Sample records for hot springs project

  1. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Chena Hot Springs GRED III Project: Final Report Geology, Petrology,...

  2. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

  3. Leach Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow Tank JumpLatvia:Lawrence,AssociatesHot

  4. EA-1944: Ormat Technologies Brady Hot Springs Project, Churchill County, NV

    Broader source: Energy.gov [DOE]

    Ormat Technologies, Inc. (Ormat) proposes to use DOE and cost share funding to study the Brady Hot Springs geothermal Field 15-12RD well. This is an EGS Demonstration project divided into three phases. During Phase 1, Ormat characterized the target well to prepare for stimulation activities in Phase 2, Phase 2: Well Stimulation and Collection/Analysis of Stimulation Monitoring Data and Phase 3: Long-term testing of the system. Phase 2 and 3 activities would occur at Ormat's Brady Hot Springs geothermal field in Churchill County, NV on public lands managed by the Bureau of Land Management (BLM) and Bureau of Reclamation (BOR). Since Phases 2 and 3 have the potential to impact subsurface resources, DOE must analyze the impacts associated with Phases 2 and 3. The BLM will be the lead agency for completion of the EA with BOR and DOE as cooperating agencies.

  5. Pilgrim Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project Jump to: navigation,

  6. Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project Jump to: navigation,

  7. Neal Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation, searchNauru: EnergyPolicy |Project Jump

  8. Neal Hot Springs II Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation, searchNauru: EnergyPolicy |Project

  9. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

  10. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  11. Idaho_HotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. 43 deg.

  12. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    SciTech Connect (OSTI)

    Goranson, Colin

    2005-03-01T23:59:59.000Z

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

  13. EA-1002: Bonneville Power Administration's Hot Springs- Garrison Fiber Optic Project, Montana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration's proposal to upgrade its operational telecommunications system between the Hot...

  14. Pilgrim Hot Springs, Alaska

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell StructureUranium MillPilgrim Hot

  15. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  16. Idaho_LavaHotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. Lava

  17. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  18. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  19. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  20. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  1. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  2. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHotPage Edit

  3. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Integration of new thermochronometric, structural and geological analyses, reflection and refraction seismic surveys and existing geophysical data into a 3-D Earth Model to elucidate the tectonic and 4-D thermal evolution of southern Clayton Valley and the Weepah Hills (Pearl Hot Spring geothermal play).

  4. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26T23:59:59.000Z

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬░F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the ├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?center├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬ó├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬Ł of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬?├?┬░F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  5. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  6. Cuttings Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Area (Christensen, Et Al., 1983) Exploration Activity...

  7. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. Pressure Temperature Log At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  9. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Zacharakis, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,...

  10. Trace Element Geochemical Zoning in the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Capuano. 1980. Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah. In: Transactions. GRC Annual Meeting; 09091980; Salt Lake City, UT. Salt...

  11. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding...

  12. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding...

  13. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  14. Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

  15. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1981 - 1981 Usefulness useful DOE-funding Unknown Exploration...

  16. Compound and Elemental Analysis At Breitenbush Hot Springs Area...

    Open Energy Info (EERE)

    Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood, 2002)...

  17. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  18. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  19. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This article is...

  20. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  1. Geologic Setting of the Central Alaskan Hot Springs Belt: Implications...

    Open Energy Info (EERE)

    Sustainable Energy Production Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geologic Setting of the Central Alaskan Hot Springs Belt: Implications for...

  2. Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Exploration...

  3. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves...

  4. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water...

  5. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  6. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho...

  7. Paleomagnetic Measurements At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    London, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London, 2011)...

  8. Sol Duc Hot Springs feasibility study

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  9. Wilson Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to:Wilson Hot Spring Geothermal Area Jump

  10. Hot Springs Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHot Springs

  11. Abraham Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASN Power ProjectsAbraham Hot Springs

  12. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect (OSTI)

    East, J.

    1982-04-01T23:59:59.000Z

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  13. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHot

  14. A Preliminary Study Of Older Hot Spring Alteration In Sevenmile...

    Open Energy Info (EERE)

    hydrothermal activity has been ongoing since at least that time. A northwest-trending linear array of extinct and active hot spring centers in the Sevenmile Hole area implies a...

  15. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Hot Springs. Data from these surveys will be integrated with older data from Chevron Minerals 1979 drill hole. Notes The gravity survey covered an area of approximately 34 km2...

  16. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Area, Beaver County, Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver...

  17. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Brophy br Model br Moeck br Beardsmore br Type br Volume br Geothermal br Region Mean br Reservoir br Temp br Mean br Capacity Abraham Hot Springs Geothermal Area Northern Basin...

  18. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    U.S. Geothermal Inc. (2010) Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase Agreement U.S. Geothermal Inc. (2009) U.S. Geothermal Starts New Drilling...

  19. Chemical and Isotopic Composition of Casa Diablo Hot Spring:...

    Open Energy Info (EERE)

    Composition of Casa Diablo Hot Spring: Magmatic CO2 near Mammoth Lakes, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Chemical and...

  20. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect (OSTI)

    Struhsacker, D.W. (ed.)

    1981-01-01T23:59:59.000Z

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  1. Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan

    E-Print Network [OSTI]

    Hot Springs Metropolitan Planning Organization

    2005-11-03T23:59:59.000Z

    Federal Highway Administration Federal Transit Administration 2030 Long Range Transportation Plan for the Hot Springs Area Metropolitan Planning Organization This LRTP has been funded with federal Metropolitan Planning (PL) funds through... the Federal Highway Administration, Section 5303 funds through the Federal Transit Administration, the State of Arkansas, and participating agency local match funds. HSA-MPO 100 Broadway Terrace Hot Springs, AR 71901 501-321-4804 HSA...

  2. Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-11-01T23:59:59.000Z

    Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado By Richard ôRickö Zehner Geothermal Development Associates Reno Nevada USA For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,215,000 South boundary: approximately 4,160,000 West boundary: approximately 216,000 East boundary: approximately 245,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRIĺs GIS servers. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps

  3. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Office of Environmental Management (EM)

    6: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final...

  4. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  5. 3D Model of the Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  6. DEPOSITIONAL FACIES AND AQUEOUS-SOLID GEOCHEMISTRY OF TRAVERTINE-DEPOSITING HOT SPRINGS (ANGEL TERRACE, MAMMOTH HOT SPRINGS, YELLOWSTONE NATIONAL PARK, U.S.A.)

    E-Print Network [OSTI]

    Farmer, Jack D.

    include hot spring travertine (precipitates from high-temperature springs, also called carbonate sinters spring water in the higher-temperature (-50-73┬░C) depositional facies. Conversely, travertine from waters in low- to high- * Present Address: Department of Geology, Arizona State University, Box

  7. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  8. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  9. Geothermal resource assessment of Hot Sulphur Springs, Colorado

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1982-01-01T23:59:59.000Z

    Approximately 10 springs whose waters are used for recreation, steam baths and laundry purposes are located at Hot Sulphur Springs. Estimated heat-flow at Hot Sulphur Springs is approximately 100 mW/m2, which is about normal for western Colorado. Recent work tends to show that surface and reduced heat flow in the mountains of northern Colorado could be high. The thermal waters have an estimated discharge of 50 gpm, a temperature that ranges from 104/sup 0/F (40/sup 0/C) to a high of 111/sup 0/F (44/sup 0/C), and a total dissolved solid content of 1200 mg/l. The waters are a sodium bicarbonate type with a large concentration of sulphate. It is estimated that the most likely reservoir temperature of this system ranges from 167/sup 0/F (75/sup 0/F) to 302/sup 0/F (150/sup 0/C) and that the areal extent of the system could encompass 1.35 sq mi (3.50 sq km) and could contain 0.698 Q's (1015 B.T.U.'s) of heat energy. Soil mercury and electrical resistivity surveys were conducted. The geophysical survey delineated several areas of low resistivity associated with the north trending fault that passes just to the west of the spring area. It appears that this fault is saturated with thermal waters and may be the conduit along which the thermal waters are moving up from depth. The appendices to this report include tables showing water temperatures required for various industrial processes, as well as dissolved minerals, trace elements and radioactivity levels found in the thermal waters. Also presented are a complete description of the factors affecting the electrical resistivity measurements, a description of the electrical resistivity equipment used, and the resistivity field procedures. Electrical resistivity calculations are also included in the appendices.

  10. Grovers Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergy Information GroundwaterGrovers Hot Springs

  11. Wayland Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson,Wayland Hot Springs Geothermal

  12. Poncha Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to Reduce EmissionsPoncha Hot Springs

  13. Icy Point Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint Hot Springs Geothermal

  14. Kyle Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995┬░,I Jump to:Kumagai GumiKyle Hot Springs

  15. Zim's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga Solar LtdZhonghuiteZim's Hot Springs

  16. Radium Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ | Roadmap Jump to:b <RGSRadium Hot Springs Geothermal

  17. Sitka Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ |Rippey JumpAirPowerSilcioEthanol LLCSitka Hot Spring

  18. Gila Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation,Gila Hot Springs Geothermal Area Jump

  19. Goddard Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEF JumpGloverville, SouthGoddard Hot Springs

  20. Murphy Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | OpenGA References:Murphy Hot Springs

  1. Mt Princeton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon LakeMountain ElectricMt Princeton Hot Springs

  2. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |Big Creek Hot Springs

  3. Mickey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey Hot Springs Geothermal Area (Redirected

  4. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling Farm <SiteLtd DiDixie Hot Springs

  5. Baltazor Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalchBallantine,Baltazor Hot Springs

  6. Vale Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to:Vale Hot Springs Geothermal

  7. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in CarbonofBiotinsBoston College JumpBrady Hot Springs Geothermal

  8. Quantification of thermophilic archaea and bacteria in a Nevada hot spring using fluorescent in situ hybridization

    E-Print Network [OSTI]

    Walker, Lawrence R.

    in situ hybridization Abstract Previous studies of high temperature hot springs in Yellowstone National temperatures. The cells, which were concentrated from 300 liters of hot spring water through tangential flow dominate in high-temperature environments such as Yellowstone National Park. However, our study indicates

  9. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect (OSTI)

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01T23:59:59.000Z

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  10. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01T23:59:59.000Z

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  11. Hot Springs, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHotPage

  12. Static downhole characteristics of well CGEH-1 at Coso Hot Springs...

    Open Energy Info (EERE)

    downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Static downhole...

  13. A Structure-Controlled Model For Hot Spring Exploration In Taiwan...

    Open Energy Info (EERE)

    anomaly or heat of springs transfer by liquid convection other than conduction or radiation. The deeply-seated fractures of hard rocks are the conduit of the convection of hot...

  14. Ground Magnetics At Neal Hot Springs Geothermal Area (U.S. Geothermal...

    Open Energy Info (EERE)

    Hot Springs. Data from these surveys will be integrated with older data from Chevron Minerals 1979 drill hole. Notes At the time of this report the magnetic survey had not been...

  15. Two of Three Power Plant Modules at Neal Hot Springs Are Producing...

    Open Energy Info (EERE)

    of Three Power Plant Modules at Neal Hot Springs Are Producing up to 16.8 Megawatts Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Two of Three Power...

  16. U.S. Geothermal Announces More Test Results From the Neal Hot Springs Production Well and a Key Addition to Senior Staff

    Broader source: Energy.gov [DOE]

    U.S. Geothermal Inc. ("U.S. Geothermal"), a renewable energy company focused on the production of electricity from geothermal energy, announced today results from a second, higher rate flow test of the first full size production well (NHS-1) at the Neal Hot Springs Project.

  17. The US Hot Dry Rock project

    SciTech Connect (OSTI)

    Hendron, R.H.

    1987-01-01T23:59:59.000Z

    The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

  18. The size and polydispersity of silica nanoparticles under simulated hot spring conditions

    E-Print Network [OSTI]

    Benning, Liane G.

    or 960 ppm, IS = 0.02 or 0.11, pH = neutral) in a high-temperature oven (~230║C) in order to fully de simulated the conditions of a supersaturated deep fluid being discharged in a hot spring (i.e. induction

  19. Boiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    E-Print Network [OSTI]

    Torgersen, Christian

    ). Conditions in Hot Creek can change very quickly. These fish--caught in a burst of high-temperature water" or intermittently spurting very hot, sediment-laden water as high as 6 feet (2 m) above the stream surface. At timesBoiling Water at Hot Creek--The Dangerous and Dynamic Thermal Springs in California's Long Valley

  20. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources JumpHotHot

  1. Hot Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy ResourcesHot SulphurHot

  2. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  3. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    SciTech Connect (OSTI)

    Lane, Michael

    2012-01-01T23:59:59.000Z

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  4. OM 337.5: Project Management Spring 2014

    E-Print Network [OSTI]

    Ghosh, Joydeep

    and resources, and management of project execution followed by earned value analysis. Along the way we1 OM 337.5: Project Management Spring 2014 Instructor: G.J. GutiÚrrez Office: CBA 3.422 Phone: 1. As a consequence, the management of projects presents a different set of challenges than the management

  5. Desert Hot Springs, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas: EnergySprings, California: Energy

  6. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    the area References J. Held, F. Henderson (2012) New developments in Colorado geothermal energy projects Additional References Retrieved from "http:en.openei.orgw...

  7. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...

    Open Energy Info (EERE)

    Completes Production Wells Needed for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot...

  8. Latty Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development JumpLars EnviroLatahLatimerLatty Hot

  9. Gillard Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008) |GigaCrete Inc JumpGillard Hot

  10. Gregson Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to:Information 9297484┬░, -82.345189┬░Gregson Hot

  11. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights,BoyneTennessee: Energy ResourcesBrady Hot

  12. Waunita Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, New York:GLDWaunita Hot

  13. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, New York:GLDWaunita HotOpen|

  14. Wedell Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: EnergyWebGen Systems66┬░,Texas: EnergyWedell Hot

  15. Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy Information HotOpen Energy

  16. Soil mercury investigations, Waunita Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588┬░,Socorromercury investigations, Waunita Hot

  17. Vale Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate Home >Vairex Corporation Jump to:Vale Hot

  18. Boyes Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles, California: EnergyBoyes Hot

  19. Brockway Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation,Biogen JumpBrockway Hot

  20. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIII WindPort Moller Hot

  1. Joseph Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy Resources Jump to:Jolly,Jonestown,Joseph Hot

  2. Idaho Public Utilities Commission Approves Neal Hot Springs Power Purchase

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP Wind Farm Jump to:ILabPoint HotFish(Redirected

  3. Hot Springs Cove Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources Jump to:Hot

  4. Hot Springs National Park Space Heating Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources Jump to:Hot|

  5. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources JumpHot

  6. Hot Sulphur Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy ResourcesHot Sulphur

  7. Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy ResourcesHotOpen Energy

  8. Pinto Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermalPinecrest,NorthPink,Pinto Hot

  9. Little Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other AlternativePark,Cedar Jump to:Little Hot

  10. Riggins Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ | RoadmapRenewableGeothermalsourceOhio:Rigby HighRiggins Hot

  11. Mccredie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II Jump to: navigation, searchMccredie Hot

  12. Molly's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel,Moe WindMolly's Hot

  13. Montezuma Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVista CapitalMonterey, California: EnergyHot

  14. Squaw Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio:Maine: EnergyUtah: EnergySputnikSquaw Hot

  15. Spencer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄSolarCity Corp JumpsourceSouthlake,AeH JumpSpencer Hot

  16. Sulphur Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault Propagation AndInformation SuezSulphur Hot

  17. Sunbeam Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By Fault PropagationSummerside WindSunErgySunbeam Hot

  18. Tassajara Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained By FaultSunpodsSweetwaterTMATalbot County(CTITassajara Hot

  19. Double Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:EmerlingDoorDothan, Alabama: EnergyDouble Hot

  20. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC JumpWoodlands,EnergyHot-Dry-RockAl., 1993) |

  1. Neal Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy InformationNatura BioNavarroEnhancedNeal Hot

  2. Baker Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas:Georgia: EnergyBaker Hot

  3. Beowawe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformationBentonInformationBeowawe Hot

  4. Roystone Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County,Vermont: Energy Resources Jump to:Roystone Hot

  5. Fisher Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County,and Wildlife Service Jump to:Fisher Hot

  6. Umpqua Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypeforUSDOIinUlubelu UnitUmpqua Hot

  7. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01T23:59:59.000Z

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  8. Hot Pot Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, search GEOTHERMAL

  9. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs.

  10. Hot Spring On Umnak Island Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, search

  11. Hydrogeologic investigation of Coso Hot Springs, Inyo County, California.

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:ProjectPrograms | OpenVentures

  12. Clifton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity ofClarkEnergy -Project Phase 2

  13. Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,BarrowBastropDemonstration ProjectBauerOpen

  14. Dyke Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open EnergyProjectDraper,NCNH) Jump

  15. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  16. 1.011 Project Evaluation, Spring 2003

    E-Print Network [OSTI]

    Martland, Carl D. (Carl Douglas)

    Methodologies for evaluating civil engineering projects, which typically are large-scale, long-lived projects involving many economic, financial, social, and environmental factors. Basic techniques of engineering economics, ...

  17. 1.011 Project Evaluation, Spring 2005

    E-Print Network [OSTI]

    Martland, Carl D.

    1.011 examines methodologies for evaluating civil engineering projects, which typically are large-scale, long-lived projects involving many economic, financial, social, and environmental factors. Topics covered include: ...

  18. Hot Spring Monitoring at Lassen Volcanic National Park, California 1983-1985

    SciTech Connect (OSTI)

    Sorey, Michael L.

    1986-01-21T23:59:59.000Z

    Data collected on several occasions between 1983 and 1985 as part of a hydrologic monitoring program by the U.S. Geological Survey permit preliminary estimation of the natural variability in the discharge characteristics of hydrothermal features in Lassen Volcanic National Park and the Lassen KGRA in northern California. The total rate of discharge of high-chloride hot springs along Mill Creek and Canyon Creek in the Lassen KGRA has averaged 20.9 {+-} 1.7 L/s, based on seven measurements of the flux of chloride in these streams. Measured chloride flux does not appear to increase with streamflow during the spring-summer snowmelt period, as observed at Yellowstone and Long Valley Caldera. The corresponding fluxes of arsenic in Mill Creek and Canyon Creek decrease within distances of about 2 km downstream from the hot springs by approximately 30%, most likely due to chemical absorption on streambed sediments. Within Lassen Volcanic National Park, measurements of sulfate flux in streams draining steam-heated thermal features at Sulphur Works and Bumpass Hell have averaged 7.5 {+-} 1.0 and 4.0 {+-} 1.5 g/s, respectively. Calculated rates of steam upflow containing, dissolved H{sub 2}S to supply these sulfate fluxes are 1.8 kg/s at Sulphur Works and 1.0 kg/s at Bumpass Hell.

  19. Granite Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: EnergyOhio:GeothermalSprings

  20. AME40463: Senior Design Project Spring 2010 ENGINEERING TRADE STUDY

    E-Print Network [OSTI]

    Batill, Stephen M.

    AME40463: Senior Design Project ş Spring 2010 ENGINEERING TRADE STUDY The engineering trade study indicate how that information influenced design decisions for the platform. Trade Study Proposal (due Feb prior to the beginning of the all-class meeting at 9:30 a.m. Trade Study Report (due Feb. 23): The trade

  1. EIS-0201: Coyote Springs Cogeneration Project Morrow Count, Oregon

    Broader source: Energy.gov [DOE]

    This environmental impact statement analyzes the protential impacts of the Coyote Springs Cogeneration Project, a proposed natural gas-fired cogeneration power plant near Boardman, Oregon. The proposed power plant would be built on a 22-acre site in the Port of Morrow Industrial Park. The plant would have two combustion turbines that would generate 440 average megawatts of energy when completed.

  2. Noncrystallographic calcite dendrites from hot-spring deposits at Lake Bogoria, Kenya

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Geology; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Geological Sciences

    1995-01-02T23:59:59.000Z

    Complex calcite crystals are an integral component of precipitates that form around the orifices of the Loburu and Mawe Moto hot springs on the shores of Lake bogoria, Kenya. Two types of large (up to 4 cm long) noncrystallographic dendrites are important components of these deposits. Feather dendrites are characterized by multiple levels of branching with individual branches developed through crystal splitting and spherulitic growth. Scandulitic (from Latin meaning shingle) dendrites are formed of stacked calcite crystals and are generally more compact than feather dendrites. These developed through the incremental stacking of rectangular-shaped calcite crystals that initially grew as skeletal crystals. Feather and scandulitic dendrites precipitated from the same waters in the same springs. The difference in morphology is therefore related to microenvironments in which they grew. Feather dendrites grew in any direction in pools of free-standing water provided that they were in constant contact with the solute. Conversely, scandulitic dendrites grew on rims of dams where water flowed over the surface in concert with the pulses of spring water. Thus, each calcite crystal in these dendrites represents one episode of crystal growth. The orientation of the component crystals in scandulitic dendrites is controlled by the topography of the dam or surface, not crystallographic criteria. The noncrystallographic dendrites formed from spring waters with initial temperatures of 90--99 C. Surficial water cooling, loss of CO{sub 2}, and presence of other elements that can interfere with crystal growth contributed to the formation of these unusual crystals.

  3. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-03-31T23:59:59.000Z

    Neal Hot SpringsŚESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross?sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  4. Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy Information Hot Springs Pool

  5. Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn Hot Springs Pool & Spa Low

  6. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey Hot Springs GeothermalOpen Energy1978) |

  7. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey Hot Springs GeothermalOpen Energy1978)

  8. ETI 4448 Applied Project Management Spring 2010

    E-Print Network [OSTI]

    VanHilst, Michael

    4. EPM Ch. 4: Building the Work Breakdown Structure 5. EPM Ch. 4: Estimating Duration, Resource Structure 4. Work Breakdown Structure 5. Gantt Chart Dependency Graph 6. Gantt Chart & CPM Schedule 7, in the following 2 weeks. 1. Conditions of Satisfaction 2. Project Overview Statement 3. Requirements Breakdown

  9. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    SciTech Connect (OSTI)

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08T23:59:59.000Z

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  10. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01T23:59:59.000Z

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  11. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartmentDepartmentStatement | Department of EnergyFERCMontana

  12. Chena Hot Springs GRED III Project: Final Report Geology, Petrology,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington:Looping

  13. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open EnergyIGP JumpInformation

  14. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources Jump

  15. Lee Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow TankOpen Energyin

  16. Darrough Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data andDarnestown, Maryland: Energy Resources

  17. Wessington Springs Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002)Wellington MiddleWellton,Project

  18. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01T23:59:59.000Z

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  19. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect (OSTI)

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01T23:59:59.000Z

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  20. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    SciTech Connect (OSTI)

    Rohrs D.T.; Bowman, J.R.

    1980-05-01T23:59:59.000Z

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  1. Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2011 Wind Tunnel Automation Project Phase II - Automated Bike Turret Mount Overview SYNERGE LLC is a consulting company working

  2. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31T23:59:59.000Z

    Slip and Dilation Tendency in focus areas Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = ? / ?n (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (?1-?n) / (?1-?3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60░ dipping fault segments have the highest tendency to slip. Under these stress condition...

  3. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60░ dipping fault segments have the highest tendency to slip. Under these stress condition...

  4. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individual at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.

  5. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    SciTech Connect (OSTI)

    Patterson, Scott

    2009-04-10T23:59:59.000Z

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass Creek, an extirpated area, will be stocked (smolts and adults) with Catherine Creek origin salmon to initiate natural production in unseeded habitat, and to initiate future harvest opportunities. The current production levels have been incorporated into the U.S. v. Oregon Interim Management Agreement. The purpose of this contract is to integrate Bonneville Power Administration (BPA) efforts with the Lower Snake River Compensation Plan (LSRCP) program utilizing Lookingglass Hatchery as the primary rearing facility. BPA constructed an adult holding and spawning structure on the hatchery grounds; however, maintenance of this infrastructure was discontinued due to funding limitation and transferred to the LSRCP program in 2007. These integrated efforts focus on holding and spawning adults, rearing juveniles, fish health, and monitoring natural production (Redd counts) for Catherine Creek, Lostine River, and Upper Grande Ronde stocks.

  6. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  7. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    SciTech Connect (OSTI)

    Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

    2012-05-01T23:59:59.000Z

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  8. Cleantech to Market Projects Spring 2011 1. Residential Ventilation Controller; PI -Iain Walker

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Cleantech to Market Projects ş Spring 2011 1. Residential Ventilation Controller; PI - Iain Walker As homes become more airtight optimizing for energy efficiency. Researchers have designed a smart ventilation system

  9. U.S. Geothermal Signs Interconnection Agreement for Neal Hot...

    Open Energy Info (EERE)

    Signs Interconnection Agreement for Neal Hot Springs Power Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Signs Interconnection...

  10. Spring Creek Project for Ideas, Nature, and the Written Word Call for Nominations: Graduate Student Research and Writing Retreat

    E-Print Network [OSTI]

    Gr├╝nwald, Niklaus J.

    Spring Creek Project for Ideas, Nature, and the Written Word Call for Nominations: Graduate Student on a collaborative project or two graduate students who each have individual projects are invited to nominate graduate students in the humanities or environmental sciences

  11. Savings Project: Insulate Hot Water Pipes for Energy Savings | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principal InvestigatorsSave Energy onof Energy Hot

  12. The US Hot Dry Rock Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial36 Sector:TheUS Hot

  13. Advance Seismic Data Analysis Program: (The "Hot Pot Project")

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: To improve geothermal well target selection and reduce drilling risk through an innovative and advanced analytical method for interpreting seismic data to locate deep geothermal structures.

  14. Hot

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in graphene by Meng-Chieh Ling A

  15. Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources JumpHotHotOpen

  16. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Michael Lane

    Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010. ArcGIS map package containing topographic base map, Township and Range layer, Oski BLM and private leases at time of survey, and locations, with selected shot points, of the five seismic lines.

  17. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    None

    1998-12-01T23:59:59.000Z

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  18. MHK Projects/Krotz Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformationCygnet < MHKSound,IrontonKrotz Springs < MHK

  19. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect (OSTI)

    Schell, D. J.

    2011-04-01T23:59:59.000Z

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  20. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas2022WindU S ArmyRoadmapsSprings

  1. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas: EnergyOpen Energy

  2. Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy Information Roosevelt Hot

  3. Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to: navigation,AreaWatson, New York:GLDWaunita HotOpen

  4. Campbells Gila Hot Springs Rv Park Pool & Spa Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy Information Hot

  5. Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual JumpEnergy Information HotOpen

  6. Self Potential At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,EnergyInformation Roosevelt Hot

  7. Self Potential At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners,EnergyInformation Roosevelt Hot1978)

  8. Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy ResourcesHot

  9. InSAR At Brady Hot Springs Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump to: navigation, searchInformation MexicoBrady Hot

  10. Zim's Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,Eaga Solar LtdZhonghuiteZim's Hot

  11. Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida:Tyngsboro,Energy Information Trap Hot

  12. Refraction Survey At Hot Sulphur Springs Area (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreview ofOzkocak, 1985)HotAl.,

  13. Refraction Survey At Mt Princeton Hot Springs Geothermal Area (Lamb, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreview ofOzkocak, 1985)HotAl.,1979)Al., 2012)

  14. Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (UtilityTri-State Electric MemberEnergy Information Hot

  15. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  16. GRED III Final Report Clifton Hot Springs Geothermal Greenlee County, AZ

    SciTech Connect (OSTI)

    Brown, David E.

    2006-06-15T23:59:59.000Z

    Black & Veatch Corporation has prepared this report for Arizona Public Service Company, Salt River Project, and Tucson Electric Power Company (APS/SRP/TEP). The purpose of this report is to assess the prospects for significant renewable energy development in Arizona. The scope of the study is limited to Arizona projects that would export power to the grid (that is, not distributed energy projects). This study includes a review of the current status of renewable energy in Arizona, characterization of renewable power generation technologies, assessment of Arizona''s renewable resources, and an assessment of key risk factors. This section summarizes the key findings in these areas.

  17. 6.163 Strobe Project Laboratory, Spring 2005

    E-Print Network [OSTI]

    Bales, James Williams

    A project laboratory for the application of electronic flash sources to measurement and photography. First half covers fundamentals of photography and electronic flashes, including experiments on application of electronic ...

  18. Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Foundation grants of China (41030211, 41002123 and 40972211), the Key Project of International Cooperation (C.Z.), and National Science Foundation grants (OISE-0968421, DBI REU 1005223, and ETBC-1024614

  19. 1973 projections of consumption, production, prices and crop values for Texas winter lettuce and early spring onionsá

    E-Print Network [OSTI]

    Furrh, Samuel Roger

    1970-01-01T23:59:59.000Z

    1973 PROJECTIONS OF CONSUMPTION, PRODUCTION, PRICES AND CROP VALUES FOR TEXAS WINTER LETTUCE AND EARLY SPRING ONIONS A Thesis by SAMUEL ROGER FURRH Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE Augus t, l 9 70 Major Subject: Agricultural Economics 1973 PROJECTIONS OF CONSUMPTION, PRODUCTION, PRICES AND CROP VALUES FOR TEXAS WINTER LETTUCE AND EARLY SPRING ONIONS A Thesis SAMUEL ROGER FURRH Ap...

  20. Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: EnergyOhio:Geothermal Project

  1. Weldon Spring Site Remedial Action Project quarterly environmental data summary for second quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-11T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the second quarter of 1998 is enclosed. The data presented constitutes the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the database during the second quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the database and KPA data are not merged into the regular database. All data received and verified during the second quarter were within a permissible range of variability, except for those listed. Above normal occurrences are cited for groundwater, air, and NPDES data. There were no above normal occurrences for springs or surface water. The attached tables present the most recent data for air and the data merged into the database during the second quarter 1998 for groundwater, NPDES, surface water, and springs.

  2. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring

    SciTech Connect (OSTI)

    Slobodkin, A.; Wiegel, J. [Univ. of Georgia, Athens, GA (United States); Reysenbach, A.L. [Rutgers Univ., New Brunswick, NJ (United States)] [and others

    1997-04-01T23:59:59.000Z

    A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7{sup T}; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 {mu}m, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74{degrees}C with an optimum at 65{degrees}C. The pH range for growth at 65{degrees}C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO{sub 2}, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H{sub 2} was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO{sub 2}, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type positive Bacillus-Clostridium subphylum.

  3. Department of Mechanical Engineering/Material Science and Engineering Spring 2013 Project Name Development of Test Rig to

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering/Material Science and Engineering Spring 2013 Project Name ┬ş Development of Test Rig to Analyze Composite Materials for Pump Wear Rings Overview Flowserve up. The hardest part of this project was learning SolidWorks, how to incorporate mechanical design

  4. 1973 projections of consumption, production, prices and crop values for Texas winter lettuce and early spring onions

    E-Print Network [OSTI]

    Furrh, Samuel Roger

    1970-01-01T23:59:59.000Z

    ved as to style and content by Ch irman of Committee) / (Head of epartment) (Member n (Member) Mem r (Member) August, 1970 ABSTRACT 1973 Projections of Consumption, Production, Prices and Crop Values for Texas Winter Lettuce and Early Spring... On' ons. (August 1970) Samuel Roger Furrh, B. S. , Texas A&M University Directed by: Dr. Marshall R. Godwin The purpose of this study was to provide information to Texas winter lettuce and early spring oni. on producers that would aid them...

  5. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  6. EIS-0502: Hot Springs to Anaconda Transmission Line Rebuild Project, Montana

    Broader source: Energy.gov [DOE]

    DOEĺs Bonneville Power Administration (BPA) is preparing an EIS that will analyze the potential environmental impacts of a proposal to rebuild approximately 120 miles of existing transmission line in Sanders, Lake, Missoula, Granite, Powell, and Deer Lodge Counties in Montana.

  7. Ch. I, Report on Waunita Hot Springs Project, Gunnison County, Colorado |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:Cerion Energy IncCetech

  8. U.S. Geothermal Starts New Drilling Programs at Neal Hot Springs Project |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas2022WindUProject | Open

  9. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status of project to date January 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell.

  10. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  11. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect (OSTI)

    Russo, Bryan J.; Chvala, William D.

    2010-09-30T23:59:59.000Z

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  12. Federal Technical Assistance Aims to Accelerate Tribal Energy Project Deployment, Spring 2013 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Spring 2013.

  13. Arizona Apache Tribe Set to Break Ground on New Solar Project, Spring / Summer 2014 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    This newsletter describes key activities of the DOE Office of Indian Energy Policy and Programs for Spring / Summer 2014.

  14. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  15. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  16. DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization

    SciTech Connect (OSTI)

    T.A. Lee

    2006-02-06T23:59:59.000Z

    This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

  17. U-Th-Pb systematics in hot springs on the east Pacific rise at 2'/sup 0/N and Guaymas Basin

    SciTech Connect (OSTI)

    Chen, J.H.; Wasserburg, G.J.; von Damm, K.L.; Edmond, J.M.

    1986-11-01T23:59:59.000Z

    The concentrations and isotopic compositions of U, Th and Pb were determined in hydrothermal fluids from 21/sup 0/N, East Pacific Rise and Guaymas Basin, Gulf of California. The purest hydrothermal end members (96%) have 0.06-0.18 ppb U, < 0.1-4.3 ppt Th and 40-67 ppb Pb. Several samples show a /sup 234/U enrichment relative to the equilibrium value. This indicates that U was quantitatively removed from seawater and deposited to the crust during the hydrothermal circulation. The 21/sup 0/N fluids with intermediate Mg content show that U and Mg are coherently removed from seawater, but Pb is not, during mixing of the hot hydrothermal fluid and cold ambient seawater. Both the end-member and intermediate hydrothermal fluids at 21/sup 0/N have similar Pb isotope compositions and limited ranges in /sup 206/Pb//sup 204/Pb (18.444-18.503), /sup 207/Pb//sup 204/Pb (15.471-15.514), and /sup 208/Pb//sup 204/Pb (37l.832-37.966). These ratios are within the range of values of MORB and are distinctly less radiogenic than the ambient seawater. This means that a significant amount of Pb was removed from the basalts by the hot springs. In contrast, Th does not appear to be significantly removed from the basalts. Some of this Pb was incorporated into the metalliferous sediments in a wide area straddling the EPR. The Pb isotopic composition of a hydrothermal sample from the Guaymas Basin is more radiogenic than at 21/sup 0/N and resembles that of sediments from the Gulf of California. This is consistent with the uptake of Pb from heated sediments having a substantial component of the volcanogenic detritus.

  18. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-06T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  19. New Infographic and Projects to Keep Your Energy Bills Out of Hot Water |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeas Spring from

  20. Multimedia assessment of health risks for the Weldon Spring site remedial action project

    SciTech Connect (OSTI)

    Haroun, L.A.; MacDonell, M.M.; Peterson, J.M.; Fingleton, D.J.

    1990-01-01T23:59:59.000Z

    The US Department of Energy (DOE), under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon Spring site, Weldon Spring, Missouri. The site consists of two noncontiguous areas: the chemical plant area, which includes four raffinate pits, and the quarry. The Weldon Spring site became radioactively and chemically contaminated as a result of processing and disposal activities that took place from the 1940s through the 1960s. The US Department of the Army used the Weldon Spring site to produce dinitrotoluene (DNT) and trinitrotoluene (TNT) explosives from 1941 to 1946. The US Atomic Energy Commission (AEC, predecessor of the DOE) used the site to process uranium and thorium ore concentrates from 1957 to 1966. The quarry was used by the Army and the AEC for waste disposal beginning in the early 1940s; it was last used for disposal in 1969. Wastes placed in the quarry include TNT and DNT residues and radioactively contaminated materials. A summary of disposal activities at the quarry is presented. As part of the environmental compliance process at the Weldon Spring site, a baseline risk evaluation (BRE) was prepared to assess the potential risks associated with contamination present at the quarry. 13 refs., 2 figs., 6 tabs.

  1. Department of Industrial Engineering Spring 2010 ArcelorMittal's Taphole Replacement Project

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Spring 2010 ArcelorMittal's Taphole Replacement the current taphole replacement problem Use advanced decision-making tools to select an optimal concept to be manufactured An SOP was created that standardized the taphole replacement process and reduced overall

  2. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect (OSTI)

    Nenni, Joseph A.; Thompson, Theron J. [CH2M-WG Idaho, LLC, Idaho Cleanup Project, Idaho Falls, Idaho 83403 (United States)

    2012-07-01T23:59:59.000Z

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

  3. Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report

    SciTech Connect (OSTI)

    Oski Energy, LLC,

    2013-03-28T23:59:59.000Z

    A five-line (23 mile) reflection- seismic survey was conducted at the Hot Pot geothermal prospect area in north-central Nevada under the USDOE (United States Department of Energy) Geothermal Technologies Program. The project objective was to utilize innovative seismic data processing, integrated with existing geological, geophysical and geochemical information, to identify high-potential drilling targets and to reduce drilling risk. Data acquisition and interpretation took place between October 2010 and April 2011. The first round of data processing resulted in large areas of relatively poor data, and obvious reflectors known from existing subsurface information either did not appear on the seismic profiles or appeared at the wrong depth. To resolve these issues, the velocity model was adjusted to include geologic input, and the lines were reprocessed. The resulting products were significantly improved, and additional detail was recovered within the high-velocity and in part acoustically isotropic basement. Features visible on the improved seismic images include interpreted low angle thrust faults within the Paleozoic Valmy Formation, which potentially are reactivated in the current stress field. Intermediate-depth wells are currently targeted to test these features. The seismic images also suggest the existence of Paleogene sedimentary and volcanic rocks which potentially may function as a near- surface reservoir, charged by deeper structures in Paleozoic rocks.

  4. Energy Workforce Training Future Need and Projectionsá

    E-Print Network [OSTI]

    Midturi, S.; Pidugu, S. B.

    2006-01-01T23:59:59.000Z

    and training of workforce for the U.S industries. From the National Perspective The article on Annual Energy Outlook 2004 with Projections to 2025 [2] presented a critical review of energy use of USA in the residential, commercial, industrial, transportation... at the 56 th Annual Conference of the Arkansas Counseling Association, November 14-16, 2001, Hot Springs, Arkansas. 3. Annual Energy Outlook 2004 2ith Projections to 2025, Market Trends-Energy Demand, Energy Information Administration Home page http...

  5. Why Springs Are Valuable Natural springs are important aquatic resources.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    source of clean, high-quality groundwater that flows at a relatively constant rate and temperature hot weather and droughts. Spring streams and riparian lands provide critical water, food, refuge. Because springs are dependable, they are an increasingly valuable supply of water for people and wildlife

  6. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    SciTech Connect (OSTI)

    N /A

    1999-02-22T23:59:59.000Z

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  7. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; James, Brenda B.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-05-01T23:59:59.000Z

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2002 in index sections of the upper Yakima Basin (Figure 1). Hatchery reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  8. Coyote Springs Cogeneration Project, Morrow County, Oregon: Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-01-01T23:59:59.000Z

    BPA is considering whether to transfer (wheel) electrical power from a proposed privately-owned, combustion-turbine electrical generation plant in Oregon. The plant would be fired by natural gas and would use combined-cycle technology to generate up to 440 average megawatts (aMW) of energy. The plant would be developed, owned, and operated by Portland General Electric Company (PGE). The project would be built in eastern Oregon, just east of the City of Boardman in Morrow County. The proposed plant would be built on a site within the Port of Morrow Industrial Park. The proposed use for the site is consistent with the County land use plan. Building the transmission line needed to interconnect the power plant to BPA`s transmission system would require a variance from Morrow County. BPA would transfer power from the plant to its McNary-Slatt 500-kV transmission line. PGE would pay BPA for wheeling services. Key environmental concerns identified in the scoping process and evaluated in the draft Environmental Impact Statement (DEIS) include these potential impacts: (1) air quality impacts, such as emissions and their contributions to the {open_quotes}greenhouse{close_quotes} effect; (2) health and safety impacts, such as effects of electric and magnetic fields, (3) noise impacts, (4) farmland impacts, (5) water vapor impacts to transportation, (6) economic development and employment impacts, (7) visual impacts, (8) consistency with local comprehensive plans, and (9) water quality and supply impacts, such as the amount of wastewater discharged, and the source and amount of water required to operate the plant. These and other issues are discussed in the DEIS. The proposed project includes features designed to reduce environmental impacts. Based on studies completed for the DEIS, adverse environmental impacts associated with the proposed project were identified, and no evidence emerged to suggest that the proposed action is controversial.

  9. Project Year Spring 2009

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    --editing, cinematography, mise-en-scene, frame composition--but also must learn to use this vocabulary to actively

  10. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.

    SciTech Connect (OSTI)

    Robertson, Shawn W.

    2001-03-01T23:59:59.000Z

    The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11) watershed conservation projects. The types of projects implemented included installation of infiltration galleries, permanent diversions, pumping stations, and irrigation efficiency upgrades. Project costs in 1999 totaled $284,514.00 with a total amount of $141,628.00 (50%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Confederated Tribes of Warm Springs, Oregon Watershed Enhancement Board, and individual landowners.

  11. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.

    SciTech Connect (OSTI)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2004-02-27T23:59:59.000Z

    The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

  12. U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484

    SciTech Connect (OSTI)

    Baker, S.K., Westinghouse Hanford

    1996-12-10T23:59:59.000Z

    This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the SNF. The auxiliary pit is being evaluated at this time for its usefulness to support other operations that may be needed to ensure proper conditioning of the SNF and proper storage of the vessel containing the SNF. Figures I and 2 contain map locations of the Hanford Site and the HCS Annex.

  13. Whole-House Design and Commissioning in the Project Home Again Hot-Humid New Construction Community

    SciTech Connect (OSTI)

    Kerrigan, P.

    2012-09-01T23:59:59.000Z

    BSC has been working with Project Home Again since 2008 and has consulted on the design of around 100 affordable, energy efficient new construction homes for victims of hurricanes Katrina and Rita. This report details the effort on the final two phases of the project: Phases V and VI which resulted in a total of 25 homes constructed in 2011. The goal of this project was to develop and implement an energy efficiency package that will achieve at least 20% whole house source energy savings improvement over the B10 Benchmark.

  14. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2002) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. Each chapter of this report deals with monitoring phenotypic and demographic traits of Yakima River basin spring chinook comparing hatchery and wild returns in 2002; the second year of adult hatchery returns. The first chapter deals specifically with adult traits of American River, Naches basin (excluding the American River), and upper Yakima River spring chinook, excluding gametes. The second chapter examines the gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish. In the third chapter, we describe work begun initially in 2002 to characterize and compare redds of naturally spawning wild and hatchery fish in the upper Yakima River.

  15. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

    2005-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

  16. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.

    SciTech Connect (OSTI)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2002-12-01T23:59:59.000Z

    The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.

  17. ARRA FEMP Technical Assistance -- Federal Aviation Administration Project 209 -- Control Tower and Support Building, Palm Springs, CA

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-03-31T23:59:59.000Z

    This report represents findings of a design review team that evaluated construction documents (at the 100% level) and operating specifications for a new control tower and support building that will be built in Palm Springs, California by the Federal Aviation Administration (FAA). The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for the FAA that would not have otherwise occurred.

  18. The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.

    SciTech Connect (OSTI)

    Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

    2001-03-01T23:59:59.000Z

    The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-03-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-05-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

  1. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    SciTech Connect (OSTI)

    Scarpa, D., E-mail: Daniele.scarpa@lnl.infn.it; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G. [INFN-Laboratori Nazionali di Legnaro, Viale dellĺUniversitÓ 2, Legnaro (PD) (Italy)] [INFN-Laboratori Nazionali di Legnaro, Viale dellĺUniversitÓ 2, Legnaro (PD) (Italy); Makhathini, L. [iThemba LABS, Cape Town (South Africa)] [iThemba LABS, Cape Town (South Africa); Tomaselli, A. [Dipartimento di Ingegneria Elettronica, UniversitÓ di Pavia, Via Ferrata 1, Pavia (Italy)] [Dipartimento di Ingegneria Elettronica, UniversitÓ di Pavia, Via Ferrata 1, Pavia (Italy); Grassi, D. [Dipartimento di Chimica Generale, UniversitÓ di Pavia, Via Taramelli 12, Pavia (Italy)] [Dipartimento di Chimica Generale, UniversitÓ di Pavia, Via Taramelli 12, Pavia (Italy)

    2014-02-15T23:59:59.000Z

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  2. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    SciTech Connect (OSTI)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01T23:59:59.000Z

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  3. Exploration model for possible geothermal reservoir, Coso Hot...

    Open Energy Info (EERE)

    Co. , California Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by...

  4. Hot Pot Field Observations

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  5. Hot Pot Field Observations

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-28T23:59:59.000Z

    Map of field observations including depressions, springs, evidence of former springs, travertine terraces and vegetation patterns. Map also contains interpretation of possible spring alignments.

  6. Pilgrim Hot Springs, Alaska | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    new and old data sets to develop conceptual model. Confirm this model through drilling two confirmation slim holes. validationholdmannpilgrimhotsprings.pdf More...

  7. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  8. Chena Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County,

  9. Colorado's Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonial Industria deofHome

  10. Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs, And Desert

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG22 JumpGas Sampling Jump to:Peak

  11. Gaseous Emissions From Steamboat Springs, Brady'S Hot Springs...

    Open Energy Info (EERE)

    of concealed geologic structures. Ion chromatography, gas chromatography, atomic absorption spectrometry, and inductively coupled plasma-mass spectrometry have been used to...

  12. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBY SolutionsChangeOklahoma: Energy ResourcesFacility |

  13. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    SciTech Connect (OSTI)

    Vaivoda, Alexis

    2004-02-01T23:59:59.000Z

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water sources on Evans Creek. Through this project, BPA funded the Middle Fork Irrigation District (MFID) a total of $194,000 in FY 03 for the Glacier Ditch- Evans Creek project. BPA funds accounted for approximately 30% of the project while the remaining 70% was cost-shared by the MFID, the US Forest Service, and the Oregon Watershed Enhancement Board. The MFID operated irrigation diversions on Evans Creek (Hutson pond RM 4.0 and the Evans Creek diversion RM 5.5), a tributary to the East Fork Hood River. Both diversions had inadequate upstream fish passage, and utilized Evans Creek to transport Eliot Branch water to distribute irrigation water lower in the basin. This project consisted of: piping a portion of the Glacier ditch to create a pressurized irrigation pipeline system, piping the Hutson extension, removing the culvert on Evans Creek near the Glacier ditch, removing the culvert above the Hutson pond, revegetating the disturbed areas, and providing adequate and approved fish passage on Evans Creek. Prior to any work, Brian Connors with MFID completed a NEPA checklist. Some of the key regulatory points of this project included wetland delineations, a cultural resources survey, and consultations with NOAA Fisheries, U.S. Fish and Wildlife, Oregon Department of Fish and Wildlife (ODFW), and the U.S. Army Corps of Engineers. This project will eliminate the overflow of silty water into Evans Creek and West Fork Evans Creek. Upon completion of this project, access to 2.5 miles of winter steelhead, coho salmon, and resident trout habitat will be restored. Elimination of the interbasin transfer of water will discontinue the conveyance of silty Eliot Branch water into clear East Fork tributaries. Additionally, less water taken from Coe Branch, Eliot Branch, and Laurance Lake which will benefit listed steelhead and bull trout. The Glacier Ditch provided irrigation water from the Eliot Branch to upper valley orchards and agriculture for more than 100 years. The Glacier Ditch served approximately 1,438 acres with 18 cfs of water. The Glacier Ditch portion of this project

  14. Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...

    Open Energy Info (EERE)

    Hot Springs, and in the south-central part of LVNP in the Walker "O" No. 1 well at Terminal Geyser are rich in chloride and yield calculated geothermometer temperatures between...

  15. Spring Chinook Salmon Interactions Indices and Residual/Precocious Male Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Johnson, Christopher L. (Washington Department of Fish and Wildlife, Olympia, WA); James, Brenda B. (Cascade Aquatics, Ellensburg, WA)

    2005-05-01T23:59:59.000Z

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003; Pearsons et al. 2004). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Topics of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocious male salmon monitoring (abundance); (4) performance of growth modulation in reducing precocious males during spawning; (5) incidence of predation by residualized chinook salmon; and (6) benefits of salmon carcasses to juvenile salmonids. This report is organized into six chapters to represent these topics of investigation. Data were collected during the summer and fall, 2004 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003; 2004). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  16. Spring Chinook Salmon Interactions Indices and Residual/Precocial Monitoring in the Upper Yakima Basin; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 5 of 7, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Pearsons, Todd N.; Johnson, Christopher L.; James, Brenda B. (Washington Department of Fish and Wildlife, Olympia, WA)

    2004-05-01T23:59:59.000Z

    This report examines some of the factors that can influence the success of supplementation, which is currently being tested in the Yakima Basin using upper Yakima stock of spring chinook salmon. Supplementation success in the Yakima Basin is defined relative to four topic areas: natural production, genetics, ecological interactions, and harvest (Busack et al. 1997). The success of spring chinook salmon supplementation in the Yakima Basin is dependent, in part, upon fish culture practices and favorable physical and biological conditions in the natural environment (Busack et al. 1997; James et al. 1999; Pearsons et al., 2003). Shortfalls in either of these two topics (i.e., failure in culturing many fish that have high long-term fitness or environmental conditions that constrain spring chinook salmon production) will cause supplementation success to be limited. For example, inadvertent selection or propagation of spring chinook that residualize or precocially mature may hinder supplementation success. Spring chinook salmon that residualize (do not migrate during the normal migration period) may have lower survival rates than migrants and, additionally, may interact with wild fish and cause unacceptable impacts to non-target taxa. Large numbers of precocials (nonanadromous spawners) may increase competition for females and significantly skew ratios of offspring sired by nonanadromous males, which could result in more nonanadromous spring chinook in future generations. Conditions in the natural environment may also limit the success of spring chinook supplementation. For example, intra or interspecific competition may constrain spring chinook salmon production. Spring chinook salmon juveniles may compete with each other for food or space or compete with other species that have similar ecological requirements. Monitoring of spring chinook salmon residuals, precocials, prey abundance, carrying capacity, and competition will help researchers interpret why supplementation is working or not working (Busack et al. 1997). Monitoring ecological interactions will be accomplished using interactions indices. Interactions indices will be used to index the availability of prey and competition for food and space. The tasks described below represent various subject areas of juvenile spring chinook salmon monitoring but are treated together because they can be accomplished using similar methods and are therefore more cost efficient than if treated separately. Three areas of investigation we pursued in this work were: (1) strong interactor monitoring (competition index and prey index), (2) carrying capacity monitoring (microhabitat monitoring); (3) residual and precocial salmon monitoring (abundance). This report is organized into three chapters to represent these three areas of investigation. Data were collected during the summer and fall, 2003 in index sections of the upper Yakima Basin (Figure 1). Previous results on the topics in this report were reported in James et al. (1999), and Pearsons et al. (2003). Hatchery-reared spring chinook salmon were first released during the spring of 1999. The monitoring plan for the Yakima/Klickitat Fisheries Project calls for the continued monitoring of the variables covered in this report. All findings in this report should be considered preliminary and subject to further revision as more data and analytical results become available.

  17. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  18. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

    2013-05-31T23:59:59.000Z

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  19. Project Finance Case Studies

    Broader source: Energy.gov [DOE]

    Presentation covers the Project Finance Case Studies and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  20. Design goal met at GSA energy project

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    A federal building in New Hampshire designed to become a standard in energy-efficient design is discussed. Among the building's energy saving components are a 12 inch thick masonry wall and a small amount of double-pane insulating glass. The experimental project features a unitary water loop heat pump system with 57 heat pumps on the first three floors, fin tube perimeter radiation heating on the fourth floor, and various types of ceiling or floor mounted fan coil units on the top three floors. Central chillers provide cooling for the top four floors. The building includes 3800 sq. ft. of liquid type flat plate solar collectors to supply domestic hot water all year and building hot water in spring and fall. (MJF)

  1. Fuel Cell Vehicle Learning Demonstration: Spring 2008 Results; Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-04-01T23:59:59.000Z

    Conference paper presented at the 2008 National Hydrogen Association Meeting that describes the spring, 2008 results of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  2. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region

    SciTech Connect (OSTI)

    Song, Changchun [Chinese Academy of Sciences; Xu, Xiaofeng [ORNL; Sun, Xiaoxin [Chinese Academy of Sciences; Tian, Hanqin [Auburn University, Auburn, Alabama; Sun, Li [Chinese Academy of Sciences; Miao, Yuqing [Chinese Academy of Sciences; Wang, Xianwei [Chinese Academy of Sciences; Guo, Yuedong [Chinese Academy of Sciences

    2012-01-01T23:59:59.000Z

    The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

  3. BORREGO SPRINGS MICROGRID DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    None, None

    2013-09-30T23:59:59.000Z

    SDG&E has been developing and implementing the foundation for its Smart Grid platform for three decades ľ beginning with its innovations in automation and control technologies in the 1980s and 1990s, through its most recent Smart Meter deployment and re-engineering of operational processes enabled by new software applications in its OpEx 20/20 (Operational Excellence with a 20/20 Vision) program. SDG&Eĺs Smart Grid deployment efforts have been consistently acknowledged by industry observers. SDG&Eĺs commitment and progress has been recognized by IDC Energy Insights and Intelligent Utility Magazine as the nationĺs ôMost Intelligent Utilityö for three consecutive years, winning this award each year since its inception. SDG&E also received the ôTop Ten Utilityö award for excellence in Smart Grid development from GreenTech Media.

  4. Senior Capstone Projects Spring 2011

    E-Print Network [OSTI]

    Sobek II, Durward K.

    . The company owner recognizes potential improvement opportunities related to production control and inventory a geographic area. From these work procedures, the team will estimate labor content and conduct economic analyses from both the company and client perspectives. The above information will be packaged

  5. Senior Capstone Projects Spring 2014

    E-Print Network [OSTI]

    Sobek II, Durward K.

    significantly over the next year. HighFire is in need of a revised layout to the production area. Ě Determine an optimal work cell design which reduces production costs, reduces job cycle time, improves products and components for the Blackhawk! brand as well as other ATK companies and partners. Currently

  6. BE 780: Brain Machine Interfaces Spring 2013

    E-Print Network [OSTI]

    Vajda, Sandor

    BE 780: Brain Machine Interfaces Spring 2013 Instructor: Jason Ritt the readings for an assigned class. Homework 30% Mid-semester Report 30, code, or files of any kind. Reports and final projects must

  7. Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx

    Broader source: Energy.gov (indexed) [DOE]

    Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical...

  8. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  9. Renewable Energy Project Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Project Overview Renewable Energy Project Overview Presentation-given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting-covers federal...

  10. U.S. Geothermal Announces More Test Results from the Neal Hot...

    Open Energy Info (EERE)

    Announces More Test Results from the Neal Hot Springs Production Well and a Key Addition to Senior Staff Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  11. Direct utilization of geothermal energy for Pagosa Springs, Colorado. Final report, June 1979-June 1984

    SciTech Connect (OSTI)

    Goering, S.W.; Garing, K.L.; Coury, G.

    1984-08-01T23:59:59.000Z

    The Pagosa Springs Geothermal District Heating System was conceptualized, designed, and constructed between 1979 to 1984 under the US Department of Energy Program Opportunity Notice (PON) program to demonstrate the feasibility for utilizing moderate temperature geothermal resources for direct-use applications. The Pagosa Springs system successfully provides space heating to public buildings, school facilities, residences, and commercial establishments at costs significantly lower than costs of available conventional fuels. The Pagosa Springs project encompassed a full range of technical, institutional, and economic activities. Geothermal reservoir evaluations and testing were performed, and two productive approx.140/sup 0/F geothermal supply wells were successfully drilled and completed. Transmission and distribution system design, construction, startup, and operation were achieved with minimum difficulty. The geothermal system operation during the first two heating seasons has been fully reliable and well respected in the community. The project has proven that low to moderate-temperature waters can effectively meet required heating loads, even for harsh winter-mountain environments. The principal difficulty encountered has been institutional in nature and centers on the obtaining of the geothermal production well permits and the adjudicated water rights necessary to supply the geothermal hot water fluids for the full operating life of the system. 28 figs., 15 tabs.

  12. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  13. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Fast, David E.; Bosch, William J.

    2005-09-01T23:59:59.000Z

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that were outside of containment objectives were not caused by supplementation activities. Some fish and bird piscivores have been estimated to consume large numbers of salmonids in the Yakima Basin. Natural production of Chinook salmon in the upper Yakima Basin appears to be density dependent under current conditions and may constrain the benefits of supplementation. However, such constraints (if they exist) could be countered by YKFP habitat actions that have resulted in: the protection of over 900 acres of prime floodplain habitat, reconnection and screening of over 15 miles of tributary habitat, substantial water savings through irrigation improvements, and restoration of over 80 acres of floodplain and side channels. Harvest opportunities for tribal and non-tribal fishers have also been enhanced, but are variable among years. The YKFP is still in the early stages of evaluation, and as such the data and findings presented in this report should be considered preliminary until further data is collected and analyses completed. Nonetheless, the YKFP has produced significant findings, and produced methodologies that can be used to evaluate and improve supplementation. A summary table of topical area performance is presented.

  14. Spring structure for a thermionic converter emitter support arrangement

    SciTech Connect (OSTI)

    Allen, Daniel T. (La Jolla, CA)

    1992-01-01T23:59:59.000Z

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  15. Spring structure for a thermionic converter emitter support arrangement

    DOE Patents [OSTI]

    Allen, D.T.

    1992-03-17T23:59:59.000Z

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  16. Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot

    E-Print Network [OSTI]

    Fouke, Bruce W.

    flow of spring water from the high-temperature to low-temperature facies. These results suggest of depositional facies models that correlate (1) the depth, velocity, temperature, and chemistry of waterPartitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs

  17. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell

    2006-01-01T23:59:59.000Z

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500ĺ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400ĺ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105ĺ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  18. Three Case Studies: Moisture Control in a Hot, Humid Climate

    E-Print Network [OSTI]

    French, W. R.

    2002-01-01T23:59:59.000Z

    as analysis of the problems, and recommendations for correction. Each of these projects would be classified an airconditioned building in a hot, humid climate, and subject to the problems and design issues concomitant with these types of projects. The first...

  19. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

    2002-11-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  20. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01T23:59:59.000Z

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  1. CSCI 480 Computer Graphics, Spring 2011 Administrative Matters

    E-Print Network [OSTI]

    Southern California, University of

    CSCI 480 Computer Graphics, Spring 2011 Administrative Matters Spring 2011, Mon and Wed, 10 24 Transformations Ch 4 Wed Jan 26 Viewing and Projection Ch 5 Mon Jan 31 Hierarchical Modeling Ch 10, Publisher: Addison Wesley, ISBN: 9780321535863 Dave Shreiner: OpenGL Programming Guide: The Official Guide

  2. Microsoft Word - Spring-Chinook_CX_6.28.11.doc

    Broader source: Energy.gov (indexed) [DOE]

    21, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Patricia Smith Project Manager - KEWL-4 Proposed Action: Small-scale spring Chinook and coho...

  3. Thermal Springs of Arizona

    SciTech Connect (OSTI)

    Witcher, J.C.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    An updated list of Arizona springs judged to be carrying anomalous heat. Possible heat sources are briefly outlined. (MHR)

  4. MDU Solar Energy Project Case Study

    Broader source: Energy.gov [DOE]

    Presentation covers the MDU Solar Energy Project Case Study and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  5. Ellsworth Air Force Base Advanced Metering Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Ellsworth Air Force Base Advanced Metering project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  6. Existing Building Commissioning (EBCx) Project Considerations

    Broader source: Energy.gov [DOE]

    Presentation covers the existing building commissioning (EBCx) project considerations, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  7. Joshua Smith Spring 2006

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Stormwater Utilities in Georgia Joshua Smith Spring 2006 #12;The UGA Land Use Clinic provides in Georgia Author: Joshua Smith Editor: Jamie Baker Roskie University of Georgia Land Use Clinic Spring 2006....................................................................................................10 #12;#12;1Stormwater Utilities in Georgia Stormwater Utilities in Georgia Joshua Smith Spring 2006

  8. WELDON SPRING FORMER ARMY

    E-Print Network [OSTI]

    1959 for the Army Reserve as the Weldon Spring Training Area. Contaminated areas are spread throughoutWELDON SPRING FORMER ARMY ORDNANCE WORKS MISSOURI EPA ID# MO5210021288 EPA Region 7 10/13/2011 City: 35 miles west of St. Louis County: St. Charles County Other Names: Weldon Springs National Guard

  9. Microsoft Word - JockoSpringCreek_Scott_Acquisition_CX_Final...

    Broader source: Energy.gov (indexed) [DOE]

    purchase of Jocko Spring Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):...

  10. Power Systems Analysis ELEN4511 Spring 2013

    E-Print Network [OSTI]

    Lavaei, Javad

    Power Systems Analysis ELEN4511 Spring 2013 Project Paper: Communication Systems and Standards along the power grid. The grid comprised solely of electro- mechanical systems that could of communication systems on the power grid enables devices to communicate more efficiently, and also allows

  11. SPRING 2013 OU/SPC CAREER EXPERIENCE

    E-Print Network [OSTI]

    SPRING 2013 OU/SPC CAREER EXPERIENCE PROGRAM The Storm Prediction Center (SPC) and the OU School will spend between 8-10 hrs per week at the SPC working on a research project related to U.S. severe weather through this program. The student will also have the opportunity to spend time in the SPC operations area

  12. SPRING 2012 OU/SPC CAREER EXPERIENCE

    E-Print Network [OSTI]

    SPRING 2012 OU/SPC CAREER EXPERIENCE PROGRAM The Storm Prediction Center (SPC) and the OU School will spend between 8-10 hrs per week at the SPC working on a research project related to U.S. severe weather through this program. The student will also will have the opportunity to spend several days in the SPC

  13. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    SciTech Connect (OSTI)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W. [Oregon Department of Fish and Wildlife

    2009-07-31T23:59:59.000Z

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

  14. Blackberry Creek Daylighting Project, Berkeley : Ten-Year Post-Project Appraisal

    E-Print Network [OSTI]

    Gerson, Stephanie Karla; Wardani, Jane; Niazi, Shiva

    2005-01-01T23:59:59.000Z

    manager. Personal Communication. December Creek Currents.1994. Blackberry Creek restoration project.Creek Currents. Berkeley, California. Spring/Summer 1994. p.

  15. Universitt Mannheim Paulheim, Bizer: Team Project Introduction FSS2013 Slide 1 Team Project

    E-Print Network [OSTI]

    Mannheim, Universitńt

    Universitńt Mannheim ş Paulheim, Bizer: Team Project Introduction ş FSS2013 ş Slide 1 Team Project;Universitńt Mannheim ş Paulheim, Bizer: Team Project Introduction ş FSS2013 ş Slide 2 Ingredients A hot topic;Universitńt Mannheim ş Paulheim, Bizer: Team Project Introduction ş FSS2013 ş Slide 3 Ingredient 1: A Hot

  16. Geothermometry At Mt Princeton Hot Springs Geothermal Area (Pearl...

    Open Energy Info (EERE)

    Basis Temperature estimation of valley-fill hydrothermal reservoir Notes Si, Na-K, & Na-K-Ca geothermometry estimates yielded a reservoir temperature range of 97 to 188...

  17. Compound and Elemental Analysis At Zim's Hot Springs Geothermal...

    Open Energy Info (EERE)

    geothermal fields of southern California; and 7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two. Our...

  18. Thermal Gradient Holes At Spencer Hot Springs Area (Shevenell...

    Open Energy Info (EERE)

    Activity Date Usefulness useful DOE-funding Unknown Notes Collaboration with the gold mining industry has brought two new geothermal discoveries to the attention of the geothermal...

  19. Structural Controls of the Neal Hot Springs Geothermal System...

    Open Energy Info (EERE)

    Detailed geologic mapping (1:24,000 scale), structural and geochemical analyses, and integration of available geophysical and well-field data were utilized to assess the structural...

  20. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    areas. This study was conducted by a geophysics field camp from the Colorado School of Mines. Notes Two seismic surveys were done, the first was a low frequency survey...

  1. Analysis Of Hot Springs And Associated Deposits In Yellowstone...

    Open Energy Info (EERE)

    Aviris Remote Sensing Abstract The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Airborne VisibleIR Image Spectrometer (AVIRIS) data were used...

  2. Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski...

    Open Energy Info (EERE)

    distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005). Powell found that MDH, TRS-1 and TRS-6 are the most prospective waters and...

  3. Direct-Current Resistivity At Beowawe Hot Springs Area (Garg...

    Open Energy Info (EERE)

    Philip E. Wannamaker, Jim Combs (2007) Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Additional References Retrieved from...

  4. Direct-Current Resistivity Survey At Beowawe Hot Springs Area...

    Open Energy Info (EERE)

    Philip E. Wannamaker, Jim Combs (2007) Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Additional References Retrieved from...

  5. Micro-Earthquake At Neal Hot Springs Geothermal Area (Nichols...

    Open Energy Info (EERE)

    seismic sensor, a data acquisition system that records information onto flash drives, a solar panel and battery, and a fence to keep cows out. References Scott Nichols, David...

  6. Trace Element Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    suites at depth within the system are: (4) concentrations of As in sulfides and Li in silicate alteration minerals in the vicinity of high-temperature fluid conduits; and (5)...

  7. Ground Gravity Survey At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Notes Gravity low associated with Mt. Princeton Batholith; density contrast of -0.5 gcm3 of valley-fill sediments relative to batholith References J.E. Case, R.F. Sikora...

  8. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  9. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  10. Geothermometry At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  11. DC Resistivity Survey (Schlumberger Array) At Roosevelt Hot Springs...

    Open Energy Info (EERE)

    zones. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  12. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    infrared. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  13. Field Mapping At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  14. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    model. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  15. Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  16. Thermal Gradient Holes At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  17. Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  18. Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  19. Refraction Survey At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  20. Self Potential At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  1. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    waters. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  2. Ground Magnetics At Roosevelt Hot Springs Geothermal Area (Ward...

    Open Energy Info (EERE)

    Area. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  3. Ground Gravity Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Gravity Survey Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity surveys were conducted to gain a better...

  4. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    Exploration Technique Aerial Photography Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  5. Petrography Analysis At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Technique Petrography Analysis Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  6. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  7. Ground Magnetics At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    Technique Ground Magnetics Activity Date 2011 - 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Magnetic surveys were conducted to gain a better...

  8. An Overview of Environmental Issues: Roosevelt Hot Springs KGRA...

    Open Energy Info (EERE)

    creating unacceptable noise impacts. Author Philip Leitner Published Journal DOE Science and Technical Information, 1978 DOI 10.21726217844 Online Internet link for An...

  9. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...

  10. Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...

  11. Ground Gravity Survey At Lake City Hot Springs Area (Warpinski...

    Open Energy Info (EERE)

    fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...

  12. Data Acquisition-Manipulation At Lake City Hot Springs Area ...

    Open Energy Info (EERE)

    fault zones. The focus of Lake City Geothermal's current effort is on enhancing the site interpretation by re-evaluating the existing seismic data, conducting a detailed gravity...

  13. Multispectral Imaging At Buffalo Valley Hot Springs Area (Littlefield...

    Open Energy Info (EERE)

    Imaging Sensor ASTER Usefulness useful DOE-funding Unknown Notes ASTER airborne remote sensing. References E. Littlefield, W. Calvin (2009) Remote Sensing For Geothermal...

  14. Compound and Elemental Analysis At Lake City Hot Springs Area...

    Open Energy Info (EERE)

    Walter R. Benoit (2004) Geochemistry Of The Lake City Geothermal System, California, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleCompounda...

  15. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    (1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...

  16. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    Open Energy Info (EERE)

    on the PureCycle 200product released by UTC in 2004 and designed to operate offindustrial waste heat applications. The PureCycle 200 usescomponents and hardware from the Carrier...

  17. DC Resistivity Survey (Wenner Array) At Mt Princeton Hot Springs...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers measured DC resistivity and produced 12 resistivity...

  18. Self Potential At Mt Princeton Hot Springs Geothermal Area (Richards...

    Open Energy Info (EERE)

    2008 - 2010 Usefulness useful DOE-funding Unknown Exploration Basis Determination of groundwater flux patterns Notes Researchers collected 2700 SP measurements. Equilibrium...

  19. Understanding The Chena Hot Springs, Alaska, Geothermal System...

    Open Energy Info (EERE)

    varying pressure versus depth characteristics and can be used alone in cases where staged drilling is not practical. The extensive exploration activities helped define optimal...

  20. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLagoBenton,

  1. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups <LackawannaLagoBenton,(Redirected from Lake City

  2. Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy DevelopmentLaurentian Energy Authority JumpEnergy

  3. Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska: Energy ResourcesNebraska:WestOpen

  4. Fly Ranch Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergyInformationOpenOpenFlux

  5. GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY, COLORADO

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, NewG2 Energy Jump

  6. Geographic Information System At Brady Hot Springs Area (Laney, 2005) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations

  7. Geophysical Characterization of a Geothermal System Neal Hot Springs,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,Jump to:Locations2002)|EnergyOregon, USA

  8. Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood...

    Open Energy Info (EERE)

    about the same extent as that indicated on the 7.5 Hz AMT map (Fig. 6b). The resistivity data suggest a reservoir of limited horizontal extent. References W. F. Isherwood, D. R....

  9. Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    syntax. Display map Temperature No Data Listed Flow No Data Listed Capacity 1.00x106 Btuhr 0.300 MWt Annual Generation 7.00x109 Btuyr 2.10 GWhyr Load Factor 0.80 Contact...

  10. Carson Hot Mineral Springs Resort Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Display map Temperature 52.0 C 126.0 F Flow No Data Listed Capacity 1.00x106 Btuhr 0.300 MWt Annual Generation 7.00x109 Btuyr 2.10 GWhyr Load Factor 0.80 Contact...

  11. Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    syntax: * Display map Temperature No Data Listed Flow No Data Listed Capacity 1.00x106 Btuhr 0.300 MWt Annual Generation 7.00x109 Btuyr 2.10 GWhyr Load Factor 0.80 Contact...

  12. Caliente Hot Springs Motel Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Display map Temperature 46.0 C 115.0 F Flow 40 gpm 152 Lmin Capacity 0.40x106 Btuhr 0.100 MWt Annual Generation 2.40x109 Btuyr 0.70 GWhyr Delat T 20.00 F Load...

  13. Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Display map Temperature 62.0 C 143.0 F Flow 250 gpm 948 Lmin Capacity 3.80x106 Btuhr 1.100 MWt Annual Generation 27.90x109 Btuyr 8.20 GWhyr Delat T 30.00 F Load...

  14. Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    * Display map Temperature 43.0 C 109.0 F Flow 150 gpm 569 Lmin Capacity 2.20x106 Btuhr 0.600 MWt Annual Generation 13.00x109 Btuyr 3.80 GWhyr Delat T 29.00 F Load...

  15. Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Display map Temperature 54.0 C 130.0 F Flow No Data Listed Capacity 1.00x106 Btuhr 0.300 MWt Annual Generation 7.00x109 Btuyr 2.10 GWhyr Load Factor 0.80 Contact...

  16. Lost Trail Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    syntax: * Display map Temperature No Data Listed Flow No Data Listed Capacity 1.00x106 Btuhr 0.300 MWt Annual Generation 7.00x109 Btuyr 2.10 GWhyr Load Factor 0.80 Contact...

  17. Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio: EnergymapInfoGeothermalEnergyOpen

  18. Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights,Boyne City, Michigan: EnergyEnergyOpen

  19. Breitenbush Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro, Vermont:Brecksville,

  20. Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBostonBrattleboro, Vermont:Brecksville,Open Energy

  1. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and Innovative EnergyHeights, Ohio: Energy

  2. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy Resources

  3. Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington:Informationgeothermal developmentOpen

  4. California Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16 2013Management86 Jump

  5. Calistoga Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas RecoveryInformationTransmission Permitting at

  6. Camp Preventorium Hot Springs Pool & Spa Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits Manual Jump to:(RECP)Point, Illinois:

  7. Wabuska Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage Jump to: navigation,WSDNRWabasso,GeothermalWabuska

  8. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane,(Redirected fromWallaceWaller|

  9. Weberg Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: EnergyWebGen Systems Jump

  10. Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: EnergyWebGen Systems66┬░,Texas:Energy

  11. Ch. II, Waunita Hot Springs, Colorado Geothermal Prospect Reconaissance |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:Cerion Energy IncCetechOpen Energy

  12. Ch. VI, The geophysical environment around Waunita Hot Springs | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:Cerion Energy

  13. Ch. VIII, Soil mercury investigations, Waunita Hot Springs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI Jump to:Cerion EnergyEnergyInformation

  14. Chena Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington:LoopingEnergy

  15. Chena Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington:LoopingEnergyEnergyEnergy

  16. Chico Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: EnergyView,Chickasaw County,Energy

  17. Chico Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: EnergyView,ChickasawEnergy

  18. Circle Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTechCinergy Capital

  19. Circle Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTechCinergy

  20. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergy Hydrogen andHydropower is one

  1. Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasin ECSanatoga, Pennsylvania:Open Energy

  2. Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformation Evaluation,Schmid Silicon Technology GmbHSchreinerOpen

  3. Silver Star Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH JumpSilicium de(RedirectedNetworks

  4. Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:Analogs For

  5. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:AnalogsOpen Energy

  6. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Petersen, 1975)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis Energy Jump to:AnalogsOpen Energy| Open Energy

  7. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolis EnergyRanch,Electric Coop,

  8. Understanding The Chena Hot Springs, Alaska, Geothermal System Using

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place:Unalakleet Jump to: navigation,Temperature And

  9. Vertical Seismic Profiling At Neal Hot Springs Geothermal Area (Colorado

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility Rate HomeVela Jump to:IsourceSchool of Mines and

  10. Vulcan Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global EnergyUtility RateVirginia/WindCounty, California

  11. Water Sampling At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpen EnergyKauaiMtInformationOpen

  12. Water Sampling At Waunita Hot Springs Geothermal Area (Carpenter, 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, searchOpenInformation Henkle,EnergyOpen

  13. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:Westwood Renewables Jump to:meaningWillow I Wind

  14. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:Westwood Renewables Jump to:meaningWillow I

  15. Boulder Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundell

  16. Bradfield Canal Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles, California: EnergyBoyes

  17. Brady Hot Springs I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles, California: EnergyBoyesBiomassI

  18. Breitenbush Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles,EnergyBrazil: EnergyWindI

  19. Broadwater Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facility Jump to: navigation,Biogen Jump

  20. Cabarton Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to:ListCRED: A NewLLPCWES

  1. A Preliminary Resistivity Investigation (Ves) Of The Langada Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf TheLtd APWR JumpArea In

  2. A hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergySulfonate as a Liquid-Phase Tracer atA hungryRock

  3. Abraham Hot Springs Geothermal Area Northern Basin and Range Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40Georgia:SL JumpAREGAbout

  4. Aerial Photography At Roosevelt Hot Springs Geothermal Area (Petersen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to:Ohio:Ads-tecInformationAecomLtd, 2003)2003)

  5. Aeromagnetic Survey At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place: Potsdam,OpenAl., 1984)1991) |

  6. Aeromagnetic Survey At Waunita Hot Springs Geothermal Area (Lange, 1981) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE JumpAeroWind Inc. Place: Potsdam,OpenAl., 1984)1991)Open

  7. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergy International LimitedPhoenixPhotovoltechMauna Loa

  8. Pilger Estates Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformationLumiledsEconomicPicosunJump

  9. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformationLumiledsEconomicPicosunJumpPilgrim

  10. Preliminary Assessment of the Structural Controls of Neal Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation,Power Rental

  11. Ishtalitna Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIrem GeothermalIselin, New Jersey:

  12. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007) ||Al., 1989) | Open

  13. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy JumpIremNot2007) ||Al., 1989) |1991) | Open

  14. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: EnergySouthEnergy Information|

  15. Kahneetah Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACOKahaluu, Hawaii: Energy

  16. Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County,KaolinKelleys Island, Ohio:Energy

  17. Indian Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR JumpRenewableChange | OpenIndian

  18. Indian Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSAR

  19. Kellog Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms Wind FarmEconomiesKeene,Kellog

  20. Kelly Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii |Island,Kas Farms Wind

  1. Krigbaum Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995┬░,I Jump to: navigation,

  2. Olene Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and Gas CompanyOklahoma/WindOkpilak

  3. OpenEI Community - Waunita Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff thedrivingGiven Utility

  4. Owl Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-TaxShelf LandsOpenCorningOwl

  5. Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCN Technology Jump2011) | Open Energy Information

  6. Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to: navigation,Jersey: EnergySpain) JumpHoback, Wyoming:Energy

  7. Hot Spring County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:

  8. Hot Springs County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County, Wyoming: Energy Resources Jump to:

  9. Huckelberry Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio: Energy ResourcesHuberand Suhner

  10. Huckleberry Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio: Energy ResourcesHuberand

  11. Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources Jump to: navigation,

  12. Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: Energy Resources Jump to:Hunter,Creek,

  13. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark,PacificPainesville,(Faulder, 1991) | Open

  14. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal Area (Ward,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark,PacificPainesville,(Faulder, 1991) |

  15. Petrography Analysis At Roosevelt Hot Springs Geothermal Area (Petersen,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:PersonalPetroSun

  16. Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermalPinecrest,NorthPink, Oklahoma:Open

  17. Pressure Temperature Log At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for Energy EfficiencyConsultation|Maui Area

  18. Lee Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow TankOpen Energyin DevelopingIllinois:Lee

  19. Leonards Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow TankOpen4906177┬░, -84.1857115┬░

  20. Macfarlane's Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAG BuoyYOG <MP2MWRA DeerMacfarlane's

  1. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas & Jump

  2. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas &

  3. Magnetotellurics At Dixie Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison Gas

  4. Magnetotellurics At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconverter <WAGMadison

  5. Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof EnergyAdministration-DesertofSuccessTroy A.Chemical Sciences39Coproduced

  6. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ | Roadmap Jump to:bJumpRed Bank, New Jersey:MesaRedwoodReed

  7. Reflection Survey At Hot Sulphur Springs Area (Goranson, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ | Roadmap Jump to:bJumpRed Bank,Reflection| OpenEnergy

  8. Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ |Rippey JumpAir JumpCalifornia | Open Energy

  9. Sespe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ |Rippey JumpAir JumpCaliforniaGroup LLC JumpServiciosSespe

  10. Sharkey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ |Rippey JumpAirPower Partners Wind Farm Jump to:

  11. Slate Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ |Rippey JumpAirPowerSilcioEthanolSkyline High

  12. Sleeping Child Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPIDÔÇÄ |Rippey JumpAirPowerSilcioEthanolSkyline HighSleeping

  13. Geothermal resistivity resource evaluation survey Waunita Hot Springs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865┬░,Park,2005)EnergyAmatitlan Geothermal

  14. Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865┬░,Park,2005)EnergyAmatitlanGmbH und Co KG Jump

  15. Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865┬░,Park,2005)EnergyAmatitlanGmbH und Co KGEnergyFish

  16. Geothermometry At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865┬░,Park,2005)EnergyAmatitlanGmbH undOpen Energy1978) | Open Energy

  17. Gila Hot Springs District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to: navigation,

  18. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo, Maryland:Glenwillow, Ohio: EnergyFacility |

  19. Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GOsource History View NewOpen

  20. Ground Gravity Survey At Roosevelt Hot Springs Geothermal Area (Faulder,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) ExplorationAl.,Open Energy1991) |

  1. Maple Grove Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource History View New PagesSolarMaple

  2. Mccredie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II Jump to: navigation, search

  3. Medical Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II Jump to:Inc MTIDiscoveries Inc Jump

  4. Mickey Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/Wind Resources/Full Version

  5. Multispectral Imaging At Buffalo Valley Hot Springs Area (Littlefield &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | Open Energy Information

  6. Spencer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast Colorado PowerSouthwesternCompaniesSESIndiana:Spencer

  7. Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(RedirectedStarr||Ste.Facility | OpenFacility

  8. Summer Lake Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy Information

  9. Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNewOpen Energy InformationOpen

  10. Surprise Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place:Mclaren, 2010) || Open EnergySurprise

  11. Alvord Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: EnergyAlten JumpAltra Inc

  12. Analysis Of Hot Springs And Associated Deposits In Yellowstone National

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda, Montana: Energy ResourcesPark Using

  13. Bailey Bay Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagley Public Utilities Comm

  14. Barron's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France: EnergyBagleyBangladesh:Barbados:Barre

  15. Bell Island Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump to:

  16. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance | OpenBetterBiBBBigBigBig

  17. Bonneville Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundell 1 Geothermal

  18. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area (DOE GTP) Exploration

  19. Manley Hot Springs Greenhouse Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area6612134┬░,Manistee

  20. Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez Pueblo Area6612134┬░,ManisteeEnergy