/2008 State Oregon Program Type Performance-Based Incentive Rebate Amount $0.0856/kWh for 10 years (subject to annual review) Provider Eugene Water and Electric Board The Eugene Water and Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential and commercial customers who generate electricity using solar photovoltaic (PV) systems. [dsireusa.org/incentives/incentive.cfm?Incentive_Code=OR101F&re=0&ee=0

253

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

DOE Green Energy (OSTI)

Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

Not Available

2009-09-01T23:59:59.000Z

254

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator  

E-Print Network (OSTI)

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

1976-01-01T23:59:59.000Z

255

American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region  

SciTech Connect

The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

Russo, Bryan J.; Chvala, William D.

2010-09-30T23:59:59.000Z

256

Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas  

DOE Green Energy (OSTI)

A cooperative agreement was negotiated in April 1978 for the installation of a space and domestic hot water system at Southeast of Saline, Kansas Unified School District 306, Mentor, Kansas. The solar system was installed in a new building and was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The collectors are liquid flat plate. They are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. This final report, which describes in considerable detail the solar heating facility, contains detailed drawings of the completed system. The facility was declared operational in September 1978, and has functioned successfully since.

Not Available

1979-07-01T23:59:59.000Z

257

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network (OSTI)

heater storage tank wastes energy to continuous heating.fired water heater Total Energy Total Waste Emissions (Air)fired water heater Total Energy Total Waste Emissions (Air)

Lu, Alison

2011-01-01T23:59:59.000Z

258

Integrated solar heating, cooling and hot water system for the San Diego City Schools, University City High School (Engineering Materials)  

DOE Green Energy (OSTI)

The solar system consists of a heating circuit, two 200-ton absorption chiller hot water circuits and a hot water tube bundle circuit combined with solar collection and storage loops into a single integrated thermal system. Gas fired boilers provide backup and load peaking. Solar collection is provided by three types of panels located on a south facing hill from top to bottom are as follows: parabolic tracking concentrating reflectors, 7680 ft/sup 2/; parabolic fixed concentrating reflectors, 7364 ft/sup 2/; and fresnel lens concentrating, tracking, 2488 ft/sup 2/. The storage capacity is 88,800 gallons in 3 steel tanks. Reference DOE/CS/31499-T2.

Not Available

259

Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ameren Illinois (Electric) - Commercial Kitchen and Grocery Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives Program Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Retail Supplier State Government Savings Category Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Construction Commercial Heating & Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Other Maximum Rebate $600,000/year/facility. Incentives $1-$200,000: paid at 100% Incentives $200,000-$600,000: paid at 50% Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steamers: $300-$450 Hot Holding Cabinet: $200-$500

260

An investigation of photovoltaic powered pumps in direct solar domestic hot water systems  

DOE Green Energy (OSTI)

The performance of photovoltaic powered pumps in direct solar domestic hot water (PV-SDHW) systems has been studied. The direct PV- SDHW system employs a photovoltaic array, a separately excited DC- motor, a centrifugal pump, a thermal collector, and a storage tank. A search methodology for an optimum PV-SDHW system configuration has been proposed. A comparison is made between the long-term performance of a PV-SDHW system and a conventional SDHW system operating under three control schemes. The three schemes are: an ON-OFF flow controlled SDHW system operating at the manufacturer-recommended constant flow rate, and a linear proportional flow controlled SDHW system with the flow proportional to the solar radiation operating under an optimum proportionality. 13 refs., 6 figs.

Al-Ibrahim, A.M.; Klein, S.A.; Mitchell, J.W.; Beckman, W.A.

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

DOE Green Energy (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

262

Solar heating and hot water system for the central administrative office facility. Technical progress report  

DOE Green Energy (OSTI)

Progress on the solar heating and hot water system for the central administrative office facility of the Lincoln Housing Authority, Lincoln, NE is covered. An acceptance test plan is presented and the results of the test are tabulated. A complete blueprint of the system as built is provided. The monitoring system is drawn and settings and installation are described. An operation and maintenance manual discusses procedures for start up, shut down and seasonal changeover and include a valve list and pictures and specifications of components and materials used. Photographs of the final installation are included, and technical data and performance data are given. Finally, there is a brief description of system design and operation and a discussion of major maintenance problems encountered and their solutions. (LEW)

Not Available

1978-11-01T23:59:59.000Z

263

Clean Energy Manufacturing Incentive Program (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) Clean Energy Manufacturing Incentive Program (Virginia) < Back Eligibility Commercial Industrial Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Other Maximum Rebate Aggregate amount of grants awarded and outstanding at any time cannot exceed $36 million Program Info State Virginia Program Type Industry Recruitment/Support In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

264

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

265

Arlington County - Green Building Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program < Back Eligibility Commercial Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Virginia Program Type Green Building Incentive Provider Arlington County In October 1999, the County Board of Arlington adopted a Pilot Green Building Incentive Program using the standards established by the U. S. Green Building Council's Leadership in Energy and Environmental Design

266

Assembly and comparison of available solar hot water system reliability databases and information.  

DOE Green Energy (OSTI)

Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

2009-05-01T23:59:59.000Z

267

Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems  

DOE Green Energy (OSTI)

Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPI’s student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

Hooks, Ronald; Montoya, Valerie

2008-03-26T23:59:59.000Z

268

Applicability of Related Data, Algorithms, and Models to the Simulation of Ground-Coupled Residential Hot Water Piping in California  

SciTech Connect

Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.

Warner, J.L.; Lutz, J.D.

2006-01-01T23:59:59.000Z

269

Application of solar energy to the supply of industrial process hot water. Aerotherm final report, 77-235. [Can washing in Campbell Soup plant  

DOE Green Energy (OSTI)

The objectives of the Solar Industrial Process Hot Water Program are to design, test, and evaluate the application of solar energy to the generation and supply of industrial process hot water, and to provide an assessment of the economic and resource benefits to be gained. Other objectives are to stimulate and give impetus to the use of solar energy for supplying significant amounts of industrial process heat requirements. The plant selected for the design of a solar industrial process hot water system was the Campbell Soup facility in Sacramento, California. The total hot water demand for this plant varies between 500 and 800 gpm during regular production shifts, and hits a peak of over 1,000 gpm for approximately one hour during the cleanup shift. Most of the hot water is heated in the boiler room by a combination of waste heat recovery and low pressure (5 psi) steam-water heat exchangers. The hot water emerges from the boiler room at a temperature between 160/sup 0/F and 180/sup 0/F and is transported to the various process areas. Booster heaters in the process areas then use low pressure (5 psi) or medium pressure (20 psi) steam to raise the temperature of the water to the level required for each process. Hot water is used in several processes at the Campbell Soup plant, but the can washing process was selected to demonstrate the feasibility of a solar hot water system. A detailed design and economic analysis of the system is given. (WHK)

None

1977-01-01T23:59:59.000Z

270

Renewable Energy Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Incentives Renewable Energy Incentives Renewable Energy Incentives < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Geothermal Heat Pump: $650 Program Info Funding Source Focus On Energy Program Start Date 01/01/2013 Expiration Date 12/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Solar PV and Solar Thermal: Suspended for the remainder of 2013 Geothermal Heat Pump: $650/unit '''''Note: The Public Service Commission of Wisconsin (PSC) issued an order in September 2013 which suspends incentives for Solar Thermal and Solar Photovoltaic (PV) systems for the remainder of 2013. Focus on Energy will continue to provide incentives for Geothermal technologies until funds have

271

Green Building Incentive | Open Energy Information  

Open Energy Info (EERE)

Green Building Incentive Green Building Incentive Jump to: navigation, search Green buildings are designed and constructed using practices and materials that minimize the impacts of the building on the environment and on human health. Many cities and counties offer financial incentives to promote green building. The most common form of incentive is a reduction or waiver of a building permit fee. The U.S. Green Building CouncilÂ’s Leadership in Energy and Environmental Design (LEED) is a popular point-based certification program for green buildings. The LEED system awards points for site selection and development; material, energy and water efficiency; indoor air quality; innovation; and the application of renewable technologies. (Note that this category includes green building incentives

272

Green Building Incentives | Open Energy Information  

Open Energy Info (EERE)

Building Incentives Building Incentives Jump to: navigation, search Green buildings are designed and constructed using practices and materials that minimize the impacts of the building on the environment and on human health. Many cities and counties offer financial incentives to promote green building. The most common form of incentive is a reduction or waiver of a building permit fee. The U.S. Green Building CouncilÂ’s Leadership in Energy and Environmental Design (LEED) is a popular point-based certification program for green buildings. The LEED system awards points for site selection and development; material, energy and water efficiency; indoor air quality; innovation; and the application of renewable technologies. (Note that this category includes green building incentives

273

Clean and Green Property Tax Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Information Start Date 2007 Montana Program Type Property Tax Incentive In...

274

Business Employment Incentive Program (BEIP) (New Jersey) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Program (BEIP) (New Jersey) Eligibility Commercial Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization...

275

Small-Scale Renewable Energy Incentive Program (Vermont) | Open...  

Open Energy Info (EERE)

Incentive Program, initiated in June 2003, provides funding for new solar water heating, solar electric (photovoltaic), wind, and micro-hydro energy system installations....

276

Clean Energy Incentive Act (Personal Credit) (Maryland) | Open...  

Open Energy Info (EERE)

Eligible Technologies Solar Water Heat, Solar Space Heat, Photovoltaics, Landfill Gas, Biomass Active Incentive No Implementing Sector StateTerritory Energy Category Renewable...

277

Focus on Energy - Renewable Energy Incentives for Nonprofits...  

Open Energy Info (EERE)

Sector Commercial, Nonprofit Eligible Technologies Solar Water Heat, Photovoltaics, Wind, Biomass, Anaerobic Digestion Active Incentive No Implementing Sector StateTerritory...

278

Clean Energy Incentive Act (Corporate Credit) (Maryland) | Open...  

Open Energy Info (EERE)

Water Heat, Solar Space Heat, Solar Thermal Process Heat, Photovoltaics, Landfill Gas, Biomass Active Incentive No Implementing Sector StateTerritory Energy Category Renewable...

279

Improving thermosyphon solar domestic hot water system model performance. Final report, March 1994--February 1995  

DOE Green Energy (OSTI)

Data from an indoor solar simulator experimental performance test is used to develop a systematic calibration procedure for a computer model of a thermosyphoning, solar domestic hot water heating system with a tank-in-tank heat exchanger. Calibration is performed using an indoor test with a simulated solar collector to adjust heat transfer in the heat exchanger and heat transfer between adjacent layers of water in the storage tank. An outdoor test is used to calibrate the calculation of the friction drop in the closed collector loop. Additional indoor data with forced flow in the annulus of the heat exchanger leads to improved heat transfer correlations for the inside and outside regions of the tank-in-tank heat exchanger. The calibrated simulation model is compared to several additional outdoor tests both with and without auxiliary heating. Integrated draw energies are predicted with greater accuracy and draw temperature profiles match experimental results to a better degree. Auxiliary energy input predictions improve significantly. 63 figs., 29 tabs.

Swift, T.N.

1996-09-01T23:59:59.000Z

280

Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report  

DOE Green Energy (OSTI)

Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

Not Available

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Designing superior incentive regulation  

Science Conference Proceedings (OSTI)

The discussion begun in the February 15 issue pointed out some potential drawbacks to popular incentive drawbacks to popular incentive regulation (IR) plans, as they operate in practice. The principal drawback is that the plans can create strong incentives for recontracting by well-intentioned regulators who face strong pressures to please their constituents. The likelihood of recontracting, in turn, can diminish the incentives for superior performance presented to the regulated firm. The question that remains is whether popular IR plans like price-cap regulation (PCR) can be modified to reduce the likelihood of recontracting, and thereby restore incentives for superior performance by the regulated firm. The answer is yes'.

Sappington, D.E.M.; Weisman, D.L.

1994-03-01T23:59:59.000Z

282

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

283

List of Agricultural Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Agricultural Equipment Incentives Agricultural Equipment Incentives Jump to: navigation, search The following contains the list of 90 Agricultural Equipment Incentives. CSV (rows 1 - 90) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment Boilers Chillers Custom/Others pending approval Dishwasher Furnaces Heat pumps Heat recovery Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Food Service Equipment Yes Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Vermont Agricultural Agricultural Equipment Custom/Others pending approval Lighting

284

Renewable Energy Tax Incentive Program (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tax Incentive Program (Texas) Tax Incentive Program (Texas) Renewable Energy Tax Incentive Program (Texas) < Back Eligibility Commercial Industrial Construction Installer/Contractor Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Corporate Tax Incentive Provider Comptroller of Public Accounts The Renewable Energy Tax Incentive Program provides various tax exemptions to businesses that either use or manufacture or install solar or wind energy. They can receive franchise tax deductions and/or exemptions. There also exists a property tax exemption involving solar, wind, biomass, and anaerobic digestion for business installation or construction of such

285

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

286

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

287

List of Data Center Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Equipment Incentives Equipment Incentives Jump to: navigation, search The following contains the list of 17 Data Center Equipment Incentives. CSV (rows 1 - 17) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs (Minnesota) Utility Rebate Program Minnesota Commercial Fed. Government Local Government Nonprofit Retail Supplier State Government Central Air conditioners Heat pumps Lighting Lighting Controls/Sensors Programmable Thermostats Refrigerators Windows Room Air Conditioners Ground Source Heat Pumps Building Insulation Clothes Washers Comprehensive Measures/Whole Building Dishwasher Water Heaters LED Exit Signs Commercial Refrigeration Equipment Data Center Equipment

288

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

289

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

290

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

291

Massachusetts Municipal Commercial Industrial Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

292

New and retrofit solar hot water installations in Florida, January--June 1977  

SciTech Connect

The purpose of this project was to ascertain the number of solar hot water installations in new buildings versus the number retrofitted to existing buildings in Florida during the January to June period of 1977. The methodology was to survey all installations started, in progress, or completed during that period. A by-product of the survey is a comprehensive list of manufacturers and another of distributors and installers in Florida. The survey excludes space heating and cooling and pool heating applications. However, the latter is being considered for a separate survey. Installations included are in the single-family and multi-family residential, commercial, industrial and public sectors. In the single-family residential sector, care has been taken to determine a new or retrofit breakdown, average square footage of collector per installation, average cost per square foot of collector in Florida, and subsequently, using F-CHART and system sizing programs developed at the Center, the fraction of load supplied by solar and its equivalent barrels of oil saved per year. In the multi-family residential, commercial, industrial and public sectors, specific information on each installation has been provided. This information includes new or retrofit, ownership, type of collector and manufacturer, square footage of installation, design percentage energy by solar, suxiliary fuel, system cost, and federal grants, if any.

1978-04-01T23:59:59.000Z

293

Low-Cost Solar Domestic Hot Water Systems for Mild Climates  

DOE Green Energy (OSTI)

In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

2005-01-01T23:59:59.000Z

294

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

295

Testing and analysis of load-side immersed heat exchangers for solar domestic hot water systems  

DOE Green Energy (OSTI)

This report describes work to determine the performance of load-side heat exchangers for use in residential solar domestic hot water systems. We measured the performance of four heat exchangers: a smooth coil and a finned coil having heat transfer areas of 2.5 m/sup 2/ (26 ft/sup 2/) and those having areas of 1.7 m/sup 2/ (19 ft/sup 2/). A numerical model using the thermal network program MITAS was constructed, and results were compared to the experimental results. Research showed a smooth coil with only 70% of the surface area of a finned coil performed better than the finned coil. Also, load-side heat exchangers can maintain and enhance stratification in storage tanks, permitting the use of control strategies that take advantage of stratified storage tanks to increase system performance. The analytical model, which agreed reasonably well with the experimental results, was used to vary heat exchanger flow rate and area and initial tank temperature for both a smooth- and a finned-coil heat exchanger. Increasing the heat exchanger flow rate and area results in higher heat transfer rates but not necessarily optimal performance. Lower initial tank temperatures resulted in reduced tank stratification. The smooth heat exchanger outperformed the finned heat exchanger with the same outside surface area. 15 refs., 37 figs., 9 tabs.

Farrington, R.B.; Bingham, C.E.

1987-10-01T23:59:59.000Z

296

Light-stable-isotope studies of spring and thermal waters from the Roosevelt Hot Springs and Cove Fort/Sulphurdale Thermal areas and of clay minerals from the Roosevelt Hot Springs thermal area  

DOE Green Energy (OSTI)

The isotopic compositions of hydrogen and oxygen have been determined for spring waters and thermal fluids from the Roosevelt Hot Springs and Cove Fort-Sulphurdale thermal areas, for clay mineral separates from shallow alteration of the acid-sulfate type in the Roosevelt Hot Springs area, and for spring and well waters from the Goshen Valley area of central Utah. The water analyses in the Roosevelt Hot Springs thermal area confirm the origin of the thermal fluids from meteoric water in the Mineral Range. The water analyses in the Cove Fort-Sulphurdale thermal area restrict recharge areas for this system to the upper elevations of the Pavant and/or Tushar Ranges. The low /sup 18/O shift observed in these thermal fluids (+0.7 permil) implies either high water/rock ratios or incomplete isotope exchange or both, and further suggests minimal interaction between the thermal fluid and marble country rock in the system. Hydrogen and oxygen-isotope data for clay mineral separates from shallow alteration zones in the Roosevelt Hot Springs thermal system suggest that the fluids responsible for the shallow acid-sulfate alteration were in part derived from condensed steam produced by boiling of the deep reservoir fluid. The isotope evidence supports the chemical model proposed by Parry et al. (1980) for origin of the acid-sulfate alteration at Roosevelt Hot Springs. The isotope analyses of spring and well waters from the Goshen Valley area indicate only a general correlation of isotope composition, salinity and chemical temperatures.

Bowman, J.R.; Rohrs, D.T.

1981-10-01T23:59:59.000Z

297

Transmission Investment Incentives  

Science Conference Proceedings (OSTI)

This report documents the use of agent-based simulation as a tool for studying transmission investment incentives, and it is meant to illuminate what accounts for the difficulties in aligning incentives for enhancing the transmission system. The report suggests that a new method of calculation for bid optimization be applied to the economic analysis of long-term incentives for transmission investment. This technology can be broadly applied to help negotiators in transmission planning quantify their count...

2006-12-21T23:59:59.000Z

298

Local Incentives (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

The Massachusetts Office of Business Development helps companies to identify communities interested in offering locally-negotiated incentives, such as Tax Increment Financing (TIF), Special Tax...

299

Performance Incentives Date  

NLE Websites -- All DOE Office Websites (Extended Search)

outstanding Database) issues (Le., file documents, Congressional directed projects database updates), will not be assessed against this performance incentive. . 3 IT Help...

300

Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings  

DOE Green Energy (OSTI)

Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

Not Available

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cost effective solar hot water system for Econo-Travel Motor Hotel located at Bluefield, West Virginia. Final report  

SciTech Connect

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 3400 Cumberland Road, Bluefield, West Virginia. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately five (5) years instead of the 7.73 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. The success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1979-07-01T23:59:59.000Z

302

Cost effective solar hot water system for Econo-Travel Motor Hotel located at Richmond, Virginia. Final report  

SciTech Connect

The final report is presented of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 5408 Williamsburg Road, Richmond, Virginia. The description of the system is given along with the final cost breakdown, expected performance data and expected payback time for the installed system is estimated to be approximately five (5) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. The success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1979-09-01T23:59:59.000Z

303

Impact of a solar domestic hot water demand-side management program on an electric utility and its customers  

DOE Green Energy (OSTI)

A methodology to assess the economic and environmental impacts of a large scale implementation of solar domestic hot water (SDHW) systems is developed. Energy, emission and demand reductions and their respective savings are quantified. It is shown that, on average, an SDHW system provides an energy reduction of about 3200 kWH, avoided emissions of about 2 tons and a capacity contribution of 0.7 kW to a typical Wisconsin utility that installs 5000 SDHW system. The annual savings from these reductions to utility is {dollar_sign}385,000, providing a return on an investment of over 20{percent}. It is shown that, on average, a consumer will save {dollar_sign}211 annually in hot water heating bills. 8 refs., 7 figs.

Trzeniewski, J.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.

1996-09-01T23:59:59.000Z

304

Cost effective solar hot water system for Econo-Travel Motor Hotel located at Woodbrdge, VA. Final report  

SciTech Connect

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 13317 Gordon Boulevard, Woodbridge, Virginia is given. The description of the system along with the final breakdown, performance data and payback time are given. The payback time for the installed system will be approximately four (4) years instead of the 7.2 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. As called for in the proposal to DOE, the success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

1978-11-01T23:59:59.000Z

305

Cost effective solar hot water system for Econo-Travel Motor Hotel located at Bluefield, West Virginia. Final report  

DOE Green Energy (OSTI)

The final report of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 3400 Cumberland Road, Bluefield, West Virginia. The description of the system along with the final breakdown performance data and payback time are given. The payback time for the installed system will be approximately five (5) years instead of the 7.73 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. The success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

Not Available

1979-07-01T23:59:59.000Z

306

Cost effective solar hot water system for Econo-Travel Motor Hotel located at Richmond, Virginia. Final report  

DOE Green Energy (OSTI)

The final report is presented of a cost effective solar hot water heating system installed on the Econo-Travel Motor Hotel at 5408 Williamsburg Road, Richmond, Virginia. The description of the system is given along with the final cost breakdown, expected performance data and expected payback time for the installed system is estimated to be approximately five (5) years instead of the 6.65 years estimated for the proposal. The additional savings is due to the reduction in the peak demand charge since the electric hot water heaters are not required to operate at the same time each morning as the dryers used for the laundry. The success of the system will be determined by the reduction in the utility cost and reduced use of our fossil fuels. The results shown in the hotel's monthly electricity bills indicate that this goal has been accomplished.

Not Available

1979-09-01T23:59:59.000Z

307

Incentive regulation and the regulation of incentives  

Science Conference Proceedings (OSTI)

This thesis explores the regulatory problem of incentives and the question of how to create a regulatory framework that most nearly aligns the firm's private interests with the public good. The main themes are: (1) an efficiency loss is inherent in the regulatory relationship, as long as the regulator knows less about the firm's operations than the firm itself; and (2) regulation itself is an incentive mechanism, so that the regulator can choose how to motivate the firm but now whether to do so. An analytical model is used to show the tradeoff between inducing efficient production and efficient pricing. The thesis surveys and analyzes incentive regulation mechanisms adopted by state utility commissions, using a Washington state plan as a case study. A natural extension of incentive regulation is discussed, in which the firm's reward depends on the total gain in consumer surplus rather than just the reduction in expenditures. The ability of the regulator to commit to future actions is central to incentive regulation, as well as many other aspects of regulation.

Blackmon, B.G. Jr.

1991-01-01T23:59:59.000Z

308

Buildings Energy Data Book: 7.2 Federal Tax Incentives  

Buildings Energy Data Book (EERE)

1 1 Tax Incentives of the Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010 Energy Efficient Appliance Credit (modified and extended through 2011) --$25-75 for efficient dishwashers. --$175-225 for efficient clothes washers --$150-200 for efficient refrigerators. Credit for Efficiency Improvements to Existing Homes (modified and extended through 2011) --Tax credit equal to 10% of the amount paid or incurred by the taxpayer for a qualifying energy efficiency improvement, up to a maximum of $500. --This includes up to $50 for any advanced main air circulating fan, $150 for qualifying natural gas, propane, or oil furnaces or hot water boilers, and $300 for "any item of energy-efficient building property." Efficient New Homes

309

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

DOE Green Energy (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Arvada, CO (United States)

1991-12-01T23:59:59.000Z

310

Report on the analysis of field data relating to the reliability of solar hot water systems.  

DOE Green Energy (OSTI)

Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

2011-07-01T23:59:59.000Z

311

Local Option - Green Building Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Green Building Incentives Local Option - Green Building Incentives Local Option - Green Building Incentives < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info Start Date 6/11/2009 State North Carolina Program Type Green Building Incentive To encourage sustainable building practices, North Carolina law allows all counties and cities to provide reductions or partial rebates for building permit fees. To qualify for a fee reduction, buildings must meet guidelines established by the Leadership in Energy and Environmental Design (LEED)

312

San Bernardino County - Green Building Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » San Bernardino County - Green Building Incentive San Bernardino County - Green Building Incentive < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Water Heating Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Wind Program Info State California Program Type Green Building Incentive San Bernardino's Board of Supervisors launched Green County San Bernardino in August 2007. The program includes a number of incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Builders who participate in San Bernardino County's

313

Photovoltaic Incentive Design Handbook  

DOE Green Energy (OSTI)

Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

Hoff, T. E.

2006-12-01T23:59:59.000Z

314

Designing superior incentive regulation  

SciTech Connect

The key to success in designing effective incentive regulation is relatively simple: Anticipate all of the incentives that will ultimately come to bear, and structure regulatory policy in advance to limit any adverse incentives. All is a critical word here. Attention commonly is focused on the incentives a proposed regulatory plan creates for the regulated firm to minimize production costs, diversify into new markets, and so on. While the incentives are important in assessing a regulatory plan, they are only one consideration. It is also critical to analyze the incentives the plan creates for other key players in the regulatory arena, particularly regulators. It is premature to draw any broad conclusions about the success of incentive regulation in the electric power and natural gas industries. While there is reason for optimism, concern remain. Some incentive regulation plans have been abandoned, in part because of: (1) unforeseen exogenous event that could not be administered within the confines of the plan; (2) public opposition to rewarding a utility for the superior performance it should have realized without the promise of financial reward; (3) adverse reaction to utility earnings in excess of those commonly authorized under traditional regulation, and (4) questions about the legality of the plans under state statutes.

Sappington, D.E.M.; Weisman, D.L.

1994-02-15T23:59:59.000Z

315

Solar Thermal Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

316

Exploration Incentive Tax Credit (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

317

Cascade Natural Gas - Conservation Incentives for New Homes | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes Cascade Natural Gas - Conservation Incentives for New Homes < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heating Appliances & Electronics Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount High Efficiency Natural Gas Furnace: $150 High Efficiency Natural Gas Hearth: $70 Conventional Natural Gas Water Heater: $40 Condensing Tankless Water Heater: $200 Combined Domestic Water/Hydronic Space Heating System (usingTankless Water Heater): $800 Energy Star Certified Home: $350 Energy Star Certified Plus Home: $750

318

Grays Harbor PUD - Solar Water Heater Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate Grays Harbor PUD - Solar Water Heater Rebate < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Solar Water Heating Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount $600 Provider Grays Harbor PUD Since October 2001, Grays Harbor PUD has offered a rebate program for the installation of solar water heaters. Rebates of $600 are available for the installation of solar collectors of 40 square feet or more. Only customers who currently use electricity for hot water are eligible. This rebate is available on a case-by-case basis, so you must contact the utility in order to take advantage of it. Customers may choose a [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=WA09F&re=1&ee=1

319

Don't Let Your Money and Hot Water Go Down the Drain | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

recovery systems capture some of this energy to preheat cold water entering the water heater or going to other water fixtures. How It Works In its simplest form, a drain-water...

320

A comparison of central and individual systems for space conditioning and domestic hot water in new multifamily buildings  

SciTech Connect

This report compares the energy performance and life-cycle cost of central and individual heating, ventilating, and air-conditioning (HVAC) systems as well as domestic hot water (DHW) systems in new multifamily buildings. The different systems were analyzed by using DOE-2.1C to model prototypical apartment buildings in Chicago and Atlanta with Weather Year for Energy Calculation weather data. The building is equipped with either a central chiller and gas-fired boiler, which supply four-pipe fan coils in each apartment, or is conditioned by individual packaged terminal air conditioners in each apartment. The building with central HVAC also has a central, gas-fired domestic hot water system; the building with individual units has electric water heaters in each apartment. The individual systems were modeled with and without a setback thermostat. The use of natural gas for space and water heating and the more efficient central chiller resulted in an annual energy cost savings for the central system in both cities. A life-cycle cost comparison of system types shows that apartment buildings with as few as five units in Chicago and as few as 30 units in Atlanta should be designed with central HVAC and DHW systems.

Byrne, S.J. (Lawrence Berkeley Lab., Berkeley, CA (US)); Fay, J.M. (Gas Research Inst., Chicago, IL (US))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland  

SciTech Connect

Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed, and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.

Skowronski, P. [Polish Foundation for Energy Efficiency, Warsaw (Poland); Wisniewski, G. [Institute for Building, Mechanization and Electrification of Agriculture, Warsaw (Poland)

1996-09-01T23:59:59.000Z

322

Advantage Jobs Incentive Program (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advantage Jobs Incentive Program (Mississippi) Advantage Jobs Incentive Program (Mississippi) Advantage Jobs Incentive Program (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Rebate Program Provider Department of Revenue The Advantage Jobs Incentive Program is a rebate program designed to

323

City of Scottsdale - Green Building Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scottsdale - Green Building Incentives Scottsdale - Green Building Incentives City of Scottsdale - Green Building Incentives < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Solar Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Program Info State Arizona Program Type Green Building Incentive Provider City of Scottsdale Scottsdale's Green Building Program, established in 1998, was the first such program in Arizona with an emphasis on residential home construction.

324

City of Bloomington - Sustainable Development Incentives | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City of Bloomington - Sustainable Development Incentives City of Bloomington - Sustainable Development Incentives < Back Eligibility Commercial Construction Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Insulation Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Energy Sources Solar Water Heating Wind Program Info Start Date 2006 State Indiana Program Type Green Building Incentive Provider City of Bloomington The City of Bloomington offers fee waivers and other design incentives for developers that incorporate the city's sustainability goals. The city's four goals include:

325

Air-Quality Improvement Tax Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Quality Improvement Tax Incentives Air-Quality Improvement Tax Incentives Air-Quality Improvement Tax Incentives < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Bioenergy Buying & Making Electricity Solar Water Heating Wind Program Info State Ohio Program Type Other Incentive Provider Ohio Air Quality Development Authority The Ohio Air Quality Development Authority (OAQDA) provides assistance for new air quality projects in Ohio, for both small and large businesses. For qualifying projects, the OAQDA also projects tax benefits. For qualifying projects, the Ohio Air Quality Development Authority (OAQDA) can provide a 100 percent exemption from the tangible personal property tax

326

City of Indianapolis - Green Building Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indianapolis - Green Building Incentive Program Indianapolis - Green Building Incentive Program City of Indianapolis - Green Building Incentive Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Solar Buying & Making Electricity Wind Program Info Start Date 08/01/2010 State Indiana Program Type Green Building Incentive Provider City of Indianapolis The Indianapolis Office of Sustainability and the Department of Code

327

Category:Incentive Programs | Open Energy Information  

Open Energy Info (EERE)

Incentive Programs Incentive Programs Jump to: navigation, search This category contains Financial Incentive Program and Rules, Regulations & Policies Incentive Programs information. It uses the filters Filter:Incentives by Efficiency or Renewable, Filter:Incentives by Place, Filter:Incentive Active or Inactive, Filter:Incentives by Eligible Technologies and Filter:Incentives By Type. Subcategories This category has the following 4 subcategories, out of 4 total. A [×] Alternative Fuels Incentive Programs‎ 4 pages E [×] EZFeed Policies‎ 1708 pages F [×] Financial Incentive Programs‎ 3582 pages R [×] Rules Regulations Policies Incentive Programs‎ 793 pages Retrieved from "http://en.openei.org/w/index.php?title=Category:Incentive_Programs&oldid=267432"

328

State and Local Incentives  

Energy.gov (U.S. Department of Energy (DOE))

To help you make energy efficiency improvements in your commercial building, your state and/or local community might offer incentives or have special programs. See the following resources for more...

329

PV Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

The New York State Energy Research and Development Authority (NYSERDA) provides an incentive of $1.40 per watt (DC) to eligible installers for the installation of approved, grid-connected...

330

List of Solar Energy Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 2593 Solar Energy Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-2000) CSV (rows 2001-2500) CSV (rows 2501-2593) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) Performance-Based Incentive Ohio Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Photovoltaics Wind energy Yes AEP Ohio - Renewable Energy Technology Program (Ohio) Utility Rebate Program Ohio Agricultural

331

Clean and Green Property Tax Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Green Property Tax Incentives and Green Property Tax Incentives Clean and Green Property Tax Incentives < Back Eligibility Utility Commercial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Retail Supplier Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 2007 State Montana Program Type Property Tax Incentive Provider Montana Department of Environmental Quality In 2007, the Legislature passed House Bill 3 (May special session) that established property tax incentives to encourage energy projects with less environmental impact than conventional facilities. The "Clean and Green" incentives come in three forms. First, certain facilities and equipment can be classified as either Class

332

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network (OSTI)

water also is used by dishwashers and clothes washers. Hotand water efficient dishwashers and clothes washers. Thepeople clotheswasher dishwasher showers city state bathubs

Lutz, Jim

2012-01-01T23:59:59.000Z

333

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network (OSTI)

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

334

Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980  

DOE Green Energy (OSTI)

A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

1980-06-01T23:59:59.000Z

335

Delaware Electric Cooperative - Green Energy Program Incentives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: $7,500 for Class A, $10,000 for Class B or non-profits Solar Thermal (domestic water): $3,000 for residential, $7,500 for non-residential Solar Thermal (radiant space heating): $5,000 for residential, $7,500 for non-residential Wind: $2,500 Fuel Cells: $7,500 for residential, $10,000 for non-residential Geothermal Heat Pumps: $5,000 for residential, $10,000 for non-residential

336

Prediction of Severe Accident Counter Current Natural Circulation Flows in the Hot Leg of a Pressurized Water Reactor  

Science Conference Proceedings (OSTI)

During certain phases of a severe accident in a pressurized water reactor (PWR), the core becomes uncovered and steam carries heat to the steam generators through natural circulation. For PWR's with U-tube steam generators and loop seals filled with water, a counter current flow pattern is established in the hot leg. This flow pattern has been experimentally observed and has been predicted using computational fluid dynamics (CFD). Predictions of severe accident behavior are routinely carried out using severe accident system analysis codes such as SCDAP/RELAP5 or MELCOR. These codes, however, were not developed for predicting the three-dimensional natural circulation flow patterns during this phase of a severe accident. CFD, along with a set of experiments at 1/7. scale, have been historically used to establish the flow rates and mixing for the system analysis tools. One important aspect of these predictions is the counter current flow rate in the nearly 30 inch diameter hot leg between the reactor vessel and steam generator. This flow rate is strongly related to the amount of energy that can be transported away from the reactor core. This energy transfer plays a significant role in the prediction of core failures as well as potential failures in other reactor coolant system piping. CFD is used to determine the counter current flow rate during a severe accident. Specific sensitivities are completed for parameters such as surge line flow rates, hydrogen content, as well as vessel and steam generator temperatures. The predictions are carried out for the reactor vessel upper plenum, hot leg, a portion of the surge line, and a steam generator blocked off at the outlet plenum. All predictions utilize the FLUENT V6 CFD code. The volumetric flow in the hot leg is assumed to be proportional to the square root of the product of normalized density difference, gravity, and hydraulic diameter to the 5. power. CFD is used to determine the proportionality constant in the range from 0.11 to 0.13 and termed a discharge coefficient. The value is relatively unchanged for typical surge line flow rates as well as the hydrogen content in the flow. Over a significant range of expected temperature differences for the steam generator and reactor vessel upper plenum, the discharge coefficient also remained consistent. The discharge coefficient is a suitable model for determining the hot leg counter current flow rates during this type of severe accident. (author)

Boyd, Christopher F. [United States Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

2006-07-01T23:59:59.000Z

337

Two essays on incentives  

E-Print Network (OSTI)

I examine two sets of incentives faced by corporate CEOs to determine how they respond to those incentives. I compare firms that restate financial statements to firms that do not restate to test the hypotheses that bank monitoring should provide incentives to deter misreporting. For relatively less (more) severe misreporting, I find the likelihood of misreporting is positively related (unrelated) to bank borrowing, and that ex ante changes in bank debt are positive (unrelated) for misreporting firms versus control firms. These results suggest that bank monitoring is insufficient to deter or detect misreporting, rather that it may provide incentives for managers to engage in relatively less severe misreporting, consistent with the "debt covenant hypothesis". I next examine the incentives that CEOs have to increase firm value that result from their compensation packages and opportunities for advancement in the managerial labor market. Traditional methods for estimating pay-performance sensitivity exclude incentives that derive from opportunities for advancement in the managerial labor market and assume a linear relation between changes in pay and changes in performance. But results in recent literature imply that advancement opportunities may be a significant source of incentives and that the relation between changes in pay and changes in performance may depend upon the level of performance. I estimate payperformance sensitivities that incorporate these results. I find that although performance may be positively related to opportunities for advancement, the contribution to a CEO's total pay-performance sensitivity is too small to be economically significant. I also find that pay-performance sensitivities vary depending on the level of performance and may be higher or lower than estimates from linear models suggest. In sum, observed CEO pay packages may not be as suboptimal as some prior studies suggest.

Stanley, Brooke Winnifred

2008-05-01T23:59:59.000Z

338

In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996  

DOE Green Energy (OSTI)

Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

Smith, T.R.

1997-03-01T23:59:59.000Z

339

Performance and economic evaluation of the seahorse natural gas hot water heater conversion at Fort Stewart. Interim report, 1994 Summer  

Science Conference Proceedings (OSTI)

The federal government is the largest single energy consumer in the United States cost valued at nearly $10 billion annually. The US Department of Energy`s (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Pacific Northwest Laboratory (PNL) is one of four DOE laboratories that participate in the New Technologies Demonstration Program, providing technical expertise and equipment to evaluate new, energy-saving technologies being studied under that program. This interim report provides the results of a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology-a hot water heater conversion system to convert electrically heated hot water tanks to natural gas fuel. The unit was installed at a single residence at Fort Stewart, a US Army base in Georgia, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were Gas Fired Products, developers of the technology; the Public Service Company of North Carolina; Atlanta Gas Light Company; the Army Corps of Engineers; Fort Stewart; and Pacific Northwest Laboratory.

Winiarski, D.W.

1995-01-01T23:59:59.000Z

340

Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development  

DOE Green Energy (OSTI)

Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network (OSTI)

the shower only. The wasted energy is the difference betweenLBNL-5115E Water and Energy Wasted During Residential Showercalculate the water and energy wasted during shower events

Lutz, Jim

2012-01-01T23:59:59.000Z

342

Energy Efficiency Incentives Analysis Financial Analysis of Incentive  

E-Print Network (OSTI)

Energy Efficiency Incentives Analysis i LBNL-1598E Financial Analysis of Incentive Mechanisms to Promote Energy Efficiency: Case Study of a Prototypical Southwest Utility Technical Appendices Peter Office of Energy Efficiency and Renewable Energy, Weatherization and Intergovernmental Program

343

Keeping Rebates and Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Working Group Working Group * Developed at GovEnergy 2008 (Danny Gore) * Working together to find solutions for legal or contracting issues associated with federal energy projects * Started with focus on utility rebates and incentives * Now includes subgroup on Power Purchase Agreements led Now includes subgroup on Power Purchase Agreements led by Chandra Shah Utility Rebates and Incentives * Karen White working on draft "Best Practices" * She had already developed with Brad Hancock guidance for DOD agencies on rebates and incentives * Took comments at the Spring 2009 FUPWG meeting on preliminary draft * Incorporated those into revised draft shared at GovEnergy 2009 * Now incorporating comments from GovEnergy Update on Best Practices * From the perspective of the government agency; best practices tool to help

344

Energy Incentive Programs, Nebraska | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Nebraska Energy Incentive Programs, Nebraska October 29, 2013 - 11:29am Addthis Updated August 2012 In 2011 Nebraskan utilities budgeted roughly $5 million to promote demand side management in the state; about 45% was for energy efficiency (gas and electric) and 55% for load management. What public-purpose-funded energy efficiency programs are available in my state? Nebraska has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Omaha Public Power District (OPPD) offers two incentive programs for business customers: The Commercial Heat Pump Program provides rebates of $50 per ton for installing efficient air-, water-, or ground-source heat pumps. The Lighting Incentive Program provides lighting audits and rebates (up to

345

Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve  

E-Print Network (OSTI)

In Korea two popular water distribution systems—the branch type and the separate type systems—have serious drawbacks. The branch type suffers from temperature instability while the separate type suffers from excessive piping. Neither of them re-circulates water. The system proposed in this paper utilizes a water-conserving piping system with a thermostat valve. This paper compares the proposed system with that of the separate type. Our findings show that the proposed system wastes less water. After re-circulating for 78-87 seconds, water is available at set point temperature (40°C). Also, when multiple water taps are in use, the average temperature deviation is less than 0.6°C. Moreover, the proposed system has 50% less flow rate than the separate type system.

Cha, K. S.; Park, M. S.; Seo, H. Y.

2010-08-01T23:59:59.000Z

346

Utah/Incentives | Open Energy Information  

Open Energy Info (EERE)

Utah/Incentives Utah/Incentives < Utah Jump to: navigation, search Contents 1 Financial Incentive Programs for Utah 2 Rules, Regulations and Policies for Utah Download All Financial Incentives and Policies for Utah CSV (rows 1 - 55) Financial Incentive Programs for Utah Download Financial Incentives for Utah CSV (rows 1 - 39) Incentive Incentive Type Active Alternative Energy Development Incentive (Utah) Industry Recruitment/Support No Alternative Energy Development Incentive (Corporate) (Utah) Corporate Tax Credit Yes Alternative Energy Development Incentive (Personal) (Utah) Personal Tax Credit Yes Alternative Energy Manufacturing Tax Credit (Utah) Industry Recruitment/Support Yes City of St. George - Energy Efficient Homes Rebate Program (Utah) Utility Rebate Program No

347

Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

Virginia/Incentives Virginia/Incentives < Virginia Jump to: navigation, search Contents 1 Financial Incentive Programs for Virginia 2 Rules, Regulations and Policies for Virginia Download All Financial Incentives and Policies for Virginia CSV (rows 1 - 134) Financial Incentive Programs for Virginia Download Financial Incentives for Virginia CSV (rows 1 - 51) Incentive Incentive Type Active Arlington County - Green Building Incentive Program (Virginia) Green Building Incentive Yes Cape Charles - STIP Minimum Sustainability Requirements (Virginia) Green Building Incentive No Charlottesville Gas - Residential Energy Efficiency Rebate Program (Virginia) Utility Rebate Program Yes City of Danville Utilities - Business Energy Efficiency Rebates (Virginia) Utility Rebate Program Yes

348

Wisconsin/Incentives | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Incentives Wisconsin/Incentives < Wisconsin Jump to: navigation, search Contents 1 Financial Incentive Programs for Wisconsin 2 Rules, Regulations and Policies for Wisconsin Download All Financial Incentives and Policies for Wisconsin CSV (rows 1 - 173) Financial Incentive Programs for Wisconsin Download Financial Incentives for Wisconsin CSV (rows 1 - 114) Incentive Incentive Type Active Alliant Energy (Wisconsin Power & Light) - Renewable Incentives Grant Program (Wisconsin) Utility Grant Program No Alliant Energy (Wisconsin Power and Light) - Farm Wiring Financing Program (Wisconsin) Utility Loan Program Yes Alliant Energy (Wisconsin Power & Light) - Renewable Incentives Loan Program (Wisconsin) Utility Loan Program No Alliant Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) Performance-Based Incentive No

349

Delaware/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Delaware Jump to: navigation, search Contents 1 Financial Incentive Programs for Delaware 2 Rules, Regulations and Policies for Delaware Download All Financial Incentives and Policies for Delaware CSV (rows 1 - 61) Financial Incentive Programs for Delaware Download Financial Incentives for Delaware CSV (rows 1 - 22) Incentive Incentive Type Active DEMEC - Green Energy Program Incentives (Delaware) State Rebate Program No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives Utility Rebate Program Yes Delaware Energy An$wers Home Performance Program (Delaware) State Rebate Program No Delaware Energy An$wers for Business (Delaware) State Grant Program No

350

Solar preheating of both domestic hot water and space. Final technical report for the Sea Loft restaurant in Long Branch, New Jersey  

Science Conference Proceedings (OSTI)

Stephen Giddio's Sea Loft Restaurant in Long Branch, NJ is equipped with an active solar system for preheating water for both space heating and domestic hot water. Three pumped water loops, each a closed circuit, transfer heat from one major component to another. Solar heat is collected by an array of 83 evacuated tube collectors. The acceptance test results are appended, as well as the operational and maintenance manual. Reference CAPE-2805. (LEW)

Not Available

1982-11-28T23:59:59.000Z

351

Design manual for solar heating of buildings and domestic hot water  

SciTech Connect

This manual presents design and cost analysis methods for sizing and payback estimating of solar heat collectors for augmentation of portable water heaters and space heaters. Sufficient information is presented to enable almost anyone to design solar space and water heating systems or conduct basic feasibility studies preparatory to design of large installations. Both retrofit and new installations are considered. (MOW)

Field, R.L.

1977-01-01T23:59:59.000Z

352

Evaluating Incentives for Solar Heating ...  

Science Conference Proceedings (OSTI)

Page 1. t ~ Ii '.:)' NBSIR 76-1127(IE') Evaluating Incentives for Solar Heating Rosalie T. Ruegg Building Economics Section ...

2008-03-05T23:59:59.000Z

353

Market Incentives to Improve Cybersecurity  

Science Conference Proceedings (OSTI)

Page 1. Market Incentives to Improve Cybersecurity Herb Lin ... threaten critical societal functions. • Regulation that imposes best practices on system ...

2011-07-20T23:59:59.000Z

354

Arlington County - Green Building Incentive Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program...

355

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Incentives Program Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program Eligibility Commercial Industrial InstallerContractor Savings...

356

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

357

Biomass Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Incentive Biomass Energy Production Incentive Eligibility Agricultural Commercial Industrial Savings For Bioenergy Commercial Heating & Cooling Manufacturing Buying &...

358

Capital Investment Incentive (Nova Scotia, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capital Investment Incentive (Nova Scotia, Canada) Capital Investment Incentive (Nova Scotia, Canada) Eligibility Commercial Developer Fuel Distributor Industrial Installer...

359

Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid  

SciTech Connect

An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

Ackerman, Carl D. (Olympia, WA)

1983-03-29T23:59:59.000Z

360

Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate  

E-Print Network (OSTI)

The advantages of thermal storage are enhanced in hot and humid climates. Year-round cooling loads increase thermal storage operating cost savings. The absence of a long winter during which major maintenance tasks can be accomplished without compromising system reliability increases the importance of thermal storage as back-up capacity. In an industrial setting, operating cost savings due to thermal storage go directly to the bottom line of a manufacturing process and the avoidance of lost production due to process cooling outages can save millions of dollars per year. This paper presents a case study of chilled water storage use at the campus of a major US electronics manufacturer located in Dallas, TX. An overview of the system and its operation is followed by presentation of operating data taken during 1997.

Bahnfleth, W. P.; Musser, A.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Feasibility study and roadmap to improve residential hot water distribution systems  

E-Print Network (OSTI)

perspective, the sink and dishwashers must be considered incool off once again. For dishwashers, not only is the energyit must be made up by the dishwasher heating the cool water

Lutz, James D.

2004-01-01T23:59:59.000Z

362

Indianapolis Power and Light - Business Energy Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indianapolis Power and Light - Business Energy Incentives Program Indianapolis Power and Light - Business Energy Incentives Program Indianapolis Power and Light - Business Energy Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: 30% of project costs or 50% of incremental costs, up to $25,000 Targeted Projects exceeding $20,000 must be evaluated by the Business Energy Incentives Program for funding availability. Program Info Start Date 9/1/10 State Indiana Program Type Utility Rebate Program Rebate Amount Pumps: $22.50 - $300/pump Central Air Conditioning/Heat Pumps (Rooftop/Unitary): $35/ton Water Heater: $20 Window Film: $1/sq ft

363

Employment Incentive Credit (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employment Incentive Credit (New York) Employment Incentive Credit (New York) Employment Incentive Credit (New York) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Corporate Tax Incentive Provider The New York State Department of Taxation and Finance The Employment Incentive Credit is through the New York State Department of Taxation and Finance based on the same qualifying investment for the ITC. The credit is equal to 1.5% to 2.5% of investment based on increased

364

Small Employer Quality Jobs 7-Year Cash Incentive (Oklahoma) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employer Quality Jobs 7-Year Cash Incentive (Oklahoma) Employer Quality Jobs 7-Year Cash Incentive (Oklahoma) Small Employer Quality Jobs 7-Year Cash Incentive (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Home Weatherization Water Solar Wind Program Info State Oklahoma Program Type Grant Program Performance-Based Incentive Provider Oklahoma Department of Commerce This program provides incentive payments to a qualifying small employer (90 employees or less). The payments may reach as high as 5% of new taxable payroll and last for up to seven years. Annual salaries must meet at least

365

High Performance Incentive Program (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » High Performance Incentive Program (Kansas) High Performance Incentive Program (Kansas) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Corporate Tax Incentive Provider Commerce High Performance Incentive Program provides tax incentives to eligible employers that pay above-average wages and have a strong commitment to skills development for their workers. A substantial investment tax credit for new capital investment in Kansas and a related sales tax exemption are the primary benefits of this program. HPIP offers employers four potential

366

List of Room Air Conditioners Incentives | Open Energy Information  

Open Energy Info (EERE)

Conditioners Incentives Conditioners Incentives Jump to: navigation, search The following contains the list of 112 Room Air Conditioners Incentives. CSV (rows 1 - 112) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Alexandria Light and Power - Residential Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Minnesota Residential Central Air conditioners

367

Vermont Employment Growth Incentive (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Employment Growth Incentive (Vermont) Employment Growth Incentive (Vermont) Vermont Employment Growth Incentive (Vermont) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Installer/Contractor Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Industry Recruitment/Support Performance-Based Incentive Provider Vermont Agency of Commerce and Community Development The purpose of the Employment Growth Incentive (VEGI) is to encourage job creation in Vermont by a Vermont company, a Vermont division of a company that plans to grow and expand in Vermont, a company considering locating a new business or division in Vermont, or a Vermont start-up business

368

List of Commercial Cooking Equipment Incentives | Open Energy Information  

Open Energy Info (EERE)

Cooking Equipment Incentives Cooking Equipment Incentives Jump to: navigation, search The following contains the list of 39 Commercial Cooking Equipment Incentives. CSV (rows 1 - 39) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Central Air conditioners Chillers Comprehensive Measures/Whole Building Custom/Others pending approval Energy Mgmt. Systems/Building Controls Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Motors Water Heaters Commercial Cooking Equipment Commercial Refrigeration Equipment Room Air Conditioners Yes Agricultural Energy Efficiency Program (New York) State Rebate Program New York Agricultural Agricultural Equipment

369

List of Ocean Thermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermal Incentives Thermal Incentives Jump to: navigation, search The following contains the list of 96 Ocean Thermal Incentives. CSV (rows 1 - 96) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Business Energy Investment Tax Credit (ITC) (Federal) Corporate Tax Credit United States Agricultural Commercial Industrial Utility Anaerobic Digestion Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Direct Use Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Ocean Thermal Photovoltaics Small Hydroelectric Small Wind Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Tidal Energy Wave Energy Wind energy Yes CCEF - Project 150 Initiative (Connecticut) State Grant Program Connecticut Commercial Solar Thermal Electric

370

Form:Financial Incentive Program | Open Energy Information  

Open Energy Info (EERE)

Financial Incentive Program Financial Incentive Program Jump to: navigation, search This is the 'Financial Incentive Program' form. To add a page with this form, enter the page name below; if a page with that name already exists, you will be sent to a form to edit that page. Create or edit If no official name exists, add a name with a descriptive title e.g. "Minnesota Solar Rebate". For utilities and local programs, include the name of the utility or local government, followed by a dash. Example: Ashland Electric Utilities - Solar Water Heater Loan Program If an incentive page exists, add the state to the page name. Example: Black Hills Power - Residential Customer Rebate Program (Montana) Black Hills Power - Residential Customer Rebate Program (South Dakota) Retrieved from "http://en.openei.org/w/index.php?title=Form:Financial_Incentive_Program&oldid=581562"

371

Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Tax Incentives The list below contains summaries of all Utah laws and incentives related

372

Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Tax Incentives The list below contains summaries of all Iowa laws and incentives related

373

Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Tax Incentives The list below contains summaries of all Ohio laws and incentives related

374

Effects of plumbing attachments on heat losses from solar domestic hot water storage tanks. Final report, Part 2  

DOE Green Energy (OSTI)

The Solar Rating and Certification Corporation (SRCC) has established a standardized methodology for determining the performance rating of the Solar Domestic Hot Water (SDHW) systems it certifies under OG-300. Measured performance data for the solar collector component(s) of the system are used along with numerical models for the balance of the system to calculate the system`s thermal performance under a standard set of rating conditions. SRCC uses TRNSYS to model each of the components that comprise the system. The majority of the SRCC certified systems include a thermal storage tank with an auxiliary electrical heater. The most common being a conventional fifty gallon electric tank water heater. Presently, the thermal losses from these tanks are calculated using Q = U {center_dot} A {center_dot} {Delta}T. Unfortunately, this generalized formula does not adequately address temperature stratification both within the tank as well as in the ambient air surrounding the tank, non-uniform insulation jacket, thermal siphoning in the fluid lines attached to the tank, and plumbing fittings attached to the tank. This study is intended to address only that part of the problem that deals with the plumbing fittings attached to the tank. Heat losses from a storage tank and its plumbing fittings involve three different operating modes: charging, discharging and standby. In the charging mode, the tank receives energy from the solar collector. In the discharge mode, water flows from the storage tank through the distribution pipes to the faucets and cold city water enters the tank. In the standby mode, there is no forced water flow into or out of the tank. In this experimental study, only the standby mode was considered.

Song, J.; Wood, B.D. [Univ. of Nevada, Reno, NV (United States); Ji, L.J. [Arizona State Univ., Tempe, AZ (United States)

1998-03-01T23:59:59.000Z

375

ConEd (Gas) - Residential Energy Efficiency Incentives Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Residential Energy Efficiency Incentives Program ConEd (Gas) - Residential Energy Efficiency Incentives Program ConEd (Gas) - Residential Energy Efficiency Incentives Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Appliances & Electronics Water Heating Program Info Start Date 7/1/2009 Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $600 Water Boiler: $500 or $1,000 Steam Boiler: $500 Boiler Reset Control: $100 Programmable thermostat: $25 Indirect Water Heater: $300 Duct Sealing: $100/hr Air Sealing: $75/hr Con Edison is offering the Residential HVAC Gas Rebate Program. Through this program, incentives are offered on energy efficient heating and

376

Application of solar energy to the supply of industrial hot water. Technical report 4  

SciTech Connect

A solar water heating and steam generating system is being designed for a California laundry. Progress reported includes completion of the analysis of the existing process services, determination of collectable solar energy at El Centro, California, selection of water as the heat transfer fluid in the 200/sup 0/F system and further analyses of heat transfer fluids for the 300/sup 0/F system, meetings and discussions with respect to system controls and monitoring and the collector support structure, and a proposal for the waste heat recovery system. (LEW)

1976-09-01T23:59:59.000Z

377

Illinois/Incentives | Open Energy Information  

Open Energy Info (EERE)

Illinois/Incentives Illinois/Incentives < Illinois Jump to: navigation, search Contents 1 Financial Incentive Programs for Illinois 2 Rules, Regulations and Policies for Illinois Download All Financial Incentives and Policies for Illinois CSV (rows 1 - 146) Financial Incentive Programs for Illinois Download Financial Incentives for Illinois CSV (rows 1 - 86) Incentive Incentive Type Active Alternative Energy Bond Fund Program (Illinois) State Grant Program No Ameren Illinois (Electric) - Commercial Kitchen and Grocery Incentives Program (Illinois) Utility Rebate Program Yes Ameren Illinois (Electric) - Custom, HVAC, and Motor Business Efficiency Incentives (Illinois) Utility Rebate Program Yes Ameren Illinois (Electric) - Multi-Family Properties Energy Efficiency Rebate Program (Illinois) Utility Rebate Program Yes

378

Alternative Fuels Data Center: Biofuels Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Google Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Delicious Rank Alternative Fuels Data Center: Biofuels Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Incentive The Mississippi Department of Agriculture and Commerce (Department) provides incentive payments to qualified ethanol and biodiesel producers

379

Rebates and Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 May 09 5 May 09 1 Rebates and Incentives "Show me the money!" Ms Karen White Staff Attorney Air Force Facility Energy Center I n t e g r i t y - S e r v i c e - E x c e l l e n c e Statutory Authority for DoD 10 USC 2913 (b): "The Secretary of Defense shall permit and encourage each military department, Defense Agency, and other instrumentality of the Department of Defense to participate in programs conducted by any gas or electric utility for the management of energy demand or for energy conservation." (emphasis added) 10 USC 2912 (c): "Financial incentives received from gas or electric utilities under section 2913 of this title shall be credited to an appropriation designated by the Secretary of Defense. Amounts so credited shall be merged with the appropriation to

380

Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Incentive to someone by E-mail Incentive to someone by E-mail Share Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive on Facebook Tweet about Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive on Twitter Bookmark Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive on Google Bookmark Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive on Delicious Rank Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive on Digg Find More places to share Alternative Fuels Data Center: All Laws and Incentives Sorted by Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Technology or Fuel Incentive Regulation User All Laws and Incentives Sorted by Type

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Tax Incentives

382

Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Tax Incentives

383

Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Tax Incentives

384

Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California  

DOE Green Energy (OSTI)

The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

Blackett, Robert

1985-09-01T23:59:59.000Z

385

Application of solar energy to the supply of industrial hot water. Technical report 3  

SciTech Connect

A solar water heating and steam generating system is being developed for a California laundry. Progress reported includes accumulation of data on process usage and demands for the purpose of collector sizing, studies of insulation for piping and thermal storage tanks, investigation in the selection of the heat transfer fluid, and weather measurements. Further analyses on the supporting structure for the solar collector arrays are reported. A concept review meeting is discussed. (LEW)

1976-08-01T23:59:59.000Z

386

Economic viability of heat pump desuperheaters for supplying domestic hot water  

Science Conference Proceedings (OSTI)

The heat reclaimer is a heat exchange device that removes superheat from the refrigerant gas in a heat pump or central air conditioning unit and uses that extracted energy to heat water for domestic uses. This analysis examines the energy-saving potential and economic benefit of the heat reclaimer. Energy savings were calculated using a modified bin analytical technique. Economic viability was determined using the simple payback criterion. The analysis was performed for 28 cities in the United States to gain an understanding of the relationship between energy savings, economic viability, and climate. The results of the assessment indicate that the heat reclaimer has payback periods greater than seven years when compared with oil- or gas-fired water heating systems. Because of the long payback periods, the heat reclaimer does not appear to be economically feasible for these applications. However, when compared to electric-resistance water heating units, the heat reclaimer is economically viable, especially in areas where the air conditioning load is substantial or where the price of electricity is high.

Olszewski, M.

1984-01-01T23:59:59.000Z

387

A VISUAL STUDY OF THE CORROSION OF DEFECTED ZIRCALOY-2-CLAD FUEL SPECIMENS BY HOT WATER  

DOE Green Energy (OSTI)

The failure of defected Zircaloy-2-clad uranium and uranium -2 wt.% zircorium fuel specimens in high-purity high-pressure water at 200 to 345 deg C was observed in a windowed antcclave. Time-lapse color motion pictures were taken to provide a record of the progressive changes ending in the complete disintegration of the core material in the specimens. Continuous measurement of the pressure increase caused by accumulation of hydrogen served to monitor the progress of the reaction when clouding of the water by corrosion products made visual observation impossible. The nature of the attack of all specimens was similar, although the time at which different stages occurred varied. Following an induction period, the first evidence of attack was the slow formation of a blister in the cladding area surrounding the defect. Eventually, a copions evolution of hydrogen occurried at the base of the swollen area. In general, a crack could be seen in the cladding at this stage. Catastrophic failure of the specimen followed swiftly. The time required for each phase of the reaction was reduced as the temperature was raised. Initial swelling occurred after about 24 min at 345 deg C but only after 8 hr at 200 deg C. Diffusion-treated uranium2 wt.% zirconium-cored specimens were most resistant to attack. Specimens with beta-treated water-quenched natural-uranium cores were least resistant (auth)

Stephan, E.F.; Miller, P.D.; Fink, F.W.

1959-10-19T23:59:59.000Z

388

Solar preheating of both domestic hot water and space. Final technical report for the Sea Loft restaurant in Long Branch, New Jersey (Engineering Materials)  

Science Conference Proceedings (OSTI)

Stephen Giddio's Sea Loft Restaurant in Long Branch, NJ is equipped with an active solar system for preheating of both Space and Domestic Hot Water (DHW). Three pumped water loops, each closed circuit, transfer heat from one major equipment component to another. The closed loop drain back solar energy collection circuit uses a 3/4 horsepower pump to circulate seventeen gallons per minute of deionized water from the Solar Storage Tank to the Solar Collector Array, and return. This tank has a capacity of 600 gallons. The solar array consist of eighty-three evacuated tube type concentrating collectors. The heat gathered in this circuit is stored in the tank for either simultaneous or future use in either or both of the Space and DHW preheating loops. The preheating of city water prior to its entrance into the gas fired 86 gallon DHW heater is accomplished in a separate 600 gallon capacity tank. Two thirty-five square foot tubed heat exchanger bundles inserted into this tank accept solar heated hot water from the Solar Storage Tank. This solar heated water is pumped at sixteen GPM in a closed loop circuit using a 1/4 HP pump. The preheating of restaurant space is accomplished in a closed loop circuit between the Solar Storage Tank and an eight SF hot water coil inserted into the return air from the Main Dining Room of the restaurant. A 1/4 HP pump circulates fifteen gallons of solar heated hot water per minute. This system incorporates a differential temperature controller that utilizes a multitude of pressure sensors and temperature thermistors located throughout the various portions of the system components and piping. The Display Board mounted on the wall of the Bar-Lounge Area serves to integrate the entire solar system. It not only displays the flow but houses the Btu flowmeters, Digital temperature readouts, and HVAC EMS Programmer. Reference DOE/CS/30007-T1.

Not Available

1982-11-28T23:59:59.000Z

389

High Performance Building Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentive Program Incentive Program High Performance Building Incentive Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate Residential loans/loan guarantees: 100,000 Commercial loans/loan guarantees: 2 million Grants: Lesser of 10% of project costs or 500,000 Program Info Start Date April 2009 State Pennsylvania Program Type State Loan Program Rebate Amount Vary by project, but program generally requires matching funds at least equivalent to DCED funding Provider Department of Community and Economic Development

390

Capital Investment Incentive (Nova Scotia, Canada) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Capital Investment Incentive (Nova Scotia, Canada) Capital Investment Incentive (Nova Scotia, Canada) < Back Eligibility Commercial Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $1 million (Canadian) Program Info State Nova Scotia Program Type Grant Program Rebate Program Provider Nova Scotia Department of Economic and Rural Development and Tourism The Capital Investment Incentive (CII) is part of the Productivity Investment Program as outlined in the economic growth plan for Nova Scotia,

391

Delmarva Power - Home Performance with Energy Star Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delmarva Power - Home Performance with Energy Star Incentive Delmarva Power - Home Performance with Energy Star Incentive Program Delmarva Power - Home Performance with Energy Star Incentive Program < Back Eligibility Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Recommended measures resulting from Energy Audit: $2000 Program Info Funding Source Maryland Energy Administration State Maryland Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Cost discounted to $100 HVAC and Envelope upgrades: up to $2000 Provider

392

Renewable Energy Business Tax Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Business Tax Incentives Renewable Energy Business Tax Incentives Renewable Energy Business Tax Incentives < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Wind Maximum Rebate No individual limit. The aggregate amount of tax credits that be approved state-wide is $70 million per taxable year. Program Info Start Date 1/1/2010 Expiration Date 12/31/2019 State Arizona Program Type Industry Recruitment/Support Rebate Amount Varies Provider Arizona Department of Commerce [http://www.azleg.gov/legtext/49leg/1r/bills/sb1403s.pdf SB 1403], signed in July of 2009, created tax incentives intended to draw renewable energy

393

Trico Electric Cooperative - SunWatts Incentive Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV systems 10 kW or smaller: 30% of the total system cost Program Info State Arizona Program Type Utility Rebate Program Rebate Amount PV systems 10 kW or smaller: $0.10/watt DC PV greater than 10 kW up to 1 MW: Performance-Based Incentive (competitive bid process) Solar water heaters: $0.40 per expected first year kWh savings Provider Trico Electric Cooperative, Inc. Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems

394

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

395

Stable isotope investigation of fluids and water-rock interaction in the Roosevelt Hot Springs thermal area, Utah  

DOE Green Energy (OSTI)

Carbon-hydrogen-oxygen isotope compositions have been measured in regional cold waters, geothermal fluids, and hydrothermally altered rocks from the Roosevelt Hot Springs geothermal area. These data have been used, in conjunction with other geological and geochemical data from this geothermal system, to place some limits on the origin of geothermal fluids and reservoir carbon, the fluid recharge area, physical-chemical environment of hydrothermal alteration, and relative permeability of the geothermal system. The similarity of hydrogen isotope compositions of local meteoric water and geothermal reservoir fluid indicate that the geothermal fluids are virtually entirely of surface derivation. An isotopically reasonable source area would be the Mineral Mountains directly to the east of the Roosevelt system. Hydrothermal calcite appears to be in isotopic equilibrium with the deep reservoir fluid. The deltaC/sup 13/ values of deep calcites and T- pH-f0/sub 2/ conditions of the reservoir defined by measured temperature, fluid chemistry, and alteration mineralogy fix the delta/sup 13/C value of the geothermal system to -5 to -6.5% (PDB). These values do not unambiguously define any one source or process, however. There is a relatively small increase in /sup 18/O of geothermal fluids relative to their cold surface water precursors and significant /sup 18/O depletion accompanying hydrothermal alteration of the granitic host rock. These isotopic shifts indicate a high ratio of geothermal fluid to altered rock for the geothermal system, implying relatively rapid (geologically) recirculation rates and significant permeability of the geothermal system.

Bowman, J.R.

1979-01-01T23:59:59.000Z

396

Connecticut/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Connecticut Jump to: navigation, search Contents 1 Financial Incentive Programs for Connecticut 2 Rules, Regulations and Policies for Connecticut Download All Financial Incentives and Policies for Connecticut CSV (rows 1 - 173) Financial Incentive Programs for Connecticut Download Financial Incentives for Connecticut CSV (rows 1 - 95) Incentive Incentive Type Active Alternative Fuel Vehicles and Associated Equipment (Connecticut) Sales Tax Incentive No Alternative Fueled Vehicle Charging Station Credit (Connecticut) Corporate Tax Credit No Alternative Fueled Vehicle Incremental Cost Credit (Connecticut) Corporate Tax Credit No CCEF - ARRA Commercial Solar PV Program (Connecticut) State Grant Program No CCEF - Affordable Housing Initiative Solar PV Rebate Program (Connecticut) State Rebate Program No

397

California/Incentives | Open Energy Information  

Open Energy Info (EERE)

California/Incentives California/Incentives < California Jump to: navigation, search Contents 1 Financial Incentive Programs for California 2 Rules, Regulations and Policies for California Download All Financial Incentives and Policies for California CSV (rows 1 - 310) Financial Incentive Programs for California Download Financial Incentives for California CSV (rows 1 - 242) Incentive Incentive Type Active Agricultural Biomass to Energy Program (California) Performance-Based Incentive No Agricultural Pumping Efficiency Program (California) State Rebate Program No Agriculture and Food Processing Energy Loans (California) State Loan Program No Alameda Municipal Power - Commercial Energy Efficiency Loan Program (California) Utility Loan Program No Alameda Municipal Power - Commercial Energy Efficiency Rebate Program (California) Utility Rebate Program Yes

398

Washington/Incentives | Open Energy Information  

Open Energy Info (EERE)

Washington/Incentives Washington/Incentives < Washington Jump to: navigation, search Contents 1 Financial Incentive Programs for Washington 2 Rules, Regulations and Policies for Washington Download All Financial Incentives and Policies for Washington CSV (rows 1 - 184) Financial Incentive Programs for Washington Download Financial Incentives for Washington CSV (rows 1 - 163) Incentive Incentive Type Active Avista Utilities (Electric) - Commercial Lighting Energy Efficiency Program (Washington) Utility Rebate Program No Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program (Washington) Utility Rebate Program Yes Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Washington) Utility Rebate Program Yes Avista Utilities (Electric) - Commercial Food Equipment Rebates (Washington) Utility Rebate Program No

399

Standard Guide for On-Site Inspection and Verification of Operation of Solar Domestic Hot Water Systems  

E-Print Network (OSTI)

1.1 This guide covers procedures and test methods for conducting an on-site inspection and acceptance test of an installed domestic hot water system (DHW) using flat plate, concentrating-type collectors or tank absorber systems. 1.2 It is intended as a simple and economical acceptance test to be performed by the system installer or an independent tester to verify that critical components of the system are functioning and to acquire baseline data reflecting overall short term system heat output. 1.3 This guide is not intended to generate accurate measurements of system performance (see ASHRAE standard 95-1981 for a laboratory test) or thermal efficiency. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine th...

American Society for Testing and Materials. Philadelphia

1987-01-01T23:59:59.000Z

400

Validation of Hot Water and Lactic Acid Sprays for the Reduction of Enteric Pathogens on the Surface of Beef Carcasses  

E-Print Network (OSTI)

Escherichia coli O157:H7 and Salmonella have emerged as the most common foodborne enteric pathogens causing human illness from the consumption of beef. By mandate of the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS), the industry has implemented a Hazard Analysis and Critical Control Points (HACCP) system that utilize intervention technologies for controlling, preventing, and/or reducing enteric pathogens. In addition, USDA-FSIS has mandated that each facility must validate, monitor, and verify the effectiveness of each intervention implemented to eliminate E. coli O157:H7 and Salmonella. For this study, microbial decontamination interventions at two beef slaughter facilities were validated to demonstrate effectiveness in eliminating or reducing enteric pathogens. The facilities selected utilized either a lactic acid spray treatment or a combination of hot water followed by a lactic acid treatment. At both facilities, mesophilic plate counts (MPC) were significantly (P < 0.05) reduced, and E. coli and coliforms were eliminated below detectable limits at both facilities. No Salmonella positive samples were detected after either facility's intervention sequence. The framework used in this research to validate interventions can also be utilized in the future for yearly verification of the effectiveness of each intervention.

Wright, Kyle D.

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

California Energy Incentive Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Energy California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California Prepared for the U.S. Department of Energy Federal Energy Management Program December 2011 i Contacts Utility Acquisitions, ESPCs, PPAs Tracy Logan U.S. Department of Energy Federal Energy Management Program EE-2L 1000 Independence Avenue, SW Washington, DC 20585-0121 Phone: (202) 586-9973 E-mail: tracy.logan@ee.doe.gov Principal Research Associate Elizabeth Stuart Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley, CA 94720 Phone: (510)495-2370 E-mail: estuart@lbl.gov ii Contents Overview ...................................................................................................................................................... 1

402

DOE Handbook on Recruitment and Retention Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Incentive There must be a valid business case for using this incentive. The percentage amount of the recruitment incentive will be based on one or more of the following...

403

Performance-Based Incentive | Open Energy Information  

Open Energy Info (EERE)

Performance-Based Incentive Performance-Based Incentive Jump to: navigation, search Performance-based incentives (PBIs), also known as production incentives, provide cash payments based on the number of kilowatt-hours (kWh) or BTUs generated by a renewable energy system. A "feed-in tariff" is an example of a PBI. To ensure project quality, payments based on a system's actual performance are generally more effective than payments based on a system's rated capacity. (Note that tax incentives based on the amount of energy produced by an eligible commercial facility are categorized as "Corporate Tax Incentives" in DSIRE.) [1] Contents 1 Performance-Based Incentive Incentives 2 References Performance-Based Incentive Incentives CSV (rows 1 - 194) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

404

CPS Energy - New Commercial Construction Incentives | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Program Type Utility Rebate Program Rebate Amount Tier 1 Energy Incentive: 0.08kWh Tier 1 Peak Demand Incentive: 125kW Tier 2 Energy Incentive: 0.12kWh Tier 2 Peak...

405

Central Lincoln People's Utility District - Renewable Energy Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Lincoln People's Utility District - Renewable Energy Central Lincoln People&#039;s Utility District - Renewable Energy Incentive Program (Oregon) Central Lincoln People's Utility District - Renewable Energy Incentive Program (Oregon) < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Water Heating Wind Maximum Rebate PV (Residential): $2,000 PV (Commercial): $5,000 Solar Water Heating: $800 Wind: $5,000 Hydro Electric: $5,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount PV and Wind: $500/kW-DC Solar Water Heating: $800/system Hydro Electric: $0.50/kWh (first year) Provider Central Lincoln People's Utility District Central Lincoln People's Utility District provides financial incentives for

406

NC GreenPower Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NC GreenPower Production Incentive NC GreenPower Production Incentive NC GreenPower Production Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Water Buying & Making Electricity Solar Wind Program Info State North Carolina Program Type Performance-Based Incentive Rebate Amount Varies by technology and system size PV up to 5 kW: $0.06/kWh PV larger than 5 kW: must enter bid process Wind up to 10 kW: $0.09/kWh Wind larger than 10 kW: must enter bid process Provider NC GreenPower NC GreenPower, a statewide green power program designed to encourage the use of renewable energy in North Carolina, offers production payments for grid-tied electricity generated by solar, wind, small hydro (10 megawatts

407

High Impact Performance Incentive Grant (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Performance Incentive Grant (Florida) Impact Performance Incentive Grant (Florida) High Impact Performance Incentive Grant (Florida) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Grant Program Provider Enterprise Florida The High Impact Performance Incentive Grant (HIPI) is a negotiated grant used to attract and grow major high impact facilities in Florida. Grants are provided to pre-approved applicants in certain high-impact sectors such as clean energy. Projects must create at least 50 new full-time jobs in a three-year period, and make a cumulative investment in the state of at least $50 million in a three year period. The business can be granted 50%

408

Home Performance with Energy Star High Efficiency Measure Incentive (HEMI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star High Efficiency Measure Incentive Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate $3,000 Program Info State New York Program Type State Rebate Program Rebate Amount 10% of project costs Provider New York State Energy Research and Development Authority The New York State Research and Development Authority (NYSERDA) offers an incentive for homeowners of 1-4 homes that participate in the Home Performance with Energy Star program. The program entitles the participant

409

Oklahoma Local Development and Enterprise Zone Incentive Leverage Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Development and Enterprise Zone Incentive Leverage Local Development and Enterprise Zone Incentive Leverage Act (Oklahoma) Oklahoma Local Development and Enterprise Zone Incentive Leverage Act (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Enterprise Zone Provider Commerce The Oklahoma Local Development and Enterprise Zone Incentive Leverage Act provides funding for local units of government to match local tax revenue dedicated to support a project located in an enterprise zone. No more than

410

Energy Incentive Programs, Hawaii | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hawaii Hawaii Energy Incentive Programs, Hawaii October 29, 2013 - 11:29am Addthis Updated September 2013 What public-purpose-funded energy efficiency programs are available in my state? The statewide Hawaii Energy Efficiency Program is run under contract to the PUC and administers all initiatives funded by the state's Public Benefits Fee. Through these programs, along with the remaining utility-administered initiative (see below), over 33 million was budgeted in 2012 for energy efficiency programs. Hawaii Energy Efficiency offers financial incentives through the For Your Business initiative for a broad range of energy-efficient equipment, including lighting, HVAC, appliances, cool roofs, window film, water heating, pumps and motors, and customized projects, as well as for adding

411

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

412

Energy Incentive Programs, Kansas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kansas Kansas Energy Incentive Programs, Kansas October 29, 2013 - 11:29am Addthis Updated November 2012 Kansas utilities budgeted nearly $15 million in 2011 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? Kansas has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? The Kansas City Board of Public Utilities offers rebates to its commercial customers for the installation of efficient electric water heaters, electric resistance heating systems, and electric or dual-fuel heat pumps. For the past several years, Kansas City Power and Light (KCP&L) offered incentive programs for its commercial and industrial customers in Kansas,

413

Renewable Energy Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Energy Incentive Program Renewable Energy Incentive Program < Back Eligibility Commercial Multi-Family Residential Nonprofit Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Solar PV: $10,000 per site per program year Solar Thermal (residential): $2,000 per system per program year Solar Thermal (non-residential): $6,000 per system per program year Program Info Funding Source Sustainable Energy Trust Fund (public benefits fund) State District of Columbia Program Type State Rebate Program Rebate Amount Solar PV: $0.50/W DC Solar Thermal: 20% of installed cost Provider District Department of the Environment In February 2009, the District Department of the Environment (DDOE)

414

Using economic incentives to regulate toxic substances  

Science Conference Proceedings (OSTI)

Since the mid- to late 1960s, economists at Resources for the Future and elsewhere have sounded a common theme when discussing environmental regulation. Specifically, they have recommended that, wherever possible, so-called command-and-control regulation (for instance, requirements that manufacturers install specific types of pollution control equipment) be replaced by the use of economic incentives such as the imposition of taxes on pollutant emissions or the introduction of a system of marketable permits limiting the amount of pollution that can be discharged during some specified period of time. In demonstrating the considerable advantages of incentive-based approaches--most importantly, the cost savings they make possible--environmental economists have almost always used as examples air and water pollutants that are discharged from easily identifiable smokestacks or outfall pipes at which continuous monitoring of emissions is at least conceivable if not already currently practiced.

Macauley, M.K.; Bowes, M.D.; Palmer, K.L.

1992-01-01T23:59:59.000Z

415

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

416

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Marine Corps Base Camp Pendleton, U.S. Marine Corps Base Camp Pendleton, covering 125,000 acres including 17 miles of Southern-California coastline, is the largest expeditionary training facility on the West Coast. More than 41,500 marines and family members call the base home, which reaches a daytime population of approximately 100,000. In fiscal year 2007, Camp Pendleton saved energy and money and reduced greenhouse gas (GHG) emissions through solar hot water (SHW) and photovoltaic (PV) arrays. The base implemented two integrated solar thermal/PV systems at its 53 Area and 62 Area training pools. The projects demonstrate Camp Pendleton's continuing commitment to energy conservation while helping meet Federal requirements for on-site renewable energy and solar hot water generation.

417

Mississippi/Incentives | Open Energy Information  

Open Energy Info (EERE)

Mississippi Mississippi Jump to: navigation, search Contents 1 Financial Incentive Programs for Mississippi 2 Rules, Regulations and Policies for Mississippi Download All Financial Incentives and Policies for Mississippi CSV (rows 1 - 63) Financial Incentive Programs for Mississippi Download Financial Incentives for Mississippi CSV (rows 1 - 28) Incentive Incentive Type Active Alternatives Fuels Production Incentive (Mississippi) Performance-Based Incentive No Coast Electric Power Association - Comfort Advantage Home Program (Mississippi) Utility Rebate Program Yes Coast Electric Power Association - Commercial Energy Efficiency Rebate Program (Mississippi) Utility Rebate Program Yes Coast Electric Power Association - Heat Pump and Weatherization Loan Program (Mississippi) Utility Loan Program No

418

Alliant Energy (Wisconsin Power & Light) - Renewable Incentives...  

Open Energy Info (EERE)

voluntary initiative that provides incentives to be used in conjunction with all Focus on Energy, state and federal incentives. Individual system size is not limited under the...

419

Vermont/Incentives | Open Energy Information  

Open Energy Info (EERE)

Vermont/Incentives Vermont/Incentives < Vermont Jump to: navigation, search Contents 1 Financial Incentive Programs for Vermont 2 Rules, Regulations and Policies for Vermont Download All Financial Incentives and Policies for Vermont CSV (rows 1 - 100) Financial Incentive Programs for Vermont Download Financial Incentives for Vermont CSV (rows 1 - 50) Incentive Incentive Type Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit No Agricultural Lighting and Equipment Rebate Program (Vermont) State Rebate Program Yes Burlington Electric Department - Commercial Energy Efficiency Rebate Program (Vermont) Utility Rebate Program Yes Burlington Electric Department - Multi-Family Rental Energy Efficiency Rebate Program (Vermont) Utility Rebate Program Yes

420

Colorado/Incentives | Open Energy Information  

Open Energy Info (EERE)

Colorado/Incentives Colorado/Incentives < Colorado Jump to: navigation, search Contents 1 Financial Incentive Programs for Colorado 2 Rules, Regulations and Policies for Colorado Download All Financial Incentives and Policies for Colorado CSV (rows 1 - 162) Financial Incentive Programs for Colorado Download Financial Incentives for Colorado CSV (rows 1 - 116) Incentive Incentive Type Active Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program No Alternative Fuel Vehicle and Refueling - Corporate Tax Credit (Colorado) Corporate Tax Credit No Alternative Fuel Vehicle and Refueling - Personal Tax Credit (Colorado) Personal Tax Credit No Aspen - Grid-Tied Micro Hydro Grant (Colorado) Local Grant Program No Aspen - Solar Power Pioneer Loan Program (Colorado) Local Loan Program No

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Tennessee/Incentives | Open Energy Information  

Open Energy Info (EERE)

Tennessee/Incentives Tennessee/Incentives < Tennessee Jump to: navigation, search Contents 1 Financial Incentive Programs for Tennessee 2 Rules, Regulations and Policies for Tennessee Download All Financial Incentives and Policies for Tennessee CSV (rows 1 - 110) Financial Incentive Programs for Tennessee Download Financial Incentives for Tennessee CSV (rows 1 - 71) Incentive Incentive Type Active Athens Utility Board - Residential Heat Pump Loan Program (Tennessee) Utility Loan Program No Bristol Tennessee Electric Service - Energy Savings Loan Program (Tennessee) Utility Loan Program Yes City of Nashville - Energy Works Rebate Program Local Rebate Program No Clarksville Department of Electricity - Residential Heat Pump Loan Program (Tennessee) Utility Loan Program No

422

Michigan/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Michigan Jump to: navigation, search Contents 1 Financial Incentive Programs for Michigan 2 Rules, Regulations and Policies for Michigan Download All Financial Incentives and Policies for Michigan CSV (rows 1 - 151) Financial Incentive Programs for Michigan Download Financial Incentives for Michigan CSV (rows 1 - 111) Incentive Incentive Type Active Alger Delta Electric - Commercial Energy Efficiency Rebate Program (Michigan) Utility Rebate Program No Alpena Power Company (Efficiency United) - Residential Energy Efficiency Rebate Program (Michigan) Utility Rebate Program No Alpena Power Company (Efficiency United) - Commercial and Industrial Rebate Program (Michigan) Utility Rebate Program No Alpena Power Company (Efficiency United) - Energy Efficiency Assistance Program (Michigan) Utility Rebate Program No

423

Alaska/Incentives | Open Energy Information  

Open Energy Info (EERE)

Alaska/Incentives Alaska/Incentives < Alaska Jump to: navigation, search Contents 1 Financial Incentive Programs for Alaska 2 Rules, Regulations and Policies for Alaska Download All Financial Incentives and Policies for Alaska CSV (rows 1 - 21) Financial Incentive Programs for Alaska Download Financial Incentives for Alaska CSV (rows 1 - 15) Incentive Incentive Type Active Alaska - Residential Energy-Efficient Appliance Rebate Program (Alaska) State Rebate Program No Association Loan Program (Alaska) State Loan Program Yes Energy Efficiency Interest Rate Reduction Program (Alaska) State Loan Program Yes Energy Efficiency Revolving Loan Fund Program (Alaska) State Loan Program Yes Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) Utility Rebate Program Yes

424

Indiana/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Indiana Jump to: navigation, search Contents 1 Financial Incentive Programs for Indiana 2 Rules, Regulations and Policies for Indiana Download All Financial Incentives and Policies for Indiana CSV (rows 1 - 165) Financial Incentive Programs for Indiana Download Financial Incentives for Indiana CSV (rows 1 - 86) Incentive Incentive Type Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program No Alternative Power & Energy Grant Program (Indiana) State Grant Program No Bartholomew County REMC - Residential Energy Efficiency Rebate Program (Indiana) Utility Rebate Program Yes Biodiesel Tax Credits (Indiana) Corporate Tax Credit No Biomass Feasibility Study Grant Program (Indiana) State Grant Program No

425

Wyoming/Incentives | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Incentives Wyoming/Incentives < Wyoming Jump to: navigation, search Contents 1 Financial Incentive Programs for Wyoming 2 Rules, Regulations and Policies for Wyoming Download All Financial Incentives and Policies for Wyoming CSV (rows 1 - 42) Financial Incentive Programs for Wyoming Download Financial Incentives for Wyoming CSV (rows 1 - 34) Incentive Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Energy Efficiency Rebate Program (Wyoming) Utility Rebate Program No Carbon Power & Light - Energy Conservation Home Improvement Loan (Wyoming) Utility Loan Program No

426

Oklahoma/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Oklahoma Jump to: navigation, search Contents 1 Financial Incentive Programs for Oklahoma 2 Rules, Regulations and Policies for Oklahoma Download All Financial Incentives and Policies for Oklahoma CSV (rows 1 - 82) Financial Incentive Programs for Oklahoma Download Financial Incentives for Oklahoma CSV (rows 1 - 38) Incentive Incentive Type Active AEP Public Service Company of Oklahoma - Non-Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Yes AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program (Oklahoma) Utility Rebate Program Yes Alternative Fuels Loan Program for Governments (Oklahoma) State Loan Program No CenterPoint Energy (Gas) - Commercial Efficiency Rebates (Oklahoma) Utility Rebate Program Yes

427

Massachusetts/Incentives | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Incentives Massachusetts/Incentives < Massachusetts Jump to: navigation, search Contents 1 Financial Incentive Programs for Massachusetts 2 Rules, Regulations and Policies for Massachusetts Download All Financial Incentives and Policies for Massachusetts CSV (rows 1 - 176) Financial Incentive Programs for Massachusetts Download Financial Incentives for Massachusetts CSV (rows 1 - 130) Incentive Incentive Type Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Yes Belmont Municipal Light Department - Residential Energy Efficiency Rebate Program (Massachusetts) Utility Rebate Program No

428

Alabama/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Alabama Jump to: navigation, search Contents 1 Financial Incentive Programs for Alabama 2 Rules, Regulations and Policies for Alabama Download All Financial Incentives and Policies for Alabama CSV (rows 1 - 77) Financial Incentive Programs for Alabama Download Financial Incentives for Alabama CSV (rows 1 - 44) Incentive Incentive Type Active Agriculture Energy Efficiency Program (Alabama) State Grant Program No Alabama - Residential Energy-Efficient Appliance Rebate Program (Alabama) State Rebate Program No Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Yes Alabama Power - Residential Heat Pump and Weatherization Loan Programs (Alabama) Utility Loan Program Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Yes

429

SES Awards and Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards and Incentives SES Awards and Incentives Benefits DOE Workers' Compensation Program Insurance MilitaryReservist Retirement Telework Thrift Savings Plan (TSP) Wellness...

430

Alternative Fuel Production Facility Incentives (Kentucky) |...  

Open Energy Info (EERE)

Incentive Policy Type Corporate Tax Incentive Affected Technologies BiomassBiogas, Coal with CCS, Natural Gas Active Policy Yes Implementing Sector StateProvince Primary...

431

Property:FinancialIncentive | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Property Name FinancialIncentive Property Type String Description Types of financial incentives This is a property of type String. The...

432

Mohave Electric Cooperative - Renewable Energy Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Mohave Electric Cooperative - Renewable Energy Incentive Program Mohave Electric Cooperative - Renewable Energy Incentive Program...

433

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

434

Pennsylvania/Incentives | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Incentives Pennsylvania/Incentives < Pennsylvania Jump to: navigation, search Contents 1 Financial Incentive Programs for Pennsylvania 2 Rules, Regulations and Policies for Pennsylvania Download All Financial Incentives and Policies for Pennsylvania CSV (rows 1 - 132) Financial Incentive Programs for Pennsylvania Download Financial Incentives for Pennsylvania CSV (rows 1 - 78) Incentive Incentive Type Active Adams Electric Cooperative - Energy Efficiency Loan Program (Pennsylvania) Utility Loan Program Yes Allegheny Power - Government, School and Non-Profit Efficiency Program (Pennsylvania) Utility Rebate Program No Alternative Energy Production Tax Credit (Corporate) (Pennsylvania) Corporate Tax Credit No Alternative Energy Production Tax Credit (Personal) (Pennsylvania) Personal Tax Credit No

435

Application of solar energy to the supply of industrial hot water. Volume 1. Final design report. [For American Linen Supply laundry in El Centro, California  

SciTech Connect

The conceptual design of a solar system for integration into the process hot water and steam services for the laundry facility, American Linen Sypply, located in El Centro, California is presented. A tracking parabolic collector array and thermal storage tanks will be used. Process analysis, instrumentation for control and data analysis, construction, maintenance and safety, energy reduction analysis, and economic analysis are described. A waste heat reclamation system is included in the design. (WHK)

1977-01-31T23:59:59.000Z

436

Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.  

DOE Green Energy (OSTI)

This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

2012-06-01T23:59:59.000Z

437

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

phases stored in matrix pores, the energy E M contained in VEnough energy is transmitted from the matrix to effectivelyfor energy transfer from the adjacent hot rock matrix rather

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

438

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

for both liquid and heat transfer processes. In order to beprocesses in hot fractured rock with ( 1) flow channeling in fractures, (2) interface reduction in F-M heat transfer,

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

439

Federal Energy Management Program: Energy Incentive Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Incentive Energy Incentive Programs to someone by E-mail Share Federal Energy Management Program: Energy Incentive Programs on Facebook Tweet about Federal Energy Management Program: Energy Incentive Programs on Twitter Bookmark Federal Energy Management Program: Energy Incentive Programs on Google Bookmark Federal Energy Management Program: Energy Incentive Programs on Delicious Rank Federal Energy Management Program: Energy Incentive Programs on Digg Find More places to share Federal Energy Management Program: Energy Incentive Programs on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Energy Incentive Programs Most states offer energy incentive programs to help offset energy costs.

440

Alternative Fuels Data Center: Biodiesel Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Production Biodiesel Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production Incentive on Google Bookmark Alternative Fuels Data Center: Biodiesel Production Incentive on Delicious Rank Alternative Fuels Data Center: Biodiesel Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production Incentive A qualified Kansas biodiesel producer is eligible for a production incentive of $0.30 per gallon of biodiesel sold. The incentive is payable

Note: This page contains sample records for the topic "hot water incentive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Biofuels Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Google Bookmark Alternative Fuels Data Center: Biofuels Production Incentive on Delicious Rank Alternative Fuels Data Center: Biofuels Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Incentive Qualified ethanol and biodiesel producers are eligible for production incentives on a per gallon basis. To be eligible for the incentive, the

442

APS - Renewable Energy Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APS - Renewable Energy Incentive Program APS - Renewable Energy Incentive Program APS - Renewable Energy Incentive Program < Back Eligibility Commercial Residential Savings Category Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Energy Sources Water Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Maximum Rebate Residential systems: $50,000 or 50% of system costs, whichever is less Commercial systems: $75, 000 or 40% of system costs, whichever is less Program Info Funding Source RES Surchage State Arizona Program Type Utility Rebate Program Rebate Amount Residential and Small Commercial PV (up to 25 kW): $0.10/watt-DC Residential Solar Water Heating: $0.40/kWh-displaced

443

Mississippi Power - EarthCents Commercial Incentives Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Power - EarthCents Commercial Incentives Program Mississippi Power - EarthCents Commercial Incentives Program Mississippi Power - EarthCents Commercial Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Boilers/Resistance Heat Conversions: 15/kW Heat Pump Conversions: 20/ton Infrared Heat (New Construction, Additions, Conversions): 5/kW Electric Water Heater (New, Addition): 8 - 12/kW Electric Water Heater (Conversion): 16 - 24/kW Electric Cooking Equipment (New): 5/kW Electric Cooking Equipment (Conversion): 15/kW Provider Efficiency Programs Mississippi Power offers rebates to commercial customers to help offset the

444

Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report  

DOE Green Energy (OSTI)

The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

Kauffman, D.; Houghton, A.V.

1980-12-31T23:59:59.000Z

445

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

446

Thermal performance and economics of solar space and hot water heating system on Long Island, New York. [F-chart method  

DOE Green Energy (OSTI)

A practical method for designing solar space and water heating systems, called the ''f-chart'' method, is described with the results calculated for Long Island, New York. The solar heating systems to be considered consist of a solar collector which uses either liquid or air, an energy storage which can be either a water tank or a pebble bed, and an auxiliary energy source which supplies heat when solar energy is not available. Solar heated water from storage can be used either for space heating or for preheating the domestic hot water. The results of the ''f-chart'' analysis can simply be expressed as follows. For the thermal performance, Annual Load Fraction Supplied by Solar Energy versus Collector Area, and for the economic performance, Life Cycle Cost Savings versus Collector Area.

Auh, P C

1978-06-01T23:59:59.000Z

447

Category:Lists for Incentives | Open Energy Information  

Open Energy Info (EERE)

Pages in category "Lists for Incentives" Pages in category "Lists for Incentives" The following 80 pages are in this category, out of 80 total. L List of Agricultural Equipment Incentives List of Anaerobic Digestion Incentives List of Biodiesel Incentives List of Biomass Incentives List of Boilers Incentives List of Building Insulation Incentives List of Caulking/Weather-stripping Incentives List of Ceiling Fan Incentives List of Central Air conditioners Incentives List of Chillers Incentives List of CHP/Cogeneration Incentives List of Clothes Washers Incentives List of Commercial Cooking Equipment Incentives List of Commercial Refrigeration Equipment Incentives List of Comprehensive Measures/Whole Building Incentives List of Compressed air Incentives List of Custom/Others pending approval Incentives

448

Arizona/Incentives | Open Energy Information  

Open Energy Info (EERE)

Arizona Arizona Jump to: navigation, search Contents 1 Financial Incentive Programs for Arizona 2 Rules, Regulations and Policies for Arizona Download All Financial Incentives and Policies for Arizona CSV (rows 1 - 89) Financial Incentive Programs for Arizona Download Financial Incentives for Arizona CSV (rows 1 - 59) Incentive Incentive Type Active APS - Energy Efficiency Solutions for Business (Arizona) Utility Rebate Program Yes APS - GEOSmart Financing Program (Arizona) Utility Loan Program No APS - Multifamily Energy Efficiency Program (Arizona) Utility Rebate Program Yes APS - Remote Solar Electric Services (Arizona) Direct Equipment Sales No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Yes APS - Residential Energy Efficient Rebate Program (Arizona) Utility Rebate Program Yes

449

List of Methanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Methanol Incentives Methanol Incentives Jump to: navigation, search The following contains the list of 22 Methanol Incentives. CSV (rows 1 - 22) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol Methanol No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Biodiesel and Alcohol Fuel Blend Sales Tax Exemption (Washington) Sales Tax Incentive Washington Commercial Ethanol Methanol

450

Sales Tax Incentives | Open Energy Information  

Open Energy Info (EERE)

Sales Tax Incentives Sales Tax Incentives Jump to: navigation, search Sales tax incentives typically provide an exemption from the state sales tax (or sales and use tax) for the purchase of a renewable energy system, an energy-efficient appliance, or other energy efficiency measures. Several states have established an annual “sales tax holiday” for energy efficiency measures by allowing a temporary exemption – usually for one or two days – from the state sales tax. [1] Contents 1 Sales Tax Incentive Incentives 2 References Sales Tax Incentive Incentives CSV (rows 1 - 104) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Gross Receipts Tax Deduction (New Mexico) Sales Tax Incentive New Mexico Commercial Construction Installer/Contractor

451

Maine/Incentives | Open Energy Information  

Open Energy Info (EERE)

Maine/Incentives Maine/Incentives < Maine Jump to: navigation, search Contents 1 Financial Incentive Programs for Maine 2 Rules, Regulations and Policies for Maine Download All Financial Incentives and Policies for Maine CSV (rows 1 - 91) Financial Incentive Programs for Maine Download Financial Incentives for Maine CSV (rows 1 - 25) Incentive Incentive Type Active Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) Performance-Based Incentive Yes Efficiency Maine - Home Appliance Rebate Program (Maine) State Rebate Program No Efficiency Maine - Home Energy Savings Program (Maine) State Rebate Program No Efficiency Maine - Replacement Heating Equipment Program (Maine) State Rebate Program No

452

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Montana-based ethanol producers are eligible for a tax incentive of $0.20 per gallon of ethanol produced solely from Montana agricultural products or

453

Iowa/Incentives | Open Energy Information  

Open Energy Info (EERE)

Iowa/Incentives Iowa/Incentives < Iowa Jump to: navigation, search Contents 1 Financial Incentive Programs for Iowa 2 Rules, Regulations and Policies for Iowa Download All Financial Incentives and Policies for Iowa CSV (rows 1 - 173) Financial Incentive Programs for Iowa Download Financial Incentives for Iowa CSV (rows 1 - 86) Incentive Incentive Type Active Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs (Iowa) Utility Rebate Program Yes Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Program (Iowa) Utility Rebate Program Yes Alliant Energy Interstate Power and Light (Gas and Electric) - New Home Construction Incentives (Iowa) Utility Rebate Program Yes Alliant Energy Interstate Power and Light (Gas and Electric) - Farm Equipment Energy Efficiency Incentives (Iowa) Utility Rebate Program Yes

454

North Dakota/Incentives | Open Energy Information  

Open Energy Info (EERE)

North Dakota/Incentives North Dakota/Incentives < North Dakota Jump to: navigation, search Contents 1 Financial Incentive Programs for North Dakota 2 Rules, Regulations and Policies for North Dakota Download All Financial Incentives and Policies for North Dakota CSV (rows 1 - 72) Financial Incentive Programs for North Dakota Download Financial Incentives for North Dakota CSV (rows 1 - 23) Incentive Incentive Type Active Biodiesel Production Equipment Tax Credits (North Dakota) Corporate Tax Credit No Business Energy Efficiency Rebates (Offered by 5 Utilities) (North Dakota) Utility Rebate Program Yes Cass County Electric Cooperative - Residential Energy-Efficiency Loan Program (North Dakota) Utility Loan Program No Ethanol Production Incentive (North Dakota) Performance-Based Incentive No

455

Hawaii/Incentives | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Incentives Hawaii/Incentives < Hawaii Jump to: navigation, search Contents 1 Financial Incentive Programs for Hawaii 2 Rules, Regulations and Policies for Hawaii Download All Financial Incentives and Policies for Hawaii CSV (rows 1 - 48) Financial Incentive Programs for Hawaii Download Financial Incentives for Hawaii CSV (rows 1 - 32) Incentive Incentive Type Active Alcohol Fuels Exemption (Hawaii) Sales Tax Incentive No Capital Goods Excise Tax Credit (Hawaii) Corporate Tax Credit No City and County of Honolulu - Real Property Tax Exemption for Alternative Energy Improvements (Hawaii) Property Tax Incentive Yes City and County of Honolulu - Solar Loan Program (Hawaii) Local Loan Program Yes Commercial Energy Efficiency Rebate Program (Hawaii) State Rebate Program Yes

456

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Ethanol Production Incentive provides qualified ethanol producers with quarterly payments based on production volume during times when ethanol

457

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Missouri Department of Agriculture manages the Missouri Ethanol Producer Incentive Fund (Fund), which provides monthly grants to qualified

458

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Qualified ethanol producers are eligible for a production incentive payable from the Kansas Qualified Agricultural Ethyl Alcohol Producer Fund. An

459

Profit incentives and technological change  

E-Print Network (OSTI)

This thesis is a collection of three empirical essays on the effect of profit incentives on innovation and technology adoption. Chapter 1, written with Daron Acemoglu, investigates the effect of (potential) market size on ...

Linn, Joshua

2005-01-01T23:59:59.000Z

460

Regulatory incentives and prudence reviews  

Science Conference Proceedings (OSTI)

During the past several years, numerous large prudence case disallowances have occurred throughout the United States. Many of these cases concerned the construction of large nuclear facilities. Disallowances occurred despite the presence of incentive mechanisms that were used by various state public utility commissions. The regulatory model used during that period assumed that incentives were useful. Incentives were often viewed, however, as an exploratory exercise that might provide benefits. Still, the real mechanism used to protect ratepayers was the classical prudence case. And, as we saw during the 1980s, such cases were frequently used to prohibit utilities from passing unreasonable costs on to ratepayers. To avoid the system breakdowns and the resulting prudence cases, utilities and regulators must develop incentives that affect utilities' behavior to provide an optimal level of safe and adequate service at the lowest reasonable cost. If the incentives are simply viewed as an exotic regulatory mechanism, without being properly understood and implemented from an operational perspective at the utilities, they may not produce the desired outcome. In some instances they may be irrelevant to the final result. Several relatively new incentive mechanisms are promising. These include incentives that provide utilities with increased profits for implementing good customer-service programs or for achieving good performance in demand-side management (DSM) programs. Those incentives usually link a monetary reward or penalty in the form of a change to the earned rate of return to specific actions, such as the customer complaint rate for the utility or its success in installing certain DSM devices. These are promising because they relate to discrete events that can be easily understood by utility management and measured by regulators.

Bronner, K.M.

1993-12-01T23:59:59.000Z