Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

2

Green Systems Solar Hot Water  

E-Print Network [OSTI]

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

Schladow, S. Geoffrey

3

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

Gas-fired Storage Water Heater .. 418 Assess California’s Small Gas Storage Water Heaters Small Gas Storage Water Heater Market The objective of

Lutz, Jim

2012-01-01T23:59:59.000Z

4

Hot Gas Halos in Galaxies  

SciTech Connect (OSTI)

We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

2010-06-08T23:59:59.000Z

5

Arnold Schwarzenegger WATER HEATERS AND HOT WATER  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

6

Tankless Gas Water Heater Performance - Building America Top...  

Energy Savers [EERE]

Tankless Gas Water Heater Performance - Building America Top Innovation Tankless Gas Water Heater Performance - Building America Top Innovation This photo shows a hot water heater...

7

Assessment of hot gas contaminant control  

SciTech Connect (OSTI)

The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

1996-12-31T23:59:59.000Z

8

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

Matthew R. June; John L. Hurley; Mark W. Johnson

1999-04-01T23:59:59.000Z

9

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

heat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculationsheat loss testing; part load performance curves for instantaneous gas water heaters; and pressure loss calculations

Lutz, Jim

2012-01-01T23:59:59.000Z

10

Modern hot water district heating  

SciTech Connect (OSTI)

The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

1984-06-01T23:59:59.000Z

11

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

E.S. Connolly; G.D. Forsythe

2000-09-30T23:59:59.000Z

12

Ceramic hot-gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

1999-01-01T23:59:59.000Z

13

Ceramic hot-gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

1999-05-11T23:59:59.000Z

14

Alternatives for reducing hot-water bills  

SciTech Connect (OSTI)

A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

Bennington, G.E.; Spewak, P.C.

1981-06-01T23:59:59.000Z

15

Stratification in hot water tanks  

SciTech Connect (OSTI)

Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

Balcomb, J.D.

1982-04-01T23:59:59.000Z

16

Solar Hot Water Market Development in Knoxville, TN | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Solar Hot Water Market Development in Knoxville, TN Solar Hot Water Market Development in Knoxville, TN Assessment of local solar hot water markets, market...

17

Solar Works in Seattle: Domestic Hot Water  

Broader source: Energy.gov [DOE]

Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

18

High temperature hot water distribution system study  

SciTech Connect (OSTI)

The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

NONE

1996-12-01T23:59:59.000Z

19

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

20

Hot gas filter and system assembly  

DOE Patents [OSTI]

A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

1999-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect (OSTI)

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 °C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

22

Are we putting in hot water?  

E-Print Network [OSTI]

, and habitat loss will increase. And while slightly warmer water may not sound so bad to many of us, its effectAre we putting our fish in hot water? Global warming and the world's fisheries · Hot, hungry, and gasping for air · Shrinking fish and fewer babies? · Global warming puts fish on the run · Warm water

Combes, Stacey A.

23

Monitoring SERC Technologies — Solar Hot Water  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

24

Solar Hot Water Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

25

Multi-cylinder hot gas engine  

DOE Patents [OSTI]

A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

Corey, John A. (North Troy, NY)

1985-01-01T23:59:59.000Z

26

Disaggregating residential hot water use. Part 2  

SciTech Connect (OSTI)

A major obstacle to gathering detailed data on end-use hot water consumption within residences and commercial buildings is the cost and complexity of the field tests. An earlier study by the authors presented a methodology that could accurately disaggregate hot water consumption into individual end-uses using only information on the flow of hot water from the water heater. The earlier methodology can be extended to a much larger population of buildings, without greatly increasing the cost and complexity of the data collection and analysis, by monitoring the temperature of the hot water lines that go to different parts of the building. For the three residences studied here, thermocouples /monitored the temperatures of four hot water lines at each site. The thermocouple readings provide a positive indication of when hot water starts to flow in a line. Since the end-uses served by each hot water line are known, the uncertainty in assigning a draw to a particular end-use is greatly reduced. Benefits and limitations for the methodology are discussed in the paper. Using the revised methodology, hot water usage in three residences is disaggregated into the following end-uses: showers, baths, clothes washing, dishwashing, kitchen sink, and bathroom sink. For two residences, the earlier methodology--which does not use the thermocouple data--is also used to disaggregate the same draw data.

Lowenstein, A. [AIL Research, Inc., Princeton, NJ (United States); Hiller, C.C. [Electric Power Research Inst., Palo Alto, CA (United States)

1998-10-01T23:59:59.000Z

27

Multiple volume compressor for hot gas engine  

DOE Patents [OSTI]

A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

28

Control apparatus for hot gas engine  

DOE Patents [OSTI]

A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

Stotts, Robert E. (Clifton Park, NY)

1986-01-01T23:59:59.000Z

29

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan  

E-Print Network [OSTI]

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

Whitehouse, Kamin

30

Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes  

SciTech Connect (OSTI)

While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

Henderson, H.; Wade, J.

2014-04-01T23:59:59.000Z

31

Durable zinc ferrite sorbent pellets for hot coal gas desulfurization  

DOE Patents [OSTI]

Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

Jha, Mahesh C. (Arvada, CO); Blandon, Antonio E. (Thornton, CO); Hepworth, Malcolm T. (Edina, MN)

1988-01-01T23:59:59.000Z

32

Model Simulating Real Domestic Hot Water Use - Building America...  

Energy Savers [EERE]

Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

33

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...  

Energy Savers [EERE]

Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

34

The Chilled Water and Hot Water Building Differential Pressure Setpoint Calculation - Chilled Water and Hot Water Pump Speed Control  

E-Print Network [OSTI]

A&M University College Station, TX ABSTRACT More and more variable frequency devices (VFD) are being installed on the chilled water and hot water pumps on the TAMU campus. Those pump speeds are varied to maintain chilled water... and the rest 46 buildings are located on the west campus. More and more variable frequency devices (VFD) are installed on chilled water and hot water pumps. The variable speed pump has reduced the over-pressuring of water systems and reduced pump...

Turner, W. D.; Bruner, H., Jr.; Claridge, D.; Liu, C.; Deng, S.

2002-01-01T23:59:59.000Z

35

Continuous Commissioning of a Central Chilled Water & Hot Water System  

E-Print Network [OSTI]

the campus loops and the building loops. Some optimization of the plant chiller 1 boiler operation is also necessary and beneficial. In general, through Continuous Commissioning, chilled water and hot water loop temperature differences will be improved...

Deng, S.; Turner, W. D.; Batten, T.; Liu, M.

2000-01-01T23:59:59.000Z

36

Particulate hot gas stream cleanup technical issues  

SciTech Connect (OSTI)

The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

Pontius, D.H.; Snyder, T.R.

1999-09-30T23:59:59.000Z

37

STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)  

E-Print Network [OSTI]

,000 Btu/hr), electric resistance and heat pump water heaters, list Energy Factor (EF). For large gas storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal Efficiency, Standby Loss and Rated Input. For instantaneous gas water heaters, list the Thermal Efficiency

38

Water Heaters and Hot Water Distribution Systems  

E-Print Network [OSTI]

24 Figure 7. Comparison of Daily Water Heater28 Figure 8. Monitored Field Efficiency of Tankless Water28 Figure 9. Monitored Lab Efficiency of Tankless Water

Lutz, Jim

2012-01-01T23:59:59.000Z

39

"Hot Water" in Lassen Volcanic National Park--Fumaroles, Steaming Ground, and Boiling Mudpots  

E-Print Network [OSTI]

"Hot Water" in Lassen Volcanic National Park-- Fumaroles, Steaming Ground, and Boiling Mudpots U, ydrothermal (hot water) and steaming ground. These features are re- lated to active volcanism, the largest fumarole (steam and volcanic-gas vent) in the park. The temperature of the high-velocity steam

Torgersen, Christian

40

Hot Water Heating System Operation and Energy Conservation  

E-Print Network [OSTI]

Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

Shao, Z.; Chen, H.; Wei, P.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hot gas path component cooling system  

DOE Patents [OSTI]

A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

2014-02-18T23:59:59.000Z

42

Process for making ceramic hot gas filter  

DOE Patents [OSTI]

A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

2001-01-01T23:59:59.000Z

43

Ceramic oxide composite hot gas filters  

SciTech Connect (OSTI)

This paper describes the development and testing of continuous fiber ceramic composites (CFCC) based hot gas filters. The work was divided into three primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of the first task were then used to identify the most promising compositions for sub-scale fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to assess the thermo-chemical stability of the CFCC materials. The results of this testing were used to down-select the filter composition for full-scale filter fabrication and testing in the third phase of the program.

Wagner, R.A.; Weitzel, P. [Babcock and Wilcox, Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

44

Westinghouse hot gas particle filter system  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycles (IGCC) and Pressurized Circulating Fluidized Bed Cycles (PCFB) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPF) are key components for the successful implementation of IGCC and PCFB in power generation gas turbine cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6000 hours of HGPF testing completed; A summary of approximately 3200 hours of HGPF testing at the Foster Wheeler (FW) 10 MW{sub e} facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MW{sub e} topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

Lippert, T.E.; Bruck, G.J.; Newby, R.A.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Debski, V.L.; Morehead, H.T. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit

1997-12-31T23:59:59.000Z

45

Hot water bitumen extraction process  

SciTech Connect (OSTI)

This patent describes a method of extracting bitumen oils from tar-sands ore. It includes an initial conditioning step comprising crushing tar-sands ore to yield solid particles of a maximum size required by a log washer conditioner in a second conditioning step; a bitumen extraction step; a bitumen separation step; a solvent recovery step; a sand washing and water clarification step; and a sand solvent recovery step.

Rendall, J.S.

1989-10-24T23:59:59.000Z

46

HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES  

SciTech Connect (OSTI)

We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L {sub X}-L {sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L {sub K} {approx_lt} L {sub *} suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L {sub K} {approx_lt} L {sub *} galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

Mulchaey, John S. [Observatories of the Carnegie Institution of Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Jeltema, Tesla E., E-mail: mulchaey@obs.carnegiescience.ed, E-mail: tesla@ucolick.or [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States)

2010-05-20T23:59:59.000Z

47

Solar Hot Water Creates Savings for Homeless Shelters | Department...  

Broader source: Energy.gov (indexed) [DOE]

Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts?...

48

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...  

Energy Savers [EERE]

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4?...

49

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW)  

E-Print Network [OSTI]

STATE OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-02 Solar Domestic Hot Water Systems (SDHW OF CALIFORNIA SOLAR DOMESTIC HOT WATER SYSTEMS (SDHW) CEC- CF-6R-MECH-02 (Revised 08/09) CALIFORNIA ENERGY

50

Hot gas particle filter systems: Commercialization status  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycles (IGCCs) and Pressurized Circulating Fluidized Bed Cycles (PCFBs) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPFs) are key components for the successful implementation of advanced IGCC and PCFB power generation cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6,000 hours of HGPF testing completed; A summary of approximately 3,200 hours of HGPF testing at the Foster Wheeler (FW) 10 MWe PCFB facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MWe topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

Morehead, H.T.; Adams, V.L. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit; Yang, W.C.; Lippert, T.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1997-12-31T23:59:59.000Z

51

METC hot gas desulfurization program overview  

SciTech Connect (OSTI)

This overview provides a frame of reference for the Morgantown Energy Technology Center`s (METC`S) on-going hot gas desulfurization research. Although there are several methods to separate contaminant gases from fuel gases, that method receiving primary development is absorption through the use of metal oxides. Research into high-temperature and high-pressure control of sulfur species includes primarily those sorbents made of mixed-metal oxides, which offer the advantages of regenerability. These are predominantly composed of zinc and are made into media that can be utilized in reactors of either fixed-bed, moving-bed, fluidized-bed, or transport configurations. Zinc Ferrite (ZnO-Fe{sub 2}O{sub 3}), Zinc Titanate (ZnO-TiO{sub 2}), Z-SORP{reg_sign}, and METC-2/METC-6 are the current mixed-metal sorbents being investigated. The METC desulfurization program is composed of three major components: bench-scale research, pilot-plant operation, and demonstration that is a portion of the Clean Coal Demonstration projects.

Cicero, D.C.

1994-10-01T23:59:59.000Z

52

Validation of a Hot Water Distribution Model Using Laboratory and Field Data  

SciTech Connect (OSTI)

Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

Backman, C.; Hoeschele, M.

2013-07-01T23:59:59.000Z

53

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

residential gas-fired storage water heater was modeled underin a typical residential storage water heater that meets thereplace a gas-fired storage water heater with a conventional

Biermayer, Peter

2012-01-01T23:59:59.000Z

54

Hot water can freeze faster than cold?!?  

E-Print Network [OSTI]

We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

Monwhea Jeng

2005-12-29T23:59:59.000Z

55

Power control system for a hot gas engine  

DOE Patents [OSTI]

A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

Berntell, John O. (Staffanstorp, SE)

1986-01-01T23:59:59.000Z

56

Solar Hot Water Heater Industry in Barbados  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliability |WindowsSolarSolarSolar Hot Water

57

ON THE HOT GAS CONTENT OF THE MILKY WAY HALO  

SciTech Connect (OSTI)

The Milky Way appears to be missing baryons, as the observed mass in stars and gas is well below the cosmic mean. One possibility is that a substantial fraction of the Galaxy's baryons are embedded within an extended, million-degree hot halo, an idea supported indirectly by observations of warm gas clouds in the halo and gas-free dwarf spheroidal satellites. X-ray observations have established that hot gas does exist in our Galaxy beyond the local hot bubble; however, it may be distributed in a hot disk configuration. Moreover, recent investigations into the X-ray constraints have suggested that any Galactic corona must be insignificant. Here we re-examine the observational data, particularly in the X-ray and radio bands, in order to determine whether it is possible for a substantial fraction of the Galaxy's baryons to exist in {approx}10{sup 6} K gas. In agreement with past studies, we find that a baryonically closed halo is clearly ruled out if one assumes that the hot corona is distributed with a cuspy Navarro-Frenk-White profile. However, if the hot corona of the galaxy is in an extended, low-density distribution with a large central core, as expected for an adiabatic gas in hydrostatic equilibrium, then it may contain up to 10{sup 11} M {sub Sun} of material, possibly accounting for all of the missing Galactic baryons. We briefly discuss some potential avenues for discriminating between a massive, extended hot halo and a local hot disk.

Fang, Taotao [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China)] [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005 (China); Bullock, James; Boylan-Kolchin, Michael [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States)] [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697 (United States)

2013-01-01T23:59:59.000Z

58

Design package for solar domestic hot water system  

SciTech Connect (OSTI)

Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

None

1980-09-01T23:59:59.000Z

59

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

E-Print Network [OSTI]

gas or electric storage water heaters. The goal was to helpa demand and a storage water heater. For each case ofof natural gas storage and tankless water heaters 24 water

Lutz, Jim

2014-01-01T23:59:59.000Z

60

Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mandating Solar Hot Water by California Local Governments: Legal Issues  

E-Print Network [OSTI]

the legality of solar mandates in California cities andCITIES & CALIFORNIA ENERGY COMMISSION, SOLAR HANDBOOK FORMandating Solar Hot Water By California Local Governments:

Hoffman,, Peter C.

1981-01-01T23:59:59.000Z

62

Interpretation of Water Sample Analysis, Waunita Hot Spring Project...  

Open Energy Info (EERE)

R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

63

The density profiles of hot galactic halo gas  

E-Print Network [OSTI]

Extended gas haloes around galaxies are a ubiquitous prediction of galaxy formation scenarios. However, the density profiles of this hot halo gas is virtually unknown, although various profiles have been suggested on theoretical grounds. In order to quantitatively address the gas profile, we compare galaxies from direct cosmological simulations with analytical solutions of the underlying gas equations. We find remarkable agreement between simulations and theoretical predictions. We present an expression for this gas profile with a non-trivial dependence on the total mass profile. This expression is useful when setting up equilibrium galaxy models for numerical experiments.

Steen H. Hansen; Jesper Sommer-Larsen

2006-06-13T23:59:59.000Z

64

Analysis Model for Domestic Hot Water Distribution Systems: Preprint  

SciTech Connect (OSTI)

A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

Maguire, J.; Krarti, M.; Fang, X.

2011-11-01T23:59:59.000Z

65

Hot gas cross flow filtering module  

DOE Patents [OSTI]

A filter module for use in filtering particulates from a high temperature gas has a central gas duct and at least one horizontally extending support mount affixed to the duct. The support mount supports a filter element thereon and has a chamber therein, which communicates with an inner space of the duct through an opening in the wall of the duct, and which communicates with the clean gas face of the filter element. The filter element is secured to the support mount over an opening in the top wall of the support mount, with releasable securement provided to enable replacement of the filter element when desired. Ceramic springs may be used in connection with the filter module either to secure a filter element to a support mount or to prevent delamination of the filter element during blowback.

Lippert, Thomas E. (Murrysville Boro, PA); Ciliberti, David F. (Murrysville Boro, PA)

1988-01-01T23:59:59.000Z

66

Method of coverning the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.-H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

67

Method of governing the working gas temperature of a solar heated hot gas engine  

SciTech Connect (OSTI)

A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

Almstrom, S.H.; Nelving, H.G.

1984-07-03T23:59:59.000Z

68

Shear Viscosity of a Hot Pion Gas  

E-Print Network [OSTI]

The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in $g\\phi^4$ theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity $\\eta$ is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well-conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio $\\eta/s$ of the interacting pion gas exceeds the lower bound $1/4\\pi$ from AdS/CFT correspondence.

Robert Lang; Norbert Kaiser; Wolfram Weise

2012-09-04T23:59:59.000Z

69

Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint  

SciTech Connect (OSTI)

The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

Hendron, B.; Burch, J.; Barker, G.

2010-08-01T23:59:59.000Z

70

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC Ceramic DPF Hot Gas Filtration of Fine and Ultra fine Particles with Liquid Phase Sintered SiC...

71

Sorbent for use in hot gas desulfurization  

DOE Patents [OSTI]

A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

Gasper-Galvin, Lee D. (Washington, PA); Atimtay, Aysel T. (Cankaya, TR)

1993-01-01T23:59:59.000Z

72

Hot Spot Conditions during Cavitation in Water Yuri T. Didenko,  

E-Print Network [OSTI]

Hot Spot Conditions during Cavitation in Water Yuri T. Didenko, William B. McNamara III-13 the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants

Suslick, Kenneth S.

73

Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems  

SciTech Connect (OSTI)

The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

Not Available

1990-12-01T23:59:59.000Z

74

DOE Zero Energy Ready Home Efficient Hot Water Distribution I...  

Broader source: Energy.gov (indexed) [DOE]

I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

75

DOE Zero Energy Ready Home Efficient Hot Water Distribution II...  

Broader source: Energy.gov (indexed) [DOE]

-- How to Get it Right Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution II -- How to Get it Right Webinar (Text Version) Below is the text...

76

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to...  

Broader source: Energy.gov (indexed) [DOE]

II: How to Get it Right DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right Watch the video or view the presentation slides below Zero Energy Ready Homes...

77

A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings  

E-Print Network [OSTI]

energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

Yamaha, M.; Fujita, M.; Miyoshi, T.

2006-01-01T23:59:59.000Z

78

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

SciTech Connect (OSTI)

There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

Lutz, Jim; Melody, Moya

2012-11-08T23:59:59.000Z

79

Apparatus for hot-gas desulfurization of fuel gases  

DOE Patents [OSTI]

An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

Bissett, Larry A. (Morgantown, WV)

1992-01-01T23:59:59.000Z

80

Modeling patterns of hot water use in households  

SciTech Connect (OSTI)

This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling patterns of hot water use in households  

SciTech Connect (OSTI)

This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

Lutz, J.D.; Liu, Xiaomin; McMahon, J.E. [and others

1996-11-01T23:59:59.000Z

82

Development of NDE methods for hot gas filters.  

SciTech Connect (OSTI)

Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in this project is aimed at developing nondestructive evaluation (FIDE) technology to allow detection, and determination of extent, of life-limiting characteristics such as thermal fatigue, oxidation, damage from ash bridging such as localized cracking, damage from local burning, and elongation at elevated temperature. Although in-situ NDE methods are desirable in order to avoid disassembly of the candle filter vessels, the current vessel designs, the presence of filter cakes and possible ash bridging, and the state of NDE technology prevent this. Candle filter producers use a variety of NDE methods to ensure as-produced quality. While impact acoustic resonance offers initial promise for examining new as-produced filters and for detecting damage in some monolithic filters when removed from service, it presents difficulties in data interpretation, it lacks localization capability, and its applicability to composites has yet to be demonstrated. Additional NDE technologies being developed and evaluated in this program and whose applicability to both monolithics and composites has been demonstrated include (a) full-scale thermal imaging for analyzing thermal property variations; (b) fret, high-spatial-resolution X-ray imaging for detecting density variations and dimensional changes; (c) air-coupled ultrasonic methods for determining through-thickness compositional variations; and (d) acoustic emission technology with mechanical loading for detecting localized bulk damage. New and exposed clay-bonded SiC filters and CVI-SiC composite filters have been tested with these additional NDE methods.

Deemer, C.; Ellingson, W. A.; Koehl, E. R.; Lee, H.; Spohnholtz, T.; Sun, J. G.

1999-07-21T23:59:59.000Z

83

Sealing system for piston rod of hot gas engine  

SciTech Connect (OSTI)

An improvement to a sealing system for restricting fluid flow around a piston rod between a piston cylinder and crankshaft space in a hot gas engine where a seal element is secured around the piston rod in an intermediate chamber, the improvement including a link in the crankshaft space connecting, and permitting relative radial motion between, the piston rod and the crosshead and an o-ring having a diameter substantially greater than that of the piston rod and being secured between a lower ring securing the seal element in place around the piston rod and a wall of the intermediate chamber for frictionally restricting radial movement of the lower ring.

Lundholm, S.G.; Ringqvist, S.A.

1980-11-25T23:59:59.000Z

84

Hot gas path analysis and data evaluation of the performance parameters of a gas turbine  

E-Print Network [OSTI]

SCIENCE December 1974 Major Subject: Mechanical Engineering HOT GAS PATH ANALYSIS AND DATA EVALUATION OF THE PERFORMANCE PARAMETERS OF A GAS TURBINE A Thesis by DAVID AI, LEN HANAWA Approved as to style and content by: PfnA J 7 EY3 .j (Chairman... of -Committee) zr (Head of Depai'tment) Member) /i ~E" Egg(JQJ a g i (Member) (Member) December l974 ABSTRACT Ho Gas Path Ana'ysis and Data Evaluation o. the Performance Parameters of a Gas Turbine (December 1974) David Allen Hanawa, B. S. , Texas A...

Hanawa, David Allen

1974-01-01T23:59:59.000Z

85

Novel oxide-oxide fiber reinforced hot gas filter development  

SciTech Connect (OSTI)

The objective of this program is to fabricate and test oxide fiber reinforced composite hot gas filter elements for advanced power generation systems. The level of mechanical durability exhibited by the currently available filters in field tests indicates that more rugged filters are required to meet the demands of large power generation systems. Furthermore, long term corrosion resistance of currently available filters has yet to be demonstrated in PFBC systems. The essential requirements of a composite material designed to meet the program objective for a toughened hot gas filter include the following: Stable continuous fiber; rigid porous matrix; engineered fiber-matrix interface; and cost effectiveness. Based on properties, availability, and cost, Mitsui`s ALMAX alumina fiber and 3M`s NEXTEL 610 alumina fiber were selected as the oxide reinforcement fibers. In order to meet the economic goals of the program it is essential that the cost and amount of continuous fiber be minimized. A four axis filament winder will be used to fabricate filter Preforms in a variety of fiber architectures. Carbon was used as the initial fiber coating because it was known to be resistant to the Processing chemicals. The coating was produced by pyrolysis of the resin based sizings on the continuous fibers. The matrix of the composite filter is comprised of chopped ceramic fiber. Saffil fiber was used for all compositions in this program.

Wagner, R.A.

1995-12-01T23:59:59.000Z

86

Lessons and Measures Learned from Continuous Commissioning(SM) of Central Chilled/Hot Water Systems  

E-Print Network [OSTI]

water and hot water system operation. It can be performed before, during, or after building side continuous commissioning. Successful central chilled/hot water system CC not only results in improved production and distribution, but also achieves...

Deng, S.; Turner, W. D.; Claridge, D. E.; Bruner, H.; Chen, H.; Wei, G.

2001-01-01T23:59:59.000Z

87

natural gas+ condensing flue gas heat recovery+ water creation...  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

88

CPS Energy- Solar Hot Water Rebate Program  

Broader source: Energy.gov [DOE]

As part of a larger program designed to reduce electricity demand within its service territory, CPS Energy now offers rebates for solar water heaters to its customers. In general, any CPS Energy...

89

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

SciTech Connect (OSTI)

Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union?s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory?s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

2008-08-13T23:59:59.000Z

90

High temperature hot water systems: A primer  

SciTech Connect (OSTI)

The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

1998-01-01T23:59:59.000Z

91

AGN-stimulated Cooling of Hot Gas in Elliptical Galaxies  

E-Print Network [OSTI]

We study the impact of relatively weak AGN feedback on the interstellar medium of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 10$^4$ and $\\gtrsim$ 5 $\\times$ 10$^7$ M$_\\odot$, where the latter value is appropriate for group centered, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies $t_{cool}/t_{ff} \\lesssim 70$, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-center cold gas vary irregularly with time. The cold ISM v...

Valentini, Milena

2015-01-01T23:59:59.000Z

92

Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents [OSTI]

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

Grindley, Thomas (Morgantown, WV)

1989-01-01T23:59:59.000Z

93

Development of ceramic composite hot-gas filters  

SciTech Connect (OSTI)

A novel type of hot-gas filter based on a ceramic fiber-reinforced ceramic matrix was developed and extended to fullsize, 60-mm OD by 1.5-meter-long, candle filters. A commercially viable process for producing the filters was developed, and the filters are undergoing testing and demonstration throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Development activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company, and testing at the Westinghouse Science and Technology Center (STC) are presented. Demonstration tests at the Tidd PFBC are underway. Issues identified during the testing and demonstration phases of the development are discussed. Resolution of the issues and the status of commercialization of the filters are described.

Judkins, R.R.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Smith, R.G.; Fischer, E.M.; Eaton, J.H.; Weaver, B.L.; Kahnke, J.L.; Pysher, D.J. [3M Co., St. Paul, MN (United States)

1995-04-01T23:59:59.000Z

94

Novel Oxide-Oxide Fiber Reinforced Hot Gas Filter Development  

SciTech Connect (OSTI)

This report describes the fabrication and testing of continuous fiber ceramic composites (CFCC) based hot gas filters. The work was divided into two primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of the first task were then used to identify the most promising compositions for sub-scale fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to assess the thermo-chemical stability of the CFCC materials. The results of this testing were then used to down-select the filter composition for full-scale filter fabrication and testing in the optional Phase II of the program.

Wagner, R.A. [Babcock and Wilcox Co., Lynchburg, VA (United States)

1996-12-31T23:59:59.000Z

95

Hot coal gas desulfurization with manganese-based sorbents  

SciTech Connect (OSTI)

The primary major deposit of manganese in the US which can be readily mined by an in situ process is located in the Emily district of Minnesota. The US Bureau of Mines Research Centers at both the Twin Cities and Salt Lake City have developed a process for extracting and refining manganese in the form of a high-purity carbonate product. This product has been formulated into pellets by a multi-step process of drying, calcination, and induration to produce relatively high-strength formulations which are capable of being used for hot fuel gas desulfurization. These pellets, which have been developed at the University of Minnesota under joint sponsorship of the US Department of Energy and the US Bureau of Mines, appear superior to other, more expensive, formulations of zinc titanate and zinc ferrite which have previously been studied for multi-cycle loading (desulfurization) and regeneration (evolution of high-strength SO{sub 2} and restoration of pellet reactivity). Although these other formulations have been under development for the past twelve years, their prices still exceed $7 per pound. If manganese pellets perform as predicted in fixed bed testing, and if a significant number of utilities which burn high-sulfur coals incorporate combined-cycle gasification with hot coal gas desulfurization as a viable means of increasing conversion efficiencies, then the potential market for manganese pellets may be as high as 200,000 tons per year at a price not less than $3 per pound. This paper discusses the role of manganese pellets in the desulfurization process with respect to the integrated gasification combined-cycle (IGCC) for power generation.

Hepworth, M.T.; Ben-Slimane, R.

1995-11-01T23:59:59.000Z

96

Performance Monitoring of Residential Hot Water Distribution Systems  

SciTech Connect (OSTI)

Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

2014-08-11T23:59:59.000Z

97

Pressurized water nuclear reactor system with hot leg vortex mitigator  

DOE Patents [OSTI]

A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

Lau, Louis K. S. (Monroeville, PA)

1990-01-01T23:59:59.000Z

98

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

99

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

K.C. Kwon

2002-01-01T23:59:59.000Z

100

Water Heating: Energy-efficient strategies for supplying hot water in the home (BTS Technology Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet for homeowners and contractors on how to supply hot water in the home while saving energy.

NAHB Research Center; Southface Energy Institute; U.S. Department of Energy's Oak Ridge Laboratory; U.S. Department of Energy's National Renewable Energy Laboratory

2001-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evaluation of Residential Hot Water Distribution Ssytems by Numeric Simulation  

SciTech Connect (OSTI)

The objective of this project was to evaluate the performance and economics of various domestic hot water distribution systems in representative California residences. While the greatest opportunities for improved efficiency occur in new construction, significant improvements can also be made in some existing distribution systems. Specific objectives of the project tasks were: (1) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to alternative new systems. (2) Simulate potential energy savings of, perform cost-benefit analyses of, and identify market barriers to maintenance, repair, and retrofit modifications of existing systems. (3) Evaluate potential impact of adopting alternative hot water distribution systems and report project findings. The outcome of this project is to provide homeowners, homebuilders, systems suppliers, municipal code officials and utility providers (both electric and water/sewer) with a neutral, independent, third party, cost-benefit analysis of alternative hot water distribution systems for use in California. The results will enable these stakeholders to make informed decisions regarding which system is most appropriate for use.

Wendt, ROBERT

2005-08-17T23:59:59.000Z

102

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

end use point, at the water heater in one second intervalsand monitoring at the water heater and hot water end uses.of water at the trunk (water heater) and twigs (individual

Lutz, Jim

2012-01-01T23:59:59.000Z

103

Overheating in Hot Water- and Steam-Heated Multifamily Buildings  

SciTech Connect (OSTI)

Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

Dentz, J.; Varshney, K.; Henderson, H.

2013-10-01T23:59:59.000Z

104

ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP  

SciTech Connect (OSTI)

The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high-temperature reactivity of CaO. Therefore, a sorbent prepared from dolomite withstands the effects of repeated sulfidation and regeneration better than one prepared from limestone. It was also determined that both the compressive strength and attrition resistance of core-in-shell pellets depend on shell thickness and that the compressive strength can be improved by reducing both the particle size and amount of limestone in the shell preparation mixture. A semiempirical model was also found which seems to adequately represent the absorption process. This model can be used for analyzing and predicting sorbent performance, and, therefore, it can provide guidance for any additional development which may be required. In conclusion, the overall objective of developing an economical, reusable, and practical material was largely achieved. The material appears suitable for removing CO{sub 2} from fuel combustion products as well as for desulfurizing hot coal gas.

T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

2003-09-01T23:59:59.000Z

105

Heating of Oil Well by Hot Water Circulation  

E-Print Network [OSTI]

When highly viscous oil is produced at low temperatures, large pressure drops will significantly decrease production rate. One of possible solutions to this problem is heating of oil well by hot water recycling. We construct and analyze a mathematical model of oil-well heating composed of three linear parabolic PDE coupled with one Volterra integral equation. Further on we construct numerical method for the model and present some simulation results.

Mladen Jurak; Zarko Prnic

2005-03-04T23:59:59.000Z

106

Design of a high temperature hot water central heating system  

SciTech Connect (OSTI)

The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

1981-11-01T23:59:59.000Z

107

Design manual for high temperature hot water and steam systems  

SciTech Connect (OSTI)

The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

Cofield, R.E. Jr.

1984-01-01T23:59:59.000Z

108

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

109

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network [OSTI]

in Residential Hot Water Heaters. Berkeley, CA: Lawrenceelectricity savings because gas hot water heaters are moreprevalent than electric water heaters in California. Bathing

Benenson, P.

2010-01-01T23:59:59.000Z

110

DOE ZERH Webinar: Efficient Hot Water Distribution II: How to Get it Right  

Broader source: Energy.gov [DOE]

Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance.  Hot water distribution is one of these critical systems – affecting energy use , water...

111

DOE ZERH Webinar: Efficient Hot Water Distribution I: What's at Stake  

Broader source: Energy.gov [DOE]

Zero Energy Ready Homes include critical systems to ensure both energy efficiency and performance.  Hot water distribution is one of these critical systems – affecting energy use , water...

112

Oil and Gas CDT Coupled flow of water and gas  

E-Print Network [OSTI]

Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

Henderson, Gideon

113

Fracture behavior of advanced ceramic hot gas filters: Final report  

SciTech Connect (OSTI)

This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

1997-03-01T23:59:59.000Z

114

Water augmented indirectly-fired gas turbine systems and method  

DOE Patents [OSTI]

An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

Bechtel, Thomas F. (Lebanon, PA); Parsons, Jr., Edward J. (Morgantown, WV)

1992-01-01T23:59:59.000Z

115

INVESTIGATING THE POTENTIAL DILUTION OF THE METAL CONTENT OF HOT GAS IN EARLY-TYPE GALAXIES BY ACCRETED COLD GAS  

SciTech Connect (OSTI)

The measured emission-weighted metal abundance of the hot gas in early-type galaxies has been known to be lower than theoretical expectations for 20 years. In addition, both X-ray luminosity and metal abundance vary significantly among galaxies of similar optical luminosities. This suggests some missing factors in the galaxy evolution process, especially the metal enrichment process. With Chandra and XMM-Newton, we studied 32 early-type galaxies (kT {approx}< 1 keV) covering a span of two orders of L{sub X,gas}/L{sub K} to investigate these missing factors. Contrary to previous studies that X-ray faint galaxies show extremely low Fe abundance ({approx}0.1 Z{sub Sun }), nearly all galaxies in our sample show an Fe abundance at least 0.3 Z{sub Sun }, although the measured Fe abundance difference between X-ray faint and X-ray bright galaxies remains remarkable. We investigated whether this dichotomy of hot gas Fe abundances can be related to the dilution of hot gas by mixing with cold gas. With a subset of 24 galaxies in this sample, we find that there is virtually no correlation between hot gas Fe abundances and their atomic gas content, which disproves the scenario that the low metal abundance of X-ray faint galaxies might be a result of the dilution of the remaining hot gas by pristine atomic gas. In contrast, we demonstrate a negative correlation between the measured hot gas Fe abundance and the ratio of molecular gas mass to hot gas mass, although it is unclear what is responsible for this apparent anti-correlation. We discuss several possibilities including that externally originated molecular gas might be able to dilute the hot gas metal content. Alternatively, the measured hot gas Fe abundance may be underestimated due to more complex temperature and abundance structures and even a two-temperature model might be insufficient to reflect the true value of the emission weighted mean Fe abundance.

Su, Yuanyuan; Irwin, Jimmy A., E-mail: ysu@crimson.ua.edu [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States)

2013-03-20T23:59:59.000Z

116

Modeling the Motion of a Hot, Turbulent Gas Nick Foster and Dimitris Metaxas  

E-Print Network [OSTI]

Modeling the Motion of a Hot, Turbulent Gas Nick Foster and Dimitris Metaxas Center for Human model gas motion due to fans and heat convection. The method combines specialized forms of the equations: Animation, Convection, Gaseous Phenomena, Gas Simulations, Physics-Based Modeling, Steam, Smoke, Turbulent

Frey, Pascal

117

Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D  

E-Print Network [OSTI]

Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D W. Zhou*, T. Z. Long and C. K ductility, and the HAZ was found to be the `weakest link'. Keywords: Magnesium alloy, AZ91D, TIG welding, Hot cracking, Liquation, Fracture Introduction Magnesium alloys have high strength/weight ratio

Zhou, Wei

118

Recovery of Water from Boiler Flue Gas  

SciTech Connect (OSTI)

This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

2008-09-30T23:59:59.000Z

119

E-Print Network 3.0 - advanced hot-gas desulfurization Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 28 Reproducedwith pennissionfrom ElsevierPergamon Biomass and Bioenerg..' Vol: 10, :os 2-3, pp..149-l66, 1996 Summary: at a commercialscale.. But hot-gas...

120

E-Print Network 3.0 - advanced hot-gas filter Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sonochemistry uses micrometer-sized hot gas bubbles isolated in a cold liquid.3 Spray pyrolysis,2b-d using... , with the size of the components usually on the micrometer scale or...

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP  

SciTech Connect (OSTI)

The overall objective of this project is the engineering development of a reusable calcium-based sorbent for desulfurizing hot coal gas. A two-step pelletization method has been employed to produce relatively strong, ''core-in-shell,'' spherical pellets. Each pellet consists of a highly reactive core surrounded by a strong, inert, porous shell. A suitable core is composed largely of CaO which reacts with H{sub 2}S to form CaS. Pellet cores have been prepared by pelletizing either pulverized limestone or plaster of Paris, and shells have been made of various materials. The most suitable shell material has been formed from a mixture of alumina and limestone particles. The core-in-shell pellets require treatment at high temperature to convert the core material to CaO and to partially sinter the shell material. Pellet cores derived from plaster of Paris have proved superior to those derived from limestone because they react more rapidly with H{sub 2}S and their reactivity does not seem to decline with repeated loading and regeneration. The rate of reaction of H{sub 2}S with CaO derived from either material is directly proportional to H{sub 2}S concentration. The rate of reaction does not appear to be affected significantly by temperature in the range of 1113 K (840 C) to 1193 K (920 C) but decreases markedly at 1233 K (960 C). The rate is not affected by shell thickness within the range tested, which also provides adequate compressive strength.

T.D. Wheelock; L.K. Doraiswamy; K. Constant

2001-06-30T23:59:59.000Z

122

Hot Coal Gas Desulfurization With Manganese-Based Sorbents  

SciTech Connect (OSTI)

The objective of this project is to develop a pellet formulation which is capable of achieving low sulfur partial pressures and a high capacity for sulfur, loaded from a hot fuel gas and which is readily regenerable. Furthermore the pellet must be strong for potential use in a fluidized and regenerable over many cycles of loading and regeneration. Regeneration should be in air or oxygen-depleted air to produce a high-concentration sulfur dioxide. Fixed-bed tests were conducted with several formulations of manganese sesquioxide and titania, and alumina. They were subject to a simplified fuel gas of the oxygen-blown Shell type spiked with a 30,000 ppmv concentration of H{sub 2}S. Pellet crush strengths for 4 and 2 mm diameter pellets was typically 12 lbs per pellet and 4 lbs per pellet, respectively. For the most favorable of the formulations tested and under the criteria of break-through at less than 100 ppmv H{sub 2}S and loading temperatures of 5000 {degrees}C and an empty-bed space velocity of 4, 000 per hour, breakthrough occurred an effective loading of sulfur of 27 to 29% over 5 loading and regeneration cycles. At 90% of this saturation condition, the observed level of H{sub 2}S was below 10 ppmv. For regeneration, a temperature of 9000 {degrees}C is required to dissociate the sulfide into sulfur dioxide using air at atmospheric pressure. The mean sulfur dioxide concentration which is achieved during regeneration is 8% with empty-bed space velocities of 700/hr. TGA tests on individual pellets indicate that bentonite is not desirable as a bonding material and that Mn/Ti ratios higher than 7:1 produce relatively non-porous pellets. Whereas the reactivity is rapid below 12% conversion, the kinetics of conversion decreased significantly above this level. This observation may be the result of plugging of the pellet pores with sulfided product creating inaccessible pore volumes or alternately an increase in diffusional resistance by formation of MnS.

Berns, J.J.; Hepworth, M.T. [Dept. of Civil Engineering, Univ. of Minnesota, Minneapolis, MN (United States)

1996-12-31T23:59:59.000Z

123

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network [OSTI]

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

124

Solar hot water system installed at Mobile, Alabama. Final report  

SciTech Connect (OSTI)

This final report describes the solar energy hot water system installed at LaQuinta Motor Inn Inc., at Mobile, Alabama. The building is a 122 unit motel. The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes. Engineering drawings, component specifications, and operator instructions are included.

None

1980-10-01T23:59:59.000Z

125

Reduce Hot Water Use for Energy Savings | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment ofManagementManagementReduce Hot Water Use for

126

Affordable Solar Hot Water and Power LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (CunniffAffinity WindHot Water

127

Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems  

SciTech Connect (OSTI)

Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

Nick Soelberg; Joe Enneking

2011-05-01T23:59:59.000Z

128

Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint  

SciTech Connect (OSTI)

In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

Burch, J.

2012-06-01T23:59:59.000Z

129

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

130

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

Study on Eco-Design of Water Heaters, Van Holstein en Kemnaon Eco-Design of Water Heaters”, Task 5 Report, DefinitionTesting of Tankless Gas Water Heater Performance. Davis

Lu, Alison

2011-01-01T23:59:59.000Z

131

Targeted removal of ant colonies in ecological experiments, using hot water  

E-Print Network [OSTI]

. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water fromTargeted removal of ant colonies in ecological experiments, using hot water Walter R. Tschinkela ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely

132

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

the CFR as being storage water heaters, instantaneous watersupply boilers. Storage water heater means a water heaterAppliance Gas storage water heaters Definition a water

Lutz, Jim

2012-01-01T23:59:59.000Z

133

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents [OSTI]

A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

1995-03-28T23:59:59.000Z

134

Partial oxidation process for producing a stream of hot purified gas  

DOE Patents [OSTI]

A partial oxidation process for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H.sub.2, CO, CO.sub.2, H.sub.2 O, CH.sub.4, NH.sub.3, HCl, HF, H.sub.2 S, COS, N.sub.2, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N.sub.2 and H.sub.2. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000.degree. F.

Leininger, Thomas F. (Chino Hills, CA); Robin, Allen M. (Anaheim, CA); Wolfenbarger, James K. (Torrance, CA); Suggitt, Robert M. (Wappingers Falls, NY)

1995-01-01T23:59:59.000Z

135

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

Input Screens SCREEN D1: WATER HEATER SPECIFICATIONS 1. Tankthe house. Supply pipe – this is the water heater inlet pipewith refills the water heater with cold water Note: The TANK

Biermayer, Peter

2012-01-01T23:59:59.000Z

136

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

NONE

1995-08-01T23:59:59.000Z

137

Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

NONE

1995-02-01T23:59:59.000Z

138

Feasibility study and roadmap to improve residential hot water distribution systems  

SciTech Connect (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

139

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network [OSTI]

gas or electric storage water heaters. The study’s goal washouses used a storage water heater. Without includinghouseholds which have storage water heaters, although this

Lutz, Jim

2012-01-01T23:59:59.000Z

140

Dynamic characteristics of gas-water interfacial plasma under water  

SciTech Connect (OSTI)

Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2012-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Commissioning the Domestic Hot Water System on a Large University Campus: A Case Study  

E-Print Network [OSTI]

was to investigate the causes of these problems and help determine how to best operate the system. It was found that reported problems of low flows, low temperatures and long hot water lag time resulted from reverse flows and no hot water circulation caused by: 1...

Chen, H.; Bensouda, N.; Claridge, D.; Bruner, H.

2004-01-01T23:59:59.000Z

142

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

143

Dynamics of microdroplets over the surface of hot water  

E-Print Network [OSTI]

When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 $\\mu\\,{\\rm m}$; ii) they levitate above the water surface by 10$\\sim$100 $\\mu{\\rm m}$; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1$\\sim$2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

Takahiro Umeki; Masahiko Ohata; Hiizu Nakanishi; Masatoshi Ichikawa

2015-01-03T23:59:59.000Z

144

Selecting a New Water Heater You have a lot to consider when selecting a  

E-Print Network [OSTI]

the water heater's annual operation costs but also its size and energy efficiency. Natural gas, oil or tank water heater operates by releasing hot water from the top of the tank when the hot water tap is turned on. The hot water is released into the hot water line. As the hot water leaves the tank, cold

145

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

of Natural Gas Tankless Water Heaters. Center for Energy andhot water from the water heater to each end-use locationMixed Temperature Water Water Heater Drain Indoor Boundary

Lutz, Jim

2012-01-01T23:59:59.000Z

146

Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier  

DOE Patents [OSTI]

A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

Grindley, T.

1988-04-05T23:59:59.000Z

147

Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter  

E-Print Network [OSTI]

The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within relativistic mean-field model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas phase transition. The boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry and the critical values of pressure and isospin asymmetry all of which systematically increase with increasing softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas mixed phase exists is found higher for a softer symmetry energy.

Bharat K. Sharma; Subrata Pal

2010-01-14T23:59:59.000Z

148

Covered Product Category: Residential Gas Storage Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Water Heaters Covered Product Category: Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for gas storage...

149

A Reusable Calcium-Based Sorbent for Desulfurizing Hot Coal Gas  

SciTech Connect (OSTI)

The overall objective of this project has been to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas. The sorbent should be strong, durable, inexpensive to manufacture, and capable of being reused many times. To achieve these objectives the project has focused on the development of the very promising core-in-shell sorbent.

Wheelock, T.D.; Hasler, D.J.L.

2002-09-19T23:59:59.000Z

150

Electromagnetic fields and transport coefficients in a hot pion gas  

E-Print Network [OSTI]

We present recent results on finite temperature electromagnetic form factors and the electrical conductivity in a pion gas. The standard Chiral Perturbation Theory power counting needs to be modified for transport coefficients. We pay special attention to unitarity and to possible applications for dilepton and photon production.

A. Gomez Nicola; D. Fernandez-Fraile

2006-08-24T23:59:59.000Z

151

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

152

HOT GAS HALOS AROUND DISK GALAXIES: CONFRONTING COSMOLOGICAL SIMULATIONS WITH OBSERVATIONS  

SciTech Connect (OSTI)

Models of disk galaxy formation commonly predict the existence of an extended reservoir of accreted hot gas surrounding massive spirals at low redshift. As a test of these models, we use X-ray and H{alpha} data of the two massive, quiescent edge-on spirals NGC 5746 and NGC 5170 to investigate the amount and origin of any hot gas in their halos. Contrary to our earlier claim, the Chandra analysis of NGC 5746, employing more recent calibration data, does not reveal any significant evidence for diffuse X-ray emission outside the optical disk, with a 3{sigma} upper limit to the halo X-ray luminosity of 4 x 10{sup 39} erg s{sup -1}. An identical study of the less massive NGC 5170 also fails to detect any extraplanar X-ray emission. By extracting hot halo properties of disk galaxies formed in cosmological hydrodynamical simulations, we compare these results to expectations for cosmological accretion of hot gas by spirals. For Milky-Way-sized galaxies, these high-resolution simulations predict hot halo X-ray luminosities which are lower by a factor of {approx}2 compared to our earlier results reported by Toft et al. We find the new simulation predictions to be consistent with our observational constraints for both NGC 5746 and NGC 5170, while also confirming that the hot gas detected so far around more actively star-forming spirals is in general probably associated with stellar activity in the disk. Observational results on quiescent disk galaxies at the high-mass end are nevertheless providing powerful constraints on theoretical predictions, and hence on the assumed input physics in numerical studies of disk galaxy formation and evolution.

Rasmussen, Jesper [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sommer-Larsen, Jesper [Excellence Cluster Universe, Technische Universitaet Muenchen, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Pedersen, Kristian; Toft, Sune; Grove, Lisbeth F. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Benson, Andrew [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Mail Code 130-33, Pasadena, CA 91125 (United States); Bower, Richard G. [Institute for Computational Cosmology, University of Durham, South Road, Durham DH1 3LE (United Kingdom)], E-mail: jr@ociw.edu

2009-05-20T23:59:59.000Z

153

Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera  

E-Print Network [OSTI]

). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

Torgersen, Christian

154

Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

NONE

1996-02-01T23:59:59.000Z

155

The investigation of atmospheric humidity control by hot gas reheat  

E-Print Network [OSTI]

Number 1, 2, and 3 24 10 Psychrometric Chart with the Processes of Runs Number 1, 2, and 3 Superimposed Upon One Another 25 Nossle Performance Curvos 31 vi LIST OF SM30LS ~Sbol OF ~tit Cubic feet per minute Constant pressure specific heat... tempera- ture L2/T2 in. Hg in, H2O MV PD psig sp gr tdb Inches of mercury Inches of water Pounds mass Pounds mass dry air Pounds mass water vapor Millivolt s Pressure diff'erential (in. Hg) Gage pressure Heat added or re...

Whitlock, Paul Leroy

1963-01-01T23:59:59.000Z

156

ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY  

SciTech Connect (OSTI)

This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in a twenty-five-cycle test. The sorbent was exposed for 58 consecutive days to temperatures between 600°C and 800°C and gas atmospheres from highly reducing to highly oxidizing without measurable loss of sulfur capacity or reactivity. In the process analysis phase of this study, a two-stage desulfurization process using cerium sorbent with SO2 regeneration followed by zinc sorbent with dilute O2 regeneration was compared to a single-stage process using zinc sorbent and O2 regeneration with SO2 in the regeneration product gas converted to elemental sulfur using the direct sulfur recovery process (DSRP). Material and energy balances were calculated using the process simulation package PRO/II. Major process equipment was sized and a preliminary economic analysis completed. Sorbent replacement rate, which is determined by the multicycle sorbent durability, was found to be the most significant factor in both processes. For large replacement rates corresponding to average sorbent lifetimes of 250 cycles or less, the single-stage zinc sorbent process with DSRP was estimated to be less costly. However, the cost of the two-stage cerium sorbent process was more sensitive to sorbent replacement rate, and, as the required replacement rate decreased, the economics of the two-stage process improved. For small sorbent replacement rates corresponding to average sorbent lifetimes of 1000 cycles or more, the two-stage cerium process was estimated to be less costly. In the relatively wide middle range of sorbent replacement rates, the relative economics of the two processes depends on other factors such as the unit cost of sorbents, oxygen, nitrogen, and the relative capital costs.

A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

1998-10-31T23:59:59.000Z

157

Final report : testing and evaluation for solar hot water reliability.  

SciTech Connect (OSTI)

Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

Caudell, Thomas P. (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; He, Hongbo (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM) [Building Specialists, Inc., Albuquerque, NM; Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM) [University of New Mexico, Albuquerque, NM; Burch, Jay (National Renewable Energy Laboratory, Golden CO) [National Renewable Energy Laboratory, Golden CO

2011-07-01T23:59:59.000Z

158

High temperature hot water distribution system study, Directorate of Public Works, Fort Drum, New York; executive summary. Final report  

SciTech Connect (OSTI)

The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA01-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: (1) Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. (2) Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

NONE

1996-12-01T23:59:59.000Z

159

Application of CFCC technology to hot gas filtration applications  

SciTech Connect (OSTI)

Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurement of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.

Richlen, S.

1995-06-01T23:59:59.000Z

160

Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System  

E-Print Network [OSTI]

The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

Wu, Z.; Li, D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

162

Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...  

Open Energy Info (EERE)

to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

163

Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...  

Open Energy Info (EERE)

to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems II....

164

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

E-Print Network [OSTI]

for Rating Residential Water Heaters. Atlanta, GA: ASHRAE,for Residential Water Heaters, Direct Heating Equipment, andthe Energy Consumption of Water Heaters. Title 10 Code of

Lutz, Jim

2014-01-01T23:59:59.000Z

165

THE DIVERSE HOT GAS CONTENT AND DYNAMICS OF OPTICALLY SIMILAR LOW-MASS ELLIPTICAL GALAXIES  

SciTech Connect (OSTI)

The presence of hot X-ray-emitting gas is ubiquitous in massive early-type galaxies. However, much less is known about the content and physical status of the hot X-ray gas in low-mass ellipticals. In the present paper, we study the X-ray gas content of four low-mass elliptical galaxies using archival Chandra X-ray observations. The sample galaxies, NGC 821, NGC 3379, NGC 4278, and NGC 4697, have approximately identical K-band luminosities, and hence stellar masses, yet their X-ray appearance is strikingly different. We conclude that the unresolved emission in NGC 821 and NGC 3379 is built up from a multitude of faint compact objects, such as coronally active binaries and cataclysmic variables. Despite the non-detection of X-ray gas, these galaxies may host low density, and hence low luminosity, X-ray gas components, which undergo an outflow driven by a Type Ia supernova (SN Ia). We detect hot X-ray gas with a temperature of kT {approx} 0.35 keV in NGC 4278, the component of which has a steeper surface brightness distribution than the stellar light. Within the central 50'' ({approx}3.9 kpc), the estimated gas mass is {approx}3 Multiplication-Sign 10{sup 7} M{sub Sun }, implying a gas mass fraction of {approx}0.06%. We demonstrate that the X-ray gas exhibits a bipolar morphology in the northeast-southwest direction, indicating that it may be outflowing from the galaxy. The mass and energy budget of the outflow can be maintained by evolved stars and SNe Ia, respectively. The X-ray gas in NGC 4697 has an average temperature of kT {approx} 0.3 keV and a significantly broader distribution than the stellar light. The total gas mass within 90'' ({approx}5.1 kpc) is {approx}2.1 Multiplication-Sign 10{sup 8} M{sub Sun }, hence the gas mass fraction is {approx}0.4%. Based on the distribution and physical parameters of the X-ray gas, we conclude that it is most likely in hydrostatic equilibrium, although a subsonic outflow may be present.

Bogdan, Akos; David, Laurence P.; Jones, Christine; Forman, William R.; Kraft, Ralph P., E-mail: abogdan@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-10-10T23:59:59.000Z

166

Chandra Observations of ULIRGs: Extended Hot Gas Halos in Merging Galaxies  

E-Print Network [OSTI]

We study the properties of hot gaseous halos in 10 nearby ultraluminous IRAS galaxies observed with the ACIS instrument on board Chandra. For all sample galaxies, diffuse soft X-ray emissions are found within ~10 kpc of the central region; their spectra are well fitted by a MEKAL model plus emission lines from alpha-elements and other ions. The temperature of the hot gas is about 0.7 keV and metallicity is about 1 solar. Outside the central region, extended hot gaseous halos are found for nine out of the ten ULIRGs. Most spectra of these extended halos can be fitted with a MEKAL model with a temperature of about 0.6 keV and a low metallicity (~ 0.1 solar). We discuss the implications of our results on the origin of X-ray halos in elliptical galaxies and the feedback processes associated with starbursts.

Z. Y. Huo; X. Y. Xia; S. J. Xue; S. Mao; Z. G. Deng

2004-05-09T23:59:59.000Z

167

Recovery of energy from geothermal brine and other hot water sources  

DOE Patents [OSTI]

Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

Wahl, III, Edward F. (Claremont, CA); Boucher, Frederic B. (San Juan Capistrano, CA)

1981-01-01T23:59:59.000Z

168

[Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1993-12-31T23:59:59.000Z

169

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-01-01T23:59:59.000Z

170

Integrated operation of a pressurized fixed bed gasifier and hot gas desulfurization system  

SciTech Connect (OSTI)

The primary objective of this contract continues to be the demonstration of high fuel gas desulfurization of high temperature fuel gas desulfurization and particulate removal using a moving bed process with regenerable metal oxide sorbent. The fuel gas source for test operation is a fixed bed, air blown gasifier located at GE Corporate Research and Development in Schenectady, New York. The demonstration project also includes the design, construction, installation and test operation of a gas turbine simulator which includes a modified GE MS6000 type gas turbine combustor and a film cooled, first stage LM 6000 nozzle assembly. The hot gas cleanup (HGCU) system and the gas turbine simulator have been designed to operate with the full 8000 lb/hr fuel gas flow from the gasification of 1800 lb/hr of coal at 280 psig and 1000 to 1150 F. An advanced formulation of zinc ferrite as well as zinc titanate have been used as the regenerable metal oxide sorbents in testing to date. Demonstration of halogen removal as well as characterization of alkali and heavy metal concentrations in the fuel gas remain objectives, as well. Results are discussed.

Cook, C.S.; Gal, E.; Furman, A.H.; Ayala, R.

1992-12-01T23:59:59.000Z

171

Covered Product Category: Commercial Gas Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including commercial gas water heaters, which are covered by the ENERGY STAR® program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

172

Measured electric hot water standby and demand loads from Pacific Northwest homes  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

173

TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA  

E-Print Network [OSTI]

Renewable Energy Laboratory Natural Resources Canada GasRenewable Energy Laboratory (NREL) performed with Integrated Building and Construction Solutions (IBACOS) Natural Resources Canada

Lutz, Jim

2014-01-01T23:59:59.000Z

174

INSTALLATION CERTIFICATE CF-6R-MECH-01 Domestic Hot Water (DHW) (Page 1 of 2)  

E-Print Network [OSTI]

,000 Btu/hr), electric resistance and heat pump water heaters, list Energy Factor (EF). For large gas storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal Efficiency, Standby Loss and Rated Input. For instantaneous gas water heaters, list the Thermal Efficiency

175

An Analysis Method for Operations of Hot Water Heaters by Artificial Neural Networks  

E-Print Network [OSTI]

Authors tried to apply an Artificial Neural Network (ANN) to estimation of state of building systems. The systems used in this study were gas combustion water heaters. Empirical equations to estimate gas consumption from measureble properies...

Yamaha, M.; Takahashi, M.

2004-01-01T23:59:59.000Z

176

Hot New Advances in Water Heating Technology | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortalAll NERSC userNewhighDiff- EnergyHot New

177

Solar Hot Water Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 Solar BackgroundGivesof EnergyHot

178

ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6.DavidE-print NetworkUSE AND DOMESTIC HOT

179

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

180

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

develop condensing gas storage water heaters to qualify forgas furnace and gas storage water heater. This study focusesis predominantly storage water heaters. Regionally, gas-

Lekov, Alex

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE ZERH Webinar: Efficient Hot Water Distribution I: What's...  

Broader source: Energy.gov (indexed) [DOE]

water plumbing systems including the key performance metrics to understand, and how piping, pumps, and fixtures come together to create a good (or bad) system. View the...

182

Sacramento Ordinance to Waive Fees for Solar Hot Water  

Broader source: Energy.gov [DOE]

An ordinance suspending for the calendar years 2007-2009 all fees related to installations of solar water heaters on existing residences.

183

NV Energy (Northern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers, small commercial, nonprofit, school and other public customers to install solar water heaters on their homes and facilities. ...

184

Solar Water Heating: What's Hot and What's Not  

E-Print Network [OSTI]

A handful of electric utilities in the United States now pay incentives to their customers to install solar water heaters or are developing programs to do so. The solar water heater incentives are part of a broader utility demand-side management...

Stein, J.

185

Opportunities for utility involvement with solar domestic hot water  

SciTech Connect (OSTI)

Solar water heating is one of a number of options that can be considered under utility demand-side management (DSM) programs. Utilities perceive a range of potential benefits for solar water heating in terms of customer service, energy conservation, load management, environmental enhancement, and public relations. The solar industry may benefit from utility marketing efforts, economies of scale, added credibility, financing options, and long-term maintenance arrangements. This paper covers three topics: (1) the energy and demand impacts of solar water heating on utility load profiles based on the results of four studies in the literature, (2) the results of workshops sponsored by the National Renewable Energy Laboratory (NREL) to identify key issues faced by utilities in considering residential solar water heating as a DSM option, (3) several current or planned utility programs to promote solar water heating. 7 refs.

Carlisle, N.; Christensen, C. (National Renewable Energy Lab., Golden, CO (United States)); Barrett, L. (Barrett Consulting Associates, Inc., Colorado Springs, CO (United States))

1992-05-01T23:59:59.000Z

186

Direct photons from Au+Au collisions at RHIC: QGP vs. hot hadronic gas  

E-Print Network [OSTI]

We have analysed the preliminary PHENIX data on the transverse momentum distribution of direct photons in 0-20% centrality Au+Au collisions at $\\sqrt{s_{NN}}$=200 GeV. In ideal hydrodynamics, data are explained if Au+Au collision produces Quark-Gluon-Plasma at the temperature $T_i$=400 MeV, at an initial time $\\tau_i$=0.6 fm. PHENIX data are not explained in the alternate scenario when Au+Au collisions produces hot hadronic gas with initial temperature within physically acceptable limit.

A. K. Chaudhuri

2005-12-10T23:59:59.000Z

187

Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report  

SciTech Connect (OSTI)

The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

None

1980-11-01T23:59:59.000Z

188

Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report  

SciTech Connect (OSTI)

This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

Not Available

1980-06-01T23:59:59.000Z

189

New Hampshire Electric Co-Op- Solar Hot Water  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum...

190

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

191

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

192

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, John W. (Sag Harbor, NY)

1983-06-28T23:59:59.000Z

193

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

price for a condensing commercial water heater is $1,579.For condensing commercial water heaters with a thermalFound products for water heater in any product field and gas

Lutz, Jim

2012-01-01T23:59:59.000Z

194

Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994  

SciTech Connect (OSTI)

The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

Hepworth, M.T.; Slimane, R.B.

1994-11-01T23:59:59.000Z

195

Trout in hot water Understanding the effects of climate change on ecosystems is a complex  

E-Print Network [OSTI]

Trout in hot water Understanding the effects of climate change on ecosystems is a complex business as we set out for the Hengill geothermal valley. You might think of Iceland as a cold, dark country up the breakdown of organic matter and nutrients are recycled more quickly, leading to more resources

Brierley, Andrew

196

Comparison Between TRNSYS Software Simulation and F-Chart Program on Solar Domestic Hot Water System  

E-Print Network [OSTI]

This study presents the accuracy test of a TRNSYS Solar Domestic Hot Water (SDHW) System simulation. The testing is based on comparing the results with the F-Chart software. The selected system to carry out the tests was the Active Solar Domestic...

Haberl, J. S.; Baltazar, J. C.; Mao, C.

2012-01-01T23:59:59.000Z

197

Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil  

E-Print Network [OSTI]

, attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

Nesse, Thomas

2005-02-17T23:59:59.000Z

198

Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator  

SciTech Connect (OSTI)

The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

1994-10-01T23:59:59.000Z

199

Impact of Pilot Light Modeling on the Predicted Annual Performance of Residential Gas Water Heaters: Preprint  

SciTech Connect (OSTI)

Modeling residential water heaters with dynamic simulation models can provide accurate estimates of their annual energy consumption, if the units? characteristics and use conditions are known. Most gas storage water heaters (GSWHs) include a standing pilot light. It is generally assumed that the pilot light energy will help make up standby losses and have no impact on the predicted annual energy consumption. However, that is not always the case. The gas input rate and conversion efficiency of a pilot light for a GSWH were determined from laboratory data. The data were used in simulations of a typical GSWH with and without a pilot light, for two cases: 1) the GSWH is used alone; and 2) the GSWH is the second tank in a solar water heating (SWH) system. The sensitivity of wasted pilot light energy to annual hot water use, climate, and installation location was examined. The GSWH used alone in unconditioned space in a hot climate had a slight increase in energy consumption. The GSWH with a pilot light used as a backup to an SWH used up to 80% more auxiliary energy than one without in hot, sunny locations, from increased tank losses.

Maguire, J.; Burch, J.

2013-08-01T23:59:59.000Z

200

Water, Vapor, and Salt Dynamics in a Hot Repository  

SciTech Connect (OSTI)

The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Liquid-gas phase transition in hot asymmetric nuclear matter with density-dependent relativistic mean-field models  

E-Print Network [OSTI]

The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.

Guang-Hua Zhang; Wei-Zhou Jiang

2012-03-17T23:59:59.000Z

202

Development of a Market Optimized Condensing Gas Water Heater  

SciTech Connect (OSTI)

This program covered the development of a market optimized condensing gas water heater for residential applications. The intent of the program was to develop a condensing design that minimized the large initial cost premium associated with traditional condensing water heater designs. Equally important was that the considered approach utilizes design and construction methods that deliver the desired efficiency without compromising product reliability. Standard condensing water heater approaches in the marketplace utilize high cost materials such as stainless steel tanks and heat exchangers as well as expensive burner systems to achieve the higher efficiencies. The key in this program was to develop a water heater design that uses low-cost, available components and technologies to achieve higher efficiency at a modest cost premium. By doing this, the design can reduce the payback to a more reasonable length, increasing the appeal of the product to the marketplace. Condensing water heaters have been in existence for years, but have not been able to significantly penetrate the market. The issue has typically been cost. The high purchase price associated with existing condensing water heaters, sometimes as much as $2000, has been a very difficult hurdle to overcome in the marketplace. The design developed under this program has the potential to reduce the purchase price of this condensing design by as much as $1000 as compared to traditional condensing units. The condensing water heater design developed over the course of this program led to an approach that delivered the following performance attributes: 90%+ thermal efficiency; 76,000 Btu/hr input rate in a 50 gallon tank; First hour rating greater than 180 gph; Rapid recovery time; and Overall operating condition well matched to combination heat and hot water applications. Over the final three years of the program, TIAX worked very closely with A.O. Smith Water Products Company as our commercial partner to optimize the design for manufacturing. This work included the initiation of a large field testing program (over 125 units) and an in-depth reliability program intended to minimize the risks associated with a new product introduction. At the time of this report, A.O. Smith plans to introduce this product to the marketplace in the early 2006 time period.

Peter Pescatore

2006-01-11T23:59:59.000Z

203

Promising freeze protection alternatives in solar domestic hot water systems  

SciTech Connect (OSTI)

Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

Bradley, D.E.

1997-12-31T23:59:59.000Z

204

Low rank coal upgrading in a flow of hot water  

SciTech Connect (OSTI)

Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

2009-09-15T23:59:59.000Z

205

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

Not Available

1992-12-01T23:59:59.000Z

206

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect (OSTI)

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

207

Hot water decontamination of beef carcasses to increase microbiological safety and shelf-life  

E-Print Network [OSTI]

). The spraying system functioned by circulating hot water from the water bath to the spray gun at a given pressure and temperature. The pressure was constantly monitored by a pressure gauge (Marshall Town 88901, USA) installed in the valve junction.... The temperature m the water bath was monitored by a digital thermometer (Tegam 871, Digital Thermometer) with a type K thermocouple sensor. Also, the temperature of the spray coming out of the jet was measured with a thermocouple inserted and sealed in the tip...

Barakate, Michelle Lee

2012-06-07T23:59:59.000Z

208

CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap  

E-Print Network [OSTI]

The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

M. Arik; S. Aune; K. Barth; A. Belov; S. Borghi; H. Brauninger; G. Cantatore; J. M. Carmona; S. A. Cetin; J. I. Collar; E. Da Riva; T. Dafni; M. Davenport; C. Eleftheriadis; N. Elias; G. Fanourakis; E. Ferrer-Ribas; P. Friedrich; J. Galan; J. A. Garcia; A. Gardikiotis; J. G. Garza; E. N. Gazis; T. Geralis; E. Georgiopoulou; I. Giomataris; S. Gninenko; H. Gomez; M. Gomez Marzoa; E. Gruber; T. Guthorl; R. Hartmann; S. Hauf; F. Haug; M. D. Hasinoff; D. H. H. Hoffmann; F. J. Iguaz; I. G. Irastorza; J. Jacoby; K. Jakovcic; M. Karuza; K. Konigsmann; R. Kotthaus; M. Krcmar; M. Kuster; B. Lakic; P. M. Lang; J. M. Laurent; A. Liolios; A. Ljubicic; V. Lozza; G. Luzon; S. Neff; T. Niinikoski; A. Nordt; T. Papaevangelou; M. J. Pivovaroff; G. Raffelt; H. Riege; A. Rodriguez; M. Rosu; J. Ruz; I. Savvidis; I. Shilon; P. S. Silva; S. K. Solanki; L. Stewart; A. Tomas; M. Tsagri; K. van Bibber; T. Vafeiadis; J. Villar; J. K. Vogel; S. C. Yildiz; K. Zioutas

2014-09-15T23:59:59.000Z

209

Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents  

DOE Patents [OSTI]

The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

Bissett, Larry A. (Morgantown, WV); Strickland, Larry D. (Morgantown, WV); Rockey, John M. (Westover, WV)

1994-01-01T23:59:59.000Z

210

Regulation of Gas, Electric, and Water Companies (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission is responsible for regulating gas, electric, and water companies in the state. This legislation contains provisions for such companies, addressing planning and siting...

211

HYDROGEN PRODUCTION THROUGH WATER GAS SHIFT REACTION OVER NICKEL CATALYSTS.  

E-Print Network [OSTI]

??The progress in fuel cell technology has resulted in an increased interest towards hydrogen fuel. Consequently, water gas shift reaction has found a renewed significance.… (more)

Haryanto, Agus

2008-01-01T23:59:59.000Z

212

Water-Gas Samples At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Valles Caldera - Redondo Geothermal Area (Janik & Goff, 2002)...

213

Impacts of Imported Liquefied Natural Gas on Residential Appliance Components: Literature Review  

E-Print Network [OSTI]

Fundamentals of Gas Combustion. 2001: Washington, DC. 131Components A gas appliance combustion system accomplishestransfers energy from hot combustion gases to water or air

Lekov, Alex

2010-01-01T23:59:59.000Z

214

Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas  

SciTech Connect (OSTI)

Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

Lee, S.H.D.; Swift, W.M.; Johnson, I.

1980-01-01T23:59:59.000Z

215

Sometimes hot water will have a "sour" smell, similar to that of an old damp rag. This smell often  

E-Print Network [OSTI]

. Odor-causing bacteria live and thrive in warm water and can infest the water heater. The problem (approximately 160 degrees F) for 8 hours. This will kill the bacteria. (Caution: Be sure the water heater has#12;Sometimes hot water will have a "sour" smell, similar to that of an old damp rag. This smell

216

Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint  

SciTech Connect (OSTI)

Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.

Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-05-01T23:59:59.000Z

217

Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project  

SciTech Connect (OSTI)

It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

Jager, A.R.

1996-03-01T23:59:59.000Z

218

Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models  

SciTech Connect (OSTI)

A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

Weitzel, E.; Hoeschele, M.

2014-09-01T23:59:59.000Z

219

Description of Hot and Dense Hadron Gas Properties in a New Excluded-Volume model  

E-Print Network [OSTI]

A new equation of state for a hot and dense hadron gas (HG) is obtained where the finite hard-core size of baryons has been incorporated in a thermodynamically consistent formulation of excluded volume correction. Our model differs from other existing approaches on the following points. We assign a hard-core volume only to each baryon and mesons though possess a small volume but they can fuse and interpenetrate into one another. Use of the full quantum statistics is made in obtaining the grand canonical partition function where excluded-volume correction has been incorporated by explicitly integrating over volume. We thus find that the new model works even for the cases of extreme temperatures and/or densities where most of other approaches fail. The model does not violate causality even at extreme densities. The temperature and density dependence of various thermodynamical quantities, e.g. pressure, baryon density, entropy and energy density compare well with the results of other microscopic HG models. After suitable parametrization of the centre-of-mass energy in terms of temperature and baryon chemical potential, we explore some new freeze-out criteria which exhibit full independence of the collision energy and of the structures of the colliding nuclei. We further demonstrate the suitability of our model in explaining various experimental results of the multiplicity-ratios of various particles and their antiparticles. Finally, we use our excluded-volume model to obtain the transport behaviour of the hot and/or dense HG such as shear viscosity to entropy ratio, speed of sound etc. and compare the results with earlier calculations.

S. K. Tiwari; P. K. Srivastava; C. P. Singh

2011-11-10T23:59:59.000Z

220

Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report  

SciTech Connect (OSTI)

For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

2013-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Water-Gas Shift Membrane Reactor  

SciTech Connect (OSTI)

The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

2009-01-07T23:59:59.000Z

222

Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah  

SciTech Connect (OSTI)

Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

1980-02-01T23:59:59.000Z

223

X-RAY SCALING RELATION IN EARLY-TYPE GALAXIES: DARK MATTER AS A PRIMARY FACTOR IN RETAINING HOT GAS  

SciTech Connect (OSTI)

We have revisited the X-ray scaling relations of early-type galaxies (ETG) by investigating, for the first time, the L{sub X,Gas}-M{sub Total} relation in a sample of 14 ETGs. In contrast to the large scatter (a factor of 10{sup 2}-10{sup 3}) in the L{sub X,Total}-L{sub B} relation, we found a tight correlation between these physically motivated quantities with an rms deviation of a factor of three in L{sub X,Gas} = 10{sup 38}-10{sup 43} erg s{sup –1} or M{sub Total} = a few × 10{sup 10} to a few × 10{sup 12} M{sub ?}. More striking, this relation becomes even tighter with an rms deviation of a factor of 1.3 among the gas-rich galaxies (with L{sub X,Gas} > 10{sup 40} erg s{sup –1}). In a simple power-law form, the new relation is (L{sub X,Gas}/10{sup 40} erg s{sup –1}) = (M{sub Total}/3.2 × 10{sup 11} M{sub ?}){sup 3}. This relation is also consistent with the steep relation between the gas luminosity and temperature, L{sub X,Gas} ? T{sub Gas} {sup 4.5}, identified by Boroson et al., if the gas is virialized. Our results indicate that the total mass of an ETG is the primary factor in regulating the amount of hot gas. Among the gas-poor galaxies (with L{sub X,Gas} < a few × 10{sup 39} erg s{sup –1}), the scatter in the L{sub X,Gas}-M{sub Total} (and L{sub X,Gas}-T{sub Gas}) relation increases, suggesting that secondary factors (e.g., rotation, flattening, star formation history, cold gas, environment, etc.) may become important.

Kim, Dong-Woo; Fabbiano, Giuseppina [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

2013-10-20T23:59:59.000Z

224

Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997  

SciTech Connect (OSTI)

Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

DiPietro, S.G.; Alvin, M.A.

1997-12-31T23:59:59.000Z

225

Preliminary design for hot dirty-gas control-valve test facility. Final report  

SciTech Connect (OSTI)

This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

Not Available

1980-01-01T23:59:59.000Z

226

Development of a Calicum-Based Sorbent for Hot Gas Cleanup.  

SciTech Connect (OSTI)

Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

1997-09-01T23:59:59.000Z

227

Hot QCD, k-strings and the adjoint monopole gas model  

E-Print Network [OSTI]

When the magnetic sector of hot QCD, 3D SU(N) Yang-Mills theory, is described as a dilute gas of non-Abelian monopoles in the adjoint representation of the magnetic group, Wilson loops of N-ality k are known to obey a periodic k(N-k) law. Lattice simulations have confirmed this prediction to a few percent for N=4 and 6. We describe in detail how the magnetic flux of the monopoles produces different area laws for spatial Wilson k-loops. A simple physical argument is presented, why the predicted and observed Casimir scaling is allowed in the large-N limit by usual power-counting arguments. The same scaling is also known to hold in two-loop perturbation theory for the spatial 't Hooft loop, which measures the electric flux. We then present new lattice data for 3D N=8 k-strings as long as 3`fm' that provide further confirmation. Finally we suggest new tests in theories with spontaneous breaking and in SO(4n+2) gauge groups.

Chris P. Korthals Altes; Harvey B. Meyer

2005-09-02T23:59:59.000Z

228

GIANT H II REGIONS IN M101. I. X-RAY ANALYSIS OF HOT GAS  

SciTech Connect (OSTI)

We performed a Chandra X-ray study of three giant H II regions (GHRs), NGC 5461, NGC 5462, and NGC 5471, in the spiral galaxy M101. The X-ray spectra of the three GHRs all contain a prominent thermal component with a temperature of {approx}0.2 keV. In NGC 5461, the spatial distribution of the soft (<1.5 keV) X-ray emission is generally in agreement with the extent of H1105, the most luminous H II region therein, but extends beyond its southern boundary, which could be attributed to outflows from the star cloud between H1105 and H1098. In NGC 5462, the X-ray emission is displaced from the H II regions and a ridge of blue stars; the H{alpha} filaments extending from the ridge of star cloud to the diffuse X-rays suggest that hot gas outflows have occurred. The X-rays from NGC 5471 are concentrated at the B-knot, a 'hypernova remnant' candidate. Assuming a Sedov-Taylor evolution, the derived explosion energy, on the order of 10{sup 52} erg, is consistent with a hypernova origin. In addition, a bright source in the field of NGC 5462 has been identified as a background active galactic nucleus, instead of a black hole X-ray binary in M101.

Sun Wei; Chen Yang; Feng Li [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Chu, You-Hua [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Chen, C.-H. Rosie [Max Planck Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Wang, Q. Daniel [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Li Jiangtao [Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210093 (China)

2012-11-20T23:59:59.000Z

229

Giant H II Regions in M101. I. X-ray Analysis of Hot Gas  

E-Print Network [OSTI]

We performed a Chandra X-ray study of three giant H II regions (GHRs), NGC 5461, NGC 5462, and NGC 5471, in the spiral galaxy M101. The X-ray spectra of the three GHRs all contain a prominent thermal component with a temperature of ~0.2 keV. In NGC 5461, the spatial distribution of the soft (< 1.5 keV) X-ray emission is generally in agreement with the extent of H1105, the most luminous H II region therein, but extends beyond its southern boundary, which could be attributed to outflows from the star cloud between H1105 and H1098. In NGC 5462, the X-ray emission is displaced from the H II regions and a ridge of blue stars; the H-alpha filaments extending from the ridge of star cloud to the diffuse X-rays suggest that hot gas outflows have occurred. The X-rays from NGC 5471 are concentrated at the B-knot, a "hypernova remnant" candidate. Assuming a Sedov-Taylor evolution, the derived explosion energy, on the order of 10^52 ergs, is consistent with a hypernova origin. In addition, a bright source in the field ...

Sun, Wei; Feng, Li; Chu, You-Hua; Chen, C -H Rosie; Wang, Q Daniel; Li, Jiang-Tao

2012-01-01T23:59:59.000Z

230

Method of making a continuous ceramic fiber composite hot gas filter  

DOE Patents [OSTI]

A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

Hill, Charles A. (Lynchburg, VA); Wagner, Richard A. (Lynchburg, VA); Komoroski, Ronald G. (Lynchburg, VA); Gunter, Greg A. (Lynchburg, VA); Barringer, Eric A. (Lynchburg, VA); Goettler, Richard W. (Lynchburg, VA)

1999-01-01T23:59:59.000Z

231

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam...

232

Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

233

Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, October 1 - December 31, 1994  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Morgantown Energy Technology Center (METC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents which can reduce the sulfur in coal gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn{sub 2}TiO{sub 4} or ZnTiO{sub 3}), formed by a solid-state reaction of zinc (ZnO) and titanium dioxide (TiO{sub 2}), is currently one of the leading sorbents. This report summarizes the highlights and accomplishments of the October slipstream test run of the Zinc Titanate Fluid Bed Desulfurization/Direct Sulfur Recovery Process (ZTFBD/DSRP) Mobile Laboratory at the Department of Energy`s Morgantown Energy Technology Center. Although the run had to be shortened due to mechanical problems with METC`s gasifier, there was sufficient on-stream time to demonstrate highly successful operation of both the zinc titanate fluid bed desulfurization and the DSRP with actual coal gas.

NONE

1994-12-31T23:59:59.000Z

234

Pyrolysis Oil Stabilization: Hot-Gas Filtration; Cooperative Research and Development Final Report, CRADA Number CRD-09-333  

SciTech Connect (OSTI)

The hypothesis that was tested in this task was that separation of char, with its associated mineral matter from pyrolysis vapors before condensation, will lead to improved oil quality and stability with respect to storage and transportation. The metric used to evaluate stability in this case was a 10-fold reduction in the rate of increase of viscosity as determined by ASTM D445 (the accelerated aging test). The primary unit operation that was investigated for this purpose was hot-gas filtration. A custom-built heated candle filter system was fabricated by the Pall Corporation and furnished to NREL for this test campaign. This system consisted of a candle filter element in a containment vessel surrounded by heating elements on the external surface of the vessel. The filter element and housing were interfaced to NREL?s existing 0.5 MTD pyrolysis Process Development Unit (PDU). For these tests the pyrolysis reactor of the PDU was operated in the entrained-flow mode. The HGF test stand was installed on a slipstream from the PDU so that both hot-gas filtered oil and bio-oil that was not hot-gas filtered could be collected for purposes of comparison. Two filter elements from Pall were tested: (1) porous stainless steel (PSS) sintered metal powder; (2) sintered ceramic powder. An extremely sophisticated bio-oil condensation and collection system was designed and fabricated at NREL and interfaced to the filter unit.

Baldwin, R.

2012-07-01T23:59:59.000Z

235

Southwest Gas Corporation- Smarter Greener Better Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Southwest Gas is offering rebates to Nevada customers for solar water heating systems installed in private residential, small business, public and other properties. Rebates are based on the amount...

236

Questar Gas- Residential Solar Assisted Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

237

Texas Gas Service- Residential Solar Water Heating Rebate Program (Texas)  

Broader source: Energy.gov [DOE]

Texas Gas Service offers a flat rebate of $750 for its residential customers within the Austin and Sunset Valley city limits for the installation and purchase of a new solar water heater with...

238

Questar Gas- Residential Solar Assisted Water Heating Rebate Program (Idaho)  

Broader source: Energy.gov [DOE]

Questar gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

239

Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)  

SciTech Connect (OSTI)

The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

Jubin, Robert Thomas [ORNL

2009-06-01T23:59:59.000Z

240

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik...  

Open Energy Info (EERE)

Water-Gas Sampling At Fenton Hill HDR Geothermal Area (Janik & Goff, 2002) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Water-Gas...

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A study of water driven oil encroachment into gas caps  

E-Print Network [OSTI]

A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS LIBRARY A S I COLLEGE OF TEXAS A Thesis By HARLAN J. RITCH ~ ~ ~ Submitted to the Graduate School oi' the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May, 1958 Major Subject: Petroleum Engineering A STUDY OF WATER DRIVEN OIL ENCROACHMENT INTO GAS CAPS A Thesis By HARLAN J. RITCH Approved as to style and content by: hairxnan of Coxnxnittee) (Head...

Ritch, Harlan J

1958-01-01T23:59:59.000Z

242

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

243

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

unit*year) Heavy Metals to Water Heavy Metals to Water mg NiMatter Emissions (Water) Heavy Metals mg Hg/20 /unit*yearMatter Mg/year Emissions (Water) Heavy Metals Gg Hg/20 /year

Lu, Alison

2011-01-01T23:59:59.000Z

244

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

than standard storage water heaters [2]. However, they aredown for both storage-type water heaters and tankless water1]. The typical water heater storage tank wastes energy to

Lu, Alison

2011-01-01T23:59:59.000Z

245

One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes  

E-Print Network [OSTI]

advances to commercialize stand-alone electric heat-pump storage hot water heaters. These systems offer design uses multiple systems and fuels to provide thermal services, the emerging generation of heat to experience this change as air-source heat-pump water heaters deliver obvious energy savings over electric

California at Davis, University of

246

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

SciTech Connect (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

247

Control of water coning in gas reservoirs by injecting gas into the aquifer  

E-Print Network [OSTI]

the injected gas bubble to not have the expected effect, because the cone established may have a greater radius at the original WGC than the maximum radius of the gas bubble. In other words, the cone tends to avoid the low permeability zone by going around... the warm seasons of the year. The best storage sites found up to now are deleted or partly aeleted gas fields close to large consumption areas. In this study, gas storage reservoirs with gas originally left by a water drive are studied. The production/injection...

Haugen, Sigurd Arild

1980-01-01T23:59:59.000Z

248

Water management practices used by Fayetteville shale gas producers.  

SciTech Connect (OSTI)

Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

Veil, J. A. (Environmental Science Division)

2011-06-03T23:59:59.000Z

249

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator  

E-Print Network [OSTI]

Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

1976-01-01T23:59:59.000Z

250

U.S. Marine Corps Base Camp Pendleton: Using The Sun For Hot Water And Electricity, Federal Energy Management Program (FEMP) (Fact Sheet)  

SciTech Connect (OSTI)

Case study overview of integrated solar hot water/photovoltaic systems at the U.S. Marine Corps Camp Pendleton training pools.

Not Available

2009-09-01T23:59:59.000Z

251

American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

Russo, Bryan J.; Chvala, William D.

2010-09-30T23:59:59.000Z

252

Limits on Hot Galactic Halo Gas from X-ray Absorption Lines  

E-Print Network [OSTI]

Although the existence of large-scale hot gaseous halos around massive disk galaxies has been theorized for a long time, there is yet very little observational evidence. We report the Chandra and XMM-Newton grating spectral ...

Yao, Yangsen

253

Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction  

E-Print Network [OSTI]

fingerprinting | fracking | hydrology and ecology Unconventional sources of gas and oil are transforming energy and horizontal drilling are also growing (4, 5). These concerns include changes in air quality (6), human health the greenhouse gas balance (8, 9). Perhaps the biggest health concern remains the potential for drinking water

Jackson, Robert B.

254

Determination of the effect of gas viscosity upon gas flow in permeable media containing water and gas  

E-Print Network [OSTI]

?ateredeaturated Natural Gas Visoositiss at Varieua PPISSQreao ~ ~ ~ o e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 VI Ns~tura+ed gitrogen Viscosities 0't Varieue h%00uraee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eel 33 VII Das Wbili... pressure to 1500 ysi per yccryoses of flew work~ tho viscosities af aitrogen aud tho natural gas wbou saturated with water vapor were also detercdcmd Sco basis yerpese of this pre)set was te dsteruine ths offset of the vtsoosQy of a gas nyon the web...

Stegemeier, Richard Joseph

1952-01-01T23:59:59.000Z

255

HERSCHEL* FAR-INFRARED SPECTROSCOPY OF THE GALACTIC CENTER. HOT MOLECULAR GAS: SHOCKS VERSUS RADIATION NEAR Sgr A  

SciTech Connect (OSTI)

We present a {approx}52-671 {mu}m spectral scan toward Sgr A* taken with the PACS and SPIRE spectrometers on board Herschel. The achieved angular resolution allows us to separate, for the first time at far-IR wavelengths, the emission toward the central cavity (gas in the inner central parsec of the galaxy) from that of the surrounding circumnuclear disk. The spectrum toward Sgr A* is dominated by strong [O III], [O I], [C II], [N III], [N II], and [C I] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by UV photons from the central stellar cluster. In addition, rotationally excited lines of {sup 12}CO (from J = 4-3 to 24-23), {sup 13}CO, H{sub 2}O, OH, H{sub 3}O{sup +}, HCO{sup +}, and HCN, as well as ground-state absorption lines of OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, CH{sup +}, H{sub 2}O, OH, HF, CH, and NH are detected. The excitation of the {sup 12}CO ladder is consistent with a hot isothermal component at T{sub k} {approx_equal} 10{sup 3.1} K and n(H{sub 2}) {approx}< 10{sup 4} cm{sup -3}. It is also consistent with a distribution of temperature components at higher density with most CO at T{sub k} {approx}< 300 K. The detected molecular features suggest that, at present, neither very enhanced X-ray nor cosmic-ray fluxes play a dominant role in the heating of the hot molecular gas. The hot CO component (either the bulk of the CO column or just a small fraction depending on the above scenario) results from a combination of UV- and shock-driven heating. If irradiated dense clumps/clouds do not exist, shocks likely dominate the heating of the hot molecular gas. This is consistent with the high-velocity gas detected toward Sgr A*.

Goicoechea, Javier R.; Etxaluze, M.; Cernicharo, J.; Bell, T. A. [Departamento de Astrofisica, Centro de Astrobiologia, CSIC-INTA, Carretera de Ajalvir, Km 4, Torrejon de Ardoz, E-28850 Madrid (Spain); Gerin, M.; De Luca, M.; Encrenaz, P. [LERMA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure (France); Neufeld, D. A.; Indriolo, N. [Johns Hopkins University, Baltimore, MD 21218 (United States); Contursi, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); Lis, D. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Polehampton, E. T. [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sonnentrucker, P., E-mail: jr.goicoechea@cab.inta-csic.es [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

2013-05-20T23:59:59.000Z

256

Commercial Gas Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for commercial gas water heaters under the FEMP-designated product program.

Not Available

2010-09-01T23:59:59.000Z

257

Water in Alberta With Special Focus on the Oil and Gas Industry  

E-Print Network [OSTI]

1 Water in Alberta With Special Focus on the Oil and Gas Industry (Education Paper) Seyyed Ghaderi ................................................................................................................................18 Shale Gas ................................................................................................................................................19 How much water is used in deep shale gas development

Gieg, Lisa

258

Hot Water Distribution System Program Documentation and Comparison to Experimental Data  

SciTech Connect (OSTI)

In 2003, the California Energy Commission s (CEC s) Public Interest Energy Research (PIER) program funded Oak Ridge National Laboratory (ORNL) to create a computer program to analyze hot water distribution systems for single family residences, and to perform such analyses for a selection of houses. This effort and its results were documented in a report provided to CEC in March, 2004 [1]. The principal objective of effort was to compare the water and energy wasted between various possible hot water distribution systems for various different house designs. It was presumed that water being provided to a user would be considered suitably warm when it reached 105 F. Therefore, what was needed was a tool which could compute the time it takes for water reaching the draw point to reach 105 F, and the energy wasted during this wait. The computer program used to perform the analyses was a combination of a calculational core, produced by Dr. Keith A. Woodbury, Professor of Mechanical Engineering and Director, Alabama Industrial Assessment Center, University of Alabama, and a user interface based on LabVIEW, created by Dr. Roberto Lenarduzzi of ORNL. At that time, the computer program was in a relatively rough and undocumented form adequate to perform the contracted work but not in a condition where it could be readily used by those not involved in its generation. Subsequently, the CEC provided funding through Lawrence Berkeley National Laboratory (LBNL) to improve the program s documentation and user interface to facilitate use by others, and to compare the program s results to experimental data generated by Dr. Carl Hiller. This report describes the program and provides user guidance. It also summarizes the comparisons made to experimental data, along with options built into the program specifically to allow these comparisons. These options were necessitated by the fact that some of the experimental data required options and features not originally included in the program. A more detailed description of these program modifications along with detailed comparisons to the experimental data are provided in a report produced by Dr. Woodbury, which accompanies this report as Appendix H.

Baskin, Evelyn [GE Infrastructure Energy; Craddick, William G [ORNL; Lenarduzzi, Roberto [ORNL; Wendt, Robert L [ORNL; Woodbury, Professor Keith A. [University of Alabama, Tuscaloosa

2007-09-01T23:59:59.000Z

259

Assembly and comparison of available solar hot water system reliability databases and information.  

SciTech Connect (OSTI)

Solar hot water (SHW) systems have been installed commercially for over 30 years, yet few quantitative details are known about their reliability. This report describes a comprehensive analysis of all of the known major previous research and data regarding the reliability of SHW systems and components. Some important conclusions emerged. First, based on a detailed inspection of ten-year-old systems in Florida, about half of active systems can be expected to fail within a ten-year period. Second, valves were identified as the probable cause of a majority of active SHW failures. Third, passive integral and thermosiphon SHW systems have much lower failure rates than active ones, probably due to their simple design that employs few mechanical parts. Fourth, it is probable that the existing data about reliability do not reveal the full extent of fielded system failures because most of the data were based on trouble calls. Often an SHW system owner is not aware of a failure because the backup system silently continues to produce hot water. Thus, a repair event may not be generated in a timely manner, if at all. This final report for the project provides all of the pertinent details about this study, including the source of the data, the techniques to assure their quality before analysis, the organization of the data into perhaps the most comprehensive reliability database in existence, a detailed statistical analysis, and a list of recommendations for additional critical work. Important recommendations include the inclusion of an alarm on SHW systems to identify a failed system, the need for a scientifically designed study to collect high-quality reliability data that will lead to design improvements and lower costs, and accelerated testing of components that are identified as highly problematic.

Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

2009-05-01T23:59:59.000Z

260

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect (OSTI)

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

Diagram 1: A Typical Tank Water Heater Source: http://to-unit comparisons of tank versus tankless water heaters.Energy Use MJ/(unit*year) Tank Tankless MJ/(unit*year) Tank

Lu, Alison

2011-01-01T23:59:59.000Z

262

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.

2010-01-01T23:59:59.000Z

263

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

furnaces and storage water heaters, finds that installing aAs shown in Table 2, storage water heaters in single-familya gas furnace and a gas storage water heater. This market is

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

264

Analysis of a duo-selecting membrane reactor for the water-gas shift  

E-Print Network [OSTI]

The water-gas shift reaction is an exothermic and reversible catalytic process that converts carbon monoxide and water (steam) to hydrogen and carbon dioxide. In regard to energy-related issues, the water-gas shift is part ...

Hardy, AliciA Jillian Jackson, 1978-

2004-01-01T23:59:59.000Z

265

Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures  

DOE Patents [OSTI]

A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

Aines, Roger D.; Bourcier, William L.; Viani, Brian

2013-01-29T23:59:59.000Z

266

Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet)  

SciTech Connect (OSTI)

Over recent years, heat pump water heaters (HPWHs) have become more readily available and more widely adopted in the marketplace. For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the performance of a GE Geospring HPWH in Windermere, Florida. The study found that the HPWH performed 144% more efficiently than a traditional electric resistance water heater, saving approximately 64% on water heating annually. The monitoring showed that the domestic hot water draw was a primary factor affecting the system's operating efficiency.

Metzger, C.; Puttagunta, S.; Williamson, J.

2013-11-01T23:59:59.000Z

267

Water and Energy Savings using Demand Hot Water Recirculating Systems in Residential Homes: A Case Study of Five Homes in Palo Alto, California  

SciTech Connect (OSTI)

This report summarizes a preliminary study aimed at estimating the potential of saving potable water, (and the electrical energy used to heat it), that is presently lost directly to the drain while occupants wait for hot water to arrive at the faucet (point of use). Data were collected from five single-family homes in Palo Alto, California. Despite the small sample size in this study, the results make a compelling case for retrofitting homes with hot water recirculation systems to eliminate unnecessary wastage of water at the point of use. Technical as well as behavioral and attitudinal changes towards water conservation are necessary for a fulfilling and successful conservation effort. This report focuses on the technical issues, but behavioral issues are also noted, which may be factored into future studies involving local and state governments and utility companies.

Ally, M.R.

2002-11-14T23:59:59.000Z

268

Improving thermosyphon solar domestic hot water system model performance. Final report, March 1994--February 1995  

SciTech Connect (OSTI)

Data from an indoor solar simulator experimental performance test is used to develop a systematic calibration procedure for a computer model of a thermosyphoning, solar domestic hot water heating system with a tank-in-tank heat exchanger. Calibration is performed using an indoor test with a simulated solar collector to adjust heat transfer in the heat exchanger and heat transfer between adjacent layers of water in the storage tank. An outdoor test is used to calibrate the calculation of the friction drop in the closed collector loop. Additional indoor data with forced flow in the annulus of the heat exchanger leads to improved heat transfer correlations for the inside and outside regions of the tank-in-tank heat exchanger. The calibrated simulation model is compared to several additional outdoor tests both with and without auxiliary heating. Integrated draw energies are predicted with greater accuracy and draw temperature profiles match experimental results to a better degree. Auxiliary energy input predictions improve significantly. 63 figs., 29 tabs.

Swift, T.N.

1996-09-01T23:59:59.000Z

269

Advanced turbine design for coal-fueled engines. Phase 1, Erosion of turbine hot gas path blading: Final report  

SciTech Connect (OSTI)

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

270

Biological Water Gas Shift DOE Hydrogen, Fuel Cell, and Infrastructure  

E-Print Network [OSTI]

Yields Energy in Darkness · CO supports both cell growth and ATP synthesis, in darkness · ATP can be used to regenerate more water-gas shift catalysts in darkness · Dark bioreactor simplifies reactor design, operation's comments that shift reaction can support cell growth yielding energy in darkness leading to sustained H2

271

Covered Product Category: Residential Gas Storage Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including gas storage water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

272

Numerical study of hot-leg ECC injection into the upper plenum of a pressurized water reactor  

SciTech Connect (OSTI)

In certain pressurized water reactor (PWR) designs, emergency core coolant (ECC) is injected through the hot legs into the upper plenum. The condensation of steam on this subcooled liquid stream reduces the pressure in the hot legs and upper plenum and thereby affects flow conditions throughout the reactor. In the present study, we examine countercurrent steam-water flow in the hot leg to determine the deceleration of the ECC flow that results from an adverse pressure gradient and from momentum exchange from the steam by interfacial drag and condensation. For the parameters examined in the study, water flow reversal is observed for a pressure drop of 22 to 32 mBar over the 1.5 m hot leg. We have also performed a three-dimensional study of subcooled water injection into air and steam environments of the upper plenum. The ECC water is deflected by an array of cylindrical guide tubes in its passage through the upper plenum. Comparisons of the air-water results with data obtained in a full scale experiment shows reasonable agreement, but indicates that there may be too much resistance to horizontal flow about the columns because of the use of a stair-step representation of the cylindrical guide tube cross section. Calculations of flow past single columns of stair-step, square and circular cross section do indicate excessive water deeentrainment by the noncircular column. This has prompted the use of an arbitrary mesh computational procedure to more accuratey represent the circular cross-section guide tubes. 15 figures.

Daly, B.J.; Torrey, M.D.; Rivard, W.C.

1981-01-01T23:59:59.000Z

273

Effect of Cooling Flow on the Operation of a Hot Rotor-Gas Foil Bearing System  

E-Print Network [OSTI]

.2 Drive end GFB: Predicted bearing static parameters ................................. 157 M.3 Free end GFB: Predicted bearing static parameters ................................... 158 1 CHAPTER I INTRODUCTION Micro gas turbine engines (<400... kW) are light-weight compact units operating at extreme temperatures and at high rotor speeds to achieve the desired power with reduced emissions [1]. Employing gas foil bearings (GFBs) in micro gas turbines increases system efficiency...

Ryu, Keun

2012-02-14T23:59:59.000Z

274

Compressor and Hot Section Fouling in Gas Turbines- Causes and Effects  

E-Print Network [OSTI]

COMPRESSOR AND BOT SECTION FOOLING IN GAS TURBINES - CAUSES AND EPFECTS CYRUS B. MEHER-HOMJI Manager, Advanced Technology Boyce Engineering International, Inc. Houston, Texas ABSTRACT The fouling of axial flow compressors and turbines is a... serious operating problem in gas turbine eng ines. These prime movers are being increasingly used in cogeneration applications and with the large air mass flow rate (e.g. 633 Lbs/Sec for a 80 MWe gas turbine) foulants even in the ppm range can cause...

Meher-Homji, C. B.

275

Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California  

E-Print Network [OSTI]

consumer/your_home/water_ heating/index.cfm/mytopic=12980heating is a large source of energy use in California homes.heating is the third largest source of energy use in homes [

Lu, Alison

2011-01-01T23:59:59.000Z

276

Water Extraction from Coal-Fired Power Plant Flue Gas  

SciTech Connect (OSTI)

The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

2006-06-30T23:59:59.000Z

277

CFD Validation of Gas Injection into Stagnant Water  

SciTech Connect (OSTI)

Investigations in the area of two-phase flow at the Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source (SNS) facility are progressing. It is expected that the target vessel lifetime could be extended by introducing gas into the liquid mercury target. As part of an effort to validate the two-phase computational fluid dynamics (CFD) model, simulations and experiments of gas injection in stagnant water have been completed. The volume of fluid (VOF) method as implemented in ANSYS-CFX was used to simulate the unsteady two-phase flow of gas injection into stagnant water. Flow visualization data were obtained with a high-speed camera for the comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth, detachment, and gravitational rise. The CFD model is validated with these experimental measurements at different gas flow rates. The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The acoustic signature aspect of this validation is particularly interesting since it has applicability to the injection of gas into liquid mercury, which is opaque.

Abdou, Ashraf A [ORNL

2007-01-01T23:59:59.000Z

278

HOT WATER IN THE INNER 100 AU OF THE CLASS 0 PROTOSTAR NGC 1333 IRAS2A  

SciTech Connect (OSTI)

Evaporation of water ice above 100 K in the inner few 100 AU of low-mass embedded protostars (the so-called hot core) should produce quiescent water vapor abundances of {approx}10{sup -4} relative to H{sub 2}. Observational evidence so far points at abundances of only a few 10{sup -6}. However, these values are based on spherical models, which are known from interferometric studies to be inaccurate on the relevant spatial scales. Are hot cores really that much drier than expected, or are the low abundances an artifact of the inaccurate physical models? We present deep velocity-resolved Herschel-HIFI spectra of the 3{sub 12}-3{sub 03} lines of H{sub 2}{sup 16}O and H{sub 2}{sup 18}O (1097 GHz, E{sub u}/k = 249 K) in the low-mass Class 0 protostar NGC 1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H{sub 2}{sup 18}O 3{sub 13}-2{sub 20} line (203 GHz, E{sub u}/k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C{sup 18}O J = 9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2 Multiplication-Sign 10{sup -5}, consistent with the theoretical predictions of {approx}10{sup -4}. The revised HDO/H{sub 2}O abundance ratio is 1 Multiplication-Sign 10{sup -3}, an order of magnitude lower than previously estimated.

Visser, Ruud; Bergin, Edwin A. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Jorgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Kristensen, Lars E.; Van Dishoeck, Ewine F., E-mail: visserr@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

2013-05-20T23:59:59.000Z

279

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

E-Print Network [OSTI]

and F. Southworh. 2004. Heat pump water heater technology:gas tankless water heaters, heat pump water heaters,heat pump space heaters, and solar water heaters, as well as

Lekov, Alex

2011-01-01T23:59:59.000Z

280

Search for cold and hot gas in the ram pressure stripped Virgo dwarf galaxy IC3418  

E-Print Network [OSTI]

We present IRAM 30m sensitive upper limits on CO emission in the ram pressure stripped dwarf Virgo galaxy IC3418 and in a few positions covering HII regions in its prominent 17 kpc UV/Ha gas-stripped tail. In the central few arcseconds of the galaxy, we report a possible marginal detection of about 1x10^6 M_sun of molecular gas (assuming a Galactic CO-to-H_2 conversion factor) that could correspond to a surviving nuclear gas reservoir. We estimate that there is less molecular gas in the main body of IC3418, by at least a factor of 20, than would be expected from the pre-quenching UV-based star formation rate assuming the typical gas depletion timescale of 2 Gyr. Given the lack of star formation in the main body, we think the H_2-deficiency is real, although some of it may also arise from a higher CO-to-H_2 factor typical in low-metallicity, low-mass galaxies. The presence of HII regions in the tail of IC3418 suggests that there must be some dense gas; however, only upper limits of < 1x10^6 M_sun were found...

Jachym, P; Ruzicka, A; Sun, M; Combes, F; Palous, J

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Origin of the Hot Gas in the Galactic Halo: Testing Galactic Fountain Models' X-ray Emission  

E-Print Network [OSTI]

We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without an interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conductio...

Henley, David B; Kwak, Kyujin; Hill, Alex S; Mac Low, Mordecai-Mark

2015-01-01T23:59:59.000Z

282

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network [OSTI]

appliance_standards/residential/water_ pool_heaters_prelim_Star (2008). Energy star residential water heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

283

Hot-gas cleanup system model development. Volume I. Final report  

SciTech Connect (OSTI)

This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

Ushimaru, K.; Bennett, A.; Bekowies, P.J.

1982-11-01T23:59:59.000Z

284

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

Lutz, Jim

2012-01-01T23:59:59.000Z

285

Whole-Home Gas Tankless Water Heaters, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Performance and purchasing specifications for whole-home gas water heaters under the FEMP-designated product program.

Not Available

2010-06-01T23:59:59.000Z

286

Energy and environmental research emphasizing low-rank coal: Task 3.4 -- Hot-gas cleaning. Topical report (includes semiannual report for January--June 1995)  

SciTech Connect (OSTI)

This report summarizes the accomplishments of three subtasks completed in support of the current and future hot-gas cleanup activities at the Energy and Environmental Research Center (EERC). The overall objective of the EERC hot-gas cleanup task is to develop reliable methods to remove particulate matter from high-temperature, high-pressure gas streams produced from coal combustion and/or gasification. Near-term task objectives include (1) design, fabrication, and assembly of a high-temperature, high-pressure bench-scale filter vessel; (2) design, fabrication, and assembly of a high-temperature, high-pressure sampling train; and (3) the preliminary design of a pilot-scale high-temperature, high-pressure filter vessel and support systems. Bench-scale hot-gas filter research will be performed with the pressurized fluid-bed reactor (PFBR) or the continuous fluid-bed reactor (CFBR) and a hot-gas filter vessel. The objectives of future work with the bench-scale system will be to determine particulate and vapor-phase alkali degradation of candidate ceramic filter structures as well as filter performance relative to particulate collection efficiency, differential pressure, and filter cleanability. Construction of the high-temperature, high-pressure sampling system was intended to support bench- and pilot-scale activities with respect to conventional particulate sampling (total mass and particle-size distribution) and hazardous air pollutant (HAP) sampling. Finally, pilot-scale tests will be performed to evaluate filter performance and determine alkali corrosion of ceramic materials with a hot-gas filter vessel attached to the EERC Transport Reactor Development Unit (TRDU).

Weber, G.F.; Swanson, M.L.

1995-06-01T23:59:59.000Z

287

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

SciTech Connect (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

1991-12-01T23:59:59.000Z

288

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

289

Report on the analysis of field data relating to the reliability of solar hot water systems.  

SciTech Connect (OSTI)

Utilities are overseeing the installations of thousand of solar hot water (SHW) systems. Utility planners have begun to ask for quantitative measures of the expected lifetimes of these systems so that they can properly forecast their loads. This report, which augments a 2009 reliability analysis effort by Sandia National Laboratories (SNL), addresses this need. Additional reliability data have been collected, added to the existing database, and analyzed. The results are presented. Additionally, formal reliability theory is described, including the bathtub curve, which is the most common model to characterize the lifetime reliability character of systems, and for predicting failures in the field. Reliability theory is used to assess the SNL reliability database. This assessment shows that the database is heavily weighted with data that describe the reliability of SHW systems early in their lives, during the warranty period. But it contains few measured data to describe the ends of SHW systems lives. End-of-life data are the most critical ones to define sufficiently the reliability of SHW systems in order to answer the questions that the utilities pose. Several ideas are presented for collecting the required data, including photometric analysis of aerial photographs of installed collectors, statistical and neural network analysis of energy bills from solar homes, and the development of simple algorithms to allow conventional SHW controllers to announce system failures and record the details of the event, similar to how aircraft black box recorders perform. Some information is also presented about public expectations for the longevity of a SHW system, information that is useful in developing reliability goals.

Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM)

2011-07-01T23:59:59.000Z

290

Effects of operating damage of labyrinth seal on seal leakage and wheelspace hot gas ingress  

E-Print Network [OSTI]

, and (4) the effect of rub-groove axial position and wall angle on gas turbine ingress heating. To facilitate grid generation, an unstructured grid generator named OpenCFD was also developed. The grid generator is written in C++ and generates hybrid grids...

Xu, Jinming

2007-09-17T23:59:59.000Z

291

Performance of Gas-fired Water Heaters in a 10-home Field Study  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "Are high-efficiency hot water heating systems worth the cost?"

292

MathematicalGeology, Vol. 11,No. I,1979 Modeling and Optimizing a Gas-Water Reservoir  

E-Print Network [OSTI]

of gas in psia pressure of gas in psia at time t constant production rate of gas in moles per year production rate at time t in moles per year ideal gas constant constant rate of water injection in cubic feet of the reservoir in cubic feet, below which gas production ceases initial reservoir volume in cubic feet reservoir

Waterman, Michael S.

293

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2011-09-01T23:59:59.000Z

294

Spin states of para-water and ortho-water molecule in gas and liquid phases  

E-Print Network [OSTI]

Spin degrees of freedom of water molecule in gas and liquid state were investigated in order to provide a reasonable answer about the unsolved problem of a long-term behavior of water spin isomers. The approach used involves an assumption that molecules change their spin state from a pure state to a mixed one when they interact with some sorts of adsorbent surface. Some models and conceptions of the quantum information processing were used.

V. K. Konyukhov

2009-09-23T23:59:59.000Z

295

Research and development of a high efficiency gas-fired water heater. Volume 2. Task reports  

SciTech Connect (OSTI)

Design and development of a cost-effective high efficiency gas-fired water heater to attain a service efficiency of 70% (including the effect of exfiltration) and a service efficiency of 78% (excluding exfiltration) for a 75 GPD draw at a 90/sup 0/F temperature rise, with a stored water to conditioned air temperature difference of 80/sup 0/F, are described in detail. Based on concept evaluation, a non-powered natural draft water heater was chosen as the most cost-effective design to develop. The projected installed cost is $374 compared to $200 for a conventional unit. When the project water heater is compared to a conventional unit, it has a payback of 3.7 years and life cycle savings of $350 to the consumer. A prototype water heater was designed, constructed, and tested. When operated with sealed combustion, the unit has a service efficiency of 66.4% (including the effect of exfiltration) below a burner input of 32,000 Btu/h. In the open combustion configuration, the unit operated at a measured efficiency of 66.4% Btu/h (excluding exfiltration). This compares with a service efficiency of 51.3% for a conventional water heater and 61% for a conventional high efficiency unit capable of meeting ASHRAE 90-75. Operational tests showed the unit performed well with no evidence of stacking or hot spots. It met or exceeded all capacity or usage tests specified in the program test plan and met all emission goals. Future work will concentrate on designing, building, and testing pre-production units. It is anticipated that both sealed combustion and open draft models will be pursued.

Vasilakis, A.D.; Pearson, J.F.; Gerstmann, J.

1980-01-01T23:59:59.000Z

296

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network [OSTI]

Two Demand Electric Water Heaters for Northeast Utilities.Two Demand Electric Water Heaters for Northeast Utilities.Johnson. Heat Pump Water Heater Field Test: 30 Crispaire

Lutz, Jim

2012-01-01T23:59:59.000Z

297

Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system  

E-Print Network [OSTI]

DEALING WITH “BIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCE” BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

Zhong, L.

2014-01-01T23:59:59.000Z

298

Minimizing Water Production from Unconventional Gas Wells Using a Novel Environmentally Benign Polymer Gel System  

E-Print Network [OSTI]

Excess water production is a major economic and environmental problem for the oil and gas industry. The cost of processing excess water runs into billions of dollars. Polymer gel technology has been successfully used in controlling water influx...

Gakhar, Kush

2012-02-14T23:59:59.000Z

299

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperature to improve reaction kinetics. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. In the first year of the project, we prepared a series of nanostructured Cu- and Fe-containing ceria catalysts by a special gelation/precipitation technique followed by air calcination at 650 C. Each sample was characterized by ICP for elemental composition analysis, BET-N2 desorption for surface area measurement, and by temperature-programmed reduction in H{sub 2} to evaluate catalyst reducibility. Screening WGS tests with catalyst powders were conducted in a flow microreactor at temperatures in the range of 200-550 C. On the basis of both activity and stability of catalysts in simulated coal gas, and in CO{sub 2}-rich gases, a Cu-CeO{sub 2} catalyst formulation was selected for further study in this project. Details from the catalyst development and testing work are given in this report. Also in this report, we present H{sub 2} permeation data collected with unsupported flat membranes of pure Pd and Pd-alloys over a wide temperature window.

Maria Flytzani-Stephanopoulos; Jerry Meldon; Xiaomei Qi

2001-12-01T23:59:59.000Z

300

Stable configuration of ultrarelativistic material spheres: The solution for an extremely hot gas  

SciTech Connect (OSTI)

During the last stage of collapse of a compact object into the horizon of events, the potential energy of its surface layer decreases to a negative value below all limits. The energy-conservation law requires an appearance of a positive-valued energy to balance the decrease. We derive the internal-state properties of the ideal gas situated in an extremely strong, ultrarelativistic gravitational field and suggest the application of our result to a compact object with a radius that is slightly larger than or equal to the Schwarzschild gravitational radius. On the surface of the object, we find that the extreme attractivity of the gravity is accompanied with an extremely high internal heat energy. This internal energy implies a correspondingly high pressure, the gradient of which has such a behavior that it can compete with the gravity. In more detail, we find the equation of state in the case when the magnitude of the potential-type energy of constituting gas particles is much larger than their rest energy. This equation appears to be identical with the general relativity condition of the equilibrium between the gravity and pressure gradient. The consequences of the identity are discussed.

Neslusan, Lubos [Astronomical Institute of the Slovak Academy of Sciences, 05960 Tatranska Lomnica (Slovakia)

2009-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ongoing Galactic Accretion: Simulations and Observations of Condensed Gas in Hot Halos  

E-Print Network [OSTI]

Ongoing accretion onto galactic disks has been recently theorized to progress via the unstable cooling of the baryonic halo into condensed clouds. These clouds have been identified as analogous to the High-Velocity Clouds (HVCs) observed in HI in our Galaxy. Here we compare the distribution of HVCs observed around our own Galaxy and extra-planar gas around the Andromeda galaxy to these possible HVC analogs in a simulation of galaxy formation that naturally generates these condensed clouds. We find a very good correspondence between these observations and the simulation, in terms of number, angular size, velocity distribution, overall flux and flux distribution of the clouds. We show that condensed cloud accretion only accounts for ~ 0.2 M_solar / year of the current overall Galactic accretion in the simulations. We also find that the simulated halo clouds accelerate and become more massive as they fall toward the disk. The parameter space of the simulated clouds is consistent with all of the observed HVC complexes that have distance constraints, except the Magellanic Stream which is known to have a different origin. We also find that nearly half of these simulated halo clouds would be indistinguishable from lower-velocity gas and that this effect is strongest further from the disk of the galaxy, thus indicating a possible missing population of HVCs. These results indicate that the majority of HVCs are consistent with being infalling, condensed clouds that are a remnant of Galaxy formation.

J. E. G. Peek; M. E. Putman; Jesper Sommer-Larsen

2007-09-11T23:59:59.000Z

302

Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems  

DOE Patents [OSTI]

A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

1983-08-26T23:59:59.000Z

303

The construction and use of aquifer influence functions in determining original gas in place for water-drive gas reservoirs  

E-Print Network [OSTI]

THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR WATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH GAJDICA Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1986 Major Subject: Petroleum Engineering THE CONSTRUCTION AND USE OF AQUIFER INFLUENCE FUNCTIONS IN DETERMINING ORIGINAL GAS IN PLACE FOR MATER-DRIVE GAS RESERVOIRS A Thesis by RONALD JOSEPH...

Gajdica, Ronald Joseph

1986-01-01T23:59:59.000Z

304

Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

None

2012-12-01T23:59:59.000Z

305

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network [OSTI]

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular review of shale gas drilling in New York State, as well as the most comprehensive collection of data

Manning, Sturt

306

Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems  

E-Print Network [OSTI]

linked with gas transfer. Microbreaking, or the breakdown of small-scale waves that do not entrain airEnvironmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems; accepted 5 April 2007; published 17 May 2007. [1] Air-water gas transfer influences CO2 and other

Ho, David

307

Hot Water Draw Patterns in Single-Family Houses: Findings from Field Studies  

E-Print Network [OSTI]

and R.K. Johnson. Heat Pump Water Heater Field Test: 30a Market-Optimized Heat- Pump Water Heater. Prepared by TIAXcost savings of heat pump water heaters Field test of

Lutz, Jim

2012-01-01T23:59:59.000Z

308

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

309

Gas-Liquid Coexistence in the Primitive Model for Water  

E-Print Network [OSTI]

We evaluate the location of the gas-liquid coexistence line and of the associated critical point for the primitive model for water (PMW), introduced by Kolafa and Nezbeda [J. Kolafa and I. Nezbeda, Mol. Phys. 61, 161 (1987)]. Besides being a simple model for a molecular network forming liquid, the PMW is representative of patchy proteins and novel colloidal particles interacting with localized directional short-range attractions. We show that the gas-liquid phase separation is metastable, i.e. it takes place in the region of the phase diagram where the crystal phase is thermodynamically favored, as in the case of articles interacting via short-range attractive spherical potentials. Differently from spherical potentials, we do not observe crystallization close to the critical point. The region of gas-liquid instability of this patchy model is significantly reduced as compared to equivalent models of spherically interacting particles, confirming the possibility of observing kinetic arrest in an homogeneous sample driven by bonding as opposed to packing.

F. Romano; P. Tartaglia; F. Sciortino

2007-05-08T23:59:59.000Z

310

The Hot Gas Content of Low-Luminosity Early-Type Galaxies and the Implications Regarding Supernova Heating and AGN Feedback  

E-Print Network [OSTI]

We have analyzed Chandra observations of 18 low-luminosity early-type galaxies with L_B gas with temperatures between 0.2 and 0.8 keV comprises 5-70% of the total 0.5-2.0 keV emission from these galaxies. We find that the total X-ray luminosity from LMXBs (resolved plus the power-law component of the unresolved emission) scales roughly linearly with the K-band luminosity of the galaxies with a normalization comparable to that found in more luminous early-type galaxies. All of the galaxies in our sample are gas poor with gas masses much less than that expected from the accumulation of stellar mass loss over the life time of the galaxies. The average ratio of gas mass to stellar mass in our sample is M_{gas}/M_*=0.001, compared to more luminous early-type galaxies which typically have M_{gas}/M_*=0.01. The time required to accumulate the observed gas mass from stellar mass loss in these galaxies is typically 3 x 10e8 yr. Since the cooling time of the gas is longer than the replenishment time, the gas cannot be condensing out of the hot phase and forming stars, implying that the gas is most likely being expelled from these galaxies in a wind (abridged).

Laurence P. David; Christine Jones; William Forman; Iris Monica Vargas; Paul Nulsen

2006-09-05T23:59:59.000Z

311

Development of novel copper-based sorbents for hot-gas cleanup. Technical report, March 1, 1992--May 31, 1992  

SciTech Connect (OSTI)

The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. During this quarter cyclic sulfidation/regeneration tests of the sorbents Cu{sub 2}Cr-O and Cu-Ce-0 were conducted using different compositions of the feed gases to investigate the effects of H{sub 2}0, H{sub 2} and CO. These tests were conducted in a packed-bed microreactor at 850{degrees}C. The results of these tests showed that H{sub 2} and CO (along with C02) had a significant effect on the H{sub 2}S pre-breakthrough levels, whereas H{sub 2}0 did not have an effect. The physical properties of the fresh and reacted samples of the Cu-2Cr-O and Cu-Ce-0 sorbents prepared in this program and used in the cyclic sulfidation/regeneration tests were also measured. In addition, sulfidation/regeneration tests were conducted using two commercial copper chromite sorbents (G-13 and G-89, United Catalyst, Inc.) and a zinc titanate sorbent (L-3014) in a one-inch fluidized-bed reactor at 650{degrees}C. The G-13 sorbent appears to have a much higher sulfur capacity than the G-89 sorbent.

Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1992-10-01T23:59:59.000Z

312

Initial test results from the Department of Energy`s pressurized fluidized bed combustion Hot Gas Cleanup Program  

SciTech Connect (OSTI)

In August 1989 a cooperative agreement was signed between Ohio Power Company, through its agent the American Electric Power Service Corporation, and the United States Department of Energy to assess the readiness and economic viability of high-temperature and high-pressure (HTHP) particulate filter systems for pressurized fluidized bed combustion (PFBC) applications. In this agreement, known as the PFBC Hot Gas Cleanup (HGCU) Program, two HTHP particulate filtration systems are to be tested with one seventh of the flow from the Tidd 70-MWe PFBC Clean Coal Demonstration Plant. This paper describes the initial results from the first PFBC HGCU test and an additional proof-of-concept, pilot-scale test used to validate a ceramic candle filter element, which may be used in the second test of the PFBC HGCU Program. The first test consisted of a three-cluster filter system, incorporating 384, 1.5-meter long silicon carbide candle filters. This system utilized a one-seventh flow slipstream, approximately 7360 actual cubic feet per minute, from the Tidd 70-MWe PFBC. The proof-of-concept test is being used to qualify mullite candle filters as a potential candidate for the second test at the Tidd 70-MWe PFBC. Both filter systems were designed and fabricated by the Westinghouse Science and Technology Center.

Dennis, R.A. [USDOE Morgantown Energy Technology Center, WV (United States); Lippert, T.E.; Bruck, G.J.; Alvin, M.A. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Mudd, M.J. [Ohio Power Co., Columbus, OH (United States)]|[American Electric Power Service Corp., Columbus, OH (United States)

1993-06-01T23:59:59.000Z

313

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

This project involved fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2} -separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams were examined in the project. Cu-cerium oxide was identified as the most promising high-temperature water-gas shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. The high-temperature shift catalyst composition was optimized by proper selection of dopant type and amount in ceria. The formulation 10at%Cu-Ce(30at%La)O{sub x} showed the best performance, and was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The apparent activation energy, measured over aged catalysts, was equal to 70.2 kJ/mol. Reaction orders in CO, H{sub 2}O, CO{sub 2} and H{sub 2} were found to be 0.8, 0.2, -0.3, and -0.3, respectively. This shows that H{sub 2}O has very little effect on the reaction rate, and that both CO{sub 2} and H{sub 2} weakly inhibit the reaction. Good stability of catalyst performance was found in 40-hr long tests. A flat (38 cm{sup 2}) Pd-Cu alloy membrane reactor was used with the catalyst washcoated on oxidized aluminum screens close coupled with the membrane. To achieve higher loadings, catalyst granules were layered on the membrane itself to test the combined HTS activity/ H{sub 2} -separation efficiency of the composite. Simulated coal gas mixtures were used and the effect of membrane on the conversion of CO over the catalyst was evidenced at high space velocities. Equilibrium CO conversion at 400 C was measured at a space velocity of 30,000 h{sup -1} with the 10{micro}m- thick Pd{sub 60}Cu{sub 40} membrane operating under a pressure differential of 100 psi. No carbon deposition took place during operation. The performance of the coupled Cu-ceria catalyst/membrane system at 400 C was stable in {approx} 30 h of continuous operation. The overall conclusion from this project is that Cu-doped ceria catalysts are suitable for use in high-temperature water-gas shift membrane reactors. CO{sub 2}-rich operation does not affect the catalyst activity or stability; neither does it affect hydrogen permeation through the Pd-Cu membrane. Operation in the temperature range of 400-430 C is recommended.

Maria Flytzani-Stephanopoulos; Xiaomei Qi; Scott Kronewitter

2004-02-01T23:59:59.000Z

314

Solubility trapping in formation water as dominant CO2 sink in natural gas fields  

E-Print Network [OSTI]

LETTERS Solubility trapping in formation water as dominant CO2 sink in natural gas fields Stuart M removal in nine natural gas fields in North America, China and Europe, using noble gas and carbon isotope tracers. The natural gas fields investigated in our study are dominated by a CO2 phase and provide

Haszeldine, Stuart

315

Gas exchange in terrestrial environments comes at the cost of evaporative water loss from respiratory surfaces.  

E-Print Network [OSTI]

3477 Gas exchange in terrestrial environments comes at the cost of evaporative water loss from of gas exchange, both within and among species (Lighton, 1998; Shelton and Appel, 2001; Chown, 2002). The classical pattern is that of discontinuous gas exchange, or discontinuous gas-exchange cycles (DGC; Lighton

Franz, Nico M.

316

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data  

E-Print Network [OSTI]

Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

Alkouh, Ahmad

2014-04-04T23:59:59.000Z

317

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia.  

E-Print Network [OSTI]

??The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time,… (more)

Rueda Silva, Carlos Fernando

2012-01-01T23:59:59.000Z

318

In-situ parameter estimation for solar domestic hot water heating systems components. Final report, June 1995--May 1996  

SciTech Connect (OSTI)

Three different solar domestic hot water systems are being tested at the Colorado State University Solar Energy Applications Laboratory; an unpressurized drain-back system with a load side heat exchanger, an integral collector storage system, and an ultra low flow natural convection heat exchanger system. The systems are fully instrumented to yield data appropriate for in-depth analyses of performance. The level of detail allows the observation of the performance of the total system and the performance of the individual components. This report evaluates the systems based on in-situ experimental data and compares the performances with simulated performances. The verification of the simulations aids in the rating procedure. The whole system performance measurements are also used to analyze the performance of individual components of a solar hot water system and to develop improved component models. The data are analyzed extensively and the parameters needed to characterize the systems fully are developed. Also resulting from this indepth analysis are suggested design improvements wither to the systems or the system components.

Smith, T.R.

1997-03-01T23:59:59.000Z

319

Water-saving liquid-gas conditioning system  

DOE Patents [OSTI]

A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

Martin, Christopher; Zhuang, Ye

2014-01-14T23:59:59.000Z

320

Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal  

DOE Patents [OSTI]

The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

Siriwardane, Ranjani V; Fisher, II, James C

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Comparison of Palladium and Platinum Water Gas Shift Kinetics Using Density Functional Theory Models.  

E-Print Network [OSTI]

??The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at low… (more)

Clay, John

2014-01-01T23:59:59.000Z

322

Comparison of palladium and platinum Water Gas Shift reaction kinetics using density functional theory models.  

E-Print Network [OSTI]

?? The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at… (more)

Clay, John P.

2014-01-01T23:59:59.000Z

323

Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water-Gas Samples At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration...

324

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

325

Economics of residential gas furnaces and water heaters in United States new construction market  

E-Print Network [OSTI]

Experiences of residential consumers and utilities. OakStar (2008). Energy Star Residential Water Heaters: Finalefficiency improvements for residential gas furnaces in the

Lekov, Alex B.

2010-01-01T23:59:59.000Z

326

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services,...

327

WATER-GAS SHIFT WITH INTEGRATED HYDROGEN SEPARATION PROCESS  

SciTech Connect (OSTI)

Optimization of the water-gas shift (WGS) reaction system for hydrogen production for fuel cells is of particular interest to the energy industry. To this end, it is desirable to couple the WGS reaction to hydrogen separation using a semi-permeable membrane, with both processes carried out at high temperatures to improve reaction kinetics and permeation. Reduced equilibrium conversion of the WGS reaction at high temperatures is overcome by product H{sub 2} removal via the membrane. This project involves fundamental research and development of novel cerium oxide-based catalysts for the water-gas-shift reaction and the integration of these catalysts with Pd-alloy H{sub 2}-separation membranes supplying high purity hydrogen for fuel cell use. Conditions matching the requirements of coal gasifier-exit gas streams will be examined in the project. The first-year screening studies of WGS catalysts identified Cu-ceria as the most promising high-temperature shift catalyst for integration with H{sub 2}-selective membranes. Formulations containing iron oxide were found to deactivate in the presence of CO{sub 2}, and were thus eliminated from further consideration. Cu-containing ceria catalysts, on the other hand, showed high stability in CO{sub 2}-rich gases. This type gas will be present over much of the catalyst, as the membrane removes the hydrogen produced from the shift reaction. Several catalyst formulations were prepared, characterized and tested in the first year of study. Details from the catalyst development and testing work were given in our first annual technical report. Hydrogen permeation through Pd and Pd-alloy foils was investigated in a small membrane reactor constructed during the first year of the project. The effect of temperature on the hydrogen flux through pure Pd, Pd{sub 60}Cu{sub 40} and Pd{sub 75}Ag{sub 25} alloy membranes, each 25 {micro}m thick, was evaluated in the temperature range from 250 C to 500 C at upstream pressure of 4.4 atm and permeate hydrogen pressure of 1 atm. Flux decay was observed for the Pd-Cu membrane above 500 C. From 350-450 C, an average hydrogen flux value of 0.2 mol H{sub 2}/m{sup 2}/s was measured over this Pd-alloy membrane. These results are in good agreement with literature data. In this year's report, we discuss reaction rate measurements, optimization of catalyst kinetics by proper choice of dopant oxide (lanthana) in ceria, long-term stability studies, and H{sub 2} permeation data collected with unsupported flat, 10 {micro}m-thick Pd-Cu membranes over a wide temperature window and in various gas mixtures. The high-temperature shift catalyst composition was further improved, by proper selection of dopant type and amount. The formulation 10 at%Cu-Ce(30 at%La)Ox was the best; this was selected for further kinetic studies. WGS reaction rates were measured in a simulated coal-gas mixture. The stability of catalyst performance was examined in 40-hr long tests. A series of hydrogen permeation tests were conducted in a small flat-membrane reactor using the 10 m{micro}-thick Pd-Cu membranes. Small inhibitory effects of CO and CO{sub 2} were found at temperatures above 350 C, while H{sub 2}O vapor had no effect on hydrogen permeation. No carbon deposition took place during many hours of membrane operation. The reaction extent on the blank (catalyst-free) membrane was also negligible. A larger flat-membrane reactor will be used next year with the catalyst wash coated on screens close coupled with the Pd-Cu membrane.

Maria Flytzani-Stephanopoulos, PI; Jerry Meldon, Co-PI; Xiaomei Qi

2002-12-01T23:59:59.000Z

328

Water management technologies used by Marcellus Shale Gas Producers.  

SciTech Connect (OSTI)

Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

Veil, J. A.; Environmental Science Division

2010-07-30T23:59:59.000Z

329

Sustainable development through beneficial use of produced water for the oil and gas industry  

E-Print Network [OSTI]

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced...

Siddiqui, Mustafa Ashique

2002-01-01T23:59:59.000Z

330

Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process  

DOE Patents [OSTI]

In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

Schilke, Peter W. (4 Hempshire Ct., Scotia, NY 12302); Muth, Myron C. (R.D. #3, Western Ave., Amsterdam, NY 12010); Schilling, William F. (301 Garnsey Rd., Rexford, NY 12148); Rairden, III, John R. (6 Coronet Ct., Schenectady, NY 12309)

1983-01-01T23:59:59.000Z

331

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Drain Water Heat Recovery  

E-Print Network [OSTI]

household, the NPV of DWHR is -$203.68 for homes with electric water heaters and -$464.88 for homes with natural gas water heaters. DWHR is much more economical for households with electric hot water heaters as their energy costs are much higher. A household of 4 or more people with an electric hot water heater would

332

Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report  

SciTech Connect (OSTI)

This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

NONE

1993-09-02T23:59:59.000Z

333

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania  

E-Print Network [OSTI]

Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania Nathaniel R. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local bioaccumulation in localized areas of shale gas wastewater disposal. INTRODUCTION The safe disposal of large

Jackson, Robert B.

334

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network [OSTI]

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

Rueda Silva, Carlos Fernando

2012-06-07T23:59:59.000Z

335

Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas  

SciTech Connect (OSTI)

The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

Dexin Wang

2012-03-31T23:59:59.000Z

336

AGGLOMERATION OF GAS HYDRATE IN A WATER-IN-OIL EMULSION: EXPERIMENTAL AND MODELING STUDIES  

E-Print Network [OSTI]

AGGLOMERATION OF GAS HYDRATE IN A WATER-IN-OIL EMULSION: EXPERIMENTAL AND MODELING STUDIES Ana of gas hydrates in water-in-oil emulsion is investigated at the laboratory pilot scale on a flow loop, rheology, chord length distribution, modeling Corresponding author: Phone: +33 477420286 Fax +33 477429694

Paris-Sud XI, Université de

337

Analysis of Heating Systems and Scale of Natural Gas-Condensing Water Boilers in Northern Zones  

E-Print Network [OSTI]

In this paper, various heating systems and scale of the natural gas-condensing water boiler in northern zones are discussed, based on a technical-economic analysis of the heating systems of natural gas condensing water boilers in northern zones...

Wu, Y.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

338

THEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY  

E-Print Network [OSTI]

is the key to this improvement. 1. Introduction In secondary oil recovery, water or gas is injectedTHEORY OF THREE-PHASE FLOW APPLIED TO WATER-ALTERNATING-GAS ENHANCED OIL RECOVERY D. MARCHESIN, we show that this theory can be applied to increase the rate of oil recovery, during certain

339

Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge  

SciTech Connect (OSTI)

The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

1990-01-01T23:59:59.000Z

340

Is My Water Safe? disaster may disrupt the electricity needed to pump  

E-Print Network [OSTI]

food, brushing teeth and keeping clean. Water storage You can store water ahead for use in emergencies. Emergency water Your hot water heater or water pressure tank could supply many gallons of safe water during an emergency. Before using water from the water heater, switch off the gas or elec- tricity that heats

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Production-management techniques for water-drive gas reservoirs. Annual Report, August 1990-December 1991  

SciTech Connect (OSTI)

The project was designed to investigate production management strategies through a field study approach. The initial task was to prepare a summary of industry experience with water-drive gas and water-drive gas storage reservoirs. This activity was necessary to define the variety of reservoir situations in which water influx occurs, to identify those cases where alternative production practices will increase ultimate recovery, and to develop techniques to better characterize these reservoirs for further analysis. Four fields were selected for study: 1 onshore Gulf Coast gas reservoir, 2 offshore Gulf Coast reservoirs, and 1 mid-continent aquifier gas storage field. A modified material balance technique was developed and validated which predicts the pressure and production performance of water-drive gas reservoirs. This method yields more accurate results than conventional water influx techniques.

Hower, T.L.; Abbott, W.A.; Arsenault, J.W.; Jones, R.E.

1992-01-01T23:59:59.000Z

342

Performance Evaluation of Hot Water Efficiency Plumbing System Using Thermal Valve  

E-Print Network [OSTI]

In Korea two popular water distribution systems—the branch type and the separate type systems—have serious drawbacks. The branch type suffers from temperature instability while the separate type suffers from excessive piping. Neither of them re...

Cha, K. S.; Park, M. S.; Seo, H. Y.

343

Pilot plant studies for a new hot water process for extraction of bitumen from Utah tar sands  

SciTech Connect (OSTI)

A process development pilot plant for extracting bitumen from tar sands under arid conditions are described. The hot water recovery process under development is required to maximize heat and water recovery, recover more than 90% of the bitumen, minimize the operating cost, and eliminate the use of a tailings pond by increasing the effectiveness of solids separation and dewatering. Technical aspects of process flow conditions, the liquid cyclone separator under development, and testing to analyze the influence of flow rates, size distribution in discharge streams, amount of bitumen recovery from different streams, and air addition are summarized. Test results indicate that bitumen recovery should be at least 90%, water content from thickener underflow and dewater coarse solids averages about 30 weight percent moisture, and the forced vortex cyclone can produce an underflow solids concentration of 69 to 72 weight percent moisture. The proposed flow sheet is believed to be a very low-cost method for bitumen recovery. 5 refs., 3 figs., 2 tabs.

Dahlstrom, D.A.

1996-12-31T23:59:59.000Z

344

Instrument Qualification of Custom Fabricated Water Activity Meter for Hot Cell Use  

SciTech Connect (OSTI)

This report describes a custom fabricated water activity meter and the results of the qualification of this meter as described in the laboratory test plan LAB-PLN-11-00012, Testing and Validation of an Enhanced Acquisition and Control System. It was calibrated against several NaOH solutions of varying concentrations to quantify the accuracy and precision of the instrument at 20 °C and 60 °C. Also, a schematic and parts list of the equipment used to make the water activity meter will be presented in this report.

McCoskey, Jacob K.

2014-01-22T23:59:59.000Z

345

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

v i i where, h = molar enthalpy, Btu/mol (J/mol), M = molarEnergy Used at Shower Water Heater average 5169 BTU ( 5.454MJ ) 4335 BTU ( 4.573 MJ ) 4151 BTU ( 4.379 MJ ) 4192 BTU (

Lutz, Jim

2012-01-01T23:59:59.000Z

346

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

resistance and heat pump water heaters are not covered.other than commercial heat pump water heaters). 10CFR431.110

Lutz, Jim

2012-01-01T23:59:59.000Z

347

Optimization Models for Shale Gas Water Management Linlin Yang  

E-Print Network [OSTI]

source water acquisition, wastewater production, reuse and recycle, and subsequent transportation, about 19,000-26,000 m3 of water is used to complete each well. A wastewater production forecast . Furthermore, the injected water that remains underground accounts for 0.3% of all water consumption in the US

Grossmann, Ignacio E.

348

Proceedings: EPRI Workshop on Condition and Remaining Life Assessment of Hot Gas Path Components of Combustion Turbines  

SciTech Connect (OSTI)

The severity of modern combustion turbine operation is a reflection of industry competition to achieve higher thermal efficiency. This competitive stance has resulted in new turbine designs and material systems that have at times outpaced condition and remaining life assessment (CARLA) technology. These proceedings summarize a two-day workshop on CARLA technology for hot section components of large combustion turbines.

None

2000-05-01T23:59:59.000Z

349

Can carbon finance contribute to the promotion of solar water heating in Bolivia?   

E-Print Network [OSTI]

Residential applications of renewable energy can contribute to reducing greenhouse gas emissions while improving the quality of life for households. Thermosiphon solar water heaters are passive systems using solar energy to supply hot water...

Hayek, Niklas

2011-11-24T23:59:59.000Z

350

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

351

EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

352

"Solution plot technique"-Analysis of water influx in gas reservoirs using simulation studies  

E-Print Network [OSTI]

the reservoir-aquifer boundary. The most widely used methods for estimating water- influx which can be applied to water-drive gas reservoirs include: 1. Van Everdingen-Hurst Radial, unsteady statet. 2. Carter and Tracy, unsteady state2. 3, Fetkovich, pseudo... of calculating water- influx, and involves the use of the convolution integral method. Fetkovich proposed a model that utilizes a pseudo-steady state productivity index and the aquifer material balance for estimating the water influx. The Van Everdingen...

Hardikar, Sachin Suresh

1992-01-01T23:59:59.000Z

353

Sustainable development through beneficial use of produced water for the oil and gas industry.  

E-Print Network [OSTI]

??Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large… (more)

Siddiqui, Mustafa Ashique

2012-01-01T23:59:59.000Z

354

Memphis Light, Gas and Water (Electric)- Commercial Efficiency Advice and Incentives Program  

Broader source: Energy.gov [DOE]

Memphis Light, Gas and Water (MLGW), in partnership with the Tennessee Valley Authority (TVA), offers a variety of energy efficient incentives to non-residential customers. The program provides...

355

Development of Novel Water-Gas Shift Membrane Reactor  

SciTech Connect (OSTI)

This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

Ho, W. S. Winston

2004-12-29T23:59:59.000Z

356

Simulating the Effect of Water on the Fracture System of Shale Gas Wells  

E-Print Network [OSTI]

SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 2010 Major Subject: Petroleum Engineering SIMULATING THE EFFECT OF WATER ON THE FRACTURE SYSTEM OF SHALE GAS WELLS A Thesis by HASSAN HASAN H. HAMAM Submitted to the Office of Graduate...

Hamam, Hassan Hasan H.

2011-10-21T23:59:59.000Z

357

Effect of connate water on miscible displacement of reservoir oil by flue gas  

E-Print Network [OSTI]

gas and water injection, have allowed the industry to greatly increase primary oil recovery. But the common weakness of gas and water as pressure maintenance and secondary recovery agents is im- miscibility with the reservoir fluid to be displaced... to using a hydrocarbon slug, Saxon, et al was one of the earliest investigators of carbon dioxide as a possible flooding 14 agent. Gatlin and Slobod reported on laboratory investigations of another possible miscible flooding agent, methyl alcohol. Each...

Maxwell, H. D.

1960-01-01T23:59:59.000Z

358

Effects of fluid properties and initial gas saturation on oil recovery by water flooding  

E-Print Network [OSTI]

EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D. ARNOLD Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August, 1959 Major Subject: Petroleum Engineering EFFECTS OF FLUID PROPERTIES AND INITIAL GAS SATURATION ON OIL RECOVERY BY WATER FLOODING A Thesis By MARION D, ARNOLD Approved as to style and content by...

Arnold, Marion Denson

2012-06-07T23:59:59.000Z

359

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

360

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a  

E-Print Network [OSTI]

Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen of oil droplets and gas bubbles and show that the oil can have two very different roles, either suppressing foaming or stabilising the foam. We have foamed emulsions made from two different oils (rapeseed

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling  

E-Print Network [OSTI]

The Role of Isotopes in Monitoring Water Quality Impacts Associated with Shale Gas Drilling Methane contamination is usually due to natural causes; however, it can also be the result of drilling activities, including shale gas drilling. Monitoring techniques exist for detecting methane and, in some cases

Wang, Z. Jane

362

Gas exchange and water relations of evergreen and deciduous tropical savanna trees  

E-Print Network [OSTI]

Gas exchange and water relations of evergreen and deciduous tropical savanna trees G. Goldstein1 F savannas with pro- nounced wet/dry seasonality and well- drained soils are characterized by the presence the rainless period (Medina, 1982; Sarmiento et al., 1985). The purpose of this study was to investi- gate gas

Boyer, Edmond

363

Water Transport Characteristics of Gas Diffusion Layer in a PEM Fuel Cell  

SciTech Connect (OSTI)

A presentation addressing the following: Water transport in PEM Fuel Cells - a DoE Project 1. Gas Diffusion Layer--Role and Characteristics 2. Capillary Pressure Determinations of GDL Media 3. Gas Permeability Measurements of GDL Media 4. Conclusions and Future Activities

Ashok S. Damle; J. Vernon Cole

2008-11-01T23:59:59.000Z

364

July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect (OSTI)

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

None

2011-01-01T23:59:59.000Z

365

June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site  

SciTech Connect (OSTI)

Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

None

2011-10-01T23:59:59.000Z

366

Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 2, Appendices  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Data from sidestream testing are presented. 18 refs.

Underkoffler, V.S.

1986-12-01T23:59:59.000Z

367

Zero Discharge Water Management for Horizontal Shale Gas Well...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PG Report Date Issued: June 2012 DOE Award : DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV...

368

Reclamation of potable water from mixed gas streams  

DOE Patents [OSTI]

An apparatus for separating a liquid from a mixed gas stream can include a wall, a mixed gas stream passageway, and a liquid collection assembly. The wall can include a first surface, a second surface, and a plurality of capillary condensation pores. The capillary condensation pores extend through the wall, and have a first opening on the first surface of the wall, and a second opening on the second surface of the wall. The pore size of the pores can be between about 2 nm to about 100 nm. The mixed gas stream passageway can be in fluid communication with the first opening. The liquid collection assembly can collect liquid from the plurality of pores.

Judkins, Roddie R; Bischoff, Brian L; Debusk, Melanie Moses; Narula, Chaitanya

2013-08-20T23:59:59.000Z

369

A Laboratory Study of the Schmidt Number Dependency of Air-Water Gas  

E-Print Network [OSTI]

. Sc = /D denotes the Schmidt number, the ratio of kinematic viscosity of water and the tracersA Laboratory Study of the Schmidt Number Dependency of Air-Water Gas Transfer Kerstin Richter1 of exchange hap- pens with an exponent of 1/2 and links this fraction with a physical property of the wave

Jaehne, Bernd

370

The deep water gas charged accumulator and its possible replacements  

E-Print Network [OSTI]

. The problem may arise when the wellhead is at water depth of more than 3500 ft. In deep water drilling, the accumulators should be placed on the subsea blowout preventer stack to reduce hydraulic response times and provide a hydraulic power supply in case...

Mir Rajabi, Mehdi

2006-04-12T23:59:59.000Z

371

Economics of Condensing Gas Furnaces and Water Heaters Potential in Residential Single Family Homes  

SciTech Connect (OSTI)

Residential space and water heating accounts for over 90percent of total residential primary gas consumption in the United States. Condensing space and water heating equipment are 10-30percent more energy-efficient than conventional space and water heating. Currently, condensing gas furnaces represent 40 percent of shipments and are common in the Northern U.S. market. Meanwhile, manufacturers are planning to develop condensing gas storage water heaters to qualify for Energy Star? certification. Consumers, installers, and builders who make decisions about installing space and water heating equipment generally do not perform an analysis to assess the economic impacts of different combinations and efficiencies of space and water heating equipment. Thus, equipment is often installed without taking into consideration the potential life-cycle economic and energy savings of installing space and water heating equipment combinations. Drawing on previous and current analysis conducted for the United States Department of Energy rulemaking on amended standards for furnaces and water heaters, this paper evaluates the extent to which condensing equipment can provide life-cycle cost-effectiveness in a representative sample of single family American homes. The economic analyses indicate that significant energy savings and consumer benefits may result from large-scale introduction of condensing water heaters combined with condensing furnaces in U.S. residential single-family housing, particularly in the Northern region. The analyses also shows that important benefits may be overlooked when policy analysts evaluate the impact of space and water heating equipment separately.

Lekov, Alex; Franco, Victor; Meyers, Steve

2010-05-14T23:59:59.000Z

372

Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 1  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Optimum operating parameters for zinc ferrite such as temperatures, gas compositions, and space velocities are discussed. From the test results, salient features of zinc ferrite were derived and discussed in regard to system implications, issues raised, and technical requirements. 47 refs., 53 figs., 41 tabs.

Underkoffler, V.S.

1986-12-01T23:59:59.000Z

373

Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)  

SciTech Connect (OSTI)

The CAMERE process (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) was developed and evaluated. The reverse-water-gas-shift reactor and the methanol synthesis reactor were serially aligned to form methanol from CO{sub 2} hydrogenation. Carbon dioxide was converted to CO and water by the reverse-water-gas-shift reaction (RWReaction) to remove water before methanol was synthesized. With the elimination of water by RWReaction, the purge gas volume was minimized as the recycle gas volume decreased. Because of the minimum purge gas loss by the pretreatment of RWReactor, the overall methanol yield increased up to 89% from 69%. An active and stable catalyst with the composition of Cu/ZnO/ZrO{sub 2}/Ga{sub 2}O{sub 3} (5:3:1:1) was developed. The system was optimized and compared with the commercial methanol synthesis processes from natural gas and coal.

Joo, O.S.; Jung, K.D.; Han, S.H.; Uhm, S.J. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.] [Korea Inst. of Science and Technology, Seoul (Korea, Republic of). Catalysis Lab.; Moon, I. [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering] [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Chemical Engineering; Rozovskii, A.Y.; Lin, G.I. [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)] [A.V. Topchiev Inst. of Petrochemical Synthesis, Moscow (Russian Federation)

1999-05-01T23:59:59.000Z

374

CORQUENCH: A model for gas sparging-enhanced melt-water, film boiling heat transfer  

SciTech Connect (OSTI)

A phenomenological model (CORQUENCH) has been developed to describe the gas-sparging enhanced film boiling heat transfer between a molten pool of corium and an overlying water layer. The model accounts for thermal radiation across the vapor film, bulk liquid subcooling, interfacial area enhancement due to sparging gas, and melt entrainment into the overlying water layer. In this paper, the modeling approach is described, and a comparison with the lead-Freon 11 and lead-water film boiling experiment data of Greene is made. Predictions are then made for the case of film boiling over corium in the presence of sparging concrete decomposition gases. 15 refs., 3 figs.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

375

Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations  

SciTech Connect (OSTI)

The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

Rachel Henderson

2007-09-30T23:59:59.000Z

376

Poster: Building a test-bed for wireless sensor networking for under-water oil and gas installations  

E-Print Network [OSTI]

. Initially we are building a laboratory in a large water tank. Later we will cooperate with an oil and gasPoster: Building a test-bed for wireless sensor networking for under-water oil and gas@ifi.uio.no 1 Introduction and background When the oil and gas industry moves its production facilities

Zhou, Shengli

377

PFB coal fired combined cycle development program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation  

SciTech Connect (OSTI)

This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. This finding suggests that large cyclones with natural or augmented electrostatic forces employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. This is of special importance since the use of many small cyclones in parallel, or multicyclones, commonly suffers from fouling and this approach is not recommended in the CFCC application. The original objective of this investigation was to assess the relative merits of the Aerodyne cyclone separator. It was found from both the cold flow and the hot flow tests that its separative efficiencies are disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones.

Not Available

1980-11-01T23:59:59.000Z

378

PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation  

SciTech Connect (OSTI)

This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this finding offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)

Not Available

1980-02-01T23:59:59.000Z

379

Preliminary Modeling, Testing and Analysis of a Gas Tankless Water Heater  

SciTech Connect (OSTI)

Tankless water heaters offer significant energy savings over conventional storage-tank water heaters, because thermal losses to the environment are much less. Although standard test results are available to compare tankless heaters with storage tank heaters, actual savings depend on the draw details because energy to heat up the internal mass depends on the time since the last draw. To allow accurate efficiency estimates under any assumed draw pattern, a one-node model with heat exchanger mass is posed here. Key model parameters were determined from test data. Burner efficiency showed inconsistency between the two data sets analyzed. Model calculations show that efficiency with a realistic draw pattern is {approx}8% lower than that resulting from using only large {approx}40 liter draws, as specified in standard water-heater tests. The model is also used to indicate that adding a small tank controlled by the tankless heater ameliorates unacceptable oscillations that tankless with feedback control can experience with pre-heated water too hot for the minimum burner setting. The added tank also eliminates problematic low-flow cut-out and hot-water-delay, but it will slightly decrease efficiency. Future work includes model refinements and developing optimal protocols for parameter extraction.

Burch, J.; Thornton, J.; Hoeschele, M.; Springer, D.; Rudd, A.

2008-01-01T23:59:59.000Z

380

Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.  

SciTech Connect (OSTI)

This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific recommendations are presented relative to the application of the technique, including ways to mitigate and manage potential sources of error.

He, Hongbo (University of New Mexico, Albuquerque, NM); Vorobieff, Peter V. (University of New Mexico, Albuquerque, NM); Menicucci, David (University of New Mexico, Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Carlson, Jeffrey J.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

382

Water Withdrawals for Development of Marcellus Shale Gas in Pennsylvania  

E-Print Network [OSTI]

is the fracking fluid (also called drilling return wa- ter, drilling wastewater, flowback, or produced- ing (fracking), the portion of water withdrawals related to mining is likely to rise. The information

Boyer, Elizabeth W.

383

Economics of residential gas furnaces and water heaters in United States new construction market  

SciTech Connect (OSTI)

New single-family home construction represents a significant and important market for the introduction of energy-efficient gas-fired space heating and water-heating equipment. In the new construction market, the choice of furnace and water-heater type is primarily driven by first cost considerations and the availability of power vent and condensing water heaters. Few analysis have been performed to assess the economic impacts of the different combinations of space and water-heating equipment. Thus, equipment is often installed without taking into consideration the potential economic and energy savings of installing space and water-heating equipment combinations. In this study, we use a life-cycle cost analysis that accounts for uncertainty and variability of the analysis inputs to assess the economic benefits of gas furnace and water-heater design combinations. This study accounts not only for the equipment cost but also for the cost of installing, maintaining, repairing, and operating the equipment over its lifetime. Overall, this study, which is focused on US single-family new construction households that install gas furnaces and storage water heaters, finds that installing a condensing or power-vent water heater together with condensing furnace is the most cost-effective option for the majority of these houses. Furthermore, the findings suggest that the new construction residential market could be a target market for the large-scale introduction of a combination of condensing or power-vent water heaters with condensing furnaces.

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2009-05-06T23:59:59.000Z

384

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

Henderson, Gideon

385

Diagnosis of "fizz-gas" and gas reservoirs in deep-water environment De-hua Han, X RPL, Houston Unversity  

E-Print Network [OSTI]

pressure (shallow depth gas modulus is much less than 0.1 GPa. Even few percent volume fraction are a result of complicated geological processes which form a reservoir. Introduction "Fizz-water" or "Fizz-gasMixture of brine (50000ppm) & gas (0.78) 0 500 1000 1500 2000 2500 3000 3500 0 20 40 60 80 10 Brine Volume

386

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1)  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Coupled flow of water and gas during hydraulic fracture in shale (EARTH-15-CM1) Host institution: University of Oxford Cartwright Project description: Recovery of natural gas from mudstone (shale) formations has triggered

Henderson, Gideon

387

Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report  

SciTech Connect (OSTI)

The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

Kauffman, D.; Houghton, A.V.

1980-12-31T23:59:59.000Z

388

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important when  

E-Print Network [OSTI]

1.0 GAS TRANSFER An important process used in water and wastewater treatment. Also very important = CL (CL + HcVG) (6) where CL = liquid phase concentration, VL = liquid volume, CG = gas phase concentration, VG = gas volume, Hc = dimensionless Henry's law coefficient and M = mass of gas. Now use two

Stenstrom, Michael K.

389

Production management techniques for water-drive gas reservoirs. Field No. 2, offshore gulf coast over-pressured, dry gas reservoirs. Topical report, July 1993  

SciTech Connect (OSTI)

An investigation of reservoir management strategies for optimization of ultimate hydrocarbon recovery and net present value from an overpressured, high yield gas condensate reservoir with water influx is reported. This field evaluation was based on a reservoir simulation. Volumetric and performance-derived original gas-in-place estimates did not agree: the performance-derived values were significantly lower than those predicted from volumetric analysis. Predicted field gas recovery was improved significantly by methods which accelerated gas withdrawals. Recovery was also influenced by well location. Accelerated withdrawals from wells near the aquifer tended to reduce sweep by cusping and coning water. This offset any benefits of increased gas rates.

Jones, R.E.; Jirik, L.A.; Hower, T.L.

1993-07-01T23:59:59.000Z

390

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

Edward Levy; Harun Bilirgen; John DuPoint

2011-03-31T23:59:59.000Z

391

Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers  

SciTech Connect (OSTI)

Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

Levy, Edward; Bilirgen, Harun; DuPont, John

2011-03-31T23:59:59.000Z

392

Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability  

SciTech Connect (OSTI)

Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

2010-09-30T23:59:59.000Z

393

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents [OSTI]

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

394

Effect of Channel Materials on the Behavior of Water Droplet Emerging From GDL into PEMFC Gas Channels  

E-Print Network [OSTI]

hand, lack of water in the cell leads to membrane dehydration and reduction of proton exchange throughEffect of Channel Materials on the Behavior of Water Droplet Emerging From GDL into PEMFC Gas, Rochester, New York 14623, USA Water accumulation in the gas channels of proton exchange membrane fuel cells

Kandlikar, Satish

395

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect (OSTI)

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

396

Determination of water saturation using gas phase partitioning tracers and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density,TiO2(110). |Gas-phase Tracer

397

The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers  

E-Print Network [OSTI]

Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

2013-01-01T23:59:59.000Z

398

Remediation of Risks in Natural Gas Storage Produced Waters: The Potential Use of Constructed Wetland Treatment Systems.  

E-Print Network [OSTI]

??Natural gas storage produced waters (NGSPWs) are generated in large volumes, vary in composition, and often contain constituents in concentrations and forms that are toxic… (more)

Johnson, Brenda

2006-01-01T23:59:59.000Z

399

Management of produced water in oil and gas operations  

E-Print Network [OSTI]

of oil present in the sample. For example, the calibration factor obtained for samples containing kerosene is different from the calibration factor obtained for samples containing diesel. However according to EPA, if the analyzer is calibrated...) for analysis which reduces the chances of inaccuracy because the larger the amount of sample the higher the chances of good representation of the original sample. 6 In this work TOC-700 was used to analyze kerosene-water emulsions. To match TOC...

Patel, Chirag V.

2005-02-17T23:59:59.000Z

400

Production management teachniques for water-drive gas reservoirs. Field No. 3. Offshore gulf coast normally pressured, dry gas reservoir. Topical report, July 1993  

SciTech Connect (OSTI)

To develop improved completion and reservoir management strategies for water-drive gas reservoir, the study conducted on an offshore, normally pressured, dry gas reservoir is reported. The strategies that were particularly effective in increasing both the ultimate recovery and the net present value of the field are high volume water production from strategically located downdip wells and the recompletion of an upstructure well to recover trapped attic gas. High volume water production lowered the average reservoir pressure, which liberated residual gas trapped in the invaded region. Recompleting a new well into the reservoir also lowered the pressure and improved the volumetric displacement efficiency by recovering trapped attic gas. Ultimate recovery is predicted to increase 5-12% of the original gas-in-place.

Hower, T.L.; Uttley, S.J.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests  

SciTech Connect (OSTI)

Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

2011-04-15T23:59:59.000Z

402

Experimentation and application of directional solvent extraction for desalination of seawater and shale gas 'frac' flowback water  

E-Print Network [OSTI]

A recently demonstrated directional solvent technique for desalination of water has been tested for desalting seawater and shale gas 'frac' flowback water. The premise behind directional solvent extraction is that when ...

Kleinguetl, Kevin (Kevin G.)

2011-01-01T23:59:59.000Z

403

Albany Water Gas & Light Comm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir(EC-LEDS) | Open EnergyWater

404

Shale Gas Development Challenges: Water | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the Gridwise Global1WasteRecoveryAwardsFacility inDepartmentFracture FluidsWater

405

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

2012-02-24T23:59:59.000Z

406

Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction  

SciTech Connect (OSTI)

Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

2012-03-20T23:59:59.000Z

407

Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997  

SciTech Connect (OSTI)

This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

Hawthorne, S.B.

1997-12-31T23:59:59.000Z

408

CORQUENCH: A model for gas sparging-enhanced, melt-water, film-boiling heat transfer  

SciTech Connect (OSTI)

In evaluation of severe-accident sequences for water-cooled nuclear reactors, molten core materials may be postulated to be released into the containment and accumulate on concrete. The heatup and decomposition of concrete is accompanied by the release of water vapor and carbon dioxide gases. Gases flowing through the melt upper surface can influence the rates of heat transfer to water overlying the melt. In particular, the gas flow through the interface can be envisioned to enhance the heat removal from the melt. A mechanistic model (CORQUENCH) has been developed to describe film-boiling heat transfer between a molten pool and an overlying coolant layer in the presence of sparging gas. The model favorably predicts the lead-Feron 11 data of Greene and Greene et al. for which the calculations indicate that area enhancement in the conduction heat transfer across the film is the predominant mechanism leading to augmentation in the heat flux as the gas velocity increases. Predictions for oxidic corium indicate a rapid increase in film-boiling heat flux as the gas velocity rises. The predominant mode of heat transfer for this case is radiation, and the increase in heat flux with gas velocity is primarily a result of interfacial area enhancement of the radiation component of the overall heat transfer coefficient. The CORQUENCH model has been incorporated into the MELTSPREAD-1 computer code{sup 6} for the analysis of transient spreading in containments.

Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

1990-01-01T23:59:59.000Z

409

Tracing coalbed natural gas-coproduced water using stable isotopes of carbon  

SciTech Connect (OSTI)

Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

Sharma, S.; Frost, C.D. [University of Wyoming, Laramie, WY (United States). Dept. for Renewable Resources

2008-03-15T23:59:59.000Z

410

Hydraulic Properties of Rice and the Response of Gas Exchange to Water Stress1  

E-Print Network [OSTI]

Hydraulic Properties of Rice and the Response of Gas Exchange to Water Stress1 Volker Stiller*, H.R.L.) We investigated the role of xylem cavitation, plant hydraulic conductance, and root pressure-specific photosynthetic rate, leaf diffusive conductance, and soil-leaf hydraulic conductance that were associated

Stiller, Volker

411

Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis  

E-Print Network [OSTI]

Argonne National Laboratory Chemical Engineering Division Water-gas shift catalysis Sara Yu Choung Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne National Laboratory Chemical Engineering Division

412

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

413

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

Jackson, Robert B.

414

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry production facilities in Texas.  

E-Print Network [OSTI]

Title: Using acidic electrolyzed water to reduce objectionable gas emissions from poultry Summary: There are increasing numbers of poultry production buildings, with large, densely housed flocks to allow producers to meet the increasing demand for poultry products and, yet, reduce the environmental

Mukhtar, Saqib

415

Covered Product Category: Residential Whole-Home Gas Tankless Water Heaters  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including whole-home gas tankless water heaters, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

416

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

David B. Burnett

2004-09-29T23:59:59.000Z

417

Conservation Division regiulations for appliance-efficiency standards relating to refrigerators and freezers, room air conditioners, central air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances  

SciTech Connect (OSTI)

The text of the appliance efficiency standards for certain types of new appliances sold in California is presented. Specifications and test methods to identify complying refrigerators, freezers, air conditioners, gas space heaters, water heaters, plumbing fittings, gas clothes dryers, and gas cooking appliances are covered.

Not Available

1981-12-16T23:59:59.000Z

418

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Powerlaunchmulticolorreduction+

419

Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure  

E-Print Network [OSTI]

The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. With this correction, molecular density functional theory gives, at a modest computational cost, quantita...

Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

2015-01-01T23:59:59.000Z

420

Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations  

SciTech Connect (OSTI)

Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

David B. Burnett; Mustafa Siddiqui

2006-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An XMM-Newton Observation of NGC 1399 Reveals Two Phases of Hot Gas and Super-Solar Abundances in the Central Regions  

E-Print Network [OSTI]

We present an initial analysis of a new XMM observation of NGC 1399, the central elliptical galaxy of the Fornax group. Spectral fitting of the spatially resolved spectral data of the EPIC MOS and pn CCDs reveals that a two-temperature model (2T) of the hot gas is favored over single-phase and cooling flow models within the central ~20 kpc. The preference for the 2T model applies whether or not the data are deprojected. The cooler component has a temperature (~0.9 keV) similar to the kinetic temperature of the stars while the hotter component has a temperature (~1.5 keV) characteristic of the virial temperature of a ~10^{13} M_sun halo. The two-phase model (and other multitemperature models) removes the ``Fe Bias'' within r < ~20 kpc and gives Z_Fe/Z_sun 1.5-2. At larger radii the iron abundance decreases until Z_Fe/Z_sun \\~0.5 for r ~50 kpc. The Si abundance is super-solar (1.2-1.7 solar) within the central regions while Z_Si/Z_Fe ~0.8 over the entire region studied. These Fe and Si abundances imply that ~80% of the Fe mass within r ~50 kpc originates from Type Ia supernovae (SNIa). This SNIa fraction is similar to that inferred for the Sun and therefore suggests a stellar initial mass function similar to the Milky Way.

David A. Buote

2002-06-24T23:59:59.000Z

422

Development of Alaskan gas hydrate resources  

SciTech Connect (OSTI)

The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

Kamath, V.A.; Sharma, G.D.; Patil, S.L.

1991-06-01T23:59:59.000Z

423

Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine  

SciTech Connect (OSTI)

This study is developing a comprehensive study of what is involved in the desalination of oil field produced brine and the technical developments and regulatory changes needed to make the concept a commercial reality. It was originally based on ''conventional'' produced water treatment and reviewed (1) the basics of produced water management, (2) the potential for desalination of produced brine in order to make the resource more useful and available in areas of limited fresh water availability, and (3) the potential beneficial uses of produced water for other than oil production operations. Since we have begun however, a new area of interest has appeared that of brine water treatment at the well site. Details are discussed in this technical progress report. One way to reduce the impact of O&G operations is to treat produced brine by desalination. The main body of the report contains information showing where oil field brine is produced, its composition, and the volume available for treatment and desalination. This collection of information all relates to what the oil and gas industry refers to as ''produced water management''. It is a critical issue for the industry as produced water accounts for more than 80% of all the byproducts produced in oil and gas exploration and production. The expense of handling unwanted waste fluids draws scarce capital away for the development of new petroleum resources, decreases the economic lifetimes of existing oil and gas reservoirs, and makes environmental compliance more expensive to achieve. More than 200 million barrels of produced water are generated worldwide each day; this adds up to more than 75 billion barrels per year. For the United States, the American Petroleum Institute estimated about 18 billion barrels per year were generated from onshore wells in 1995, and similar volumes are generated today. Offshore wells in the United States generate several hundred million barrels of produced water per year. Internationally, three barrels of water are produced for each barrel of oil. Production in the United States is more mature; the US average is about 7 barrels of water per barrel of oil. Closer to home, in Texas the Permian Basin produces more than 9 barrels of water per barrel of oil and represents more than 400 million gallons of water per day processed and re-injected.

David B. Burnett

2005-09-29T23:59:59.000Z

424

Soil chemical changes resulting from irrigation with water co-produced with coalbed natural gas  

SciTech Connect (OSTI)

Land application of coalbed natural gas (CBNG) co-produced water is a popular management option within northwestern Powder River Basin (PRB) of Wyoming. This study evaluated the impacts of land application of CBNG waters on soil chemical properties at five sites. Soil samples were collected from different depths (0-5, 5-15, 15-30, 30-60, 60-90, and 90-120 cm) from sites that were irrigated with CBNG water for 2 to 3 yr and control sites. Chemical properties of CBNG water used for irrigation on the study sites indicate that electrical conductivity of CBNG water (EC{sub w}) and sodium adsorption ratio of CBNG water (SAR{sub w}) values were greater than those recommended for irrigation use on the soils at the study sites. Soil chemical analyses indicated that electrical conductivity of soil saturated paste extracts (ECe) and sodium adsorption ratio of soil saturated paste extracts (SAR(e)) values for irrigated sites were significantly greater (P < 0.05) than control plots in the upper 30-cm soil depths. Mass balance calculations suggested that there has been significant buildup of Na in irrigated soils due to CBNG irrigation water as well as Na mobilization within the soil profiles. Results indicate that irrigation with CBNG water significantly impacts certain soil properties, particularly if amendments are not properly utilized. This study provides information for better understanding changes in soil properties due to land application of CBNG water.

Ganjegunte, G.K.; Vance, G.F.; King, L.A. [University of Wyoming, Laramie, WY (United States). Dept. of Renewable Resources

2005-12-01T23:59:59.000Z

425

Oil production from thin oil columns subject to water and gas coning  

E-Print Network [OSTI]

OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

Chai, Kwok Kit

1981-01-01T23:59:59.000Z

426

Dutch gas plant uses polymer process to treat aromatic-saturated water  

SciTech Connect (OSTI)

A gas-processing plant in Harlingen, The Netherlands, operated by Elf Petroland has been running a porous-polymer extraction process since 1994 to remove aromatic compounds from water associated with produced natural gas. In the period, the unit has removed dispersed and dissolved aromatic compounds to a concentration of <1 ppm with energy consumption of only 17% that of a steam stripper, according to Paul Brooks, general manager for Akzo Nobel`s Macro Porous Polymer-Extraction (MPPE) systems. The paper describes glycol treatment the MPPE separation process, and the service contract for the system.

NONE

1998-11-02T23:59:59.000Z

427

INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND  

E-Print Network [OSTI]

designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

J. Stene

428

PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift  

SciTech Connect (OSTI)

Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

2008-03-07T23:59:59.000Z

429

IR Hot Wave  

SciTech Connect (OSTI)

The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

Graham, T. B.

2010-04-01T23:59:59.000Z

430

Hot conditioning equipment conceptual design report  

SciTech Connect (OSTI)

This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

Bradshaw, F.W., Westinghouse Hanford

1996-08-06T23:59:59.000Z

431

TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE  

SciTech Connect (OSTI)

Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of potentially hazardous chemicals, and could be readily adapted to an automated system.

Lynn E. Katz; R.S. Bowman; E.J. Sullivan

2003-11-01T23:59:59.000Z

432

Investigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell in the Presence of Gas Flow  

E-Print Network [OSTI]

forms of hydrogen powered technologies exist and have been well-researched, fuel cells is considered efficiently in the fuel cells (4). Inefficient water removal results in flooding of the catalyst layerInvestigation of Water Droplet Interaction with the Sidewalls of the Gas Channel in a PEM Fuel Cell

Kandlikar, Satish

433

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

SciTech Connect (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

434

Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction  

SciTech Connect (OSTI)

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

2013-11-19T23:59:59.000Z

435

Development and Analysis of a Sustainable Low Energy House in a Hot and Humid Climate  

E-Print Network [OSTI]

cooling. In cold-climate countries, electricity is often used for space heating as well. Natural gas is mainly Energy Used in Building Demolition Demolition Removal Energy Used in Building Operation Space Cooling Lighting Equipment Water... Lifetime Building Energy Consumption Figure 1: Lifetime Building Energy Consumption Components for a Typical Residence in Thailand. used for only cooking for hot and humid climates such as Thailand. In cold climates, gas is also used for space...

Chulsukon, P.; Haberl, J. S.; Degelman, L. O.; Sylvester, K. E.

2002-01-01T23:59:59.000Z

436

Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow  

SciTech Connect (OSTI)

Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

Wu, Hao; Dong, Feng [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China)

2014-04-11T23:59:59.000Z

437

Summary of research and development effort on air and water cooling of gas turbine blades  

SciTech Connect (OSTI)

The review on air- and water-cooled gas turbines from the 1904 Lemale-Armengaud water-cooled gas turbine, the 1948 to 1952 NACA work, and the program at GE indicates that the potential of air cooling has been largely exploited in reaching temperatures of 1100/sup 0/C (approx. 2000/sup 0/F) in utility service and that further increases in turbine inlet temperature may be obtained with water cooling. The local heat flux in the first-stage turbine rotor with water cooling is very high, yielding high-temperature gradients and severe thermal stresses. Analyses and tests indicate that by employing a blade with an outer cladding of an approx. 1-mm-thick oxidation-resistant high-nickel alloy, a sublayer of a high-thermal-conductivity, high-strength, copper alloy containing closely spaced cooling passages approx. 2 mm in ID to minimize thermal gradients, and a central high-strength alloy structural spar, it appears possible to operate a water-cooled gas turbine with an inlet gas temperature of 1370/sup 0/C. The cooling-water passages must be lined with an iron-chrome-nickel alloy must be bent 90/sup 0/ to extend in a neatly spaced array through the platform at the base of the blade. The complex geometry of the blade design presents truly formidable fabrication problems. The water flow rate to each of many thousands of coolant passages must be metered and held to within rather close limits because the heat flux is so high that a local flow interruption of only a few seconds would lead to a serious failure.Heat losses to the cooling water will run approx. 10% of the heat from the fuel. By recoverying this waste heat for feedwater heating in a command cycle, these heat losses will give a degradation in the power plant output of approx. 5% relative to what might be obtained if no cooling were required. However, the associated power loss is less than half that to be expected with an elegant air cooling system.

Fraas, A.P.

1980-03-01T23:59:59.000Z

438

Adaptation of gas tagging for failed fuel identification in light water reactors  

SciTech Connect (OSTI)

This paper discusses experience with noble gas tagging and its adaptation to commercial reactors. It reviews the recent incidence of fuel failures in light water reactors, and methods used to identify failures, and concludes that the on-line technique of gas tagging could significantly augment present flux tilting, sipping and ultrasonic testing of assemblies. The paper describes calculations on tag gas stability in-reactor, and tag injection tests that were carried out collaboratively with Commonwealth Edison Company in the Byron-2 pressurized water reactor (P%a) and with Duke Power Company and Babcock and Wilcox Fuel Company in the Oconee-2 PWM. The tests gave information on: (a) noble gas concentration dynamics as the tag gases were dissolved in and eventually removed from subsystems of the RCS; and (b) the suitability of candidate Ar, Ne, Kr and Xe isotopes for tagging PWR fuel. It was found that the activity of Xe{sup 125} (the activation product of the tag isotope Xe{sup 124}) acted as a ``tag of a tag`` and tracked gas through the reactor; measured activities are being used to model gas movement in the RCS. Several interference molecules (trace contaminants normally present at sub-ppM concentrations in RCS samples) and entrained air in the RCS were found to affect mass spectrometer sensitivity for tag isotopes. In all instances the contaminants could be differentiated from the tag isotopes by operating the mass spectrometer at high resolution (2500). Similarly, it was possible to distinguish all the candidate tag gases against a high background of air. The test results suggested, however, that for routine analysis a high resolution static mass spectrometer will be preferable to the dynamic instrument used for the present analyses.

Lambert, J.D.B.; Gross, K.C.; Depiante, E.V. [Argonne National Lab., IL (United States); Callis, E.L. [Los Alamos National Lab., NM (United States); Egebrecht, P.M. [Commonwealth Edison Company, Downers Grove, IL (United States)

1996-03-01T23:59:59.000Z

439

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect (OSTI)

This report covers the second year of a project investigating water-gas shift catalysts for use in membrane reactors. It has been established that a simple iron high temperature shift catalyst becomes ineffective in a membrane reactor because the reaction rate is severely inhibited by the build-up of the product CO{sub 2}. During the past year, an improved microkinetic model for water-gas shift over iron oxide was developed. Its principal advantage over prior models is that it displays the correct asymptotic behavior at all temperatures and pressures as the composition approaches equilibrium. This model has been used to explore whether it might be possible to improve the performance of iron high temperature shift catalysts under conditions of high CO{sub 2} partial pressure. The model predicts that weakening the surface oxygen bond strength by less than 5% should lead to higher catalytic activity as well as resistance to rate inhibition at higher CO{sub 2} partial pressures. Two promoted iron high temperature shift catalysts were studied. Ceria and copper were each studied as promoters since there were indications in the literature that they might weaken the surface oxygen bond strength. Ceria was found to be ineffective as a promoter, but preliminary results with copper promoted FeCr high temperature shift catalyst show it to be much more resistant to rate inhibition by high levels of CO{sub 2}. Finally, the performance of sulfided CoMo/Al{sub 2}O{sub 3} catalysts under conditions of high CO{sub 2} partial pressure was simulated using an available microkinetic model for water-gas shift over this catalyst. The model suggests that this catalyst might be quite effective in a medium temperature water-gas shift membrane reactor, provided that the membrane was resistant to the H{sub 2}S that is required in the feed.

Carl R.F. Lund

2001-08-10T23:59:59.000Z

440

Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas  

E-Print Network [OSTI]

INVESTIGATION OF THE THERNAL CONDUCTIVITY OF UNCONSOLIDATED SAND PACKS CONTAINING OIL, WATER, AND GAS A Thesis David E. Gore Submitted to the Graduate School of the Agricultural and Nechanical College oi' Texas in Partial fulfillment.... EXPERIMENTAL EQUIPMENT AND PROCEDURE All tests were performed on unconsolidated sand packs containing either one, two, or three saturating fluids, Phys- ical properties of the sand and saturating fluids are shown in Tables I and II in the Appendix...

Gore, David Eugene

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "hot water gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive  

E-Print Network [OSTI]

designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

J. Stene

2008-01-01T23:59:59.000Z

442

Use of a submersible viscometer in the primary separation step of the hot water process for recovery of bitumen from tar sand  

SciTech Connect (OSTI)

The patent describes the primary separation step of the hot water process for extracting bitumen from tar sand in primary separation vessel. The bitumen floats upwardly in a tar sand slurry to form a froth layer, the coarse solids drop to form a tailings layer, and a middlings layer is formed between the froth and the tailings. The improvement described here comprises: providing a submerged viscometer in the middlings layer and actuating the viscometer to measure the viscosity of the middlings at one or more levels in the vertical column of middlings and produce signals, external of the vessel, which are indicative of the measurements; taking sufficient measurements to determine the viscosity of the region of maximum viscosity within the middlings layer and adjusting the viscosity of the middlings in response to the signals to maintain the maximum viscosity in the column below a predetermined value, whereby the flotation of the bitumen through the middlings layer to the froth layer is substantially enhanced.

Schramm, L.L.

1987-01-20T23:59:59.000Z

443

Oil and Gas Air Heaters  

E-Print Network [OSTI]

, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

444

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect (OSTI)

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

445

Assessing the Energy Savings of Tankless Water Heater Retrofits in Public Housing  

SciTech Connect (OSTI)

This report describes the methodology, analysis, and findings from a case study of a 110 unit retrofit of gas tankless water heaters in a hot/humid climate in Alachua County, Florida. The housing units had their gas-fired tank type water heaters replaced with gas-fired tankless water heaters as part of a federal program that targeted reduced energy use in public housing.

Ries, R.; Walters, R.; Dwiantoro, D.

2013-01-01T23:59:59.000Z

446

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

447

Techno-economic analysis of water management options for unconventional natural gas developments in the Marcellus Shale  

E-Print Network [OSTI]

The emergence of large-scale hydrocarbon production from shale reservoirs has revolutionized the oil and gas sector, and hydraulic fracturing has been the key enabler of this advancement. As a result, the need for water ...

Karapataki, Christina

2012-01-01T23:59:59.000Z

448

Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate  

E-Print Network [OSTI]

of the system and its operation is followed by presentation of operating data taken during 1997. INTRODUCTION Chilled water thermal energy storage ('TES) in naturally stratified tanks has been shown to be a valuable central cooling plant load management... and humid environment and presents new data on the performance of a large stratified chilled water storage tank. Figure 1. Plant Schematic. SITE The case study site is the Dallas, TX world headquarters of a major semiconductor manufacturer. The 6...

Bahnfleth, W. P.; Musser, A.

1998-01-01T23:59:59.000Z

449

Life in the Solar System Assume we need energy, liquid water, and organic materials.  

E-Print Network [OSTI]

;Small rocky bodies are unlikely to host life: too hot or cold for water, no protective atmosphere so too. #12;Venus is hot (molten lead can exist on its surface!), high pressure (90 atmospheres), toxic, no sunlight, high temperature. Not much chance of life there. Gas Giants #12;The moons of the giant planets

Shirley, Yancy

450

WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS  

SciTech Connect (OSTI)

The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

Carl R.F. Lund

2002-08-02T23:59:59.000Z

451

Hot air drum evaporator  

DOE Patents [OSTI]

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

452

Secondary atomization of coal-water fuels for gas turbine applications: Final report  

SciTech Connect (OSTI)

The main research objective was to determine the effectiveness of the CWF treatments on atomization quality when applied to an ultrafine coal-water fuel (solids loading reduced to 50%) and to gas turbine operating conditions (atomization at elevated pressures). Three fuel treatment techniques were studied: (1) heating of CWF under pressure to produce steam as the pressure drops during passage of the CWF through the atomizer nozzle, (2) absorption of CO/sub 2/ gas in the CWF to produce a similar effect, and (3) a combination of the two treatments above. These techniques were expected to produce secondary atomization, that is, disruptive shattering of CWF droplets subsequent to their leaving the atomizing nozzle, and to lead to better burnout and finer fly ash size distribution. A parallel objective was to present quantitative information on the spray characteristics (mean droplet size, radial distribution of droplet size, and spray shape) of CWF with and without fuel treatment, applicable to the design of CWF-burning gas turbine combustors. The experiments included laser diffraction droplet size measurements and high-speed photographic studies in the MIT Spray Test Facility to determine mean droplet size (mass median diameter), droplet size distribution, and spray shape and angle. Three systems of atomized sprays were studied: (1) water sprays heated to a range of temperatures at atmospheric pressure; (2) CWF sprays heated at atmospheric pressure to different temperatures; and (3) sprays at elevated pressure. 31 refs., 47 figs., 1 tab.

Yu, T.U.; Kang, S.W.; Beer, J.M.

1988-12-01T23:59:59.000Z

453

Production management techniques for water-drive gas reservoirs. Field No. 4; mid-continent aquifer gas storage reservoir. Volume 1. Topical report, January 1994  

SciTech Connect (OSTI)

A detailed reservoir characterization and numerical simulation study is presented for a mid-continent aquifer gas storage field. It is demonstrated that rate optimization during both injection and withdrawal cycles can significantly improve the performance of the storage reservoir. Performance improvements are realized in the form of a larger working volume of gas, a reduced cushion volume of gas, and decrease in field water production. By utilizing these reservoir management techniques gas storage operators will be able to minimize their base gas requirements, improve their economics, and determine whether the best use for a particular storage field is base loading or meeting peak day requirements. Volume I of this two-volume set contains a detailed technical discussion.

Hower, T.L.; Obernyer, S.L.

1994-01-01T23:59:59.000Z

454

Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process  

SciTech Connect (OSTI)

Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

2011-10-16T23:59:59.000Z

455

Hot Canyon  

ScienceCinema (OSTI)

This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

None

2013-03-01T23:59:59.000Z

456

The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device  

SciTech Connect (OSTI)

This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a component of conventional high temperature water gas shift iron oxide based catalysts. The catalysts contained Fe-Al-Cr-Cu-O and were synthesized by co-precipitation. A series of catalysts were prepared with 5 to 50 wt% Al2O3, with 8 wt% Cr2O3, 4 wt% CuO, and the balance Fe2O3. All of the catalysts were compared to a reference WGS catalyst (88 wt% FeOx, 8 wt% Cr2O3, and 4 wt% CuO) with no alumina. Alumina addition to conventional high temperature water gas shift catalysts at concentrations of approximately 15 wt% increased CO conversion rates and increase thermal stability. A series of high temperature water gas shift catalysts containing iron, chromia, and copper oxides were prepared with small amounts of added ceria in the system Fe-Cr-Cu-Ce-O. The catalysts were also tested kinetically under WGS conditions. 2-4 wt% ceria addition (at the expense of the iron oxide content) resulted in increased reaction rates (from 22-32% higher) compared to the reference catalyst. The project goal of a 10,000 liter per day WGS-membrane reactor was achieved by a device operating on coal derived syngas containing significant amounts of carbon monoxide and hydrogen sulfide. The membrane flux was equivalent to 52 scfh/ft2 based on a 600 psi syngas inlet pressure and corresponded to membranes costing $191 per square foot. Over 40 hours of iv exposure time to syngas has been achieved for a double membrane reactor. Two modules of the Chart reactor were tested under coal syngas for over 75 hours with a single module tested for 50 hours. The permeance values for the Chart membranes were similar to the REB reactor though total flux was reduced due to significantly thicker membranes. Overall testing of membrane reactors on coal derived syngas was over 115 hours for all reactors tested. Testing of the REB double membrane device exceeded 40 hours. Performance of the double membrane reactor has been similar to the results for the single reactor with good maintenance of flux even after these long exposures to hydrogen sulfide. Of special interest is that the flux is highest at the start of each e

Barton, Thomas; Argyle, Morris; Popa, Tiberiu

2009-06-30T23:59:59.000Z