Sample records for hot dense matter

  1. Statistical mechanics of hot dense matter

    SciTech Connect (OSTI)

    More, R.

    1986-10-01T23:59:59.000Z

    Research on properties of hot dense matter produced with high intensity laser radiation is described in a brief informal review.

  2. Nuclear stopping power in warm and hot dense matter

    SciTech Connect (OSTI)

    Faussurier, Gerald; Blancard, Christophe [CEA, DAM, DIF, F-91 297 Arpajon (France); Gauthier, Maxence [CEA, DAM, DIF, F-91 297 Arpajon (France); LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau (France)

    2013-01-15T23:59:59.000Z

    We present a method to estimate the nuclear component of the stopping power of ions propagating in dense matter. Three kinds of effective pair potentials are proposed. Results from the warm dense matter regime and the domain of high energy density physics are presented and discussed for proton and helium. The role of ionic temperature is examined. The nuclear stopping power can play a noticeable role in hot dense matter.

  3. Collaborative Research: Neutrinos & Nucleosynthesis in Hot Dense Matter

    SciTech Connect (OSTI)

    Reddy, Sanjay

    2013-09-06T23:59:59.000Z

    It is now firmly established that neutrinos, which are copiously produced in the hot and dense core of the supernova, play a role in the supernova explosion mechanism and in the synthesis of heavy elements through a phenomena known as r-process nucleosynthesis. They are also detectable in terrestrial neutrino experiments, and serve as a probe of the extreme environment and complex dynamics encountered in the supernova. The major goal of the UW research activity relevant to this project was to calculate the neutrino interaction rates in hot and dense matter of relevance to core collapse supernova. These serve as key input physics in large scale computer simulations of the supernova dynamics and nucleosynthesis being pursued at national laboratories here in the United States and by other groups in Europe and Japan. Our calculations show that neutrino production and scattering rate are altered by the nuclear interactions and that these modifications have important implications for nucleosynthesis and terrestrial neutrino detection. The calculation of neutrino rates in dense matter are difficult because nucleons in the dense matter are strongly coupled. A neutrino interacts with several nucleons and the quantum interference between scattering off different nucleons depends on the nature of correlations between them in dense matter. To describe these correlations we used analytic methods based on mean field theory and hydrodynamics, and computational methods such as Quantum Monte Carlo. We found that due to nuclear effects neutrino production rates at relevant temperatures are enhanced, and that electron neutrinos are more easily absorbed than anti-electron neutrinos in dense matter. The latter, was shown to favor synthesis of heavy neutron-rich elements in the supernova.

  4. Sound Wave in Hot Dense Matter Created in Heavy Ion Collision

    E-Print Network [OSTI]

    X. Sun; Z. Yang

    2005-12-14T23:59:59.000Z

    A model to study the sound wave in hot dense matter created in heavy ion collisions by jet is proposed.The preliminary data of jet shape analysis of PHENIX Collaboration for all centralities and two directions is well explained in this model. Then the wavelength of the sound wave, the natural frequency of the hot dense matter and the speed of sound wave are estimated from the fit.

  5. Sound waves and solitons in hot and dense nuclear matter

    E-Print Network [OSTI]

    D. A. FogaÁa; L. G. Ferreira Filho; F. S. Navarra

    2008-01-25T23:59:59.000Z

    Assuming that nuclear matter can be treated as a perfect fluid, we study the propagation of perturbations in the baryon density. The equation of state is derived from a relativistic mean field model, which is a variant of the non-linear Walecka model. The expansion of the Euler and continuity equations of relativistic hydrodynamics around equilibrium configurations leads to differential equations for the density fluctuations. We solve them numerically for linear and spherical perturbations and follow the time evolution of the initial pulses. For linear perturbations we find single soliton solutions and solutions with one or more solitons followed by radiation. Depending on the equation of state a strong damping may occur. Spherical perturbations are strongly damped and almost do not propagate. We study these equations also for matter at finite temperature. Finally we consider the limiting case of shock wave formation.

  6. Thermal properties of hot and dense matter with finite range interactions

    E-Print Network [OSTI]

    Constantinou, Constantinos; Prakash, Madappa; Lattimer, James M

    2015-01-01T23:59:59.000Z

    We explore the thermal properties of hot and dense matter using a model that reproduces the empirical properties of isospin symmetric and asymmetric bulk nuclear matter, optical model fits to nucleon-nucleus scattering data, heavy-ion flow data in the energy range 0.5-2 GeV/A, and the largest well-measured neutron star mass of 2 $\\rm{M}_\\odot$. Results of this model which incorporates finite range interactions through Yukawa type forces are contrasted with those of a zero-range Skyrme model that yields nearly identical zero-temperature properties at all densities for symmetric and asymmetric nucleonic matter and the maximum neutron star mass, but fails to account for heavy-ion flow data due to the lack of an appropriate momentum dependence in its mean field. Similarities and differences in the thermal state variables and the specific heats between the two models are highlighted. Checks of our exact numerical calculations are performed from formulas derived in the strongly degenerate and non-degenerate limits....

  7. Hot and dark matter

    E-Print Network [OSTI]

    D'Eramo, Francesco

    2012-01-01T23:59:59.000Z

    In this thesis, we build new Effective Field Theory tools to describe the propagation of energetic partons in hot and dense media, and we propose two new reactions for dark matter in the early universe. In the first part, ...

  8. Light nuclei quasiparticle energy shift in hot and dense nuclear matter

    E-Print Network [OSTI]

    G. RŲpke

    2008-10-25T23:59:59.000Z

    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\\"odinger equation for the $A$-particle cluster is obtained accounting for the effects of the correlated medium such as self-energy, Pauli blocking and Bose enhancement. Similar to the single-baryon states (free neutrons and protons), the light elements ($2 \\le A \\le 4$, internal quantum state $\

  9. Proceedings of RIKEN BNL Research Center Workshop: P- and CP-odd Effects in Hot and Dense Matter

    SciTech Connect (OSTI)

    Deshpande, A.; Fukushima, K.; Kharzeev, D.; Warringa, H.; Voloshin, S.

    2010-04-26T23:59:59.000Z

    This volume contains the proceedings of the RBRC/CATHIE workshop on 'P- and CP-odd Effects in Hot and Dense Matter' held at the RIKEN-BNL Research Center on April 26-30, 2010. The workshop was triggered by the experimental observation of charge correlations in heavy ion collisions at RHIC, which were predicted to occur due to local parity violation (P- and CP-odd fluctuations) in hot and dense QCD matter. This experimental result excited a significant interest in the broad physics community, inspired a few alternative interpretations, and emphasized the need for a deeper understanding of the role of topology in QCD vacuum and in hot and dense quark-gluon matter. Topological effects in QCD are also closely related to a number of intriguing problems in condensed matter physics, cosmology and astrophysics. We therefore felt that a broad cross-disciplinary discussion of topological P- and CP-odd effects in various kinds of matter was urgently needed. Such a discussion became the subject of the workshop. Specific topics discussed at the workshop include the following: (1) The current experimental results on charge asymmetries at RHIC and the physical interpretations of the data; (2) Quantitative characterization of topological effects in QCD matter including both analytical (perturbative and non-perturbative using gauge/gravity duality) and numerical (lattice-QCD) calculations; (3) Topological effects in cosmology of the Early Universe (including baryogenesis and dark energy); (4) Topological effects in condensed matter physics (including graphene and superfiuids); and (5) Directions for the future experimental studies of P- and CP-odd effects at RHIC and elsewhere. We feel that the talks and intense discussions during the workshop were extremely useful, and resulted in new ideas in both theory and experiment. We hope that the workshop has contributed to the progress in understanding the role of topology in QCD and related fields. We thank all the speakers and participants, and express our gratitude to the event coordinator Pam Esposito for her hard work.

  10. Anti-strange meson-baryon interaction in hot and dense nuclear matter

    E-Print Network [OSTI]

    Daniel Cabrera; Laura Tolos; JŲrg Aichelin; Elena Bratkovskaya

    2014-11-14T23:59:59.000Z

    We present a study of in-medium cross sections and (off-shell) transition rates for the most relevant binary reactions for strange pseudoscalar meson production close to threshold in heavy-ion collisions at FAIR energies. Our results rely on a chiral unitary approach in coupled channels which incorporates the $s$- and $p$-waves of the kaon-nucleon interaction. The formalism, which is modified in the hot and dense medium to account for Pauli blocking effects, mean-field binding on baryons, and pion and kaon self-energies, has been improved to implement full unitarization and self-consistency for both the $s$- and $p$-wave interactions at finite temperature and density. This gives access to in-medium amplitudes in several elastic and inelastic coupled channels with strangeness content $S=-1$. The obtained total cross sections mostly reflect the fate of the $\\Lambda(1405)$ resonance, which melts in the nuclear environment, whereas the off-shell transition probabilities are also sensitive to the in-medium properties of the hyperons excited in the $p$-wave amplitudes [$\\Lambda$, $\\Sigma$ and $\\Sigma^*(1385)$]. The single-particle potentials of these hyperons at finite momentum, density and temperature are also discussed in connection with the pertinent scattering amplitudes. Our results are the basis for future implementations in microscopic transport approaches accounting for off-shell dynamics of strangeness production in nucleus-nucleus collisions.

  11. Observation of the critical end point in the phase diagram for hot and dense nuclear matter

    E-Print Network [OSTI]

    Lacey, Roy A

    2014-01-01T23:59:59.000Z

    Excitation functions for the Gaussian emission source radii difference ($R^2_{\\text{out}} - R^2_{\\text{side}}$) obtained from two-pion interferometry measurements in Au+Au ($\\sqrt{s_{NN}}= 7.7 - 200$ GeV) and Pb+Pb ($\\sqrt{s_{NN}}= 2.76$ TeV) collisions, are studied for a broad range of collision centralities. The observed non-monotonic excitation functions validate the finite-size scaling patterns expected for the deconfinement phase transition and the critical end point (CEP), in the temperature vs. baryon chemical potential ($T,\\mu_B$) plane of the nuclear matter phase diagram. A Finite-Size Scaling (FSS) analysis of these data indicate a second order phase transition with the estimates $T^{\\text{cep}} \\sim 165$~MeV and $\\mu_B^{\\text{cep}} \\sim 100$~MeV for the location of the critical end point. The critical exponents ($\

  12. Phi Meson in Dense Matter

    E-Print Network [OSTI]

    Ko, Che Ming; Levai, P.; Qiu, X. J.; Li, C. T.

    1992-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 45, NUMBER 3 MARCH 1992 Phi meson in dense matter C. M. Ko, P. Levai, * and X. J. Qiu Cyclotron Institute and Physics Department, Texas A &M University, College Station, Texas 77843 C. T. Li Physics Department, National... Taiwan University, Taipei, Taiwan 10764, China {Received 3 September 1991) The effect of the kaon loop correction to the property of a phi meson in dense matter is studied in the vector dominance model. Using the density-dependent kaon effective mass...

  13. Probing hot and dense matter production in heavy ion collisions via neutral mesons and photons with the ALICE detector at the LHC

    E-Print Network [OSTI]

    Astrid Morreale; for the ALICE collaboration

    2014-10-22T23:59:59.000Z

    One of the key signatures of the Quark Gluon Plasma (QGP) is the modification of hadron and direct photon spectra in heavy-ion collisions as compared to proton-proton (pp) collisions. Suppression of hadron production at high transverse momenta in heavy-ion collisions can be explained by the energy loss of the partons produced in the hard scattering processes which traverse the hot and dense QCD matter. The dependence of the observed suppression on the transverse momentum (pT) of the measured hadron towards higher pT is an important input for the theoretical understanding of jet quenching effects in the QGP and the nature of energy loss. Another key observable which has helped establish the energy loss picture, is high pT direct photon production for which no suppression is expected. For low pT photon production, it is expected that thermal sources will lead to enhancement of direct photons. We report an overview of photon and neutral meson production measurements by the ALICE experiment at the LHC in heavy-ion and pp collisions.

  14. Emission of Visible Light by Hot Dense Metals

    E-Print Network [OSTI]

    More, R.M.

    2010-01-01T23:59:59.000Z

    HIFAN 1761 EMISSION OF VISIBLE LIGHT BY HOT DENSE METALS ByDE-AC52-07NA27344. HI FAN Emission of Visible Light by HotABSTRACT We consider the emission of visible light by hot

  15. PROBING DENSE NUCLEAR MATTER VIA NUCLEAR COLLISIONS

    E-Print Network [OSTI]

    Stocker, H.

    2012-01-01T23:59:59.000Z

    University of California. LBL-12095 Probing Dense NuclearMatter Nuclear Collisions* v~a H. Stocker, M.Gyulassy and J. Boguta Nuclear Science Division Lawrence

  16. Electronic Structure of Warm Dense Matter via Multicenter Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure of Warm Dense Matter via Multicenter Green's Function Technique Research Personnel Modeling The proposed research addresses the Warm Dense Matter area...

  17. Transport properties of the hot and dense sQGP

    E-Print Network [OSTI]

    Hamza Berrehrah; Elena Bratkovskaya; Wolfgang Cassing; Rudy Marty

    2014-12-02T23:59:59.000Z

    The transport properties of the quark gluon plasma (QGP) are studied in a QCD medium at finite temperature and chemical potential. We calculate the shear viscosity $\\eta(T,\\mu_q)$ and the electric conductivity $\\sigma_e(T,\\mu_q)$ for a system of interacting massive and broad quasi-particles as described by the dynamical quasi-particle model "DQPM" at finite temperature $T$ and quark chemical potential $\\mu_q$ within the relaxation time approximation. Our results are in a good agreement with lattice QCD at finite temperature and show clearly the increase of the transport coefficients with increasing $T$ and $\\mu_q$. Our results provide the basic ingredients for the study of the hot and dense matter in the Beam Energy Scan (BES) at RHIC and CBM at FAIR.

  18. Hot-dark matter, cold dark matter and accelerating universe

    E-Print Network [OSTI]

    Abbas Farmany; Amin Farmany; Mohammad Mahmoodi

    2006-07-07T23:59:59.000Z

    The Friedman equation is solved for a universe contains hotdark matter and cold dark matter. In this scenario, hot-dark matter drives an accelerating universe no cold dark matter.

  19. Axion hot dark matter bounds

    E-Print Network [OSTI]

    G. Raffelt; S. Hannestad; A. Mirizzi; Y. Y. Y. Wong

    2008-08-06T23:59:59.000Z

    We derive cosmological limits on two-component hot dark matter consisting of neutrinos and axions. We restrict the large-scale structure data to the safely linear regime, excluding the Lyman-alpha forest. We derive Bayesian credible regions in the two-parameter space consisting of m_a and sum(m_nu). Marginalizing over sum(m_nu) provides m_aaxions the same data and methods give sum(m_nu)< 0.63 eV (95% CL).

  20. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |FrankUltrafast Spectroscopy of Warm Dense Matter

  1. Color superconductivity and dense quark matter

    E-Print Network [OSTI]

    Massimo Mannarelli

    2008-12-26T23:59:59.000Z

    The properties of cold and dense quark matter have been the subject of extensive investigation, especially in the last decade. Unfortunately, we still lack of a complete understanding of the properties of matter in these conditions. One possibility is that quark matter is in a color superconducting phase which is characterized by the formation of a diquark condensate. We review some of the basic concepts of color superconductivity and some of the aspects of this phase of matter which are relevant for compact stars. Since quarks have color, flavor as well as spin degrees of freedom many different color superconducting phases can be realized. At asymptotic densities QCD predicts that the color flavor locked phase is favored. At lower densities where the QCD coupling constant is large, perturbative methods cannot be applied and one has to rely on some effective model, eventually trying to constrain such a model with experimental observations. The picture is complicated by the requirement that matter in the interior of compact stars is in weak equilibrium and neutral. These conditions and the (possible) large value of the strange quark mass conspire to separate the Fermi momenta of quarks with different flavors, rendering homogenous superconducting phases unstable. One of the aims of this presentation is to introduce non-experts in the field to some of the basic ideas of color superconductivity and to some of its open problems.

  2. Two simple problems in semiclassical dense matter physics

    E-Print Network [OSTI]

    V. Celebonovic

    2004-05-03T23:59:59.000Z

    The aim of this lecture is to discuss in some detail two simple but important problems which have considerable importance for the development of theoretical work in semiclassical dense matter physics.

  3. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a plasma. Therefore, to probe a warm dense state undergoing a nonreversible process, an ultrafast technique faster than the ALS pulse duration (70 ps) and a single-shot...

  4. Light front approach to correlations in hot quark matter

    E-Print Network [OSTI]

    S. Strauss; M. Beyer; S. Mattiello

    2006-01-30T23:59:59.000Z

    We investigate two-quark correlations in hot and dense quark matter. To this end we use the light front field theory extended to finite temperature $T$ and chemical potential $\\mu$. Therefore it is necessary to develop quantum statistics formulated on the light front plane. As a test case for light front quantization at finite $T$ and $\\mu$ we consider the NJL model. The solution of the in-medium gap equation leads to a constituent quark mass which depends on $T$ and $\\mu$. Two-quark systems are considered in the pionic and diquark channel. We compute the masses of the two-body system using a $T$-matrix approach.

  5. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |FrankUltrafast Spectroscopy of Warm Dense

  6. Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense Helium

    E-Print Network [OSTI]

    Militzer, Burkhard

    Path Integral Monte Carlo and Density Functional Molecular Dynamics Simulations of Hot, Dense integral Monte Carlo (PIMC) and density func- tional molecular dynamics (DFT-MD), are applied to study hot excitation mecha- nisms that determine their behavior at high temperature. The helium atom has two ionization

  7. Axion hot dark matter bounds after Planck

    SciTech Connect (OSTI)

    Archidiacono, Maria; Hannestad, Steen [Department of Physics and Astronomy, University of Aarhus DK-8000 Aarhus C (Denmark); Mirizzi, Alessandro [II. Institut fŁr Theoretische Physik, Universitšt Hamburg Luruper Chaussee 149, D-22761 Hamburg (Germany); Raffelt, Georg [Max-Planck-Institut fŁr Physik (Werner-Heisenberg-Institut) FŲhringer Ring 6, D-80805 MŁnchen (Germany); Wong, Yvonne Y.Y., E-mail: archi@phys.au.dk, E-mail: sth@phys.au.dk, E-mail: alessandro.mirizzi@desy.de, E-mail: raffelt@mpp.mpg.de, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales Sydney NSW 2052 (Australia)

    2013-10-01T23:59:59.000Z

    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from ? m{sub ?} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

  8. Nuclear fusion in dense matter: Reaction rate and carbon burning

    E-Print Network [OSTI]

    L. R. Gasques; A. V. Afanasjev; E. F. Aguilera; M. Beard; L. C. Chamon; P. Ring; M. Wiescher; D. G. Yakovlev

    2005-06-16T23:59:59.000Z

    In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-factor using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho > 10^9 g/cc.

  9. Radiative transitions of high energy neutrino in dense matter

    E-Print Network [OSTI]

    A. E. Lobanov

    2005-06-01T23:59:59.000Z

    The quantum theory of the ``spin light'' (electromagnetic radiation emitted by a massive neutrino propagating in dense matter due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radiation, this effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the transition rate and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the particle helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the background medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left-handed polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become practically ``sterile''. Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the ``spin light'' can change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged energy is equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final ``sterile'' neutrinos. This fact can be important for the understanding of the ``dark matter'' formation mechanism on the early stages of evolution of the Universe.

  10. Suppression of Dilepton Production in Hot Hadronic Matter

    E-Print Network [OSTI]

    Song, C.; Lee, S. H.; Ko, Che Ming.

    1995-01-01T23:59:59.000Z

    -meson resonance is suppressed as a result of the modification of the pion electromagnetic form factor at finite temperature. The relevance of this phenomenon to the partial restoration of chiral symmetry in hot hadronic matter is discussed....

  11. PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon burning

    E-Print Network [OSTI]

    PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon August 2005) In this paper we analyze the nuclear fusion rates among equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones

  12. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$ J Keywords: Ion beam heating Warm dense matter Inertial fusion energy targets Hydrodynamic simulation a b fusion energy-related beam-target coupling. Simulations of various target materials (including solids

  13. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    SciTech Connect (OSTI)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17T23:59:59.000Z

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  14. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    SciTech Connect (OSTI)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17T23:59:59.000Z

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  15. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01T23:59:59.000Z

    PHYSICS AND INERTIAL FUSION ENERGY J. J. Barnard 1 , J.dense matter and inertial fusion energy related beam-targetas drivers for inertial fusion energy (IFE), for their high

  16. Cold + Hot Dark Matter After Super-Kamiokande

    E-Print Network [OSTI]

    Joel R. Primack; Michael A. K. Gross

    1998-12-15T23:59:59.000Z

    The recent atmospheric neutrino data from Super-Kamiokande provide strong evidence of neutrino oscillations and therefore of non-zero neutrino mass. These data imply a lower limit on the hot dark matter (i.e., light neutrino) contribution to the cosmological density $\\Omega_\

  17. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23T23:59:59.000Z

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  18. Color Glass Condensates in dense quark matter and quantum Hall states of gluons

    E-Print Network [OSTI]

    Aiichi Iwazaki

    2006-04-26T23:59:59.000Z

    We apply the effective theory of color glass condensate to the analysis of gluon states in dense quark matter, in which the saturation region of gluons is also present. We find that in the region two point function of gluons shows algebraic long range order. The order is completely the same as the one gluons show in the dense quark matter, which form quantum Hall states. The order leads to the vanishing of massless gluon pole. We also find that the saturation region of gluons extends from small $x$ to even large $x\\lesssim 1$ in much dense quark matter. We point out a universality that the color glass condensate is a property of hadrons at high energy and of quark matter at high baryon density.

  19. Many-body forces, isospin asymmetry and dense hyperonic matter

    E-Print Network [OSTI]

    Gomes, R O; Schramm, S; Vascconcellos, C A Z

    2015-01-01T23:59:59.000Z

    The equation of state (EoS) of asymmetric nuclear matter at high densities is a key topic for the description of matter inside neutron stars. The determination of the properties of asymmetric nuclear matter, such as the symmetry energy ($a_{sym}$) and the slope of the symmetry energy ($L_0$) at saturation density, has been exaustively studied in order to better constrain the nuclear matter EoS. However, differently from symmetric matter properties that are reasonably constrained, the symmetry energy and its slope still large uncertainties in their experimental values. Regarding this subject, some studies point towards small values of the slope of the symmetry energy, while others suggest rather higher values. Such a lack of agreement raised a certain debate in the scientific community. In this paper, we aim to analyse the role of these properties on the behavior of asymmetric hyperonic matter. Using the formalism presented in Ref. (R.O. Gomes et al 2014}, which considers many-body forces contributions in the ...

  20. Baryonic fraction in the cold plus hot dark matter universe

    E-Print Network [OSTI]

    Eunwoo Choi; Dongsu Ryu

    1997-10-08T23:59:59.000Z

    We report a study to constrain the fraction of baryonic matter in the cold plus hot dark matter (CHDM) universe by numerical simulations which include the hydrodynamics of baryonic matter as well as the particle dynamics of dark matter. Spatially flat, COBE-normalized CHDM models with the fraction of hot component $\\Omega_h\\leq0.2$ are considered. We show that the models with $h/n/\\Omega_h=0.5/0.9/0.1$ and $0.5/0.9/0.2$ give a linear power spectrum which agrees well with observations. Here, $h$ is the Hubble constant in unit of $100~km/s/Mpc$ and $n$ is the spectral index of the initial power spectrum. Then, for the models with $h/n/\\Omega_h=0.5/0.9/0.2$ and baryonic fraction $\\Omega_b=0.05$ and 0.1 we calculate the properties of X-ray clusters, such as luminosity function, temperature distribution function, luminosity-temperature relation, histogram of gas to total mass ratio, and change of average temperature with redshift $z$. Comparison with the observed data of X-ray clusters indicates that the model with $\\Omega_b=0.05$ is preferred. The COBE-normalized CHDM model with $\\Omega_b>0.1$ may be ruled out by the present work, since it produces too many X-ray bright clusters.

  1. DENSE MATTER IN LASER DRIVEN FUSION ! LABORATORY EXPERIMENTS R.L. Mc Crory and J. Wilson

    E-Print Network [OSTI]

    Boyer, Edmond

    irradiation to heat and compress a target containing thermonuclear fuel to fusion conditions. This is stillDENSE MATTER IN LASER DRIVEN FUSION ! LABORATORY EXPERIMENTS R.L. Mc Crory and J. Wilson Laboratory. The high power lasers in quaestion were constructed with laser fusion studies as the goal, i

  2. A pulsed power hydrodynamics approach to exploring properties of warm dense matter

    SciTech Connect (OSTI)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this interesting new application of the energy-rich technology of pulse power and high magnetic fields.

  3. Future cosmological sensitivity for hot dark matter axions

    E-Print Network [OSTI]

    Archidiacono, Maria; Hamann, Jan; Hannestad, Steen; Raffelt, Georg; Wong, Yvonne Y Y

    2015-01-01T23:59:59.000Z

    We study the potential of a future, large-volume photometric survey to constrain the axion mass $m_a$ in the hot dark matter limit. Future surveys such as Euclid will have significantly more constraining power than current observations for hot dark matter. Nonetheless, the lowest accessible axion masses are limited by the fact that axions lighter than $\\sim 0.15$ eV decouple before the QCD epoch, assumed here to occur at a temperature $T_{\\rm QCD} \\sim 170$ MeV; this leaves an axion population of such low density that its late-time cosmological impact is negligible. For larger axion masses, $m_a \\gtrsim 0.15$ eV, where axions remain in equilibrium until after the QCD phase transition, we find that a Euclid-like survey combined with Planck CMB data can detect $m_a$ at very high significance. Our conclusions are robust against assumptions about prior knowledge of the neutrino mass. Given that the proposed IAXO solar axion search is sensitive to $m_a\\lesssim 0.2$ eV, the axion mass range probed by cosmology is n...

  4. Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics

    E-Print Network [OSTI]

    S. R. Beane; E. Chang; S. D. Cohen; W. Detmold; H. -W. Lin; T. C. Luu; K. Orginos; A. Parreno; M. J. Savage; A. Walker-Loud

    2012-04-16T23:59:59.000Z

    The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.

  5. Parametrization of light nuclei quasiparticle energy shifts and composition of warm and dense nuclear matter

    E-Print Network [OSTI]

    G. RŲpke

    2011-05-26T23:59:59.000Z

    Correlations and the formation of bound states (nuclei) are essential for the properties of nuclear matter in equilibrium as well as in nonequilibrium. In a quantum statistical approach, quasiparticle energies are obtained for the light elements that reflect the influence of the medium. We present analytical fits for the quasiparticle energy shifts of light nuclei that can be used in various applications. This is a prerequisite for the investigation of warm and dense matter that reproduces the nuclear statistical equilibrium and virial expansions in the low-density limit as well as relativistic mean field and Brueckner Hartree-Fock approaches near saturation density.

  6. A new relativistic model of hybrid star with interactive quark matter and dense baryonic matter

    E-Print Network [OSTI]

    Koushik Chakraborty; Farook Rahaman; Arkopriya Mallick

    2014-10-08T23:59:59.000Z

    We propose a relativistic model of hybrid star admitting conformal symmetry considering quark matter and baryonic matter as two different fluids. We define interaction equations between the normal baryonic matter and the quark matter and study the physical situations for repulsive, attractive and zero interaction between the constituent matters. From the interaction equations we find out the value of the equation of state (EOS) parameter for normal baryonic matter which is found to be consistent with the value obtained from the Walecka model for nucleonic matter at high density. The measured value of the Bag constant is used to explore the space time geometry inside the star. The theoretical mass-radius values are compared with the available observational data of the compact objects. From the nature of the match with the observational data, we predict the nature of interaction that must be present inside the hybrid stars

  7. Plasma cutoff and enhancement of radiative transitions in dense stellar matter P. S. Shternin* and D. G. Yakovlev

    E-Print Network [OSTI]

    Plasma cutoff and enhancement of radiative transitions in dense stellar matter P. S. Shternin-Petersburg 194021, Russia (Received 7 March 2009; published 5 June 2009) We study plasma effects on radiative transitions (e.g., decay of excited states of atoms or atomic nuclei) in a dense plasma at the transition

  8. On the contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas

    E-Print Network [OSTI]

    N. Sadooghi; F. Taghinavaz

    2015-04-16T23:59:59.000Z

    Using the standard Green-Kubo formalism, we determine the shear viscosity $\\eta$ of a hot and dense Yukawa-Fermi gas. In particular, we study the effect of particle and plasmino excitations on thermal properties of the fermionic part of the shear viscosity, and explore the effects of thermal corrections to particle masses on bosonic and fermionic shear viscosities, $\\eta_b$ and $\\eta_f$. It turns out that the effects of plasminos on $\\eta_f$ become negligible with increasing (decreasing) temperature (chemical potential).

  9. Mesons and diquarks in the CFL phase of dense quark matter

    E-Print Network [OSTI]

    Ebert, D

    2008-01-01T23:59:59.000Z

    The spectrum of meson and diquark excitations of the color--flavor locked (CFL) phase of dense quark matter is considered in the framework of the Nambu -- Jona-Lasinio model. We have found that in this phase all Nambu--Goldstone bosons are realized as scalar and pseudoscalar diquarks. Other diquark excitations are resonances with mass value around 230 MeV. Mesons are stable particles in the CFL phase. Their masses vs chemical potential lie in the interval 300$\\div$500 MeV.

  10. Mesons and diquarks in the CFL phase of dense quark matter

    E-Print Network [OSTI]

    D. Ebert; K. G. Klimenko

    2008-09-30T23:59:59.000Z

    The spectrum of meson and diquark excitations of the color--flavor locked (CFL) phase of dense quark matter is considered in the framework of the Nambu -- Jona-Lasinio model. We have found that in this phase all Nambu--Goldstone bosons are realized as scalar and pseudoscalar diquarks. Other diquark excitations are resonances with mass value around 230 MeV. Mesons are stable particles in the CFL phase. Their masses vs chemical potential lie in the interval 300$\\div$500 MeV.

  11. Probing dense matter in compact star cores with radio pulsar data

    E-Print Network [OSTI]

    Mark G. Alford; Kai Schwenzer

    2014-08-13T23:59:59.000Z

    Astrophysical observations of compact stars provide, in addition to collider experiments, the other big source of information on matter under extreme conditions. The largest and most precise data set about neutron stars is the timing data of radio pulsars. We show how this unique data can be used to learn about the ultra-dense matter in the compact star interior. The method relies on astro-seismology based on special global oscillation modes (r-modes) that emit gravitational waves. They would prevent pulsars from spinning with their observed high frequencies, unless the damping of these modes, determined by the microscopic properties of matter, can prevent this. We show that for each form of matter there is a distinct region in a frequency/spindown-rate diagram where r-modes can be present. We find that stars containing ungapped quark matter are consistent with both the observed radio and x-ray data, whereas, even when taking into account the considerable uncertainties, neutron star models with standard viscous damping are inconsistent with both data sets and additional damping mechanisms would be required.

  12. Accomodating Solar and Atmospheric Neutrino Deficits, Hot Dark Matter, and a Double Beta Decay Signal

    E-Print Network [OSTI]

    David O. Caldwell; Rabindra N. Mohapatra

    1994-02-09T23:59:59.000Z

    Neutrino mass explanations of the solar and atmospheric neutrino deficits and a hot dark matter component require one of three patterns of those masses, as already pointed out by us. Recently there have been indications of a non-vanishing amplitude for neutrinoless double beta decay. If this additional hint of neutrino mass is true, it would make even less likely the one unfavored pattern (a sterile neutrino giving warm, rather than hot dark matter), would alter another by making the $\

  13. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    E-Print Network [OSTI]

    Davis, Paul

    2012-01-01T23:59:59.000Z

    attention to hydrogens high-pressure properties has sinceal. , Thermophysical properties of warm dense hydrogen using

  14. Transport properties and neutrino emissivity of dense neutron-star matter with localized protons

    E-Print Network [OSTI]

    D. A. Baiko; P. Haensel

    1999-06-18T23:59:59.000Z

    As pointed out by Kutschera and W{\\'o}jcik, very low concentration of protons combined with a specific density dependence of effective neutron-proton interaction could lead to a localization of ``proton impurities'' in neutron medium at densities exceeding four times normal nuclear matter density. We study consequences of the localization of protons for transport processes in dense neutron star cores, assuming random distribution of proton impurities. Kinetic equations, relevant for the transport of charge, heat and momentum, are solved using variational method. Localization of protons removes a T^{-2} factor from the transport coefficients, which leads, at lower temperatures, to a strong decrease of thermal conductivity, electrical conductivity and shear viscosity of neutron star matter, as compared to the standard case, where protons form a Fermi liquid. Due to the localization of protons a number of conventional neutrino emission processes (including modified URCA process) become inoperative in neutron star cores. On the other hand, the energy loss rate from neutrino-antineutrino pair bremsstrahlung due to electron and neutron scattering off (localized) protons, will have a specific T^6 dependence, which could modify the cooling of the neutron star core, as compared to the standard case. Possible astrophysical implications of the localization of protons for neutron star evolution and dynamics are discussed.

  15. Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments

    SciTech Connect (OSTI)

    Seidl, Peter; Anders, A.; Bieniosek, F.M.; Barnard, J.J.; Cohen, R.H.; Coleman, J.E.; Dorf, M.; Gilson, E.P.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Ni, P.; Roy, P.A.; Waldron, W.L.; Welch, D.R.

    2009-04-17T23:59:59.000Z

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30 mA K{sup +} ion beam with initial kinetic energy 0.3 MeV, axial compression leading to {approx}50X current amplification and simultaneous radial focusing to a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to NDCX to reach the necessary higher beam intensities, including: beam diagnostics, greater axial compression via a longer velocity ramp; and plasma injection improvements to establish a plasma density always greater than the beam density, expected to be > 10{sup 13} cm{sup -3}.

  16. Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime

    SciTech Connect (OSTI)

    Kress, J. D.; Cohen, James S.; Horner, D. A.; Collins, L. A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lambert, F. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2010-09-15T23:59:59.000Z

    We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm{sup 3} and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm{sup 3} where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter {Gamma}, with a minimum in the reduced viscosity at {Gamma}{approx_equal}25, approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model.

  17. Hot and Cold Dark Matter Search with GENIUS

    E-Print Network [OSTI]

    Laura Baudis; Alexander Dietz; Gerd Heusser; Hans Volker Klapdor-Kleingrothaus; Bela Majorovits; Herbert Strecker

    2000-05-30T23:59:59.000Z

    GENIUS is a proposal for a large volume detector to search for rare events. An array of 40-400 'naked' HPGe detectors will be operated in a tank filled with ultra-pure liquid nitrogen. After a description of performed technical studies of detector operation in liquid nitrogen and of Monte Carlo simulations of expected background components, the potential of GENIUS for detecting WIMP dark matter, the neutrinoless double beta decay in 76-Ge and low-energy solar neutrinos is discussed.

  18. Mass spectrum of diquarks and mesons in the color--flavor locked phase of dense quark matter

    E-Print Network [OSTI]

    Ebert, D; Yudichev, V L

    2007-01-01T23:59:59.000Z

    The spectrum of meson and diquark excitations of dense quark matter is considered in the framework of the Nambu -- Jona-Lasinio model with three types of massless quarks in the presense of a quark number chemical potential $\\mu$. We investigate the effective action of meson- and diquark fields both at sufficiently large values of $\\mu>\\mu_c\\approx 330$ MeV, where the color--flavor locked (CFL) phase is realized, and in the chirally broken phase of quark matter ($\\mu\\mu_c$.

  19. X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures

    SciTech Connect (OSTI)

    Kraus, D., E-mail: dominik.kraus@berkeley.edu; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); DŲppner, T.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Hawreliak, J. A.; Landen, O. L.; Ma, T.; Le Pape, S.; Swift, D. C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chapman, D. A. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR, United Kingdom and Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Neumayer, P. [GSI Helmholtzzentrum fŁr Schwerionenforschung, 64291 Darmstadt (Germany)

    2014-11-15T23:59:59.000Z

    We have measured the time-resolved x-ray continuum emission spectrum of ?30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 Ī 21 eV, which is in good agreement with HYDRA-1D simulations.

  20. Kaon Production from Hot and Dense Matter Formed in Heavy-Ion Collisions†

    E-Print Network [OSTI]

    Brown, G. E.; Ko, Che Ming; Wu, Z. G.; Xia, L. H.

    1991-01-01T23:59:59.000Z

    Because of its special nature as a Goldstone boson, the pion is protected by chiral invariance from large changes in mass. At finite nuclear density p&, the change in mis" 2 ~( p ) gnNNPN mg 2 C. Kaon The situation with the kaon mass... is of particular in- terest to us. Although the kaon has a large dynamically generated mass, it behaves in many respects as a Gold- stone boson. However, the fact that the strange-quark mass is much larger than the up- and down-quark masses makes it possible...

  1. Kaon Production from Hot and Dense Matter Formed in Heavy-Ion Collisions

    E-Print Network [OSTI]

    Brown, G. E.; Ko, Che Ming; Wu, Z. G.; Xia, L. H.

    1991-01-01T23:59:59.000Z

    Because of its special nature as a Goldstone boson, the pion is protected by chiral invariance from large changes in mass. At finite nuclear density p&, the change in mis" 2 ~( p ) gnNNPN mg 2 C. Kaon The situation with the kaon mass... is of particular in- terest to us. Although the kaon has a large dynamically generated mass, it behaves in many respects as a Gold- stone boson. However, the fact that the strange-quark mass is much larger than the up- and down-quark masses makes it possible...

  2. Using a Relativistic Electron Beam to Generate Warm Dense Matter for Equation of State Studies

    SciTech Connect (OSTI)

    Berninger, M.

    2011-06-24T23:59:59.000Z

    Experimental equation-of-state (EOS) data are difficult to obtain for warm dense matter (WDM)Ėionized materials at near-solid densities and temperatures ranging from a few to tens of electron voltsĖdue to the difficulty in preparing suitable plasmas without significant density gradients and transient phenomena. We propose that the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility can be used to create a temporally stationary and spatially uniform WDM. DARHT has an 18 MeV electron beam with 2 kA of current and a programmable pulse length of 20 ns to 200 ns. This poster describes how Monte Carlo n-Particle (MCNP) radiation transport and LASNEX hydrodynamics codes were used to demonstrate that the DARHT beam is favorable for avoiding the problems that have hindered past attempts to constrain WDM properties. In our concept, a 60 ns pulse of electrons is focused onto a small, cylindrical (1 mm diameter ◊ 1 mm long) foam target, which is inside a stiff high-heat capacity tube that both confines the WDM and allows pressure measurements. In our model, the foam is made of 30% density Au and the tamper is a B4C tube. An MCNP model of the DARHT beam investigated electron collisions and the amount of energy deposited in the foam target. The MCNP data became the basis for a LASNEX source model, where the total energy was distributed over a 60 ns time-dependent linear ramp consistent with the DARHT pulse. We used LASNEX to calculate the evolution of the foam EOS properties during and after deposition. Besides indicating that a ~3 eV Au plasma can be achieved, LASNEX models also showed that the WDM generates a shock wave into the tamper whose speed can be measured using photonic Doppler velocimetry. EOS pressures can be identified to better than 10% precision. These pressures can be correlated to energy deposition with electron spectrometry in order to obtain the Au EOS. Radial uniformity in the DARHT beam was also investigated. To further obtain uniform radial energy deposition, MCNP calculations were carried out with radial beam filters. Results are presented.

  3. Liquid-gas phase transition in hot asymmetric nuclear matter with density-dependent relativistic mean-field models

    E-Print Network [OSTI]

    Guang-Hua Zhang; Wei-Zhou Jiang

    2013-02-14T23:59:59.000Z

    The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.

  4. asymmetric hyperonic matter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Bottom-strange mesons in hyperonic matter Nuclear Theory (arXiv) Summary: The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense...

  5. Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter

    E-Print Network [OSTI]

    Davis, Paul

    2012-01-01T23:59:59.000Z

    of ultrashort, ultra-intense laser light by solids andpulses, ultra-high intensity lasers have revolutionizedpresent in ultra-high-intensity laser-matter interaction

  6. Nuclear symmetry energy effects on liquid-gas phase transition in hot asymmetric nuclear matter

    E-Print Network [OSTI]

    Bharat K. Sharma; Subrata Pal

    2010-01-14T23:59:59.000Z

    The liquid-gas phase transition in hot asymmetric nuclear matter is investigated within relativistic mean-field model using the density dependence of nuclear symmetry energy constrained from the measured neutron skin thickness of finite nuclei. We find symmetry energy has a significant influence on several features of liquid-gas phase transition. The boundary and area of the liquid-gas coexistence region, the maximal isospin asymmetry and the critical values of pressure and isospin asymmetry all of which systematically increase with increasing softness in the density dependence of symmetry energy. The critical temperature below which the liquid-gas mixed phase exists is found higher for a softer symmetry energy.

  7. Shear viscosity of hot nuclear matter by the mean free path method

    E-Print Network [OSTI]

    D. Q. Fang; Y. G. Ma; C. L. Zhou

    2014-04-17T23:59:59.000Z

    The shear viscosity of hot nuclear matter is investigated by using the mean free path method within the framework of IQMD model. Finite size nuclear sources at different density and temperature are initialized based on the Fermi-Dirac distribution. The results show that shear viscosity to entropy density ratio decreases with the increase of temperature and tends toward a constant value for $\\rho\\sim\\rho_0$, which is consistent with the previous studies on nuclear matter formed during heavy-ion collisions. At $\\rho\\sim\\frac{1}{2}\\rho_0$, a minimum of $\\eta/s$ is seen at around $T=10$ MeV and a maximum of the multiplicity of intermediate mass fragment ($M_{\\text{IMF}}$) is also observed at the same temperature which is an indication of the liquid-gas phase transition.

  8. Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-(alpha) X-ray Sources for the Characterization of Dense Heated Matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C

    2008-05-05T23:59:59.000Z

    We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

  9. Shell effects in hot nuclei and their influence on nuclear composition in supernova matter

    SciTech Connect (OSTI)

    Nishimura, Suguru [Department of Pure and Applied Physics, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555 (Japan); Takano, Masatoshi [Department of Pure and Applied Physics, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan and Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555 (Japan)

    2014-05-02T23:59:59.000Z

    We calculate nuclear composition in supernova (SN) matter explicitly taking into account the temperature dependence of nuclear shell effects. The abundance of nuclei in SN matter is important in the dynamics of core-collapse supernovae and, in recently constructed equations of state (EOS) for SN matter, the composition of nuclei are calculated assuming nuclear statistical equilibrium wherein the nuclear internal free energies govern the composition. However, in these EOS, thermal effects on the shell energy are not explicitly taken into account. To address this shortfall, we calculate herein the shell energies of hot nuclei and examine their influence on the composition of SN matter. Following a simplified macroscopic-microscopic approach, we first calculate single-particle (SP) energies by using a spherical Woods-Saxon potential. Then we extract shell energies at finite temperatures using Strutinsky method with the Fermi distribution as the average occupation probability of the SP levels. The results show that at relatively low temperatures, shell effects are still important and magic nuclei are abundant. However, at temperatures above approximately 2 MeV, shell effects are almost negligible, and the mass fractions with shell energies including the thermal effect are close to those obtained from a simple liquid drop model at finite temperatures.

  10. Accretion of cold and hot dark matter onto cosmic string filaments

    SciTech Connect (OSTI)

    Zanchin, V. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States); [Departamento de Fisica, Universidade Federal de Santa Maria, 97119-900, Santa Maria, RS (Brazil); Lima, J.A. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States); [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072 970, Natal, RN (Brazil); Brandenberger, R. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)

    1996-12-01T23:59:59.000Z

    The Zeldovich approximation is applied to study the accretion of hot and cold dark matter onto moving long strings. It is assumed that such defects carry a substantial amount of small-scale structure, thereby acting gravitationally as a Newtonian line source whose effects dominate the velocity perturbations. Analytical expressions for the turnaround surfaces are derived and the mass inside of these surfaces is calculated. Estimates are given for the redshift dependence of {Omega}{sub nl}, the fraction of mass in nonlinear objects. Depending on parameters, it is possible to obtain {Omega}{sub nl}=1 at the present time. Even with hot dark matter, the first nonlinear filamentary structures form at a redshift close to 100, and there is sufficient nonlinear mass to explain the observed abundance of high redshift quasars and damped Lyman {alpha} systems. These results imply that moving strings with small-scale structure are the most efficient seeds to produce massive nonlinear objects in the cosmic string model. {copyright} {ital 1996 The American Physical Society.}

  11. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    SciTech Connect (OSTI)

    Barnard, J J; Armijo, J; Bieniosek, F M; Friedman, A; Hay, M J; Henestroza, E; Logan, B G; More, R M; Ni, P A; Perkins, L J; Ng, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2010-03-19T23:59:59.000Z

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a {approx}3 MeV, {approx}30 A Li{sup +} ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The purpose of NDCX II is to carry out experimental studies of material in the warm dense matter regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. In preparation for this new machine, we have carried out hydrodynamic simulations of ion-beam-heated, metallic solid targets, connecting quantities related to observables, such as brightness temperature and expansion velocity at the critical frequency, with the simulated fluid density, temperature, and velocity. We examine how these quantities depend on two commonly used equations of state.

  12. Neutrino Interactions in Dense Matter 7th RESCEU International Symposium, Tokyo

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    ∑ Scattering from nucleons N + N + Effects of N-N interactions ∑ Scattering modified. Initial and final annihilation + Į + N + N N + N ∑ Similar processes in neutron star cooling (also charged currents) Complication. Inhomogeneity of matter (coherent scattering) #12;Interactions have two effects ∑ Mean

  13. Determination of the finite temperature equation of state of dense matter

    SciTech Connect (OSTI)

    Illarionov, A. Yu., E-mail: illario@science.unitn.it [Dipartimento di Fisica dell'Universita di Trento (Italy); Fantoni, S., E-mail: fantoni@sissa.it [SISSA Trieste, International School for Advanced Studies (Italy); Pederiva, F., E-mail: pederiva@science.unitn.it [Dipartimento di Fisica dell'Universita di Trento (Italy); Gandolfi, S., E-mail: stefano@lanl.gov [Los Alamos National Laboratory, Theoretical Division (United States); Schmidt, K. E., E-mail: kevin.schmidt@asu.edu [Arizona State University, Department of Physics (United States)

    2012-07-15T23:59:59.000Z

    The equation of state is calculated for temperatures less than 30 MeV and densities less than four times the saturation density of nuclear matter using a combined analysis of Auxiliarly Fields Diffusion Monte Carlo and Fermi Hypernetted Change methods.

  14. LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter

    SciTech Connect (OSTI)

    Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26T23:59:59.000Z

    Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.

  15. Planet-bound dark matter and the internal heat of Uranus, Neptune, and hot-Jupiter exoplanets

    E-Print Network [OSTI]

    Stephen L. Adler

    2008-12-09T23:59:59.000Z

    We suggest that accretion of planet-bound dark matter by the Jovian planets, and by hot-Jupiter exoplanets, could be a significant source of their internal heat. The anomalously low internal heat of Uranus would then be explained if the collision believed to have tilted the axis of Uranus also knocked it free of most of its associated dark matter cloud. Our considerations focus on the efficient capture of non-self-annihilating dark matter, but could also apply to self-annihilating dark matter, provided the capture efficiency is small enough that the earth heat balance constraint is obeyed.

  16. Hot

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in graphene by Meng-Chieh Ling A

  17. Mass spectrum of diquarks and mesons in the color--flavor locked phase of dense quark matter

    E-Print Network [OSTI]

    D. Ebert; K. G. Klimenko; V. L. Yudichev

    2007-09-25T23:59:59.000Z

    The spectrum of meson and diquark excitations of dense quark matter is considered in the framework of the Nambu -- Jona-Lasinio model with three types of massless quarks in the presense of a quark number chemical potential $\\mu$. We investigate the effective action of meson- and diquark fields both at sufficiently large values of $\\mu>\\mu_c\\approx 330$ MeV, where the color--flavor locked (CFL) phase is realized, and in the chirally broken phase of quark matter ($\\muphase the pseudoscalar diquarks are not allowed to exist as stable particles, but the scalar diquarks might be stable only at a rather strong interaction in the diquark channel. In the case of the CFL phase, all NG bosons of the model are realized as scalar and pseudoscalar diquarks. Moreover, it turns out that massive diquark excitations are unstable for this phase. In particular, for the scalar and pseudoscalar octets of diquark resonances a mass value around 230 MeV was found numerically. In contrast, mesons are stable particles in the CFL phase. Their masses lie in the interval 400$\\div$500 MeV for not too large values of $\\mu>\\mu_c$.

  18. Heavy dense QCD and nuclear matter from an effective lattice theory

    E-Print Network [OSTI]

    Jens Langelage; Mathias Neuman; Owe Philipsen

    2014-03-17T23:59:59.000Z

    A three-dimensional effective lattice theory of Polyakov loops is derived from QCD by expansions in the fundamental character of the gauge action, u, and the hopping parameter, \\kappa, whose action is correct to \\kappa^n u^m with n+m=4. At finite baryon density, the effective theory has a sign problem which meets all criteria to be simulated by complex Langevin as well as by Monte Carlo on small volumes. The theory is valid for the thermodynamics of heavy quarks, where its predictions agree with simulations of full QCD at zero and imaginary chemical potential. In its region of convergence, it is moreover amenable to perturbative calculations in the small effective couplings. In this work we study the challenging cold and dense regime. We find unambiguous evidence for the nuclear liquid gas transition once the baryon chemical potential approaches the baryon mass, and calculate the nuclear equation of state. In particular, we find a negative binding energy per nucleon causing the condensation, whose absolute value decreases exponentially as mesons get heavier. For decreasing meson mass, we observe a first order liquid gas transition with an endpoint at some finite temperature, as well as gap between the onset of isospin and baryon condensation.

  19. CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap

    E-Print Network [OSTI]

    M. Arik; S. Aune; K. Barth; A. Belov; S. Borghi; H. Brauninger; G. Cantatore; J. M. Carmona; S. A. Cetin; J. I. Collar; E. Da Riva; T. Dafni; M. Davenport; C. Eleftheriadis; N. Elias; G. Fanourakis; E. Ferrer-Ribas; P. Friedrich; J. Galan; J. A. Garcia; A. Gardikiotis; J. G. Garza; E. N. Gazis; T. Geralis; E. Georgiopoulou; I. Giomataris; S. Gninenko; H. Gomez; M. Gomez Marzoa; E. Gruber; T. Guthorl; R. Hartmann; S. Hauf; F. Haug; M. D. Hasinoff; D. H. H. Hoffmann; F. J. Iguaz; I. G. Irastorza; J. Jacoby; K. Jakovcic; M. Karuza; K. Konigsmann; R. Kotthaus; M. Krcmar; M. Kuster; B. Lakic; P. M. Lang; J. M. Laurent; A. Liolios; A. Ljubicic; V. Lozza; G. Luzon; S. Neff; T. Niinikoski; A. Nordt; T. Papaevangelou; M. J. Pivovaroff; G. Raffelt; H. Riege; A. Rodriguez; M. Rosu; J. Ruz; I. Savvidis; I. Shilon; P. S. Silva; S. K. Solanki; L. Stewart; A. Tomas; M. Tsagri; K. van Bibber; T. Vafeiadis; J. Villar; J. K. Vogel; S. C. Yildiz; K. Zioutas

    2014-09-15T23:59:59.000Z

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  20. Nuclear Double Beta Decay, Fundamental Particle Physics, Hot Dark Matter, And Dark Energy

    E-Print Network [OSTI]

    Hans V. Klapdor-Kleingrothaus; Irina V. Krivosheina

    2010-07-15T23:59:59.000Z

    Nuclear double beta decay, an extremely rare radioactive decay process, is - in one of its variants - one of the most exciting means of research into particle physics beyond the standard model. The large progress in sensitivity of experiments searching for neutrinoless double beta decay in the last two decades - based largely on the use of large amounts of enriched source material in "active source experiments" - has lead to the observation of the occurrence of this process in nature (on a 6.4 sigma level), with the largest half-life ever observed for a nuclear decay process (2.2 x 10^{25} y). This has fundamental consequences for particle physics - violation of lepton number, Majorana nature of the neutrino. These results are independent of any information on nuclear matrix elements (NME)*. It further leads to sharp restrictions for SUSY theories, sneutrino mass, right-handed W-boson mass, superheavy neutrino masses, compositeness, leptoquarks, violation of Lorentz invariance and equivalence principle in the neutrino sector. The masses of light-neutrinos are found to be degenerate, and to be at least 0.22 +- 0.02 eV. This fixes the contribution of neutrinos as hot dark matter to >=4.7% of the total observed dark matter. The neutrino mass determined might solve also the dark energy puzzle. *(It is briefly discussed how important NME for 0nubb decay really are.)

  1. Two-temperature pair potentials and phonon spectra for simple metals in the warm dense matter regime

    E-Print Network [OSTI]

    Harbour, Louis; Klug, Dennis D; Lewis, Laurent J

    2015-01-01T23:59:59.000Z

    We develop ion-ion pair potentials for Al, Na and K for densities and temperatures relevant to the warm-dense-matter (WDM) regime. Furthermore, we emphasize non-equilibrium states where the ion temperature $T_i$ differs from the electron temperature $T_e$. This work focuses mainly on ultra-fast laser-metal interactions where the energy of the laser is almost exclusively transferred to the electron sub-system over femtosecond time scales. This results in a two-temperature system with $T_e>T_i$ and with the ions still at the initial room temperature $T_i=T_r$. First-principles calculations, such as density functional theory (DFT) or quantum Monte Carlo, are as yet not fully feasible for WDM conditions due to lack of finite-$T$ features, e.g. pseudopotentials, and extensive CPU time requirements. Simpler methods are needed to study these highly complex systems. We propose to use two-temperature pair potentials $U_{ii}(r, T_i,T_e)$ constructed from linear-response theory using the non-linear electron density $n(\\...

  2. The in-medium effects on the neutrino reaction in dense matter

    SciTech Connect (OSTI)

    Cheoun, Myung-Ki [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Kim, K. S. [School of Liberal Arts and Science, Korea Aerospace University, Koyang 412-791 (Korea, Republic of); Saito, Koichi [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510 (Japan); Kajino, Toshitaka [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsushima, Kazuo [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide SA 5005, Australia and International Institute of Physics (IIP), Federal University of Rio Grande do Norte (UFRN), Natal/RN 59078-400 (Brazil); Maruyama, Tomoyuki [College of Bioresource Sciences, Nihon University, Fujisawa 252-8510 (Japan)

    2014-01-01T23:59:59.000Z

    The nucleon form factors in free space are usually thought to be modified when a nucleon is bound in a nucleus or immersed in a nuclear medium. We investigated effects of the density-dependent axial and weak-vector form factors on the electro-neutrino (?{sub e}) and anti-electro-neutrino (Į?{sub e}) reactions with incident energy E{sub v} ? 80 MeV via neutral current (NC) and charged current (CC) for a nucleon in a nuclear medium or Ļ≤C. For the density-dependent form factors, we exploited the quark-meson-coupling (QMC) model, and apply them to the ?{sub e} and Į?{sub e} induced reactions by NC and CC. In CC reaction, about 5 % decrease of the electro neutrino (?{sub e}) reaction cross section on the nucleon is shown to be occurred in normal density, ?=?{sub 0}~0.15fm?≥, and also about 5 % reduction of total ?{sub e} cross section on Ļ≤C is obtained by the modification of the weak form factors for bound nucleons. Density effects for both cases are relatively small, but they are as large as the effect by the Coulomb distortion of outgoing leptons in the ?-reaction. However, density effects in the anti-electro neutrino (Į?{sub e}) reaction reduced significantly about 30 % the cross sections for both the nucleon and Ļ≤C cases. For NC, about 12 % decrease of the total cross section by the ?{sub e} reaction on the nucleon is obtained at normal density, ?=??~0.15fm?≥, as well as about 18 % reduction of the total ?{sub e} cross section on Ļ≤C, by the modification of the weak form factors of the bound nucleon. However, similarly to the CC reaction, effects of the nucleon property change in the Į?{sub e} reaction reduce significantly the cross sections about 30 % for the nucleon in matter and Ļ≤C cases. In this talk, we address that such a large asymmetry in the Į?{sub e} cross sections in both reactions is originated from the different helicities of Į?{sub e} and ?{sub e}.

  3. Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing

    SciTech Connect (OSTI)

    Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A

    2011-11-04T23:59:59.000Z

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related computational changes on general modeling codes in fusion energy.

  4. Toward a physics design for NDCX-II, an ion accelerator for warm dense matter and HIF target physics studies

    SciTech Connect (OSTI)

    Friedman, A.; Barnard, J.J.; Briggs, R.J.; Davidson, R.C.; Dorf, M.; Grote, D.P.; Henestroza, E.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Sefkow, A.B.; Sharp, W.M.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2008-08-01T23:59:59.000Z

    The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.

  5. Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter

    SciTech Connect (OSTI)

    Caron-Huot, Simon; Gale, Charles [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada)

    2010-12-15T23:59:59.000Z

    We consider finite-size effects on the radiative energy loss of a fast parton moving in a finite-temperature, strongly interacting medium, using the light-cone path integral formalism put forward by B. G. Zakharov [JETP Lett. 63, 952 (1996); 65, 615 (1997)]. We present a convenient reformulation of the problem that makes possible its exact numerical analysis. This is done by introducing the concept of a radiation rate in the presence of finite-size effects. This effectively extends the finite-temperature approach of Arnold, Moore, and Yaffe [J. High Energy Phys. 11 (2001) 057; 12 (2001) 009; 06 (2001) 030] (AMY) to include interference between vacuum and medium radiation. We compare results with those obtained in the regime considered by AMY, with those obtained at leading order in an opacity expansion, and with those obtained deep in the Landau-Pomeranchuk-Migdal regime.

  6. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01T23:59:59.000Z

    MATTER AND INERTIAL FUSION ENERGY APPLICATIONS ON NDCX-II Byof Science, Office of Fusion Energy Sciences, of the U.S.matter and inertial fusion energy applications on NDCX-II J.

  7. Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams

    SciTech Connect (OSTI)

    Ni, P.A.; Kulish, M.I.; Mintsev, V.; Nikolaev, D.N.; Ternovoi, V.Ya.; Hoffmann, D.H.H.; Udrea, S.; Tahir, N.A.; Varentsov, D.; Hug, A.

    2008-12-01T23:59:59.000Z

    This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which act as filters and mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.

  8. Herschel observations of Extra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    E-Print Network [OSTI]

    Crockett, N R; Neill, J L; Black, J H; Blake, G A; Kleshcheva, M

    2014-01-01T23:59:59.000Z

    We present Herschel/HIFI observations of the light hydride H$_{2}$S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the HEXOS GT key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H$_{2}$$^{32}$S, H$_{2}$$^{34}$S, and H$_{2}$$^{33}$S, respectively. We only analyze emission from the so called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H$_{2}$S follow straight lines given the uncertainties and yield T$_{\\rm rot}$=141$\\pm$12 K. This indicates H$_{2}$S is in LTE and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E$_{\\rm up}$>1000 K) are likely populated primarily by radiation pumping. We derive an H$_{2}$$^{32}$S column density, N$_{\\rm ...

  9. Nuclear Fusion in Dense Matter

    SciTech Connect (OSTI)

    Sawyer, R. F. [Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106 (United States)

    2010-05-14T23:59:59.000Z

    The standard theory of nuclear fusion rates in strongly interacting plasmas can be (correctly) derived only when the energy release Q is large compared to other energies in the problem. We exhibit a result for rates that provides a basis for calculating the finite Q corrections. Crude estimates indicate a significant defect in the conventional results for some regions of high density and strong plasma coupling. We also lay some groundwork for a path integral calculation of the new effects.

  10. Baryonic matter and beyond

    E-Print Network [OSTI]

    Kenji Fukushima

    2014-10-01T23:59:59.000Z

    We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

  11. Shedding Light on Dark Matter in Hot, Massive, and Awfully Complicated Cluster of Galaxies 1E0657-56

    SciTech Connect (OSTI)

    Bradac, Marusa

    2006-11-20T23:59:59.000Z

    The cluster of galaxies 1E0657-56 has been the subject of intense ongoing research in the last few years. This system is remarkably well-suited to addressing outstanding issues in both cosmology and fundamental physics. It is one of the hottest and most luminous X-ray clusters known and is unique in being a major supersonic cluster merger occurring nearly in the plane of the sky, earning it the nickname 'the Bullet Cluster'. In this talk I will present our measurements of the composition of this system, show the evidence for existence of dark matter, and describe limits that can be placed on the intrinsic properties of dark matter particles. In addition, I will explain how this cluster offers a serious challenge to MOdified Newtonian Dynamics (MOND) theories.

  12. Thermodynamics of strong-interaction matter from Lattice QCD

    E-Print Network [OSTI]

    Heng-Tong Ding; Frithjof Karsch; Swagato Mukherjee

    2015-04-21T23:59:59.000Z

    We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open heavy flavors and heavy quarkonia, 8) QCD in external magnetic fields, 9) Summary.

  13. Thermodynamics of strong-interaction matter from Lattice QCD

    E-Print Network [OSTI]

    Ding, Heng-Tong; Mukherjee, Swagato

    2015-01-01T23:59:59.000Z

    We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open heavy flavors and heavy quarkonia, 8) QCD in external magnetic fields, 9) Summary.

  14. Charmonium in a hot medium: melting vs absorption

    E-Print Network [OSTI]

    B. Z. Kopeliovich; I. K. Potashnikova; Ivan Schmidt; M. Siddikov

    2014-08-11T23:59:59.000Z

    A charmonium produced in heavy ion collisions at RHIC and LHC propagates through a dense co-moving matter with a rather high relative momentum, =4-10GeV^2. In spite of Debye screening of the binding potential, the charmonium survives with a substantial probability, even if the c-cbar potential is completely screened in the hot environment. In addition, the color-exchange interaction with the medium is another important source of charmonium suppression. Attenuation in a hot medium caused by both effects is evaluated by means of the path integral technique, which requires ability of boosting the binding potential to a moving reference frame. This problem is solved in the approximation of small intrinsic velocities of the charmed quarks.

  15. General-relativistic constraints on the equation of state of dense matter implied by kilohertz quasi-periodic oscillations in neutron-star X-ray binaries

    E-Print Network [OSTI]

    W. Kluzniak

    1997-12-18T23:59:59.000Z

    If the observed millisecond variability in the X-ray flux of several neutron-star low-mass X-ray binaries (LMXBs) is interpreted within a general-relativistic framework (Kluzniak, Michelson \\& Wagoner 1990) extant at the time of discovery, severe constraints can be placed on the equation of state (e.o.s.) of matter at supranuclear densities. The reported maximum frequency (1.14 +- 0.01 kHz) of quasiperiodic oscillations observed in sources as diverse as Sco X-1 and 4U 1728-34 would imply that the neutron star masses in these LMXBs are M > 1.9 M_solar, and hence many equations of state would be excluded. Among the very few still viable equations of state are the e.o.s. of Phandaripande and Smith (1975), and e.o.s. AV14 + UVII of Wiringa, Fiks \\& Fabrocini (1988).

  16. Probing warm dense lithium by inelastic X-ray scattering

    E-Print Network [OSTI]

    Loss, Daniel

    of warm dense matter states has practical applications for controlled thermonuclear fusion, where, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK 4 Centre for Fusion, Space and Astrophysics

  17. Rho Meson in Dense Hadronic Matter

    E-Print Network [OSTI]

    Asakawa, M.; Ko, Che Ming; Levai, P.; Qiu, X. J.

    1992-01-01T23:59:59.000Z

    in the Lagrangian, we find that both the rho-meson peak and width increase with increasing nuclear density, and that a low-mass peak appears at invariant mass around three times the pion mass. Including the decreasing density-dependent hadron masses...

  18. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |FrankUltrafast Spectroscopy of Warm

  19. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram |FrankUltrafast Spectroscopy of WarmUltrafast

  20. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummerFact SheetsUltrafastSpectroscopy of

  1. Quantum dense key distribution

    SciTech Connect (OSTI)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G. [Istituto Elettrotecnico Nazionale G. Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); ELSAG SpA, Via Puccini 2, 16154, Genova (Italy)

    2004-03-01T23:59:59.000Z

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.

  2. Electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15T23:59:59.000Z

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  3. analytical hot cells: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Antenna 10-year Battery Kemner, Ken 4 Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications Astrophysics (arXiv) Summary: This...

  4. Redshift of photons penetrating a hot plasma

    E-Print Network [OSTI]

    Ari Brynjolfsson

    2005-10-07T23:59:59.000Z

    A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

  5. Super-Kamiokande 0.07 eV Neutrinos in Cosmology: Hot Dark Matter and the Highest Energy Cosmic Rays

    E-Print Network [OSTI]

    Graciela B. Gelmini

    2000-05-25T23:59:59.000Z

    Relic neutrinos with mass in the range indicated by Super-Kamiokande results if neutrino masses are hierarchial (about 0.07 eV) are many times deemed too light to be cosmologically relevant. Here we remark that these neutrinos may significantly contribute to the dark matter of the Universe (with a large lepton asymmetry $L$) and that their existence might be revealed by the spectrum of ultra high energy cosmic rays (maybe even in the absence of a large $L$).

  6. Quantum Kinetics of Neutrinos in Hot, Dense Environments /

    E-Print Network [OSTI]

    Vlasenko, Alexey

    2014-01-01T23:59:59.000Z

    Stars and Core Collapse Supernovae 1.1.3 Compact Objecttransforma- tion in supernovae,Ē Physical Review D, vol. 74,nucleosynthesis in supernovae,Ē Physical Review Letters,

  7. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  8. Geometrical Optics of Dense Aerosols

    SciTech Connect (OSTI)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24T23:59:59.000Z

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  9. Detecting the invisible universe with neutrinos and dark matter

    E-Print Network [OSTI]

    Kaboth, Asher C. (Asher Cunningham)

    2012-01-01T23:59:59.000Z

    Recent work in astrophysics has show that most of the matter in the universe is non-luminous. This work investigates two searches for non-luminous matter: hot dark matter formed from cosmic relic neutrinos from the Big ...

  10. Pseudo-Goldstone modes in isospin-asymmetric nuclear matter

    SciTech Connect (OSTI)

    Cohen, T.D. [Univ. of Washington, Seattle, WA (United States); Broniowski, W. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1995-01-01T23:59:59.000Z

    The authors analyze the chiral limit in dense isospin-asymmetric nuclear matter. It is shown that the pseudo-Goldstone modes in this system are qualitatively different from the case of isospin-symmetric matter.

  11. Geothermal: Hot Documents Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links...

  12. Bottom-strange mesons in hyperonic matter

    E-Print Network [OSTI]

    Divakar Pathak; Amruta Mishra

    2014-09-22T23:59:59.000Z

    The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of $B_S^0$ and ${\\bar B}_S^0$ mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium interaction Lagrangian density. We discuss in detail the reason for different in-medium behavior of these bottom-strange mesons as compared to charmed-strange mesons, despite the dynamics of the heavy quark being treated as frozen in both cases.

  13. Dense QCD: Overhauser or BCS pairing?

    SciTech Connect (OSTI)

    Park, Byung-Yoon [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of) [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of); Department of Physics, Chungnam National University, Taejon 305-764, Korea (Korea, Republic of); Rho, Mannque [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of) [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of); Service de Physique Theorique, CE Saclay, 91191 Gif-sur-Yvette, (France); Wirzba, Andreas [Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (United States) [Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (United States); FZ Juelich, Institut fuer Kernphysik (Theorie), D-52425 Juelich, (Germany); Zahed, Ismail [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of) [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of); Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (United States)

    2000-08-01T23:59:59.000Z

    We discuss the Overhauser effect (particle-hole pairing) versus the BCS effect (particle-particle or hole-hole pairing) in QCD at large quark density. In weak coupling and to leading logarithm accuracy, the pairing energies can be estimated exactly. For a small number of colors, the BCS effect overtakes the Overhauser effect, while for a large number of colors the opposite takes place, in agreement with a recent renormalization group argument. In strong coupling with large pairing energies, the Overhauser effect may be dominant for any number of colors, suggesting that QCD may crystallize into an insulator at a few times nuclear matter density, a situation reminiscent of dense Skyrmions. The Overhauser effect is dominant in QCD in 1+1 dimensions, although susceptible to quantum effects. It is sensitive to temperature in all dimensions. (c) 2000 The American Physical Society.

  14. Dense QCD: a Holographic Dyonic Salt

    E-Print Network [OSTI]

    Mannque Rho; Sang-Jin Sin; Ismail Zahed

    2009-10-23T23:59:59.000Z

    Dense QCD at zero temperature with a large number of colors is a crystal. We show that in the holographic dual description, the crystal is made out of pairs of dyons with $e=g=\\pm 1$ charges in a salt-like arrangement. We argue that with increasing density the dyon masses and topological charges equalize, turning the salt-like configuration to a bcc of half-instantons. The latter is dual to a cubic crystal of half-skyrmions. We estimate the transition from an fcc crystal of instantons to a bcc crystal of dyons to about 3 times nuclear matter density with a dyon binding energy of about 180 MeV.

  15. A constitutive law for dense granular flows

    E-Print Network [OSTI]

    Pierre Jop; YoŽl Forterre; Olivier Pouliquen

    2006-12-05T23:59:59.000Z

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  16. axion hot dark: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Axion hot dark matter bounds HEP - Phenomenology (arXiv) Summary: We derive cosmological limits on...

  17. From nuclear matter to Neutron Stars

    E-Print Network [OSTI]

    T. K. Jha

    2009-02-02T23:59:59.000Z

    Neutron stars are the most dense objects in the observable Universe and conventionally one uses nuclear theory to obtain the equation of state (EOS) of dense hadronic matter and the global properties of these stars. In this work, we review various aspects of nuclear matter within an effective Chiral model and interlink fundamental quantities both from nuclear saturation as well as vacuum properties and correlate it with the star properties.

  18. Dark matter and cosmology

    SciTech Connect (OSTI)

    Schramm, D.N.

    1992-03-01T23:59:59.000Z

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  19. Dark matter and cosmology

    SciTech Connect (OSTI)

    Schramm, D.N.

    1992-03-01T23:59:59.000Z

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  20. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  1. Enthalpic and entropic phase transitions in high energy density nuclear matter

    E-Print Network [OSTI]

    Igor Iosilevskiy

    2014-05-01T23:59:59.000Z

    Features of Gas-Liquid (GL) and Quark-Hadron (QH) phase transitions (PT) in dense nuclear matter are under discussion in comparison with their terrestrial counterparts, e.g. so-called "plasma" PT in shock-compressed hydrogen, nitrogen, xenon etc. Both, GLPT and QHPT, when being represented in widely accepted $T - \\mu$ diagram, are often considered as similar, i.e. amenable to one-to-one mapping by simple scaling. It is argued that this impression is illusive and that GLPT and QHPT belong to different classes: namely, GLPT is typical \\emph{enthalpic} (VdW-like) PT while QHPT ("deconfinement-driven") is typical \\emph{entropic} PT like hypothetical ionization- and dissociation-driven phase transitions in hot and dense hydrogen, nitrogen etc. of megabar pressure range. Newly introduced terms "enthalpic" and "entropic" PT, are defined and clarified in their illustrative comparison successively from $T - \\mu$ to $P - T$ and $P - V$ phase diagrams for GLPT and QHPT from one side (dense nuclear plasma) vs. GLPT and "plasma" (or "dissociative") PTs from another side (electromagnetic plasma). Fundamental difference in topology of binodal and spinodal curves for enthalpic and entropic phase transitions are discussed and illustrated. Multilayered structure of thermodynamic surfaces $T(P,V)$, $U(P,V)$, $S(P,V)$ etc. as basic origin for intrinsic anomalous properties of all entropic PTs, is stressed.

  2. Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

  3. Dense, finely, grained composite materials

    DOE Patents [OSTI]

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01T23:59:59.000Z

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  4. The equilibrium of dense plasma in a gravity field

    E-Print Network [OSTI]

    B. V. Vasiliev

    2000-10-31T23:59:59.000Z

    The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.

  5. Effective Temperature of Non-equilibrium Dense Matter in Holography

    E-Print Network [OSTI]

    Hironori Hoshino; Shin Nakamura

    2015-03-03T23:59:59.000Z

    We study properties of effective temperature of non-equilibrium steady states by using the anti-de Sitter spacetime/conformal field theory (AdS/CFT) correspondence. We consider non-equilibrium systems with a constant flow of current along an electric field, in which the current is carried by both the doped charges and those pair created by the electric field. We find that the effective temperature agrees with that of the Langevin systems if we take the limit where the pair creation is negligible. The effect of pair creation raises the effective temperature whereas the current by the doped charges contributes to lower the effective temperature in a wide range of the holographic models.

  6. Intense Ion Beam for Warm Dense Matter Physics

    E-Print Network [OSTI]

    Heimbucher, Lynn

    2008-01-01T23:59:59.000Z

    limit the ?ow of plasma into the ?nal focus solenoid. Onceneutralizing plasma that enables us to focus to emittanceplasma is strongly coupled to the ?eld lines provided by the ? nal focus

  7. Intense Ion Beam for Warm Dense Matter Physics

    E-Print Network [OSTI]

    Heimbucher, Lynn

    2008-01-01T23:59:59.000Z

    waveform and there are voltage oscillations. Before reachingbunching of the beam. Voltage oscillations in the diode alsoThe period T of the voltage oscillation must be t a < T < t

  8. Electronic Structure of Warm Dense Matter via Multicenter Green's Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseC Supports

  9. A General Effective Action for Quark Matter and its Application to Color Superconductivity

    E-Print Network [OSTI]

    Philipp T. Reuter

    2006-02-13T23:59:59.000Z

    I derive a general effective theory for hot and/or dense quark matter. After introducing general projection operators for hard and soft quark and gluon degrees of freedom, I explicitly compute the functional integral for the hard quark and gluon modes in the QCD partition function. Upon appropriate choices for the projection operators one recovers various well-known effective theories such as the Hard Thermal Loop/ Hard Dense Loop Effective Theories as well as the High Density Effective Theory by Hong and Schaefer. I then apply the effective theory to cold and dense quark matter and show how it can be utilized to simplify the weak-coupling solution of the color-superconducting gap equation. In general, one considers as relevant quark degrees of freedom those within a thin layer of width 2 Lambda_q around the Fermi surface and as relevant gluon degrees of freedom those with 3-momenta less than Lambda_gl. It turns out that it is necessary to choose Lambda_q << Lambda_gl, i.e., scattering of quarks along the Fermi surface is the dominant process. Moreover, this special choice of the two cutoff parameters Lambda_q and Lambda_gl facilitates the power-counting of the numerous contributions in the gap-equation. In addition, it is demonstrated that both the energy and the momentum dependence of the gap function has to be treated self-consistently in order to determine the imaginary part of the gap function. For quarks close to the Fermi surface the imaginary part is calculated explicitly and shown to be of sub-subleading order in the gap equation.

  10. X-ray spectroscopy of buried layer foils irradiated with an ultra high intensity short pulse laser

    E-Print Network [OSTI]

    Chen, Sophia Nan

    2009-01-01T23:59:59.000Z

    of hot dense matter in short-pulse laser-plasma interactionof hot dense matter in short-pulse laser-plasma interactiona better picture of short pulse laser produced plasmas can

  11. Dynamic structure factors of a dense mixture

    E-Print Network [OSTI]

    Supurna Sinha

    2005-05-22T23:59:59.000Z

    We compute the dynamic structure factors of a dense binary liquid mixture. These describe dynamics on molecular length scales, where structural relaxation is important. We find that the presence of a few large particles in a dense fluid of small particles slows down the dynamics considerably. We also observe a deep narrowing of the spectrum for a disordered mixture composed of a nearly equal packing of the two species. In contrast, a few small particles diffuse easily in the background of a dense fluid of large particles. We expect our results to describe neutron scattering from a dense mixture.

  12. Uniformly dense polymeric foam body

    DOE Patents [OSTI]

    Whinnery Jr., Leroy

    2003-07-15T23:59:59.000Z

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  13. Neutrino oscillations and dark matter

    E-Print Network [OSTI]

    K. Zuber

    1996-12-17T23:59:59.000Z

    The significance of light massive neutrinos as hot dark matter is outlined. The power of neutrino oscillation experiments with respect to detect such neutrinos in the eV-region is discussed. Present hints for neutrino oscillations in solar, atmospheric and LSND data are reviewed as well as future experiments and their potential.

  14. Hot Summer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot PlateHotHot

  15. Fermi-Einstein condensation in dense QCD-like theories

    E-Print Network [OSTI]

    Kurt Langfeld; Andreas Wipf

    2011-09-02T23:59:59.000Z

    While pure Yang-Mills theory feature the centre symmetry, this symmetry is explicitly broken by the presence of dynamical matter. We study the impact of the centre symmetry in such QCD-like theories. In the analytically solvable Schwinger model, centre transitions take place even under extreme conditions, temperature and/or density, and we show that they are key to the solution of the Silver-Blaze problem. We then develop an effective SU(3) quark model which confines quarks by virtue of centre sector transitions. The phase diagram by confinement is obtained as a function of the temperature and the chemical potential. We show that at low temperatures and intermediate values for the chemical potential the centre dressed quarks undergo condensation due to Bose like statistics. This is the Fermi Einstein condensation. To corroborate the existence of centre sector transitions in gauge theories with matter, we study (at vanishing chemical potential) the interface tension in the three-dimensional Z2 gauge theory with Ising matter, the distribution of the Polyakov line in the four-dimensional SU(2)-Higgs model and devise a new type of order parameter which is designed to detect centre sector transitions. Our analytical and numerical findings lead us to conjecture a new state of cold, but dense matter in the hadronic phase for which Fermi Einstein condensation is realised.

  16. DNA: structure, dense phases, charges, interactions

    E-Print Network [OSTI]

    Potsdam, Universitšt

    DNA: structure, dense phases, charges, interactions #12;Outline 1. DNA: structure, charges, dense phases 2. Counterion and DNA condensation 3. ES DNA-DNA interactions 4. DNA toroidal structures 5. Interactions of real DNA helices 6. DNA-DNA ES recognition 7. DNA melting in aggregates 8. Azimuthal

  17. Using mammographic density to predict breast cancer risk: dense area or percent dense area

    E-Print Network [OSTI]

    Stone, Jennifer; Ding, Jane; Warren, Ruth M L; Duffy, Stephen; Hopper, John L

    2010-11-18T23:59:59.000Z

    and dense area were strongly associated with breast cancer risk; however, inclusion of dense area in a PDA-adjusted model improved the pre- diction of breast cancer risk, but not vice versa. This suggests that, in terms of a single parameter, dense area... dense area alone. Conclusions: As a single parameter, dense area provides more information than PDA on breast cancer risk. Introduction A number of prospective, nested case control studies have shown that, for women of the same age, those with greater...

  18. Dense granular flow around a penetrating object: Experiments and hydrodynamic model

    E-Print Network [OSTI]

    Antoine Seguin; Yann Bertho; Philippe Gondret; Jerome Crassous

    2011-06-24T23:59:59.000Z

    We present in this Letter experimental results on the bidimensional flow field around a cylinder penetrating into dense granular matter together with drag force measurements. A hydrodynamic model based on extended kinetic theory for dense granular flow reproduces well the flow localization close to the cylinder and the corresponding scalings of the drag force, which is found to not depend on velocity, but linearly on the pressure and on the cylinder diameter and weakly on the grain size. Such a regime is found to be valid at a low enough "granular" Reynolds number.

  19. Quantitative Constraints on the Transport Properties of Hot Partonic Matter from Semi-Inclusive Single High Transverse Momentum Pion Suppression in Au+Au collisions at sqrt(s_NN) = 200 GeV

    E-Print Network [OSTI]

    PHENIX Collaboration; A. Adare

    2008-09-26T23:59:59.000Z

    The PHENIX experiment has measured the suppression of semi-inclusive single high transverse momentum pi^0's in Au+Au collisions at sqrt(s_NN) = 200 GeV. The present understanding of this suppression is in terms of energy-loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN^g/dy, the medium transport coefficient , or the initial energy-loss parameter epsilon_0. We find that high transverse momentum pi^0 suppression in Au+Au collisions has sufficient precision to constrain these model dependent parameters at the +/1 20%-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.

  20. Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition

    SciTech Connect (OSTI)

    Witherspoon, F. Douglas [HyperV Technologies Corp.; Welch, Dale R. [Voss Scientific, LLC; Thompson, John R. [FAR-TECH, Inc.; MacFarlane, Joeseph J. [Prism Computational Sciences Inc.; Phillips, Michael W. [Advanced Energy Systems, Inc.; Bruner, Nicki [Voss Scientific, LLC; Mostrom, Chris [Voss Scientific, LLC; Thoma, Carsten [Voss Scientific, LLC; Clark, R. E. [Voss Scientific, LLC; Bogatu, Nick [FAR-TECH, Inc.; Kim, Jin-Soo [FAR-TECH, Inc.; Galkin, Sergei [FAR-TECH, Inc.; Golovkin, Igor E. [Prism Computational Sciences, Inc.; Woodruff, P. R. [Prism Computational Sciences, Inc.; Wu, Linchun [HyperV Technologies Corp.; Messer, Sarah J. [HyperV Technologies Corp.

    2014-05-20T23:59:59.000Z

    Radiation processes play an important role in the study of both fast ignition and other inertial confinement schemes, such as plasma jet driven magneto-inertial fusion, both in their effect on energy balance, and in generating diagnostic signals. In the latter case, warm and hot dense matter may be produced by the convergence of a plasma shell formed by the merging of an assembly of high Mach number plasma jets. This innovative approach has the potential advantage of creating matter of high energy densities in voluminous amount compared with high power lasers or particle beams. An important application of this technology is as a plasma liner for the flux compression of magnetized plasma to create ultra-high magnetic fields and burning plasmas. HyperV Technologies Corp. has been developing plasma jet accelerator technology in both coaxial and linear railgun geometries to produce plasma jets of sufficient mass, density, and velocity to create such imploding plasma liners. An enabling tool for the development of this technology is the ability to model the plasma dynamics, not only in the accelerators themselves, but also in the resulting magnetized target plasma and within the merging/interacting plasma jets during transport to the target. Welch pioneered numerical modeling of such plasmas (including for fast ignition) using the LSP simulation code. Lsp is an electromagnetic, parallelized, plasma simulation code under development since 1995. It has a number of innovative features making it uniquely suitable for modeling high energy density plasmas including a hybrid fluid model for electrons that allows electrons in dense plasmas to be modeled with a kinetic or fluid treatment as appropriate. In addition to in-house use at Voss Scientific, several groups carrying out research in Fast Ignition (LLNL, SNL, UCSD, AWE (UK), and Imperial College (UK)) also use LSP. A collaborative team consisting of HyperV Technologies Corp., Voss Scientific LLC, FAR-TECH, Inc., Prism Computational Sciences, Inc. and Advanced Energy Systems Inc. joined efforts to develop new physics and numerical models for LSP in several key areas to enhance the ability of LSP to model high energy density plasmas (HEDP). This final report details those efforts. Areas addressed in this research effort include: adding radiation transport to LSP, first in 2D and then fully 3D, extending the EMHD model to 3D, implementing more advanced radiation and electrode plasma boundary conditions, and installing more efficient implicit numerical algorithms to speed complex 2-D and 3-D computations. The new capabilities allow modeling of the dominant processes in high energy density plasmas, and further assist the development and optimization of plasma jet accelerators, with particular attention to MHD instabilities and plasma/wall interaction (based on physical models for ion drag friction and ablation/erosion of the electrodes). In the first funding cycle we implemented a solver for the radiation diffusion equation. To solve this equation in 2-D, we used finite-differencing and applied the parallelized sparse-matrix solvers in the PETSc library (Argonne National Laboratory) to the resulting system of equations. A database of the necessary coefficients for materials of interest was assembled using the PROPACEOS and ATBASE codes from Prism. The model was benchmarked against Prism's 1-D radiation hydrodynamics code HELIOS, and against experimental data obtained from HyperV's separately funded plasma jet accelerator development program. Work in the second funding cycle focused on extending the radiation diffusion model to full 3-D, continued development of the EMHD model, optimizing the direct-implicit model to speed up calculations, add in multiply ionized atoms, and improved the way boundary conditions are handled in LSP. These new LSP capabilities were then used, along with analytic calculations and Mach2 runs, to investigate plasma jet merging, plasma detachment and transport, restrike and advanced jet accelerator design. In addition, a strong linkage to diagnostic measureme

  1. Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Computer Simulations Indicate Calcium Carbonate Has a Dense Liquid Phase Berkeley Lab research could help...

  2. Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions

    SciTech Connect (OSTI)

    Khan, S. A. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Ayub, M. K. [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Pohang University of Science and Technology (POSTECH), Pohang, Gyunbuk 790-784 (Korea, Republic of); Ahmad, Ali [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2012-10-15T23:59:59.000Z

    Quantum plasma oscillations are studied in a strongly magnetized, ultra-dense plasma with degenerate electrons and positrons. The dispersive role of electron and positron quantum effects on low frequency (in comparison to electron cyclotron frequency) shear electromagnetic wave is investigated by employing hydrodynamic formulation. In the presence of ions, the density balance changes, and the electromagnetic wave (with frequency lower than the ion cyclotron frequency) is shown to couple with electrostatic ion mode under certain conditions. For such low frequency waves, it is also seen that the contribution of electron and positron degeneracy pressure is dominant as compared to their diffraction effects. The results are analyzed numerically for illustrative purpose pointing out their relevance to the dense laboratory (e.g., super-intense laser-dense matter interactions) and astrophysical plasmas.

  3. IR Hot Wave

    SciTech Connect (OSTI)

    Graham, T. B.

    2010-04-01T23:59:59.000Z

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  4. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect (OSTI)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30T23:59:59.000Z

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  5. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30T23:59:59.000Z

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  6. Gamma-ray burst interaction with dense interstellar medium

    E-Print Network [OSTI]

    Maxim Barkov; Gennady Bisnovatyi-Kogan

    2004-10-07T23:59:59.000Z

    Interaction of cosmological gamma ray burst radiation with the dense interstellar medium of host galaxy is considered. Gas dynamical motion of interstellar medium driven by gamma ray burst is investigated in 2D approximation for different initial density distributions of host galaxy matter and different total energy of gamma ray burst. The maximum velocity of motion of interstellar medium is $1.8\\cdot10^4$ km/s. Light curves of gamma ray burst afterglow are calculated for set of non homogeneous density, distribution gamma ray burst total energy, and different viewing angles. Spectra of gamma ray burst afterglow are modeled taking into account conversion of hard photons (soft X-ray, hard UV) to soft UV and optics photons.

  7. Measurement of charged-particle stopping in warm-dense plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A.? B.; Frenje, J.? A.; Grabowski, P. E.; Li, C. ?K.; Collins, G.? W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.? B.; Hu, S. X.; et al

    2015-05-01T23:59:59.000Z

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e≤/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories inmore†ĽWDM plasma.ę†less

  8. Measurement of charged-particle stopping in warm-dense plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A.? B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Frenje, J.? A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Grabowski, P. E. [Univ. of California Irvine, Irvine, CA (United States); Li, C. ?K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Collins, G.? W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fitzsimmons, P. [General Atomics, San Diego, CA (United States); Glenzer, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Graziani, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hansen, S.? B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hu, S. X. [Univ. of Rochester, NY (United States); Johnson, M. Gatu [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Keiter, P. [Univ. of Michigan, Ann Arbor, MI (United States); Reynolds, H. [General Atomics, San Diego, CA (United States); Rygg, J.? R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sťguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2015-05-01T23:59:59.000Z

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e≤/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.

  9. Frontier of the physics of dense plasmas and planetary interiors: experiments, theory, applications

    SciTech Connect (OSTI)

    Saumon, Didier [Los Alamos National Laboratory; Fortney, Jonathan J [UC SANTA CRUZ; Glenzer, Siegfried H [LLNL; Koenig, Michel [LULI (FRANCE); Brambrink, E [LULI(FRANCE); Militzer, Burkhard [UC BERKELEY; Valencia, Diana [HARVARD U

    2008-01-01T23:59:59.000Z

    Recent developments of dynamic x-ray characterization experiments of dense matter are reviewed, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. Several applications of this work are examined. These include the structure of massive 'super-Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as the benchmark for giant planets.

  10. The equilibrium of the dense electron-nuclear plasma in the gravitational field. The magnetic fields and masses of stars

    E-Print Network [OSTI]

    B. V. Vasiliev

    2003-07-09T23:59:59.000Z

    The equilibrium of a hot dense plasma in a gravitational field is considered. From the standard equilibrium equations, the energy minimum at density about $10^{25}$ particles per $cm^3$ and temperature about $10^7 K$ was found. This effect plays an important role for astrophysics. It enables to explain the mechanism of the star magnetic field generation and to make a prediction for the spectrum of a star mass with a wholly satisfactory agreement for the observation data.

  11. Green Systems Solar Hot Water

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar panels not enough Generates heat energy Captures heat from generator and transfers it to water Stores Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1

  12. Asymmetric condensed dark matter

    E-Print Network [OSTI]

    Aguirre, Anthony

    2015-01-01T23:59:59.000Z

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

  13. Clusters in nuclear matter and Mott points

    E-Print Network [OSTI]

    G. RŲpke

    2015-01-06T23:59:59.000Z

    Light clusters (mass number $A \\leq 4$) in nuclear matter at subsaturation densities are described using a quantum statistical approach. In addition to self-energy and Pauli-blocking, effects of continuum correlations are taken into account to calculate the quasiparticle properties and abundances of light elements. Medium-modified quasiparticle properties are important ingredients to derive a nuclear matter equation of state applicable in the entire region of warm dense matter below saturation density. The influence of the nucleon-nucleon interaction on the quasiparticle shift is discussed.

  14. Geometrical Optics of Dense Aerosols: Forming Dense Plasma Slabs Michael J. Hay,1,* Ernest J. Valeo,2

    E-Print Network [OSTI]

    Geometrical Optics of Dense Aerosols: Forming Dense Plasma Slabs Michael J. Hay,1,* Ernest J. Valeo aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense

  15. Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working in Hot Environments

    E-Print Network [OSTI]

    Lennard, William N.

    Working in Hot Weather or Hot Workplace Environments Subject: Procedures and Guidelines for Working is intended to prevent potential heat induced illness as a result of hot weather or hot workplace environments in hot weather or hot workplace environments. The following parameters will serve as triggers

  16. Quantum corrections and bound-state effects in the energy relaxation of hot dense Hydrogen

    E-Print Network [OSTI]

    M. W. C. Dharma-Wardana

    2008-04-13T23:59:59.000Z

    Simple analytic formulae for energy relaxation (ER) in electron-ion systems, with quantum corrections, ion dynamics and RPA-type screening are presented. ER in the presence of bound electrons is examined in view of of recent simulations for ER in hydrogen in the range 10^{20}-10^{24} electrons/cc.

  17. Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps to Predict Solar Futures Using Maps

  18. A method for dense packing discovery

    E-Print Network [OSTI]

    Yoav Kallus; Veit Elser; Simon Gravel

    2010-08-04T23:59:59.000Z

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \\textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \\textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density $\\phi=128/219\\approx0.5845$ and with a similar structure to the densest known tetrahedron packing.

  19. Dense high temperature ceramic oxide superconductors

    DOE Patents [OSTI]

    Landingham, Richard L. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  20. Dense high temperature ceramic oxide superconductors

    DOE Patents [OSTI]

    Landingham, R.L.

    1993-10-12T23:59:59.000Z

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  1. Preparation of a dense, polycrystalline ceramic structure

    DOE Patents [OSTI]

    Cooley, Jason (Los Alamos, NM); Chen, Ching-Fong (Los Alamos, NM); Alexander, David (Los Alamos, NM)

    2010-12-07T23:59:59.000Z

    Ceramic nanopowder was sealed inside a metal container under a vacuum. The sealed evacuated container was forced through a severe deformation channel at an elevated temperature below the melting point of the ceramic nanopowder. The result was a dense nanocrystalline ceramic structure inside the metal container.

  2. Dark energy and dark matter from cosmological observations

    E-Print Network [OSTI]

    Steen Hannestad

    2005-09-14T23:59:59.000Z

    The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.

  3. Dark Matters

    ScienceCinema (OSTI)

    Joseph Silk

    2010-01-08T23:59:59.000Z

    One of the greatest mysteries in the cosmos is that it is mostly dark.† Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe. †I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  4. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  5. Pilgrim Hot Springs, Alaska

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM5Parabolic TroughPhotoCell StructureUranium MillPilgrim Hot

  6. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot Plate

  7. Idaho_HotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. 43 deg.

  8. Quantum molecular dynamics simulations of transport properties in liquid and dense-plasma plutonium

    SciTech Connect (OSTI)

    Kress, J. D.; Cohen, James S.; Kilcrease, D. P.; Horner, D. A.; Collins, L. A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2011-02-15T23:59:59.000Z

    We have calculated the viscosity and self-diffusion coefficients of plutonium in the liquid phase using quantum molecular dynamics (QMD) and in the dense-plasma phase using orbital-free molecular dynamics (OFMD), as well as in the intermediate warm dense matter regime with both methods. Our liquid metal results for viscosity are about 40% lower than measured experimentally, whereas a previous calculation using an empirical interatomic potential (modified embedded-atom method) obtained results 3-4 times larger than the experiment. The QMD and OFMD results agree well at the intermediate temperatures. The calculations in the dense-plasma regime for temperatures from 50 to 5000 eV and densities about 1-5 times ambient are compared with the one-component plasma (OCP) model, using effective charges given by the average-atom code inferno. The inferno-OCP model results agree with the OFMD to within about a factor of 2, except for the viscosity at temperatures less than about 100 eV, where the disagreement is greater. A Stokes-Einstein relationship of the viscosities and diffusion coefficients is found to hold fairly well separately in both the liquid and dense-plasma regimes.

  9. Carbon dioxide remediation via oxygen-enriched combustion using dense ceramic membranes

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Bose, Arun C. (Pittsburgh, PA); McIlvried, Howard G. (Pittsburgh, PA)

    2001-01-01T23:59:59.000Z

    A method of combusting pulverized coal by mixing the pulverized coal and an oxidant gas to provide a pulverized coal-oxidant gas mixture and contacting the pulverized coal-oxidant gas mixture with a flame sufficiently hot to combust the mixture. An oxygen-containing gas is passed in contact with a dense ceramic membrane of metal oxide material having electron conductivity and oxygen ion conductivity that is gas-impervious until the oxygen concentration on one side of the membrane is not less than about 30% by volume. An oxidant gas with an oxygen concentration of not less than about 30% by volume and a CO.sub.2 concentration of not less than about 30% by volume and pulverized coal is contacted with a flame sufficiently hot to combust the mixture to produce heat and a flue gas. One dense ceramic membrane disclosed is selected from the group consisting of materials having formulae SrCo.sub.0.8 Fe.sub.0.2 O.sub.x, SrCo.sub.0.5 FeO.sub.x and La.sub.0.2 Sr.sub.0.8 Co.sub.0.4 Fe.sub.0.6 O.sub.x.

  10. Static dielectric properties of dense ionic fluids

    E-Print Network [OSTI]

    Zarubin, Grigory

    2015-01-01T23:59:59.000Z

    The static dielectric properties of dense ionic fluids, e.g., room temperature ionic liquids (RTILs) and inorganic fused salts, are investigated on different length scales by means of grandcanonical Monte Carlo simulations. A generally applicable scheme is developed which allows one to approximately decompose the electric susceptibility of dense ionic fluids into the orientation and the distortion polarization contribution. It is shown that at long range the well-known plasma-like perfect screening behavior occurs, which corresponds to a diverging distortion susceptibility, whereas at short range orientation polarization dominates, which coincides with that of a dipolar fluid of attached cation-anion pairs. This observation suggests that the recently debated interpretation of RTILs as dilute electrolyte solutions might not be simply a yes-no-question but it might depend on the considered length scale.

  11. DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE

    E-Print Network [OSTI]

    Byrne, Byron

    DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA #12;Driven Pipe Piles in Dense Sand Byron Byrne Geomechanics Group The University of Western Australia #12;Driven Pipe Piles in Dense Sand Byron Byrne Geomechanics Group The University of Western Australia

  12. Nuclear matter to strange matter transition in holographic QCD

    E-Print Network [OSTI]

    Youngman Kim; Yunseok Seo; Sang-Jin Sin

    2009-11-19T23:59:59.000Z

    We construct a simple holographic QCD model to study nuclear matter to strange matter transition. The interaction of dense medium and hadrons is taken care of by imposing the force balancing condition for stable D4/D6/D6 configuration. By considering the intermediate and light flavor branes interacting with baryon vertex homogeneously distributed along R^3 space and requesting the energy minimization, we find that there is a well defined transition density as a function of current quark mass. We also find that as density goes up very high, intermediate (or heavy) and light quarks populate equally as expected from the Pauli principle. In this sense, the effect of the Pauli principle is realized as dynamics of D-branes.

  13. Nonlinear properties of dense coherent media

    E-Print Network [OSTI]

    Mikhailov, Eugeniy Eugenievich

    2004-09-30T23:59:59.000Z

    as to style and content by: George R. Welch (Chair of Committee) Edward S. Fry (Member) M. Suhail Zubairy (Member) Paul S. Cremer (Member) Edward S. Fry (Head of Department) August 2003 Major Subject: Physics iii ABSTRACT Nonlinear Properties of Dense Coherent... Media. (August 2003) Eugeniy Eugenievich Mikhailov, B.S., Moscow State Engineering Physics Institute Chair of Advisory Committee: Dr. George R. Welch Properties of coherent media in the regime of electromagnetically induced trans- parency (EIT...

  14. Structures for dense, crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2011-03-08T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  15. Dense gas dispersion modeling for aqueous releases†

    E-Print Network [OSTI]

    Lara, Armando

    1999-01-01T23:59:59.000Z

    DENSE GAS DISPERSION MODELING FOR AQUEOUS RELEASES A Thesis by ARMANDO LARA Submitted to the Office of Graduate Studies of Texas A&M University In partial fulfill ment of the requirements for the degree of MASTER OF SCIENCE May 1999 Major... Modeling for Aqueous Releases. (May 1999) Armando Lara, B. S. , University of Houston Chair of Advisory Committee: Dr. Sam Mannan Production, transportation, and storage of hazardous chemicals represent potential risks to the environment, the public...

  16. A method for dense packing discovery

    E-Print Network [OSTI]

    Kallus, Yoav; Gravel, Simon

    2010-01-01T23:59:59.000Z

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and ...

  17. Modeling Complex Organic Molecules in dense regions: Eley-Rideal and complex induced reaction

    E-Print Network [OSTI]

    Ruaud, M; Hickson, K M; Gratier, P; Hersant, F; Wakelam, V

    2014-01-01T23:59:59.000Z

    Recent observations have revealed the existence of Complex Organic Molecules (COMs) in cold dense cores and prestellar cores. The presence of these molecules in such cold conditions is not well understood and remains a matter of debate since the previously proposed "warm- up" scenario cannot explain these observations. In this article, we study the effect of Eley- Rideal and complex induced reaction mechanisms of gas-phase carbon atoms with the main ice components of dust grains on the formation of COMs in cold and dense regions. Based on recent experiments we use a low value for the chemical desorption efficiency (which was previously invoked to explain the observed COM abundances). We show that our introduced mechanisms are efficient enough to produce a large amount of complex organic molecules in the gas-phase at temperatures as low as 10K.

  18. Coherent control of light transport in a dense and disordered atomic ensemble

    E-Print Network [OSTI]

    A. S. Sheremet; D. F. Kornovan; L. V. Gerasimov; B. Gouraud; J. Laurat; D. V. Kupriyanov

    2015-03-09T23:59:59.000Z

    Light transport in a dense and disordered cold atomic ensemble, where the cooperation of atomic dipoles essentially modifies their coupling with the radiation modes, offers an alternative approach to light-matter interfacing protocols. Here, we show how the cooperativity and quasi-static dipole interaction affect the process of light propagation under the conditions of electromagnetically-induced transparency (EIT). We perform comparative analysis of the self-consistent approach with ab-initio microscopic calculations and emphasize the role of the interatomic interaction in the dipoles' dynamics. Our results show that in such a dense and strongly disordered system the EIT-based light storage protocol stays relatively insensitive to configuration variations and can be obtained with essentially less atoms than it is normally needed for dilute configurations.

  19. The study of dielectric, pyroelectric and piezoelectric properties on hot pressed PZT-PMN systems

    SciTech Connect (OSTI)

    Srivastava, Geetika; Umarji, A. M. [Materials Research Centre, Indian Institute of Science, Bangalore-560 012 (India); Maglione, Mario [ICMCB, Universite de Bordeaux,-CNRS, 87, Av Dr Schweitzer 33806 Pessac (France)

    2012-12-15T23:59:59.000Z

    Hot uniaxial pressing technique has been adopted for the densification of PZT-PMN system with an aim to yield dense ceramics and to lower the sintering temperature and time for achieving better and reproducible electronic properties. The ceramics having >97% theoretical density and micron size grains are investigated for their dielectric, pyroelectric and piezoelectric properties. The effect of Li and Mn addition has also been studied.

  20. Controlled Fusion with Hot-ion Mode in a Degenerate Plasma

    SciTech Connect (OSTI)

    S. Son and N.J. Fisch

    2005-12-01T23:59:59.000Z

    n a Fermi-degenerate plasma, the rate of electron physical processes is much reduced from the classical prediction, possibly enabling new regimes for controlled nuclear fusion, including the hot-ion mode, a regime in which the ion temperature exceeds the electron temperature. Previous calculations of these processes in dense plasmas are now corrected for partial degeneracy and relativistic effects, leading to an expanded regime of self-sustained fusion.

  1. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOE Patents [OSTI]

    Deng, Xunming; Povolny, Henry S.

    2004-06-29T23:59:59.000Z

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  2. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22T23:59:59.000Z

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  3. Dilepton production from resonance scattering in hot hadronic matter

    E-Print Network [OSTI]

    Song, C.; Ko, Che Ming.

    1996-01-01T23:59:59.000Z

    -meson peak appears in the reaction rho+rho-->l(+)+l(-). On the other hand, the effect of particle widths in the reaction pi+a(1)-->l(+)+l(-) is small since the extended phase space does not include any resonance....

  4. Systematic Studies of Jet Quenching in Hot Nuclear Matter

    E-Print Network [OSTI]

    Delgado, Andrea

    2011-05-04T23:59:59.000Z

    at machines like the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) we can create and investigate tiny bubbles of Quark Gluon Plasma for very short periods of time before they cool and decay. We can use so-called QCD jets i...

  5. Systematic Studies of Jet Quenching in Hot Nuclear Matter

    E-Print Network [OSTI]

    Delgado, Andrea

    2011-05-04T23:59:59.000Z

    , with transverse and longitudinal views?????.??????????..........??..9 2.2. v2 obtained for each entropy shell at b = 5 fm, 7 fm, and 10 fm??.........???...14 2.3. Schematic demonstration of the quenching function???????..........??...15 2.4. The ellipsoidal... parameter corresponding to most central bin (0-10%) displayed in (a) and (b); 50-60% centrality in (c) and (d)??????????????..........??22 3.4. Density of binary collisions for Cu+Cu colliding at 200 GeV. Impact parameter corresponding...

  6. First Structure Formation: II. Cosmic String + Hot Dark Matter Models

    E-Print Network [OSTI]

    Tom Abel; Albert Stebbins; Peter Anninos; Michael L. Norman

    1997-06-26T23:59:59.000Z

    We examine the structure of baryonic wakes in the cosmological fluid which would form behind GUT-scale cosmic strings at early times (redshifts z > 100) in a neutrino-dominated universe. We show, using simple analytical arguments as well as 1- and 2-dimensional hydrodynamical simulations, that these wakes will NOT be able to form interesting cosmological objects before the neutrino component collapses. The width of the baryonic wakes (< 10 kpc comoving) is smaller than the scale of wiggles on the strings and are probably not enhanced by the wiggliness of the string network.

  7. Stability of plasma oscillations in hot gluonic matter

    SciTech Connect (OSTI)

    Kobes, R.; Kunstatter, G.

    1988-07-25T23:59:59.000Z

    It is argued that the high-temperature gluon-plasma damping constants previously calculated by use of the background-field method and the Vilkovisky-DeWitt effective action do not have a physical interpretation since they are not derived from correlation functions relevant to linear-response theory. A correct application of the gauge- and parametrization-independent formalism does not affect the plasmon frequency, but yields the following modified results for the longitudinal and transverse damping constants: ..gamma../sub L/ = ..gamma../sub T/ = -(9/32..pi..)g/sup 2/NT. .AE

  8. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    Transportation Water Heaters and Hot Water DistributionLaboratory). 2008. Water Heaters and Hot Water Distributionfor instantaneous gas water heaters; and pressure loss

  9. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS: Lutz J.D. (Lawrence Berkeley National Laboratory). 2008. Water Heaters and Hot Water Distribution

  10. Dense, vertical jet in stagnant homogeneous fluid

    E-Print Network [OSTI]

    Vergara, Ignacio

    1977-01-01T23:59:59.000Z

    ~ip t The laboratory equipment for the experiment consisted of a receiving tank, an auxiliary tank for the PreParation of the jet fluid and mixing of the dye, a pumping system, a concentration measurement system and photographic equip- ment. The receiving tank... of ejected brine = 1Os O/Tank capacity Jet or nozzle diamter Total water depth [in model is tank depth (l. 22 m)] Thickness of the dense layer a L the bottom Water depth at the nozzle F2 Fr Negative b Densimetri Accelerati (9. 8 m/sec xDz uoyancy...

  11. Dense optical-electrical interface module

    SciTech Connect (OSTI)

    Paul Chang

    2000-12-21T23:59:59.000Z

    The DOIM (Dense Optical-electrical Interface Modules) is a custom-designed optical data transmission module employed in the upgrade of Silicon Vertex Detector of CDF experiment at Fermilab. Each DOIM module consists of a transmitter (TX) converting electrical differential input signals to optical outputs, a middle segment of jacketed fiber ribbon cable, and a receiver (RX) which senses the light inputs and converts them back to electrical signals. The targeted operational frequency is 53 MHz, and higher rate is achievable. This article outlines the design goals, implementation methods, production test results, and radiation hardness tests of these modules.

  12. The DOE Program in High Energy Density New Initiatives in Matter in Extreme Conditions

    E-Print Network [OSTI]

    The DOE Program in High Energy Density Physics: New Initiatives in Matter in Extreme Conditions Siegfried H. Glenzer (SLAC) December 11, 2013 Presentation to: 2013 FUSION POWER ASSOCIATES 34th Annual to determine pressures of dense matter ∑ Summary ∑ High power laser workshop and outlook towards a bright

  13. Trajectory entanglement in dense granular materials

    E-Print Network [OSTI]

    James G. Puckett; Frťdťric Lechenault; Karen E. Daniels; Jean-Luc Thiffeault

    2012-02-23T23:59:59.000Z

    The particle-scale dynamics of granular materials have commonly been characterized by the self-diffusion coefficient $D$. However, this measure discards the collective and topological information known to be an important characteristic of particle trajectories in dense systems. Direct measurement of the entanglement of particle space-time trajectories can be obtained via the topological braid entropy $\\Sbraid$, which has previously been used to quantify mixing efficiency in fluid systems. Here, we investigate the utility of $\\Sbraid$ in characterizing the dynamics of a dense, driven granular material at packing densities near the static jamming point $\\phi_J$. From particle trajectories measured within a two-dimensional granular material, we typically observe that $\\Sbraid$ is well-defined and extensive. However, for systems where $\\phi \\gtrsim 0.79$, we find that $\\Sbraid$ (like $D$) is not well-defined, signifying that these systems are not ergodic on the experimental timescale. Both $\\Sbraid$ and $D$ decrease with either increasing packing density or confining pressure, independent of the applied boundary condition. The related braiding factor provides a means to identify multi-particle phenomena such as collective rearrangements. We discuss possible uses for this measure in characterizing granular systems.

  14. Dynamics of Kr in dense clathrate hydrates.

    SciTech Connect (OSTI)

    Klug, D. D.; Tse, J. S.; Zhao, J. Y.; Sturhahn, W.; Alp, E. E.; Tulk, C. A. (X-Ray Science Division); (National Research Council of Canada); (Univ. of Saskatchewan); (ORNL)

    2011-01-01T23:59:59.000Z

    The dynamics of Kr atoms as guests in dense clathrate hydrate structures are investigated using site specific {sup 83}Kr nuclear resonant inelastic x-ray scattering (NRIXS) spectroscopy in combination with molecular dynamics simulations. The dense structure H hydrate and filled-ice structures are studied at high pressures in a diamond anvil high-pressure cell. The dynamics of Kr in the structure H clathrate hydrate quench recovered at 77 K is also investigated. The Kr phonon density of states obtained from the experimental NRIXS data are compared with molecular dynamics simulations. The temperature and pressure dependence of the phonon spectra provide details of the Kr dynamics in the clathrate hydrate cages. Comparison with the dynamics of Kr atoms in the low-pressure structure II obtained previously was made. The Lamb-Mossbauer factor obtained from NRIXS experiments and molecular dynamics calculations are in excellent agreement and are shown to yield unique information on the strength and temperature dependence of guest-host interactions.

  15. Hot carrier diffusion in graphene

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Wang, Shuai; Werake, Lalani Kumari; Weintrub, Ben; Loh, Kian Ping; Zhao, Hui

    2010-11-01T23:59:59.000Z

    We report an optical study of charge transport in graphene. Diffusion of hot carriers in epitaxial graphene and reduced graphene oxide samples are studied using an ultrafast pump-probe technique with a high spatial resolution. Spatiotemporal...

  16. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01T23:59:59.000Z

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  17. Coping with Hot Work Environments

    E-Print Network [OSTI]

    Smith, David

    2005-04-28T23:59:59.000Z

    exposed to these conditions. A hot work environment can impair safety and health. Both workers and their employers are responsi- ble for taking steps to prevent heat stress in the work- place. How Your Body Handles Heat Humans are warm-blooded, which... evaporation. Wiping sweat from the skin with a cloth also prevents cooling from evaporation. In hot, humid conditions, hard work becomes harder. The sweat glands release moisture and essential David W. Smith, Extension Safety Program The Texas A...

  18. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  19. Hot Pot Detail - Evidence of Quaternary Faulting

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27T23:59:59.000Z

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  20. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    E-Print Network [OSTI]

    Lu, Jun; Wang, Jinsu; Suda, Tatsuya

    2007-01-01T23:59:59.000Z

    an ef- ficient coverage maintenance protocol for distributedArticle Scalable Coverage Maintenance for Dense Wirelessbattery energy. Coverage maintenance schemes can e?ectively

  1. RESEARCH ARTICLE On the parallel solution of dense saddle ...

    E-Print Network [OSTI]

    2010-10-26T23:59:59.000Z

    Oct 15, 2010 ... generation high performance computing. By parallelizing the dense factorization, we removed the memory usage bottle- neck that prevented†...

  2. LIMITATIONS ON MEASURING A TRANSVERSE PROFILE OF ULTRA- DENSE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIMITATIONS ON MEASURING A TRANSVERSE PROFILE OF ULTRA- DENSE ELECTRON BEAMS WITH SCINTILLATORS A. Murokh * , J. Rosenzweig, University of California, Los Angeles, CA 90095-1547,...

  3. Optimization Online - Efficient high-precision dense matrix algebra ...

    E-Print Network [OSTI]

    John Gunnels

    2008-11-10T23:59:59.000Z

    Nov 10, 2008 ... Efficient high-precision dense matrix algebra on parallel architectures for nonlinear discrete optimization. John Gunnels(gunnels ***at***†...

  4. air dense medium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and X-ray afterglows. Explanations of this behavior include models invoking a dense medium environment which makes the shock wave evolve quickly into the sub-relativistic...

  5. Nonlinear extraordinary wave in dense plasma

    SciTech Connect (OSTI)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoplesí Friendship (Russian Federation)] [Russian University of Peoplesí Friendship (Russian Federation)

    2013-10-15T23:59:59.000Z

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwellís equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  6. Dense LU Factorization on Multicore Supercomputer Nodes

    SciTech Connect (OSTI)

    Lifflander, Jonathan [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Miller, Phil [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Venkataraman, Ramprasad [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Arya, Anshu [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign; Jones, Terry R [ORNL] [ORNL; Kale, Laxmikant V [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign

    2012-01-01T23:59:59.000Z

    Dense LU factorization is a prominent benchmark used to rank the performance of supercomputers. Many implementations, including the reference code HPL, use block-cyclic distributions of matrix blocks onto a two-dimensional process grid. The process grid dimensions drive a trade-off between communication and computation and are architecture- and implementation-sensitive. We show how the critical panel factorization steps can be made less communication-bound by overlapping asynchronous collectives for pivot identification and exchange with the computation of rank-k updates. By shifting this trade-off, a modified block-cyclic distribution can beneficially exploit more available parallelism on the critical path, and reduce panel factorization's memory hierarchy contention on now-ubiquitous multi-core architectures. The missed parallelism in traditional block-cyclic distributions arises because active panel factorization, triangular solves, and subsequent broadcasts are spread over single process columns or rows (respectively) of the process grid. Increasing one dimension of the process grid decreases the number of distinct processes in the other dimension. To increase parallelism in both dimensions, periodic 'rotation' is applied to the process grid to recover the row-parallelism lost by a tall process grid. During active panel factorization, rank-1 updates stream through memory with minimal reuse. In a column-major process grid, the performance of this access pattern degrades as too many streaming processors contend for access to memory. A block-cyclic mapping in the more popular row-major order does not encounter this problem, but consequently sacrifices node and network locality in the critical pivoting steps. We introduce 'striding' to vary between the two extremes of row- and column-major process grids. As a test-bed for further mapping experiments, we describe a dense LU implementation that allows a block distribution to be defined as a general function of block to processor. Other mappings can be tested with only small, local changes to the code.

  7. Matter Field, Dark Matter and Dark Energy

    E-Print Network [OSTI]

    Masayasu Tsuge

    2009-03-24T23:59:59.000Z

    A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

  8. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  9. Trout in hot water Understanding the effects of climate change on ecosystems is a complex

    E-Print Network [OSTI]

    Brierley, Andrew

    Trout in hot water Understanding the effects of climate change on ecosystems is a complex business as we set out for the Hengill geothermal valley. You might think of Iceland as a cold, dark country up the breakdown of organic matter and nutrients are recycled more quickly, leading to more resources

  10. Warm-Dense Molecular Gas in the ISM of Starbursts, LIRGs and ULIRGs

    E-Print Network [OSTI]

    Desika Narayanan; Christopher K. Walker; Christopher E. Groppi

    2005-04-19T23:59:59.000Z

    The role of star formation in luminous and ultraluminous infrared galaxies is a hotly debated issue: while it is clear that starbursts play a large role in powering the IR luminosity in these galaxies, the relative importance of possible enshrouded AGNs is unknown. It is therefore important to better understand the role of star forming gas in contributing to the infrared luminosity in IR-bright galaxies. The J=3 level of 12CO lies 33K above ground and has a critical density of ~1.5 X 10^4 cm^-3. The 12CO(J=3-2) line serves as an effective tracer for warm-dense molecular gas heated by active star formation. Here we report on 12CO (J=3-2) observations of 17 starburst spirals, LIRGs and ULIRGs which we obtained with the Heinrich Hertz Submillimeter Telescope on Mt. Graham, Arizona. Our main results are the following: 1. We find a nearly linear relation between the infrared luminosity and warm-dense molecular gas such that the infrared luminosity increases as the warm-dense molecular gas to the power 0.92; We interpret this to be roughly consistent with the recent results of Gao & Solomon (2004a,b). 2. We find L_IR/M_H2 ratios ranging from ~10 to ~128 L_sun/M_sun using a standard CO-H2 conversion factor of 3 X 10^20 cm^-2 (K km s^-1)^-1. If this conversion factor is ~an order of magnitude less, as suggested in a recent statistical survey (Yao et al. 2003), then 2-3 of our objects may have significant contributions to the L_IR by dust-enshrouded AGNs.

  11. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06T23:59:59.000Z

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  12. High Performance Dense Linear System Solver with Soft Error Resilience

    E-Print Network [OSTI]

    Dongarra, Jack

    High Performance Dense Linear System Solver with Soft Error Resilience Peng Du, Piotr Luszczek systems, and in some scientific applications C/R is not applicable for soft error at all due to error) high performance dense linear system solver with soft error resilience. By adopting a mathematical

  13. Interparticle interaction and transport processes in dense semiclassical plasmas

    SciTech Connect (OSTI)

    Baimbetov, F.B.; Giniyatova, Sh.G. [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 480012 (Kazakhstan)

    2005-04-15T23:59:59.000Z

    On the basis of the density response formalism an expression for the pseudopotential of dense semiclassical plasma, which takes account of quantum-mechanical effects, local field corrections, and electronic screening effects is obtained. The static structure factors taking into account both local fields and quantum-mechanical effects are calculated. An electrical conductivity, thermal conductivity, and viscosity of dense semiclassical plasma are studied.

  14. Giant coercivity of dense nanostructured spark plasma sintered barium hexaferrite

    E-Print Network [OSTI]

    Giant coercivity of dense nanostructured spark plasma sintered barium hexaferrite F. Mazaleyrat and dense material together. In this paper, it is shown that the spark plasma sintering method (SPS) is able, Spark Plasma Sintering (SPS) allows to produce nonos- tructured Ba-ferrite with a density close to 90

  15. Development of dense-phase pneumatic transport of coal

    SciTech Connect (OSTI)

    Horisaka, S.; Ikemiya, H.; Kajiwara, T. [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan)

    1996-12-31T23:59:59.000Z

    Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

  16. Quasi-Dense Reconstruction from Image Maxime LHUILLIER Long QUAN

    E-Print Network [OSTI]

    Quan, Long

    Science Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR Abstract. This paper proposes a quasi-dense reconstruction from un- calibrated sequence. The main innovation calibration or position information. Unfortunately, most modeling and visualization applications need dense

  17. Hot Gas Halos in Galaxies

    SciTech Connect (OSTI)

    Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

    2010-06-08T23:59:59.000Z

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  18. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpenHotPot,Hot

  19. The Long Scale Properties of Dense Electrolytes

    E-Print Network [OSTI]

    Mingnan Ding; Yihao Liang; Bing-Sui Lu; Xiangjun Xing

    2015-02-24T23:59:59.000Z

    In this work, we combine phenomenological, numerical, and analytical approaches to explore the long scale statistical properties of dense electrolytes. In the first part, we present a phenomenological framework. We show that the potential of mean force (PMF) for an ion with charge $q$ inside a {\\em weak} background of mean potential $\\phi$ is nonlinear in $q$, and linear but {\\em nonlocal} in $\\phi$. From this, we derive all the long scale properties of the system, including the linear response theory of mean potential, the effective interaction between two ions, and the large scale structures of electric double layers, as well as the renormalized charge of a neutral particle. We also discuss the connection and difference between our theory and the {\\em Dressed Ion Theory} developed by Kjellander and Mitchell in 1990's. In the second part, we discuss the numerical method that is used to extract various renormalized quantities from Monte Carlo simulation data, as well as some numerical results that demonstrate the internal consistency of our theory. In the third part, we develop a systematic analytic formalism for the PMF of an ion in a weak background potential. We apply this formalism to study the primitive model, and calculate all renormalized parameters up to the second order of ion valences. These analytic results agree, both qualitatively and quantitatively, with our large scale MC simulations.

  20. Packing frustration in dense confined fluids

    E-Print Network [OSTI]

    Kim NygŚrd; Sten Sarman; Roland Kjellander

    2014-09-04T23:59:59.000Z

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile - each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  1. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01T23:59:59.000Z

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  2. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  3. On the Relativistic Collapse of Dense Star Clusters

    E-Print Network [OSTI]

    J. W. Moffat

    1997-05-30T23:59:59.000Z

    We investigate the fate of a relativistic star cluster with a dense core which is undergoing a gravothermal catastrophe and is far from thermodynamic equilibrium. Nonlinear cooperative contributions are included in the standard transport equations for the last stage of evolution of a highly dense core of stellar remnants. We find that the core redshift does not necessarily increase without limit as the core becomes increasingly dense, preventing collapse to a black hole. In particular, the redshift can remain less than the critical value for relativistic collapse, resulting in a stable, massive dark core with a Newtonian mantle and halo.

  4. Wind information derived from hot air

    E-Print Network [OSTI]

    Haak, Hein

    Wind information derived from hot air balloon flights for use in short term wind forecasts E Introduction/Motivation Hot air balloons as wind measuring device Setup of nested HIRLAM models Results ∑ Three, The Nertherlands #12;Hot air balloon ∑Displacement/time unit = wind speed ∑Vertical resolution 30m ∑Inertia (500 kg

  5. First-Principles Calculation of Principal Hugoniot and K-Shell X-ray Absorption Spectra for Warm Dense KCl

    E-Print Network [OSTI]

    Zhao, Shijun; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-01-01T23:59:59.000Z

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  6. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopic Study of Dense Strontium-Doped Lanthanum Manganite Cathodes for Solid Oxide Fuel Cell Applications. Soft X-Ray Spectroscopic Study of Dense Strontium-Doped Lanthanum...

  7. Stochastic and deterministic models for dense granular flow

    E-Print Network [OSTI]

    Kamrin, Kenneth Norman

    2008-01-01T23:59:59.000Z

    Granular materials such as sand or gravel surround us everyday and yet remain poorly understood. In this thesis, two models are developed for dense granular flow, each capable of predicting flows with accuracy in multiple ...

  8. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated Dense Array and Transect MT Surveying at Dixie Valley...

  9. Matter Wave Radiation Leading to Matter Teleportation

    E-Print Network [OSTI]

    Yong-Yi Huang

    2015-02-12T23:59:59.000Z

    The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

  10. Surface tension in the cold and dense chiral transition and astrophysical applications

    E-Print Network [OSTI]

    L. F. Palhares; E. S. Fraga

    2011-07-08T23:59:59.000Z

    The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition between these features in characterizing the dynamics of the chiral phase conversion.

  11. Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments

    E-Print Network [OSTI]

    Seidl, Peter

    2009-01-01T23:59:59.000Z

    plasma and the plasma in the final focus solenoid, whichplasma forms a thin column of diameter ~5 mm along the solenoid axis when the Final Focus

  12. Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter

    E-Print Network [OSTI]

    Dany Page; Madappa Prakash; James M. Lattimer; Andrew W. Steiner

    2011-01-19T23:59:59.000Z

    We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel. We find that the critical temperature for this superfluid transition is ~0.5x10^9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.

  13. PROGRESS IN BEAM FOCUSING AND COMPRESSION FOR WARM-DENSE MATTER EXPERIMENTS

    E-Print Network [OSTI]

    Seidl, P.A.

    2008-01-01T23:59:59.000Z

    the beam carrying 35.8 mA with a 0.7 mA/#s droop associatedwith the droop of the Marx voltage over this period. From

  14. Progress in Beam Focusing and Compression for Target Heating and Warm Dense Matter Experiments

    E-Print Network [OSTI]

    Seidl, Peter

    2009-01-01T23:59:59.000Z

    current is 35.8 mA with a slight 0.7 mA/"s droop associatedwith the droop of the Marx voltage over this period. Thus,

  15. Progress in beam focusing and compression for warm-dense matter experiments

    E-Print Network [OSTI]

    Gilson, Erik

    control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time) with controlled ramps and forced neutralization. Using an injected 30-mA K+ ion beam with initial kinetic energy 0 with models assuming 80% and 0% neutralization, respectively. The Neutralized Transport Experiment (NTX), used

  16. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01T23:59:59.000Z

    Logan, R. M. More, P. A. Ni, P. K. Roy, W. L. Waldron, P. A.NIMA 577 (2007) 238. [6] P. K. Roy, P. A. Seidl, A. Anders,

  17. The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements

    E-Print Network [OSTI]

    Feryal Ozel; Dimitrios Psaltis; Tolga Guver; Gordon Baym; Craig Heinke; Sebastien Guillot

    2015-05-19T23:59:59.000Z

    We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. We employ Bayesian statistical frameworks to obtain neutron star radii from the spectroscopic measurements as well as to infer the equation of state from the radius measurements. Combining these with the results of experiments in the vicinity of nuclear saturation density and the observations of ~2 Msun neutron stars, we place strong and quantitative constraints on the properties of the equation of state between ~2-8 times the nuclear saturation density. We find that around M=1.5 Msun, the preferred equation of state predicts a radius of 10.8-0.4+0.5 km. When interpreting the pressure constraints in the context of high density equations of state based on interacting nucleons, our results suggest a weaker contribution of the three-body interaction potential than previously considered.

  18. The Dense Matter Equation of State from Neutron Star Radius and Mass Measurements

    E-Print Network [OSTI]

    Ozel, Feryal; Guver, Tolga; Baym, Gordon; Heinke, Craig; Guillot, Sebastien

    2015-01-01T23:59:59.000Z

    We present a comprehensive study of spectroscopic radius measurements of twelve neutron stars obtained during thermonuclear bursts or in quiescence. We incorporate, for the first time, a large number of systematic uncertainties in the measurement of the apparent angular sizes, Eddington fluxes, and distances, in the composition of the interstellar medium, and in the flux calibration of X-ray detectors. We also take into account the results of recent theoretical calculations of rotational effects on neutron star radii, of atmospheric effects on surface spectra, and of relativistic corrections to the Eddington critical flux. We employ Bayesian statistical frameworks to obtain neutron star radii from the spectroscopic measurements as well as to infer the equation of state from the radius measurements. Combining these with the results of experiments in the vicinity of nuclear saturation density and the observations of ~2 Msun neutron stars, we place strong and quantitative constraints on the properties of the equ...

  19. K-alpha X-ray Thomson Scattering From Dense Plasmas

    SciTech Connect (OSTI)

    Kritcher, Andrea L. [Nuclear Engineering Department, University of California Berkeley, Berkeley, CA 94709 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Falcone, Roger W.; Ja Lee, Hae [Physics Department, University of California Berkeley, Berkeley, CA 94709 (United States); Lee, Richard W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Physics Department, University of California Berkeley, Berkeley, CA 94709 (United States); Morse, Edward C. [Nuclear Engineering Department, University of California Berkeley, Berkeley, CA 94709 (United States)

    2009-09-10T23:59:59.000Z

    Spectrally resolved Thomson scattering using ultra-fast K-alpha x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10{sup 23} cm{sup -3}, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  20. Dark Matter Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...

  1. Assessment of hot gas contaminant control

    SciTech Connect (OSTI)

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31T23:59:59.000Z

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  2. Quasiparticle light elements and quantum condensates in nuclear matter

    E-Print Network [OSTI]

    G. RŲpke

    2011-06-28T23:59:59.000Z

    Nuclei in dense matter are influenced by the medium. In the cluster mean field approximation, an effective Schr\\"odinger equation for the $A$-particle cluster is obtained accounting for the effects of the surrounding medium, such as self-energy and Pauli blocking. Similar to the single-baryon states (free neutrons and protons), the light elements ($2 \\le A \\le 4$, internal quantum state $\

  3. Nuclear matter equation of state including few-nucleon correlations $(A\\leq 4)$

    E-Print Network [OSTI]

    G. RŲpke

    2014-11-17T23:59:59.000Z

    Light clusters (mass number $A \\leq 4$) in nuclear matter at subsaturation densities are described using a quantum statistical approach. In addition to self-energy and Pauli-blocking, effects of continuum correlations are taken into account to calculate the quasiparticle properties and abundances of light elements. Medium-modified quasiparticle properties are important ingredients to derive a nuclear matter equation of state applicable in the entire region of warm dense matter below saturation density. Moreover, the contribution of continuum states to the equation of state is considered. The effect of correlations within the nuclear medium on the quasiparticle energies is estimated. The properties of light clusters and continuum correlations in dense matter are of interest for nuclear structure calculations, heavy ion collisions, and for astrophysical applications such as the formation of neutron stars in core-collapse supernovae.

  4. Image Storage in Hot Vapors

    E-Print Network [OSTI]

    L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

    2007-10-22T23:59:59.000Z

    We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

  5. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01T23:59:59.000Z

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  6. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHotPage Edit

  7. Idaho_LavaHotSprings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude: N. Lava

  8. Particle production in matter at extreme conditions

    E-Print Network [OSTI]

    Inga Kuznetsova

    2009-09-04T23:59:59.000Z

    We study particle production and its density evolution and equilibration in hot dense medium. One type of hot dense medium, which we study, is hadronic gas produced at quark gluon plasma hadronization in heavy ions collisions in SPS, RHIC and LHC experiments. We study hadron production at non-equilibrium quark gluon plasma hadronization and their evolution in thermal hadronic gas phase. We use non-equilibrium hadronization as the initial condition in the study of hadronic kinetic phase. During this time period some hadronic resonances can be produced in lighter hadrons fusion. Production of resonances is dominant over decay if there is non-equilibrium excess of decay products. Within this model we explain apparently contradictory experimental results reported in RHIC experiments: Sigma(1385) yield is enhanced while Lambda(1520) yield is suppressed compared to the statistical hadronization model expectation obtained without kinetic phase. We also predict Delta(1232) enhancement. The second type of plasma medium we consider is the relativistic electron positron photon plasma drop. This plasma is expected to be produced in decay of supercritical field created in ultrashort laser pulse. We study at what conditions this plasma drop is opaque for photons and therefore may reach thermal and chemical equilibrium. Further we consider muon and pion production in this plasma also as a diagnostic tool. Finally all these theoretical developments can be applied to begin a study of particles evolution in early universe in temperatures domain from QGP hadronization (160 MeV) to nucleosynthesis (0.1 MeV). The first results on pion equilibration are presented here.

  9. Water Heaters and Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    the temperature of the residual water encountered by theof hot water and the residual water might occur: (1) thehot water might drive the residual water through the piping

  10. Solar Hot Water Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

  11. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  12. Detachment Faulting & Geothermal Resources - Pearl Hot Spring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

  13. Monitoring SERC Technologies ó Solar Hot Water

    Broader source: Energy.gov [DOE]

    A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

  14. Hot electron production and heating by hot electrons in fast ignitor research

    SciTech Connect (OSTI)

    Key, M.H.; Estabrook, K.; Hammel, B. [and others

    1997-12-01T23:59:59.000Z

    In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

  15. Oblique propagation of nonlinear electrostatic waves in dense astrophysical magnetoplasmas

    SciTech Connect (OSTI)

    Masood, W.; Siddiq, M. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000, Islamabad (Pakistan); Rizvi, H. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 54000 (Pakistan)

    2011-10-15T23:59:59.000Z

    Nonlinear quantum ion-acoustic waves in dense dissipative as well as non-dissipative magnetized plasmas are investigated employing the quantum hydrodynamic model. In this regard, Zakharov Kuznetsov Burgers equation is derived in quantum plasmas, for the first time, using the small amplitude perturbation expansion method. The unique features of nonlinear electrostatic structures in pure electron-ion quantum magnetoplasma are highlighted and the parametric domain of the applicability of the model is unequivocally expressed. The present study may be useful to understand the nonlinear propagation characteristics of electrostatic shock and solitary structures in dense astrophysical systems where the quantum effects are expected to dominate.

  16. Slow light propagation and amplification via electromagnetically induced transparency and four-wave mixing in an optically dense atomic vapor

    E-Print Network [OSTI]

    N. B. Phillips; A. V. Gorshkov; I. Novikova

    2009-03-24T23:59:59.000Z

    We experimentally and theoretically analyze the propagation of weak signal field pulses under the conditions of electromagnetically induced transparency (EIT) in hot Rb vapor, and study the effects of resonant four-wave mixing (FWM). In particular, we demonstrate that in a double-$\\Lambda$ system, formed by the strong control field with the weak resonant signal and a far-detuned Stokes field, both continuous-wave spectra and pulse propagation dynamics for the signal field depend strongly on the amplitude of the seeded Stokes field, and the effect is enhanced in optically dense atomic medium. We also show that the theory describing the coupled propagation of the signal and Stokes fields is in good agreement with the experimental observations.

  17. The interaction between two planar and nonplanar quantum electron acoustic solitary waves in dense electron-ion plasmas

    SciTech Connect (OSTI)

    EL-Labany, S. K.; El-Mahgoub, M. G. [Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, Damietta El-Gedida 34517 (Egypt); EL-Shamy, E. F. [Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, Damietta El-Gedida 34517 (Egypt); Department of Physics, College of Science, King Khalid University, Abha, P.O. 9004 (Saudi Arabia)

    2012-06-15T23:59:59.000Z

    The interaction between two planar and nonplanar (cylindrical and spherical) quantum electron acoustic solitary waves (QEASWs) in quantum dense electron-ion plasmas has been studied. The extended Poincare-Lighthill-Kuo method is used to obtain planar and nonplanar phase shifts after the interaction of the two QEASWs. The change of phase shifts and trajectories for QEASWs due to the effect of the different geometries, the quantum corrections of diffraction, and the cold electron-to-hot electron number density ratio are discussed. It is shown that the interaction of the QEASWs in planar geometry, cylindrical geometry, and spherical geometry are different. The present investigation may be beneficial to understand the interaction between two planar and nonplanar QEASWs that may occur in the quantum plasmas found in laser-produced plasmas as well as in astrophysical plasmas.

  18. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    E.S. Connolly; G.D. Forsythe

    2000-09-30T23:59:59.000Z

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests being conducted by Westinghouse at Foster-Wheeler's Pressurized Circulating Fluidized Bed (PCFBC) test facility in Karhula, Finland. Task 5 was designed to demonstrate the improvements implemented in Task 4 by fabricating fifty 1.5-meter hot gas filters. These filters were to be made available for DOE-sponsored field trials at the Power Systems Development Facility (PSDF), operated by Southern Company Services in Wilsonville, Alabama.

  19. Are we putting in hot water?

    E-Print Network [OSTI]

    Combes, Stacey A.

    Are we putting our fish in hot water? Global warming and the world's fisheries ∑ Hot, hungry, and gasping for air ∑ Shrinking fish and fewer babies? ∑ Global warming puts fish on the run ∑ Warm water ∑ Howmucharefishworth? ∑ Which fish are feeling the heat? ∑ How will fisheries change? ∑ 2įC is too much! ∑ What needs

  20. STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)

    E-Print Network [OSTI]

    storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements with Multiple Dwelling Units (required for prescriptive) TO COMPLY - ALL BOXES MUST BE CHECKED All hot water

  1. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    1999-01-01T23:59:59.000Z

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  2. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11T23:59:59.000Z

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  3. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  4. Detection of 6.7 GHz methanol absorption towards hot corinos

    E-Print Network [OSTI]

    J. D. Pandian; S. Leurini; K. M. Menten; A. Belloche; P. F. Goldsmith

    2008-08-14T23:59:59.000Z

    Methanol masers at 6.7 GHz have been found exclusively towards high-mass star forming regions. Recently, some Class 0 protostars have been found to display conditions similar to what are found in hot cores that are associated with massive star formation. These hot corino sources have densities, gas temperatures, and methanol abundances that are adequate for exciting strong 6.7 GHz maser emission. This raises the question of whether 6.7 GHz methanol masers can be found in both hot corinos and massive star forming regions, and if not, whether thermal methanol emission can be detected. We searched for the 6.7 GHz methanol line towards five hot corino sources in the Perseus region using the Arecibo radio telescope. To constrain the excitation conditions of methanol, we observed thermal submillimeter lines of methanol in the NGC1333-IRAS 4 region with the APEX telescope. We did not detect 6.7 GHz emission in any of the sources, but found absorption against the cosmic microwave background in NGC1333-IRAS 4A and NGC1333-IRAS 4B. Using a large velocity gradient analysis, we modeled the excitation of methanol over a wide range of physical parameters, and verify that the 6.7 GHz line is indeed strongly anti-inverted for densities lower than 10^6 cm^-3. We used the submillimeter observations of methanol to verify the predictions of our model for IRAS 4A by comparison with other CH3OH transitions. Our results indicate that the methanol observations from the APEX and Arecibo telescopes are consistent with dense (n ~ 10^6 cm^-3), cold (T ~ 15-30 K) gas. The lack of maser emission in hot corinos and low-mass protostellar objects in general may be due to densities that are much higher than the quenching density in the region where the radiation field is conducive to maser pumping.

  5. Identifying Energy Waste through Dense Power Sensing and Utilization Monitoring

    E-Print Network [OSTI]

    Stanford University

    Identifying Energy Waste through Dense Power Sensing and Utilization Monitoring Maria Kazandjieva the efficiency of such a computing system requires detailed data of both en- ergy consumption and energy waste to differentiate energy used well from energy waste. This is an important difference from pre- vious work [8, 14

  6. Solar Hot Water Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of...

  7. Frontiers of the Physics of Dense Plasmas and Planetary Interiors: Experiment, Theory, Applications

    SciTech Connect (OSTI)

    Fortney, J J; Glenzer, S H; Koenig, M; Brambrink, E; Militzer, B; Saumon, D; Valencia, D

    2008-09-12T23:59:59.000Z

    We review recent developments of dynamic x-ray characterization experiments of dense matter, with particular emphasis on conditions relevant to interiors of terrestrial and gas giant planets. These studies include characterization of compressed states of matter in light elements by x-ray scattering and imaging of shocked iron by radiography. We examine several applications of this work. These include the structure of massive 'Super Earth' terrestrial planets around other stars, the 40 known extrasolar gas giants with measured masses and radii, and Jupiter itself, which serves as our benchmark for giant planets. We are now in an era of dramatic improvement in our knowledge of the physics of materials at high density. For light elements, this theoretical and experimental work has many applications, including internal confinement fusion as well as the interiors of gas giant planets. For heavy elements, experiments on silicates and iron at high pressure are helping to better understand the Earth, as well as terrestrial planets as a class of objects. In particular, the discovery of rocky and gaseous planets in other planetary systems has opened our imaginations to planets not found in our own solar system. While the fields of experiments of matter at high densities, first principles calculations of equations of state (EOS), planetary science, and astronomy do progress independently of each other, it is important for there to be communication between fields. For instance, in the realm of planets, physicists can learn of key problems that exist in the area of planetary structure, and how advances in our understanding of input physics could shed new light in this area. Astronomers and planetary scientists can learn where breakthroughs in physics of materials under extreme conditions are occurring, and be ready to apply these findings within their fields.

  8. Symmetric and asymmetric nuclear matter in the relativistic approach at finite temperatures

    E-Print Network [OSTI]

    H. Huber; F. Weber; M. K. Weigel

    1998-03-09T23:59:59.000Z

    The properties of hot matter are studied in the frame of the relativistic Brueckner-Hartree-Fock theory. The equations are solved self-consistently in the full Dirac space. For the interaction we used the potentials given by Brockmann and Machleidt. The obtained critical temperatures are smaller than in most of the nonrelativistic investigations. We also calculated the thermodynamic properties of hot matter in the relativistic Hartree--Fock approximation, where the force parameters were adjusted to the outcome of the relativistic Brueckner--Hartree--Fock calculations at zero temperature. Here, one obtains higher critical temperatures, which are comparable with other relativistic calculations in the Hartree scheme.

  9. Design of programmable matter

    E-Print Network [OSTI]

    Knaian, Ara N. (Ara Nerses), 1977-

    2008-01-01T23:59:59.000Z

    Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

  10. Asymmetric dark matter

    SciTech Connect (OSTI)

    Kumar, Jason [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-06-24T23:59:59.000Z

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  11. Exothermic dark matter

    E-Print Network [OSTI]

    Graham, Peter W.

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, ...

  12. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  13. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  14. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  15. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  16. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  17. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  18. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes...

    Energy Savers [EERE]

    Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America...

  19. Model Simulating Real Domestic Hot Water Use - Building America...

    Energy Savers [EERE]

    Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Model Simulating Real Domestic Hot Water Use - Building America Top Innovation Image of a pipe...

  20. Quenching and Partitioning Process Development to Replace Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Quenching and Partitioning Process Development to Replace Hot Stamping of...

  1. FRW Cosmologies with Adiabatic Matter Creation

    E-Print Network [OSTI]

    J. A. S. Lima; A. S. M. Germano; L. R. W. Abramo

    1995-11-02T23:59:59.000Z

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedman-Robertson-Walker (FRW) line element. For adiabatic matter creation, as developed by Prigogine and coworkers, we derive a simple expression relating the particle number density $n$ and energy density $\\rho$ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate $\\psi =3 \\beta nH$, where $\\beta$ is a pure number of the order of unity and $H$ is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index $\\gamma$ of the equation of state by an effective parameter $\\gamma_{*} = \\gamma (1 - \\beta)$. The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of $H$ suggested by recent measurements.

  2. in Condensed Matter Physics

    E-Print Network [OSTI]

    van der Torre, Leon

    Master in Condensed Matter Physics ≠ Master acadťmique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics ∑ introduce you to current research topics

  3. Environment Dependence of Dark Matter Halos in Symmetron Modified Gravity

    E-Print Network [OSTI]

    Hans A. Winther; David F. Mota; Baojiu Li

    2011-10-28T23:59:59.000Z

    We investigate the environment dependence of dark matter halos in the symmetron modified gravity scenario. The symmetron is one of three known mechanisms for screening a fifth-force and thereby recovering General Relativity in dense environments. The effectiveness of the screening depends on both the mass of the object and the environment it lies in. Using high-resolution N-body simulations we find a significant difference, which depends on the halos mass and environment, between the lensing and dynamical masses of dark matter halos similar to the f(R) modified gravity. The symmetron can however yield stronger signatures due to a freedom in the strength of the coupling to matter.

  4. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Stefano Bellucci; Vinod Chandra; Bhupendra Nath Tiwari

    2010-10-07T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  5. On the Thermodynamic Geometry of Hot QCD

    E-Print Network [OSTI]

    Bellucci, Stefano; Tiwari, Bhupendra Nath

    2008-01-01T23:59:59.000Z

    We study the nature of the covariant thermodynamic geometry arising from the free energy of hot QCD. We systematically analyze the underlying equilibrium thermodynamic configurations of the free energy of 2- and 3-flavor hot QCD with or without including thermal fluctuations in the neighborhood of the QCD transition temperature. We show that there exists a well-defined thermodynamic geometric notion for QCD thermodynamics. The geometry thus obtained has no singularity as an intrinsic Riemannian manifold. We further show that there is a close connection of this geometric approach with the existing studies of correlations and quark number susceptibilities in hot QCD.

  6. Partial oxidation process for producing a stream of hot purified gas

    DOE Patents [OSTI]

    Leininger, T.F.; Robin, A.M.; Wolfenbarger, J.K.; Suggitt, R.M.

    1995-03-28T23:59:59.000Z

    A partial oxidation process is described for the production of a stream of hot clean gas substantially free from particulate matter, ammonia, alkali metal compounds, halides and sulfur-containing gas for use as synthesis gas, reducing gas, or fuel gas. A hydrocarbonaceous fuel comprising a solid carbonaceous fuel with or without liquid hydrocarbonaceous fuel or gaseous hydrocarbon fuel, wherein said hydrocarbonaceous fuel contains halides, alkali metal compounds, sulfur, nitrogen and inorganic ash containing components, is reacted in a gasifier by partial oxidation to produce a hot raw gas stream comprising H{sub 2}, CO, CO{sub 2}, H{sub 2}O, CH{sub 4}, NH{sub 3}, HCl, HF, H{sub 2}S, COS, N{sub 2}, Ar, particulate matter, vapor phase alkali metal compounds, and molten slag. The hot raw gas stream from the gasifier is split into two streams which are separately deslagged, cleaned and recombined. Ammonia in the gas mixture is catalytically disproportionated into N{sub 2} and H{sub 2}. The ammonia-free gas stream is then cooled and halides in the gas stream are reacted with a supplementary alkali metal compound to remove HCl and HF. Alkali metal halides, vaporized alkali metal compounds and residual fine particulate matter are removed from the gas stream by further cooling and filtering. The sulfur-containing gases in the process gas stream are then reacted at high temperature with a regenerable sulfur-reactive mixed metal oxide sulfur sorbent material to produce a sulfided sorbent material which is then separated from the hot clean purified gas stream having a temperature of at least 1000 F. 1 figure.

  7. Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles.

    E-Print Network [OSTI]

    Boyer, Edmond

    Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles Paris 13, 93017 Bobigny, France. The magnetic properties of densely packed magnetic nanoparticles (MNP) assemblies are investi- gated from Monte Carlo simulations. The case of iron oxide nanoparticles

  8. Of Matters Condensed

    E-Print Network [OSTI]

    Shulman, Michael

    2015-01-01T23:59:59.000Z

    The American Physical Society (APS) March Meeting of condensed matter physics has grown to nearly 10,000 participants, comprises 23 individual APS groups, and even warrants its own hashtag (#apsmarch). Here we analyze the text and data from March Meeting abstracts of the past nine years and discuss trends in condensed matter physics over this time period. We find that in comparison to atomic, molecular, and optical physics, condensed matter changes rapidly, and that condensed matter appears to be moving increasingly toward subject matter that is traditionally in materials science and engineering.

  9. Incompressibility of strange matter

    E-Print Network [OSTI]

    Monika Sinha; Manjari Bagchi; Jishnu Dey; Mira Dey; Subharthi Ray; Siddhartha Bhowmick

    2004-04-01T23:59:59.000Z

    Strange stars calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.

  10. Aperture Arrays for the SKA: Dense or Sparse?

    E-Print Network [OSTI]

    Robert Braun; Wim van Cappellen

    2006-11-06T23:59:59.000Z

    We briefly consider some design aspects of aperture arrays for use in radio astronomy, particularly contrasting the performance of dense and sparse aperture arrays. Recent insights have emerged in the final design phase of LOFAR which suggest that sparse aperture arrays have the best prospects for cost-effective performance at radio frequencies below about 500 MHz; exceeding those of both dense aperture arrays and parabolic reflectors by an order of magnitude. Very attractive performance, of 10,000 - 20,000 m2/K, can be achieved with a sparse design that covers the 70 - 700 MHz range with two antenna systems that share receiver resources. Cost-effective systems of this type represent only a modest increment in system complexity over that being deployed in LOFAR and are achievable with today's technology.

  11. Collective waves in dense and confined microfluidic droplet arrays

    E-Print Network [OSTI]

    Ulf D. Schiller; Jean-Baptiste Fleury; Ralf Seemann; Gerhard Gompper

    2015-02-19T23:59:59.000Z

    Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow to modulate the refractive index of optofluidic crystals which is a promising approach for the production of dynamically programmable metamaterials.

  12. Big Questions: Dark Matter

    ScienceCinema (OSTI)

    Lincoln, Don

    2014-08-07T23:59:59.000Z

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  13. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas

    SciTech Connect (OSTI)

    Ichimaru, S. (ed.) (Tokyo Univ. (Japan). Dept. of Physics); Tajima, T. (ed.) (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies)

    1991-10-01T23:59:59.000Z

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  14. 1991 US-Japan workshop on Nuclear Fusion in Dense Plasmas. Proceedings

    SciTech Connect (OSTI)

    Ichimaru, S. [ed.] [Tokyo Univ. (Japan). Dept. of Physics; Tajima, T. [ed.] [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1991-10-01T23:59:59.000Z

    The scientific areas covered at the Workshop may be classified into the following subfields: (1) basic theory of dense plasma physics and its interface with atomic physics and nuclear physics; (2) physics of dense z-pinches, ICF plasmas etc; (3) stellar interior plasmas; (4) cold fusion; and (5) other dense plasmas.

  15. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01T23:59:59.000Z

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  16. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang [Columbia University Department of Chemistry

    2013-09-12T23:59:59.000Z

    During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

  17. Arnold Schwarzenegger WATER HEATERS AND HOT WATER

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor WATER HEATERS AND HOT WATER DISTRIBUTION SYSTEMS;#12;Appendices Appendix A. Multifamily Water Heating Construction Practices, Pricing and Availability Survey Report Appendix B. Multifamily Water Heating Controls Performance Field Report Appendix C. Pipe

  18. Charm and Beauty in a Hot Environment

    E-Print Network [OSTI]

    Helmut Satz

    2006-02-28T23:59:59.000Z

    We discuss the spectral analysis of quarkonium states in a hot medium of deconfined quarks and gluons, and we show that such an analysis provides a way to determine the thermal properties of the quark-gluon plasma.

  19. Wall Drying in Hot and Humid Climates†

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    Moisture and subsequent mold problems in buildings are a serious and increasing concern for the building industry. Moisture intrusion in buildings is especially pertinent in hot and humid climates because the climate conditions provide only limited...

  20. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15T23:59:59.000Z

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  1. Microscopic Lensing by a Dense, Cold Atomic Sample

    E-Print Network [OSTI]

    Stetson Roof; Kasie Kemp; Mark Havey; I. M. Sokolov; D. V. Kupriyanov

    2014-12-01T23:59:59.000Z

    We demonstrate that a cold, dense sample of 87Rb atoms can exhibit a micron-scale lensing effect, much like that associated with a macroscopically-sized lens. The experiment is carried out in the fashion of traditional z-scan measurements but in much weaker fields and where close attention is paid to the detuning dependence of the transmitted light. The results are interpreted using numerical simulations and by modeling the sample as a thin lens with a spherical focal length.

  2. Method for making dense crack free thin films

    DOE Patents [OSTI]

    Jacobson, Craig P. (Lafayette, CA); Visco, Steven J. (Berkeley, CA); De Jonghe, Lutgard C. (Lafayette, CA)

    2007-01-16T23:59:59.000Z

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  3. Several applications of a model for dense granular flows

    E-Print Network [OSTI]

    Cawthorn, Christopher John

    2011-03-15T23:59:59.000Z

    model for the dense flow of dry granular materials (Jop, Forterre & Pouliquen, 2006, Nature, 441, 167-192). The model, based upon a generalisation of Coulomb sliding friction, is known to perform well when modelling certain simple free surface flows. We... such model was proposed by Savage & Hutter (1989), who accounted for simple Coulomb sliding friction at the base of the flow, and neglected internal stresses. This simple model, and its later generalisation to two-dimensional flows over complex topography...

  4. The Baxter Q Operator of Critical Dense Polymers

    E-Print Network [OSTI]

    Alessandro Nigro

    2009-09-07T23:59:59.000Z

    We consider critical dense polymers ${\\cal L}_{1,2}$, corresponding to a logarithmic conformal field theory with central charge $c=-2$. An elegant decomposition of the Baxter $Q$ operator is obtained in terms of a finite number of lattice integrals of motion. All local, non local and dual non local involutive charges are introduced directly on the lattice and their continuum limit is found to agree with the expressions predicted by conformal field theory. A highly non trivial operator $\\Psi(\

  5. World launch! Hot-Steam Aerostat

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Info HeiDAS UH World launch! Hot-Steam Aerostat #12;"If you intend to view the land, if you plan Verne: "Fife weeks on a balloon". HeiDAS stands for Hei√?DampfAeroStat (Hot-Steam AeroStat) and it refers to the first operable balloon ever that became buoyant by means of superheated steam. The performance of Hei

  6. Phase diagram for the asymmetric nuclear matter in the multifragmentation model

    E-Print Network [OSTI]

    G. Chaudhuri; S. Das Gupta

    2009-08-11T23:59:59.000Z

    We assume that, in equilibrium, nuclear matter at reduced density and moderate finite temperature, breaks up into many fragments. A strong support to this assumption is provided by date accumulated from intermediate energy heavy ion collisions. The break-up of hot and expanded nuclear matter according to rules of equilibrium statistical mechanics is the multifragmentation model. The model gives a first order phase transition. This is studied in detail here. Phase-equilibrium lines for different degrees of asymmetry are computed.

  7. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect (OSTI)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29T23:59:59.000Z

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a ďbreakthroughĒ particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  8. Polycylcic Aromatic Hydrocarbons (PAH's) in dense cloud chemistry

    E-Print Network [OSTI]

    Valentine Wakelam; Eric Herbst

    2008-02-26T23:59:59.000Z

    Virtually all detailed gas-phase models of the chemistry of dense interstellar clouds exclude polycyclic aromatic hydrocarbons (PAH's). This omission is unfortunate because from the few studies that have been done on the subject, it is known that the inclusion of PAH's can affect the gas-phase chemistry strongly. We have added PAH's to our network to determine the role they play in the chemistry of cold dense cores. In the models presented here, we include radiative attachment to form PAH-, mutual neutralization between PAH anions and small positively-charged ions, and photodetachment. We also test the sensitivity of our results to changes in the size and abundance of the PAH's. Our results confirm that the inclusion of PAH's changes many of the calculated abundances of smaller species considerably. In TMC-1, the general agreement with observations is significantly improved contrary to L134N. This may indicate a difference in PAH properties between the two regions. With the inclusion of PAH's in dense cloud chemistry, high-metal elemental abundances give a satisfactory agreement with observations. As a result, we do not need to decrease the observed elemental abundances of all metals and we do not need to vary the elemental C/O ratio in order to produce large abundances of carbon species in TMC-1 (CP).

  9. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01T23:59:59.000Z

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  10. CC Retrofits and Optimal Controls for Hot Water Systems

    E-Print Network [OSTI]

    Wu, L.; Liu, M.; Wang, G.

    2007-01-01T23:59:59.000Z

    Continuous Commissioning (CC) technologies, three old boilers (13.39 MMBH each) were replaced by three new boilers (1.675 MMBH each) and hot water pumps. Optimal controls for the hot water systems included optimal hot water temperature reset, hot water pump...

  11. PROTON-CONDUCTING DENSE CERAMIC MEMBRANES FOR HYDROGEN SEPARATION

    SciTech Connect (OSTI)

    Jerry Y.S. Lin; Vineet Gupta; Scott Cheng

    2004-11-01T23:59:59.000Z

    Dense thin films of SrCe{sub 0.95}Tm{sub 0.05}O{sub 3-{delta}} (SCTm) with perovskite structure were prepared on porous alumina or SCTm substrates by the methods of (1) polymeric-gel casting and (2) dry-pressing. The polymeric-gel casting method includes preparation of mixed metal oxide gel and coating of the gel on a macroporous alumina support. Micrometer thick SCTm films of the perovskite structure can be obtained by the polymeric-gel casting method. However, the deposited films are not hermetic and it may require about 50 coatings in order to obtain gas-tight SCTm films by this method. Pd-Cu thin films were synthesized with elemental palladium and copper targets by the sequential R.F. sputter deposition on porous substrates. Pd-Cu alloy films could be formed after proper annealing. The deposited Pd-Cu films were gas-tight. This result demonstrated the feasibility of obtaining an ultrathin SCTm film by the sequential sputter deposition of Sr, Ce and Tm metals followed by proper annealing and oxidation. Such ultrathin SCTm membranes will offer sufficiently high hydrogen permeance for practical applications. Thin gas-tight SCTm membranes were synthesized on porous SCTm supports by the dry-pressing method. In this method, the green powder of SCTm was prepared by wet chemical method using metal nitrates as the precursors. Particle size of the powder was revealed to be a vital factor in determining the porosity and shrinkage of the sintered disks. Small particle size formed the dense film while large particle size produced porous substrates. The SCTm film thickness was varied from 1 mm to 0.15 mm by varying the amount of the target powder. A close match between the shrinkage of the substrate and the dense film led to the defect free-thin films. The selectivity of H{sub 2} over He with these films was infinite. The chemical environment on each side of the membrane influenced the H{sub 2} permeation flux as it had concurrent effects on the driving force and electronic/ionic conductivities. The H{sub 2} permeation rates were found to be inversely proportional to the thickness of the dense film indicating that bulk diffusion rather than surface reaction played a dominant role in H{sub 2} transport through these dense films within the studied thickness range (150 {micro}m - 1 mm).

  12. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect (OSTI)

    RICHARD A. WAGNER

    1998-09-04T23:59:59.000Z

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 įC including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

  13. Matter: Space without Time

    E-Print Network [OSTI]

    Yousef Ghazi-Tabatabai

    2012-11-19T23:59:59.000Z

    While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

  14. Optical studies of dense hydrogen at multi-megabar pressures†

    E-Print Network [OSTI]

    Howie, Ross Allan

    2013-07-01T23:59:59.000Z

    Hydrogen, being the simplest and most abundant element in the Universe, is of fundamental importance to condensed matter sciences. Through advances in high pressure experimental technique, hydrogen (and its isotope ...

  15. Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan

    E-Print Network [OSTI]

    Whitehouse, Kamin

    Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

  16. Energy Matters Mailbag

    Broader source: Energy.gov [DOE]

    This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil.

  17. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10T23:59:59.000Z

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called ďShockley-QueisserĒ limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates ďhotĒ charge carriers that quickly ďcoolĒ to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a ďphonon bottleneckĒ wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  18. Dense Heterogeneous Continuum Model of Two-Phase Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B

    2010-04-07T23:59:59.000Z

    A heterogeneous continuum model is proposed to describe the dispersion of a dense Aluminum particle cloud in an explosion. Let {alpha}{sub 1} denote the volume fraction occupied by the gas and {alpha}{sub 2} the fraction occupied by the solid, satisfying the volume conservation relation: {alpha}{sub 1} + {alpha}{sub 2} = 1. When the particle phase occupies a non-negligible volume fraction (i.e., {alpha}{sub 2} > 0), additional terms, proportional to {alpha}{sub 2}, appear in the conservation laws for two-phase flows. These include: (i) a particle pressure (due to particle collisions), (ii) a corresponding sound speed (which produces real eigenvalues for the particle phase system), (iii) an Archimedes force induced on the particle phase (by the gas pressure gradient), and (iv) multi-particle drag effects (which enhance the momentum coupling between phases). These effects modify the accelerations and energy distributions in the phases; we call this the Dense Heterogeneous Continuum Model. A characteristics analysis of the Model equations indicates that the system is hyperbolic with real eigenvalues for the gas phase: {l_brace}v{sub 1}, v{sub 1} {+-} {alpha}{sub 1}{r_brace} and for the 'particle gas' phase: {l_brace}v{sub 2}, v{sub 2} {+-}{alpha}{sub 2}{r_brace} and the particles: {l_brace}v{sub 2}{r_brace}, where v{sub i} and {alpha}{sub i} denote the velocity vector and sound speed of phase i. These can be used to construct a high-order Godunov scheme to integrate the conservation laws of a dense heterogeneous continuum.

  19. Open bottom mesons in hot asymmetric hadronic medium

    E-Print Network [OSTI]

    Divakar Pathak; Amruta Mishra

    2014-09-02T23:59:59.000Z

    The in-medium masses and optical potentials of $B$ and ${\\bar B}$ mesons are studied in an isospin asymmetric, strange, hot and dense hadronic environment using a chiral effective model. The chiral $SU(3)$ model originally designed for the light quark sector, is generalized to include the heavy quark sector ($c$ and $b$) to derive the interactions of the $B$ and $\\bar B$ mesons with the light hadrons. Due to large mass of bottom quark, we use only the empirical form of these interactions for the desired purpose, while treating the bottom degrees of freedom to be frozen in the medium. Hence, all medium effects are due to the in-medium interaction of the light quark content of these open-bottom mesons. Both $B$ and $\\bar B$ mesons are found to experience net attractive interactions in the medium, leading to lowering of their masses in the medium. The mass degeneracy of particles and antiparticles, ($B^+$, $B^-$) as well as ($B^0$, ${\\bar B}^0$), is observed to be broken in the medium, due to equal and opposite contributions from a vectorial Weinberg-Tomozawa interaction term. Addition of hyperons to the medium lowers further the in-medium mass for each of these four mesons, while a non-zero isospin asymmetry is observed to break the approximate mass degeneracy of each pair of isospin doublets. These medium effects are found to be strongly density dependent, and bear a considerably weaker temperature dependence. The results obtained in the present investigation are compared to predictions from the quark-meson coupling model, heavy meson effective theory, and the QCD Sum Rule approach.

  20. Anomalous thermodynamics and phase transitions of neutron-star matter

    E-Print Network [OSTI]

    P. Chomaz; F. Gulminelli; C. Ducoin; P. Napolitani; K. H. O. Hasnaoui

    2007-06-20T23:59:59.000Z

    In this letter we show that the presence of the long-range Coulomb force in dense stellar matter implies that the total charge cannot be associated with a chemical potential, even if it is a conserved quantity. As a further consequence, the analytical properties of the partition sum are modified, changing the order of the phase transitions and affecting the possible occurrence of critical behaviours. The peculiar thermodynamic properties of the system can be understood introducing a model hamiltonian in which each charge is independently neutralized by a uniform background of opposite charge.

  1. The building blocks of dynamical heterogeneities in dense granular media

    E-Print Network [OSTI]

    R. Candelier; O. Dauchot; G. Biroli

    2009-01-22T23:59:59.000Z

    We investigate experimentally the connection between short time dynamics and long time dynamical heterogeneities within a dense granular media under cyclic shear. We show that dynamical heterogeneities result from a two timescales process. Short time but already collective events consisting in clustered cage jumps concentrate most of the non affine displacements. On larger timescales such clusters appear aggregated both temporally and spatially in avalanches which eventually build the large scales dynamical heterogeneities. Our results indicate that facilitation plays an important role in the relaxation process although it does not appear to be conserved as proposed in many models studied in the literature.

  2. Nonlinear elasto-plastic model for dense granular flow

    E-Print Network [OSTI]

    Ken Kamrin

    2009-05-07T23:59:59.000Z

    This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity (Jiang and Liu 2003) and rate-sensitive plastic flow (Jop et al. 2006) are reformulated and combined into one universal granular continuum law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kroner-Lee elasto-plastic decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.

  3. Dissipative optical solitons in dense media with optical pumping

    SciTech Connect (OSTI)

    Prokhorov, A. V., E-mail: avprokhorov@vlsu.ru; Gubin, M. Yu.; Leksin, A. Yu. [Vladimir State University (Russian Federation); Gladush, M. G. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Alodzhants, A. P.; Arakelyan, S. M. [Vladimir State University (Russian Federation)

    2012-07-15T23:59:59.000Z

    The problem of nonlinear scattering of optical pulses in a dense three-level atomic medium with continuous pumping is considered with allowance for the local field effects. The physical requirements on the parameters of the medium and field are formulated, and the ranges of these parameters for which stationary solitons are effectively formed in the model of a quartz waveguide doped with {sup 87}Rb atoms are determined using variational methods. It is found that disregarding the local field in this model results in violation of soliton stability in the predicted parameter range.

  4. Ultra-Efficient and Power-Dense Electric Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan WorkingUSEA/Johnsonand Power-Dense

  5. MHD processes during the cascade development of the neck and hot spot in an X-pinch

    SciTech Connect (OSTI)

    Ivanenkov, G. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Stepniewski, W. [Kaliski Institute of Plasma Physics and Laser Microfusion (Poland); Gus'kov, S. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2008-08-15T23:59:59.000Z

    Results are presented from two-dimensional MHD simulations of X-pinch implosion. The simulations were performed in the (r, z) and (x, y) geometries for homogeneous (dense plasma) and heterogeneous (core-corona) loads. The formation of a minidiode, the development of a neck and an X-radiating hot spot, and the influence of the plasma corona on the implosion dynamics of the dense X-pinch plasma were investigated. For through simulations, the conical neck model was used, whereas a detailed analysis of the X-ray burst was performed in the parabolic neck model. The MHD processes occurring during the implosion of oblique shock waves and the onset of instability of the plasma column were examined. It is found that, due to the quasi-periodic character of these processes, the neck compression proceeds in a cascade fashion. The plasma state in a hot spot just before the break of the neck is analyzed, and the possibility of generating fast particle beams is considered.

  6. Kepler constraints on planets near hot Jupiters

    SciTech Connect (OSTI)

    Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01T23:59:59.000Z

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  7. Hot gas filter and system assembly

    DOE Patents [OSTI]

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31T23:59:59.000Z

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  8. Radioactive hot cell access hole decontamination machine

    DOE Patents [OSTI]

    Simpson, William E. (Richland, WA)

    1982-01-01T23:59:59.000Z

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  9. Dipolar Dark Matter

    E-Print Network [OSTI]

    Blanchet, Luc

    2015-01-01T23:59:59.000Z

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because the two types of dark matter interact through the vector field, a ghostly degree of fre...

  10. DARK MATTER AS AN ACTIVE GRAVITATIONAL AGENT IN CLOUD COMPLEXES

    SciTech Connect (OSTI)

    Suarez-Madrigal, Andres; Ballesteros-Paredes, Javier; Colin, Pedro; D'Alessio, Paola, E-mail: a.suarez@crya.unam.mx [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 72-3 (Xangari), Morelia, Michocan, Mexico C.P. 58089 (Mexico)

    2012-04-01T23:59:59.000Z

    We study the effect that the dark matter background (DMB) has on the gravitational energy content and, in general, on the star formation efficiency (SFE) of a molecular cloud (MC). We first analyze the effect that a dark matter halo, described by the Navarro-Frenk-White density profile, has on the energy budget of a spherical, homogeneous cloud located at different distances from the halo center. We found that MCs located in the innermost regions of a massive galaxy can feel a contraction force greater than their self-gravity due to the incorporation of the potential of the galaxy's dark matter halo. We also calculated analytically the gravitational perturbation that an MC produces over a uniform DMB (uniform at the scales of an MC) and how this perturbation will affect the evolution of the MC itself. The study shows that the star formation in an MC will be considerably enhanced if the cloud is located in a dense and low velocity dark matter environment. We confirm our results by measuring the SFE in numerical simulations of the formation and evolution of MCs within different DMBs. Our study indicates that there are situations where the dark matter's gravitational contribution to the evolution of the MCs should not be neglected.

  11. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  12. Dynamic polarizability of an atomic ion within a dense plasma

    SciTech Connect (OSTI)

    Basu, Joyee; Ray, Debasis [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711 103, West Bengal (India)

    2011-01-15T23:59:59.000Z

    We analyze the influence of plasma electron density on frequency-dependent linear field-response behavior of an atomic ion embedded in a dense plasma medium. The frequency-dependent atomic response, characterized by the dynamic dipole polarizability {alpha}{sub d}({omega}) as a function of the angular frequency {omega} of the time-dependent field, is estimated here up to the first pole of {alpha}{sub d}({omega}) on the {omega} axis (corresponding to the lowest resonance transition 1s{sup 2} {sup 1}S{yields}1s2p {sup 1}P) for the ground state 1s{sup 2} {sup 1}S of a two-electron atomic ion Ne{sup 8+} (Z = 10) at different plasma electron densities, as a typical example, employing the time-dependent coupled Hartree-Fock scheme within the framework of the ion-sphere model. It is observed that, owing to plasma density-induced enhancement of {alpha}{sub d}({omega}) at every {omega}, the pole position of {alpha}{sub d}({omega}) on the {omega} axis retracts toward the origin. This indicates a density-induced lowering (redshift) of the corresponding transition energy that conforms to experimentally observed trends. The polarizability calculation suggests a density-induced drop in the 1s{sup 2} {sup 1}S{yields}1s2p {sup 1}P absorption oscillator strength in the atomic ion within dense plasmas.

  13. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01T23:59:59.000Z

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  14. THE INFLUENCE OF ATMOSPHERIC SCATTERING AND ABSORPTION ON OHMIC DISSIPATION IN HOT JUPITERS

    SciTech Connect (OSTI)

    Heng, Kevin [ETH Zuerich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, CH-8093 Zuerich (Switzerland)

    2012-03-20T23:59:59.000Z

    Using semi-analytical, one-dimensional models, we elucidate the influence of scattering and absorption on the degree of Ohmic dissipation in hot Jovian atmospheres. With the assumption of Saha equilibrium, the variation in temperature is the main driver of the variations in the electrical conductivity, induced current, and Ohmic power dissipated. Atmospheres possessing temperature inversions tend to dissipate most of the Ohmic power superficially, at high altitudes, whereas those without temperature inversions are capable of greater dissipation deeper down. Scattering in the optical range of wavelengths tends to cool the lower atmosphere, thus reducing the degree of dissipation at depth. Purely absorbing cloud decks (in the infrared), of a finite extent in height, allow for localized reductions in dissipation and may reverse a temperature inversion if they are dense and thick enough, thus greatly enhancing the dissipation at depth. If Ohmic dissipation is the mechanism for inflating hot Jupiters, then variations in the atmospheric opacity (which may be interpreted as arising from variations in metallicity and cloud/haze properties) and magnetic field strength naturally produce a scatter in the measured radii at a given strength of irradiation. Future work will determine if these effects are dominant over evolutionary effects, which also contribute a scatter to the measured radii.

  15. Ice particle size matters | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice particle size matters Ice particle size matters Released: May 04, 2014 Fine-tuning cloud models for improved climate predictions The Science Arctic clouds are widespread and...

  16. Dutch experience with hot windbox repowering

    SciTech Connect (OSTI)

    Ploumen, P.J. [KEMA Nederland B.V., Arnhem (Netherlands); Veenema, J.J. [EPON, Zwolle (Netherlands)

    1995-10-01T23:59:59.000Z

    This paper gives an overview of the options available for repowering existing fossil fuel power plants. It includes an examination of the hot windbox repowering program in the Netherlands. The topics of the paper include efficiency improvement, NO{sub x} emission decrease, power increase, flexibility, and an economic evaluation of repowering.

  17. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  18. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  19. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  20. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  1. Hot topics in flavor physics at CDF

    SciTech Connect (OSTI)

    Jun, Soon Yung; /Carnegie Mellon U.

    2005-01-01T23:59:59.000Z

    Hot topics in flavor physics at CDF are reviewed. Selected results of top, beauty, charm physics and exotic states in about 200 pb{sup -1} data collected by the CDF II detector in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron are presented.

  2. Solar Hot Water Creates Savings for Homeless Shelters | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Solar Hot Water Creates Savings for Homeless Shelters Solar Hot Water Creates Savings for Homeless Shelters July 15, 2010 - 12:10pm Addthis Kevin Craft What are the key facts?...

  3. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  4. The High Albedo of the Hot Jupiter Kepler-7 B

    E-Print Network [OSTI]

    Demory, Brice-Olivier

    Hot Jupiters are expected to be dark from both observations (albedo upper limits) and theory (alkali metals and/or TiO and VO absorption). However, only a handful of hot Jupiters have been observed with high enough photometric ...

  5. Quark-Meson Coupling Model, Nuclear Matter Constraints and Neutron Star Properties

    E-Print Network [OSTI]

    Whittenbury, D L; Thomas, A W; Tsushima, K; Stone, J R

    2013-01-01T23:59:59.000Z

    We explore the equation of state for nuclear matter in the quark-meson coupling model, including full Fock terms. The comparison with phenomenological constraints can be used to restrict the few additional parameters appearing in the Fock terms which are not present at Hartree level. Because the model is based upon the in-medium modification of the quark structure of the bound hadrons, it can be applied without additional parameters to include hyperons and to calculate the equation of state of dense matter in beta-equilibrium. This leads naturally to a study of the properties of neutron stars, including their maximum mass, their radii and density profiles.

  6. Cuttings Analysis At Roosevelt Hot Springs Area (Christensen...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Area (Christensen, Et Al., 1983) Exploration Activity...

  7. Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV

    Broader source: Energy.gov [DOE]

    Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. home power 114 / august & september 2006 in Solar Hot Water

    E-Print Network [OSTI]

    Knowles, David William

    : Heliotrope Thermal DTT-84 Solar Collectors: Two Heliodyne Gobi 410, 4 x 10 ft. Cold Supply In Hot to House

  9. Pressure Temperature Log At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  10. Programmable matter by folding

    E-Print Network [OSTI]

    Wood, R. J.

    Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

  11. The Heart of Matter

    E-Print Network [OSTI]

    Rohini M. Godbole

    2010-06-30T23:59:59.000Z

    In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

  12. Matter & Energy Electronics

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

  13. Gaseous dark matter detectors

    E-Print Network [OSTI]

    Martoff, C. J.

    Dark matter (DM) detectors with directional sensitivity have the potential of yielding an unambiguous positive observation of WIMPs as well as discriminating between galactic DM halo models. In this paper, we introduce the ...

  14. Molecular Dynamics Simulations of Temperature Equilibration in Dense Hydrogen

    SciTech Connect (OSTI)

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M; Benedict, L; Hau-Riege, S; Langdon, A; London, R

    2008-02-14T23:59:59.000Z

    The temperature equilibration rate in dense hydrogen (for both T{sub i} > T{sub e} and T{sub i} < T{sub e}) has been calculated with large-scale molecular dynamics simulations for temperatures between 10 and 300 eV and densities between 10{sup 20}/cc to 10{sup 24}/cc. Careful attention has been devoted to convergence of the simulations, including the role of semiclassical potentials. We find that for Coulomb logarithms L {approx}> 1, Brown-Preston-Singleton [Brown et al., Phys. Rep. 410, 237 (2005)] with the sub-leading corrections and the fit of Gericke-Murillo-Schlanges [Gericke et al., PRE 65, 036418 (2003)] to the T-matrix evaluation of the collision operator, agrees with the MD data to within the error bars of the simulation. For more strongly-coupled plasmas where L {approx}< 1, our numerical results are consistent with the fit of Gericke-Murillo-Schlanges.

  15. Temperature scaling in a dense vibro-fluidised granular material

    E-Print Network [OSTI]

    P. Sunthar; V. Kumaran

    1999-04-16T23:59:59.000Z

    The leading order "temperature" of a dense two dimensional granular material fluidised by external vibrations is determined. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error. The theory also predicts the scaling relations of the total dissipation in the bed reported by McNamara and Luding (PRE v 58, p 813).

  16. CORRELATING INFALL WITH DEUTERIUM FRACTIONATION IN DENSE CORES

    SciTech Connect (OSTI)

    Schnee, Scott; Brunetti, Nathan; Friesen, Rachel [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Di Francesco, James; Johnstone, Doug; Pon, Andy [National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road Victoria, BC V9E 2E7 (Canada); Caselli, Paola, E-mail: sschnee@nrao.edu [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2013-11-10T23:59:59.000Z

    We present a survey of HCO{sup +} (3-2) observations pointed toward dense cores with previous measurements of N(N{sub 2}D{sup +})/N(N{sub 2}H{sup +}). Of the 26 cores in this survey, 5 show the spectroscopic signature of outward motion, 9 exhibit neither inward nor outward motion, 11 appear to be infalling, and 1 is not detected. We compare the degree of deuterium fractionation with infall velocities calculated from the HCO{sup +} spectra and find that those cores with [D]/[H] > 0.1 are more likely to have the signature of inward motions than cores with smaller [D]/[H] ratios. Infall motions are also much more common in cores with masses exceeding their thermal Jeans masses. The fastest infall velocity measured belongs to one of the two protostellar cores in our survey, L1521F, and the observed motions are typically on the order of the sound speed.

  17. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-09-12T23:59:59.000Z

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  18. Dense and Sparse Matrix Operations on the Cell Processor

    SciTech Connect (OSTI)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Husbands,Parry; Yelick, Katherine

    2005-05-01T23:59:59.000Z

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. Therefore, the high performance computing community is examining alternative architectures that address the limitations of modern superscalar designs. In this work, we examine STI's forthcoming Cell processor: a novel, low-power architecture that combines a PowerPC core with eight independent SIMD processing units coupled with a software-controlled memory to offer high FLOP/s/Watt. Since neither Cell hardware nor cycle-accurate simulators are currently publicly available, we develop an analytic framework to predict Cell performance on dense and sparse matrix operations, using a variety of algorithmic approaches. Results demonstrate Cell's potential to deliver more than an order of magnitude better GFLOP/s per watt performance, when compared with the Intel Itanium2 and Cray X1 processors.

  19. Beam-driven acceleration in ultra-dense plasma media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Young-Min [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-09-15T23:59:59.000Z

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  20. Fusion burn dynamics in dense Z-pinches (DZP)

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Werley, K.A.; Hagenson, R.L. (Los Alamos National Lab., NM (USA); Phillips Petroleum Co., Bartlesville, OK (USA))

    1989-01-01T23:59:59.000Z

    The fusion burn dynamics and energy yield of the dense Z-pinch (DZP) are examined using a profile-averaged, zero-dimensional time-dependent model. A range of conditions (fuel, line density, voltage, fusion-product heating, enthalpy endless, density and temperature profiles, current rise rate, electrode impurities) are examined. Magneto-hydrodynamic stability is assumed, and initial conditions are based on those ideally existing after the melting and ionization of a solid fiber of fusion fuel. Plasma-conditions required of neutron sources for materials testing ({dot S}{sub n} {ge} 10{sup 19} n/s) and for possible commercial power production are examined. 25 refs., 9 figs.

  1. The Optimization of ATLAS Track Reconstruction in Dense Environments

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    This note presents recent changes in the ATLAS track reconstruction chain derived from detailed studies of track reconstruction in dense environments. The cores of high $p_{T}$ jets and $\\tau$-leptons are characterized by charged particle distances comparable to the inner detector sensor dimensions. The ambiguity processor stage of the reconstruction chain was over-halled including an improvement of the usage of a NN based approach to identify clusters created by multiple charge particles. Single particle samples are used to demonstrate the alteration in a simple environment. The impact of these changes on tracks in high $p_{T}$ jets are shown to result in more pixel hits on track, a more meaningful split hit definition, and improved track parameter estimation. A 10% increase in b-jet identification for an equal fake rate has been shown.

  2. Method for forming a uniformly dense polymer foam body

    DOE Patents [OSTI]

    Whinnery, Jr., Leroy (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 .sup.g /.sub.cm.sup..sub.3 to about 0.5 .sup.g /.sub.cm.sup..sub.3 is disclosed. The method utilizes a thermally expandable polymer microballoon material wherein some of the microballoons are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  3. Elemental: a new framework for distributed memory dense matrix computations.

    SciTech Connect (OSTI)

    Romero, N.; Poulson, J.; Marker, B.; Hammond, J.; Van de Geijn, R. (LCF); (The Univ. of Texas at Austin)

    2012-02-14T23:59:59.000Z

    Parallelizing dense matrix computations to distributed memory architectures is a well-studied subject and generally considered to be among the best understood domains of parallel computing. Two packages, developed in the mid 1990s, still enjoy regular use: ScaLAPACK and PLAPACK. With the advent of many-core architectures, which may very well take the shape of distributed memory architectures within a single processor, these packages must be revisited since the traditional MPI-based approaches will likely need to be extended. Thus, this is a good time to review lessons learned since the introduction of these two packages and to propose a simple yet effective alternative. Preliminary performance results show the new solution achieves competitive, if not superior, performance on large clusters.

  4. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15T23:59:59.000Z

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  5. A Proof of Selection Rules for Critical Dense Polymers

    E-Print Network [OSTI]

    Alexi Morin-Duchesne

    2011-09-29T23:59:59.000Z

    Among the lattice loop models defined by Pearce, Rasmussen and Zuber (2006), the model corresponding to critical dense polymers ($\\beta = 0$) is the only one for which an inversion relation for the transfer matrix $D_N(u)$ was found by Pearce and Rasmussen (2007). From this result, they identified the set of possible eigenvalues for $D_N(u)$ and gave a conjecture for the degeneracies of its relevant eigenvalues in the link representation, in the sector with $d$ defects. In this paper, we set out to prove this conjecture, using the homomorphism of the $TL_N (\\beta)$ algebra between the loop model link representation and that of the XXZ model for $\\beta = -(q+q^{-1})$.

  6. Beam-driven acceleration in ultra-dense plasma media

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Young-Min

    2014-09-15T23:59:59.000Z

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more†Ľfrom 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.ę†less

  7. Microchannel cross load array with dense parallel input

    DOE Patents [OSTI]

    Swierkowski, Stefan P.

    2004-04-06T23:59:59.000Z

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  8. Current and Perspective Applications of Dense Plasma Focus Devices

    SciTech Connect (OSTI)

    Gribkov, V. A. [A.I. Alikhanov Institute of Theoretical and Experimental Physics, ul. Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Institute of Plasma Physics and Laser Microfusion, ul. Hery 23, Warsaw 01-497 (Poland)

    2008-04-07T23:59:59.000Z

    Dense Plasma Focus (DPF) devices' applications, which are intended to support the main-stream large-scale nuclear fusion programs (NFP) from one side (both in fundamental problems of Dense Magnetized Plasma physics and in its engineering issues) as well as elaborated for an immediate use in a number of fields from the other one, are described. In the first direction such problems as self-generated magnetic fields, implosion stability of plasma shells having a high aspect ratio, etc. are important for the Inertial Confinement Fusion (ICF) programs (e.g. as NIF), whereas different problems of current disruption phenomenon, plasma turbulence, mechanisms of generation of fast particles and neutrons in magnetized plasmas are of great interest for the large devices of the Magnetic Plasma Confinement--MPC (e.g. as ITER). In a sphere of the engineering problems of NFP it is shown that in particular the radiation material sciences have DPF as a very efficient tool for radiation tests of prospect materials and for improvement of their characteristics. In the field of broad-band current applications some results obtained in the fields of radiation material sciences, radiobiology, nuclear medicine, express Neutron Activation Analysis (including a single-shot interrogation of hidden illegal objects), dynamic non-destructive quality control, X-Ray microlithography and micromachining, and micro-radiography are presented. As the examples of the potential future applications it is proposed to use DPF as a powerful high-flux neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration for innovative experiments in nuclear physics, for the goals of radiation treatment of malignant tumors, for neutron tests of materials of the first wall, blankets and NFP device's constructions (with fluences up to 1 dpa per a year term), and ns pulses of fast electrons, neutrons and hard X-Rays for brachytherapy.

  9. High density matter

    E-Print Network [OSTI]

    J. R. Stone

    2013-02-11T23:59:59.000Z

    The microscopic composition and properties of matter at super-saturation densities have been the subject of intense investigation for decades. The scarcity of experimental and observational data has lead to the necessary reliance on theoretical models. However, there remains great uncertainty in these models, which, of necessity, have to go beyond the over-simple assumption that high density matter consists only of nucleons and leptons. Heavy strange baryons, mesons and quark matter in different forms and phases have to be included to fulfil basic requirements of fundamental laws of physics. In this review the latest developments in construction of the Equation of State (EoS) of high-density matter at zero and finite temperature assuming different composition of the matter are surveyed. Critical comparison of model EoS with available observational data on neutron stars, including gravitational masses, radii and cooling patterns is presented. The effect of changing rotational frequency on the composition of neutron stars during their lifetime is demonstrated. Compatibility of EoS of high-density, low temperature compact objects and low density, high temperature matter created in heavy-ion collisions is discussed.

  10. THE SIGNATURE OF THE WARM-HOT INTERGALACTIC MEDIUM IN WMAP AND THE FORTHCOMING PLANCK DATA

    SciTech Connect (OSTI)

    Suarez-Velasquez, I.; Kitaura, F.-S.; Muecket, J. P. [Leibniz-Institut fuer Astrophysik, D-14482 Potsdam (Germany); Atrio-Barandela, F., E-mail: isuarez@aip.de, E-mail: kitaura@aip.de, E-mail: jpmuecket@aip.de, E-mail: atrio@usal.es [Fisica Teorica, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2013-05-20T23:59:59.000Z

    We compute the cross-correlation between the Warm-Hot Intergalactic Medium and maps of cosmic microwave background temperature anisotropies using a log-normal probability density function to describe the weakly nonlinear matter density field. We search for this contribution in the data measured by the Wilkinson Microwave Anisotropy Probe. We use a template of projected matter density reconstructed from the Two-Micron All-Sky Redshift Survey as a tracer of the electron distribution. The spatial distribution of filaments is modeled using the recently developed Augmented Lagrangian Perturbation Theory. On the scales considered here, the reconstructed density field is very well described by the assumed log-normal distribution function. We predict that the cross-correlation will have an amplitude of 0.03-0.3 {mu}K. The measured value is close to 1.5 {mu}K, compatible with random alignments between structure in the template and in the temperature anisotropy data. Using the W1 Differencing Assembly to remove this systematic gives a residual correlation dominated by Galactic foregrounds. Planck could detect the Warm-Hot Medium if it is well traced by the density field reconstructed from galaxy surveys. The 217 GHz channel will allow to eliminate spurious contributions and its large frequency coverage can show the sign change from the Rayleigh-Jeans to the Wien part of the spectrum, characteristic of the thermal Sunyaev-Zel'dovich effect.

  11. Method for hot pressing beryllium oxide articles

    DOE Patents [OSTI]

    Ballard, Ambrose H. (Oak Ridge, TN); Godfrey, Jr., Thomas G. (Oak Ridge, TN); Mowery, Erb H. (Clinton, TN)

    1988-01-01T23:59:59.000Z

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  12. Baroclinic Instability on Hot Extrasolar Planets

    E-Print Network [OSTI]

    Polichtchouk, Inna

    2012-01-01T23:59:59.000Z

    We investigate baroclinic instability in flow conditions relevant to hot extrasolar planets. The instability is important for transporting and mixing heat, as well as for influencing large-scale variability on the planets. Both linear normal mode analysis and non-linear initial value calculations are carried out -- focusing on the freely-evolving, adiabatic situation. Using a high-resolution general circulation model (GCM) which solves the traditional primitive equations, we show that large-scale jets similar to those observed in current GCM simulations of hot extrasolar giant planets are likely to be baroclinically unstable on a timescale of few to few tens of planetary rotations, generating cyclones and anticyclones that drive weather systems. The growth rate and scale of the most unstable mode obtained in the linear analysis are in qualitative, good agreement with the full non-linear calculations. In general, unstable jets evolve differently depending on their signs (eastward or westward), due to the chang...

  13. Turbodrilling in the hot-hole environment

    SciTech Connect (OSTI)

    Herbert, P.

    1982-10-01T23:59:59.000Z

    Historically, geothermal and other types of hot-hole drilling have presented what seemed to be insurmountable barriers to efficient and extended use of downhole drilling motors, particularly those containing elastomeric bearing or motor components. Typical temperatures of 350 to 700/sup 0/F (177 to 371/sup 0/C) damage the elastomers and create other operating problems, reducing the life of the motors and their ability to drill efficiently. Recent innovations in turbodrill design have opened heretofore unrealized potentials and have allowed, for the first time, extended downhole drilling time in hot-hole conditions. The unique feature of this turbodrill is the lack of any elastomers or other temperature-sensitive materials. Its capabilities are matched closely to the requirements of drilling in elevated-temperature environments. The bearing assembly can withstand conditions encountered in typical geothermal formations and provides the performance necessary to stay in the hole. The result is increased rate of penetration (ROP) and more economical drilling.

  14. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect (OSTI)

    Venkat Vedula; Tania Bhatia

    2009-04-30T23:59:59.000Z

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section components for gas turbine engines. Significant technical progress has been made towards maturation of the EBC and CMC technologies for incorporation into gas turbine engine hot-section. Promising EBC candidates for longer life and/or higher temperature applications relative to current state of the art BSAS-based EBCs have been identified. These next generation coating systems have been scaled-up from coupons to components and are currently being field tested in Solar Centaur 50S engine. CMC combustor liners were designed, fabricated and tested in a FT8 sector rig to demonstrate the benefits of a high temperature material system. Pretest predictions made through the use of perfectly stirred reactor models showed a 2-3x benefit in CO emissions for CMC versus metallic liners. The sector-rig test validated the pretest predictions with >2x benefit in CO at the same NOx levels at various load conditions. The CMC liners also survived several trip shut downs thereby validating the CMC design methodology. Significant technical progress has been made towards incorporation of ceramic matrix composites (CMC) and environmental barrier coatings (EBC) technologies into gas turbine engine hot-section. The second phase of the program focused on the demonstration of a reverse flow annular CMC combustor. This has included overcoming the challenges of design and fabrication of CMCs into 'complex' shapes; developing processing to apply EBCs to 'engine hardware'; testing of an advanced combustor enabled by CMCs in a PW206 rig; and the validation of performance benefits against a metal baseline. The rig test validated many of the pretest predictions with a 40-50% reduction in pattern factor compared to the baseline and reductions in NOx levels at maximum power conditions. The next steps are to develop an understanding of the life limiting mechanisms in EBC and CMC materials, developing a design system for EBC coated CMCs and durability testing in an engine environment.

  15. SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    photothermal tumor heating to ablative temperatures. In the future, the dense near-infrared spectralSERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating By Geoffrey von Maltzahn, Andrea Centrone, Ji-Ho Park, Renuka Ramanathan

  16. Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties of BIMEVOX (Me = Ta)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties for syngas or H2 production from light hydrocarbons. #12;2 Keywords: Dense membrane reactor, BIMEVOX, BITAVOX to decouple the two steps of the redox mechanism that prevails in selective oxidation of hydrocarbons [1

  17. Dense granular flows: two-particle argument accounts for friction-like constitutive law with threshold

    E-Print Network [OSTI]

    Boyer, Edmond

    Dense granular flows: two-particle argument accounts for friction-like constitutive law that exhibits a flow threshold expressed as a finite effective friction at flow onset. The value 83.10.Gr 83.60.La I. INTRODUCTION Dense flows of dry granular materials and granular pastes is still

  18. Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble

    E-Print Network [OSTI]

    Du, Shengwang

    Optical storage with electromagnetically induced transparency in a dense cold atomic ensemble storage with electromagnetically induced transparency in a dense cold 85 Rb atomic ensemble. By varying the optical depth (OD) from 0 to 140, we observe that the optimal storage effi- ciency has a saturation value

  19. Nonlithographic epitaxial SnxGe1x dense nanowire arrays grown on Ge,,001...

    E-Print Network [OSTI]

    Atwater, Harry

    Nonlithographic epitaxial SnxGe1ņx dense nanowire arrays grown on Ge,,001... Regina Ragan-thick SnxGe1 x /Ge(001) epitaxial films with 0 x 0.085 by molecular-beam epitaxy. These films evolve during growth into a dense array of SnxGe1 x nanowires oriented along 001 , as confirmed by composition contrast

  20. Scheduling Algorithms and Bounds for Rateless Data Dissemination in Dense Wireless Networks

    E-Print Network [OSTI]

    Starobinski, David

    Scheduling Algorithms and Bounds for Rateless Data Dissemination in Dense Wireless Networks Kan Lin, Germany Email: ska@alum.bu.edu Abstract--Many applications in wireless cellular networks rely dissemination in dense multi-channel wireless cellular networks, using rateless coding transmission. We begin

  1. Partial Clustering: Maintaining Connectivity in a Low Duty-Cycled Dense Wireless Sensor Network

    E-Print Network [OSTI]

    Liu, Mingyan

    1 Partial Clustering: Maintaining Connectivity in a Low Duty-Cycled Dense Wireless Sensor Network of Michigan, Ann Arbor {chsin,mingyan}@eecs.umich.edu Abstract-- We consider a dense wireless sensor network their effectiveness and energy efficiency. Index Terms-- System design, wireless sensor networks, con- nectivity

  2. Stationary shear ows of dense granular materials : a tentative continuum modelling

    E-Print Network [OSTI]

    -less granular media. Compressibil- ity, dilatancy and Coulomb-like friction are the three basic ingredients Abstract We propose a simple continuum model to interpret the shearing motion of dense, dry and cohesion slow motions with predominance of friction, less dense ones are usually found in vigorous motions

  3. Wall Drying in Hot and Humid Climates

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01T23:59:59.000Z

    WALL DRYING IN HOT AND HUMID CLIMATES Kimdolyn Boone Theresa Weston, PhD Xuaco Pascual Product Development Engineer Building Scientist Field Services Engineer E.I. du Pont de Nemours and Company Richmond, VA ABSTRACT... time based on the varying weather conditions. Constant interior conditions of 70?F and 55% RH were chosen. This corresponds to typical interior temperatures and a high level of moisture production within the house. This was chosen as a worse...

  4. Hot One-Temperature Accretion Flows Revisited

    E-Print Network [OSTI]

    Feng Yuan; Ronald E. Taam; Yongquan Xue; Wei Cui

    2005-09-11T23:59:59.000Z

    The effectiveness of the thermal coupling of ions and electrons in the context of optically thin, hot accretion flows is investigated. In the limit of complete coupling, we focus on the one-temperature accretion flows. Based on a global analysis, the results are compared with two-temperature accretion flow models and with the observations of black hole sources. Many features are quite similar. That is, hot one-temperature solutions are found to exist for mass flow rates less than a critical value; i.e., $\\dot{M}\\la 10\\alpha^2\\dot{M}_{\\rm Edd}$, where $\\dot{M}_{\\rm Edd}= L_{\\rm Edd}/c^2$ is the Eddington accretion rate. At low mass flow rates, $\\dot{M}\\la 10^{-3}\\alpha^2 \\dot{M}_{\\rm Edd}$, the solution is in the advection-dominated accretion flow (ADAF) regime. But at higher rates, radiative cooling is effective and is mainly balanced by advective {\\em heating}, placing the solution in the regime of luminous hot accretion flow (LHAF). To test the viability of the one-temperature models, we have fitted the spectra of the two black hole sources, Sgr A* and XTE J1118+480, which have been examined successfully with two-temperature models. It is found that the one-temperature models do not provide acceptable fits to the multi-wavelength spectra of Sgr A* nor to XTE J1118+480 as a result of the higher temperatures characteristic of the one-temperature models. It is concluded that the thermal coupling of ions and electrons cannot be fully effective and that a two-temperature description is required in hot accretion flow solutions.

  5. Hot filament CVD of boron nitride films

    DOE Patents [OSTI]

    Rye, Robert R. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  6. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  7. Sol Duc Hot Springs feasibility study

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  8. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  9. Phase transition from hadronic matter to quark matter

    E-Print Network [OSTI]

    P. Wang; A. W. Thomas; A. G. Williams

    2007-04-03T23:59:59.000Z

    We study the phase transition from nuclear matter to quark matter within the SU(3) quark mean field model and NJL model. The SU(3) quark mean field model is used to give the equation of state for nuclear matter, while the equation of state for color superconducting quark matter is calculated within the NJL model. It is found that at low temperature, the phase transition from nuclear to color superconducting quark matter will take place when the density is of order 2.5$\\rho_0$ - 5$\\rho_0$. At zero density, the quark phase will appear when the temperature is larger than about 148 MeV. The phase transition from nuclear matter to quark matter is always first order, whereas the transition between color superconducting quark matter and normal quark matter is second order.

  10. Processes for making dense, spherical active materials for lithium-ion cells

    DOE Patents [OSTI]

    Kang, Sun-Ho (Naperville, IL); Amine, Khalil (Downers Grove, IL)

    2011-11-22T23:59:59.000Z

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  11. Bulk viscosity of QCD matter near the critical temperature

    E-Print Network [OSTI]

    D. Kharzeev; K. Tuchin

    2007-05-29T23:59:59.000Z

    Kubo's formula relates bulk viscosity to the retarded Green's function of the trace of the energy-momentum tensor. Using low energy theorems of QCD for the latter we derive the formula which relates the bulk viscosity to the energy density and pressure of hot matter. We then employ the available lattice QCD data to extract the bulk viscosity as a function of temperature. We find that close to the deconfinement temperature bulk viscosity becomes large, with viscosity-to-entropy ratio zeta/s about 1.

  12. At the heart of the matter: the origin of bulgeless dwarf galaxies and Dark Matter cores

    E-Print Network [OSTI]

    Fabio Governato; Chris Brook; Lucio Mayer; Alyson Brooks; George Rhee; James Wadsley; Patrik Jonsson; Beth Willman; Greg Stinson; Thomas Quinn; Piero Madau

    2009-11-11T23:59:59.000Z

    For almost two decades the properties of "dwarf" galaxies have challenged the Cold Dark Matter (CDM) paradigm of galaxy formation. Most observed dwarf galaxies consists of a rotating stellar disc embedded in a massive DM halo with a near constant-density core. Yet, models based on the CDM scenario invariably form galaxies with dense spheroidal stellar "bulges" and steep central DM profiles, as low angular momentum baryons and DM sink to the center of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different DM particle candidate. This Letter presents new hydrodynamical simulations in a Lambda$CDM framework where analogues of dwarf galaxies, bulgeless and with a shallow central DM profile, are formed. This is achieved by resolving the inhomogeneous interstellar medium, resulting in strong outflows from supernovae explosions which remove low angular momentum gas. This inhibits the formation of bulges and decreases the dark-matter density to less than half within the central kiloparsec. Realistic dwarf galaxies are thus shown to be a natural outcome of galaxy formation in the CDM scenario.

  13. Thermodynamics of clusterized matter

    E-Print Network [OSTI]

    Ad. R. Raduta; F. Gulminelli

    2009-08-26T23:59:59.000Z

    Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

  14. Axion Dark Matter Searches

    E-Print Network [OSTI]

    I. Stern

    2014-03-21T23:59:59.000Z

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a $\\mu$eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 $\\mu$eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  15. Axion dark matter searches

    SciTech Connect (OSTI)

    Stern, Ian P. [Department of Physics, Univerisity of Florida, Gainesville, FL 32611-8440 (United States); Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24T23:59:59.000Z

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a ?eV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 ?eV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  16. Final Report for DOE grant project FG02-07ER41458 [Dense Quark Matter in Magnetic Fields

    SciTech Connect (OSTI)

    Incera, Vivian

    2012-01-24T23:59:59.000Z

    Final Report for DOE grant DE-FG02-07ER41458. This grant was originally a three-year project. However, this final report summarizes the results of the first two years, as at the end of the second year of the grant the PIs moved to a new university and the grant was closed. The work done under the first two years of the DOE grant led to several papers and presentations. It also served to train one undergraduate and three graduate students.

  17. THE FORMATION OF YOUNG DENSE STAR CLUSTERS THROUGH MERGERS

    SciTech Connect (OSTI)

    Fujii, M. S.; Portegies Zwart, S. F. [Leiden Observatory, Leiden University, NL-2300RA Leiden (Netherlands); Saitoh, T. R. [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551 (Japan)

    2012-07-01T23:59:59.000Z

    Young star clusters such as NGC 3603 and Westerlund 1 and 2 in the Milky Way and R136 in the Large Magellanic Cloud are dynamically more evolved than expected based on their current relaxation times. In particular, the combination of a high degree of mass segregation, a relatively low central density, and the large number of massive runaway stars in their vicinity are hard to explain with the monolithic formation of these clusters. Young star clusters can achieve such a mature dynamical state if they formed through the mergers of a number of less massive clusters. The shorter relaxation times of less massive clusters cause them to dynamically evolve further by the time they merge, and the merger product preserves the memory of the dynamical evolution of its constituent clusters. With a series of N-body simulations, we study the dynamical evolution of single massive clusters and those that are assembled through merging smaller clusters together. We find that the formation of massive star clusters through the mergers of smaller clusters can reproduce the currently observed spatial distribution of massive stars, the density, and the characteristics (number and mass distribution) of the stars ejected as runaways from young dense clusters. We therefore conclude that these clusters and possibly other young massive star clusters formed through the mergers of smaller clusters.

  18. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    2014-09-15T23:59:59.000Z

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?p to 0.6 ?p in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  19. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect (OSTI)

    Shin, Young-Min [Department of Physics, Northern Illinois University, Dekalb, Illinois 60115 (United States); Accelerator Physics Center (APC), Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510 (United States)

    2014-09-15T23:59:59.000Z

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25?}m{sup ?3} and 1.6?◊?10{sup 28?}m{sup ?3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ?20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 ?{sub p} to 0.6 ?{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  20. Advancements in Dense Plasma Focus (DPF) for Space Propulsion

    SciTech Connect (OSTI)

    Thomas, Robert [Department of Aerospace Engineering, University of Illinois at Urbana - Champaign, Urbana, Illinois 61801 (United States); Yang Yang; Miley, G.H. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-- Champaign, Urbana, Illinois 61801 (United States); Mead, F.B. [AFRL/PRSP, 10 E. Saturn Blvd., Edwards AFB CA 93524-7680 (United States)

    2005-02-06T23:59:59.000Z

    The development of a dense plasma focus (DPF) propulsion device using p-11B is described. A propulsion system of this type is attractive because of its high thrust-to-weight ratio capabilities at high specific impulses. From a fuel standpoint, p-11B is advantageous because of the aneutronic nature of the reaction, which is favorable for the production of thrust since the charged particles can be channeled by a magnetic field. Different fusion mechanisms are investigated and their implication to the p-11B reaction is explored. Three main requirements must be satisfied to reach breakeven for DPF fusion: a high Ti/Te ratio ({approx}20), an order of magnitude higher pinch lifetime, and the reflection and absorption of at least 50% radiation. Moreover, a power re-circulation method with high efficiency must be available for the relatively low Q value of the DPF fusion reactor. A possible direct energy conversion scheme using magnetic field compression is discussed. DPF parameters are estimated for thrust levels of 1000 kN and 500 kN, and possible propulsion applications are discussed, along with developmental issues.

  1. Dynamical mechanism for non-locality in dense granular flows

    E-Print Network [OSTI]

    M. Bouzid; M. Trulsson; P. Claudin; E. Clement; B. Andreotti

    2014-05-09T23:59:59.000Z

    The dynamical mechanism at the origin of the non-local rheology of dense granular flows is investigated trough discrete element simulations. We show that the influence of a shear band on the mechanical behavior of a distant zone is contained in the spatial variations observed in the network of granular contacts. Using a micro-rheology technique, we establish that the exponential responses hence obtained, do not proof the validity of a mechanical activation process as previously suggested, but stem from the spatial relaxation of the shear rate as a direct consequence of a macroscopic non-local constitutive relation. Finally, by direct visualization of the local relaxation processes, we dismiss the kinetic elasto-plastic picture, where a flow is conceived as a quasi-static sequence of localized plastic events interacting through the stress field. We therefore conclude in favor of the jamming scenario, where geometrical constrains lead to coherent non-affine displacements along floppy modes, inherently non-local.

  2. ALEGRA-HEDP simulations of the dense plasma focus.

    SciTech Connect (OSTI)

    Flicker, Dawn G.; Kueny, Christopher S. (Hewlett-Packard Company); Rose, David V.

    2009-09-01T23:59:59.000Z

    We have carried out 2D simulations of three dense plasma focus (DPF) devices using the ALEGRA-HEDP code and validated the results against experiments. The three devices included two Mather-type machines described by Bernard et. al. and the Tallboy device currently in operation at NSTec in North Las Vegas. We present simulation results and compare to detailed plasma measurements for one Bernard device and to current and neutron yields for all three. We also describe a new ALEGRA capability to import data from particle-in-cell calculations of initial gas breakdown, which will allow the first ever simulations of DPF operation from the beginning of the voltage discharge to the pinch phase for arbitrary operating conditions and without assumptions about the early sheath structure. The next step in understanding DPF pinch physics must be three-dimensional modeling of conditions going into the pinch, and we have just launched our first 3D simulation of the best-diagnosed Bernard device.

  3. Electromagnetic Radiation in Hot QCD Matter: Rates, Electric Conductivity, Flavor Susceptibility and Diffusion

    E-Print Network [OSTI]

    Chang-Hwan Lee; Ismail Zahed

    2014-03-07T23:59:59.000Z

    We discuss the general features of the electromagnetic radiation from a thermal hadronic gas as constrained by chiral symmetry. The medium effects on the electromagnetic spectral functions and the partial restoration of chiral symmetry are quantified in terms of the pion densities. The results are compared with the electromagnetic radiation from a strongly interacting quark-gluon plasma in terms of the leading gluon condensate operators. We use the spectral functions as constrained by the emission rates to estimate the electric conductivity, the light flavor susceptibility and diffusion constant across the transition from the correlated hadronic gas to a strongly interacting quark-gluon plasma.

  4. A new form of strange matter and new hope for finding it

    SciTech Connect (OSTI)

    Flam, F.

    1993-10-08T23:59:59.000Z

    Deep in the dense cores of collapsed stars even atoms don't survive. The force of gravity crushes them into particle mushes weighing megatons per teaspoon. But even these alien forms of matter don't hold a candle to another possible end product of a collapsing star: something physicists justifiably call strange matter. This strangeness comes from an exotic particle not associated with ordinary matter: the strange quark. It belongs to a six-member quark family, along with up, down, charm, top, and bottom, each of which carries a different combination of charge and mass. The only ones that make up matter as we know it are up and down quarks, but in theory, matter could form out of strange quarks as well. In nature, it would turn up most probably in interiors of collapsed stars. Scientists originally imagined strange matter as a sort of disorganized mixed bag of strange quarks, but this summer a group proposed that the quarks could form a sort of mutant atomic nucleus that could conceivably grow to the size of a star. For the moment this is speculation, but it may not be theoretical musing for long. Physicists are preparing to try making strange matter here on Earth, in experiments at Brookhaven National Laboratory in New York and Switzerland's CERN, next summer.

  5. Dark matter axions `96

    SciTech Connect (OSTI)

    Sikivie, P.

    1996-12-31T23:59:59.000Z

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions` energy spectra and galactic halos` properties.

  6. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  7. Matter & Energy Engineering

    E-Print Network [OSTI]

    Sůbester, AndrŠs

    .com/products/seahawk/ Maryland Solar Panels-- Solar Installations from BGE HOME $0 Down For Big Energy Savings! www.bgehome.com/SolarLike 6 0 | More APA MLA See Also: Matter & Energy Petroleum Engineering Fossil Fuels Earth believe may be contributing to global warming. The UK government has just announced it is investing £1

  8. Energy Matters in Washington State Page 1 Energy Matters

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State ≠ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ≠ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

  9. Hot Plasma Waves in Schwarzschild Magnetosphere

    E-Print Network [OSTI]

    M. Sharif; Asma Rafique

    2009-11-03T23:59:59.000Z

    In this paper we examine the wave properties of hot plasma living in Schwarzschild magnetosphere. The 3+1 GRMHD perturbation equations are formulated for this scenario. These equations are Fourier analyzed and then solved numerically to obtain the dispersion relations for non-rotating, rotating non-magnetized and rotating magnetized plasma. The wave vector is evaluated which is used to calculate refractive index. These quantities are shown in graphs which are helpful to discuss the dispersive properties of the medium near the event horizon.

  10. Hot cell shield plug extraction apparatus

    DOE Patents [OSTI]

    Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

    1995-01-01T23:59:59.000Z

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  11. Hot air drum evaporator. [Patent application

    DOE Patents [OSTI]

    Black, R.L.

    1980-11-12T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  12. Hot Fuel Examination Facility/South

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  13. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, Ronald J. (Burnsville, MN)

    1985-01-01T23:59:59.000Z

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  14. Automated inspection of hot steel slabs

    DOE Patents [OSTI]

    Martin, R.J.

    1985-12-24T23:59:59.000Z

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  15. [PFBC Hot Gas Cleanup Test Program

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  16. Control apparatus for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01T23:59:59.000Z

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  17. Multiple volume compressor for hot gas engine

    DOE Patents [OSTI]

    Stotts, Robert E. (Clifton Park, NY)

    1986-01-01T23:59:59.000Z

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  18. Hot Plasma Partial to Bootstrap Current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) HarmonicbetandEnergy 2010 A FileHosting foreignforHot

  19. Solar Hot Water Heater Industry in Barbados

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,SmartEnergyEnergy ResourceSolar Hot

  20. Just Hot Resources Consulting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy Resources JumpJudson,International LtdJust Hot

  1. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: EnergyHoloceneHonestHoosacHorseHorstReport:Hot

  2. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project Jump to: navigation, searchHot

  3. Hot Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpenHot Lake

  4. Hot Pot Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: EnergyHopkinsville,WindEnergyOpenHot

  5. Hot Topic Workshop | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School football Highdefault Sign InData inmaxHorizontalHot

  6. Low frequency electrostatic and electromagnetic modes of ultracold magnetized nonuniform dense plasmas

    SciTech Connect (OSTI)

    Saleem, H. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Ahmad, Ali [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)

    2008-09-15T23:59:59.000Z

    A coupled linear dispersion relation for the basic electrostatic and electromagnetic waves in the ultracold nonuniform magnetized dense plasmas has been obtained which interestingly is analogous to the classical case. The scales of macroscopic phenomena and the interparticle quantum interactions are discussed. It is important to point out that hydrodynamic models cannot take into account strong quantum effects and they are not applicable to very dense plasmas. The analysis is presented with applications to dense plasmas which are relevant to both laboratory and astrophysical environments.

  7. Self assembly in soft matter

    E-Print Network [OSTI]

    Chremos, Alexandros

    2009-01-01T23:59:59.000Z

    The term ďsoft matterĒ applies to a variety of physical systems, such as liquids, colloids, polymers, foams, gels, and granular materials. The most fascinating aspect of soft matter lies in the fact that they are not ...

  8. Self Assembly in Soft Matter

    E-Print Network [OSTI]

    Chremos, Alexandros

    2009-01-01T23:59:59.000Z

    The term ďsoft matterĒ applies to a variety of physical systems, such as liquids, colloids, polymers, foams, gels, and granular materials. The most fascinating aspect of soft matter lies in the fact that they are not ...

  9. The Search for Dark Matter

    ScienceCinema (OSTI)

    Orrell, John

    2014-07-24T23:59:59.000Z

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  10. The Search for Dark Matter

    SciTech Connect (OSTI)

    Orrell, John

    2013-11-20T23:59:59.000Z

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  11. CARBON ISOTOPE AND ISOTOPOMER FRACTIONATION IN COLD DENSE CLOUD CORES

    SciTech Connect (OSTI)

    Furuya, Kenji; Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Sakai, Nami; Yamamoto, Satoshi, E-mail: furuya@stu.kobe-u.ac.jp [Department of Physics and Research Center for the Early Universe, University of Tokyo, Bunkyo-ku, Tokyo 113-003 (Japan)

    2011-04-10T23:59:59.000Z

    We construct a gas-grain chemical network model which includes carbon isotopes ({sup 12}C and {sup 13}C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios ({sup 12}CX/{sup 13}CX), and the isotopomer ratios ({sup 12}C{sup 13}CX/{sup 13}C{sup 12}CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have CX/{sup 13}CX ratios greater than the elemental abundance ratio of [{sup 12}C/{sup 13}C]. On the other hand, molecules formed from CO molecules have CX/{sup 13}CX ratios smaller than the [{sup 12}C/{sup 13}C] ratio. We reproduce the observed C{sup 13}CH/{sup 13}CCH ratio in TMC-1, if the isotopomer-exchange reaction, {sup 13}CCH + H {r_reversible} C{sup 13}CH + H + 8.1 K, proceeds with the forward rate coefficient k{sub f} > 10{sup -11} cm{sup 3} s{sup -1}. However, the C{sup 13}CS/{sup 13}CCS ratio is lower than that observed in TMC-1. We then assume the isotopomer-exchange reaction catalyzed by the H atom, {sup 13}CCS + H {r_reversible} C{sup 13}CS + H + 17.4 K. In the model with this reaction, we reproduce the observed C{sup 13}CS/{sup 13}CCS, CCS/C{sup 13}CS, and CCS/{sup 13}CCS ratios simultaneously.

  12. Design package for solar domestic hot water system

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  13. DECOMMISSIONING OF HOT CELL FACILITIES AT THE BATTELLE COLUMBUS LABORATORIES

    SciTech Connect (OSTI)

    Weaver, Patrick; Henderson, Glenn; Erickson, Peter; Garber, David

    2003-02-27T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning activities for nuclear research buildings and grounds at its West Jefferson Facilities by 2006, as mandated by Congress. This effort includes decommissioning several hot cells located in the Hot Cell Laboratory (Building JN-1). JN-1 was originally constructed in 1955, and a hot cell/high bay addition was built in the mid 1970s. For over 30 years, BCL used these hot cell facilities to conduct research for the nuclear power industry and several government agencies, including the U.S. Navy, U.S. Army, U.S. Air Force, and the U.S. Department of Energy. As a result of this research, the JN-1 hot cells became highly contaminated with mixed fission and activation products, as well as fuel residues. In 1998, the Battelle Columbus Laboratories Decommissioning Project (BCLDP) began efforts to decommission JN-1 with the goal of remediating the site to levels of residual contamination allowing future use without radiological restrictions. This goal requires that each hot cell be decommissioned to a state where it can be safely demolished and transported to an off-site disposal facility. To achieve this, the BCLDP uses a four-step process for decommissioning each hot cell: (1) Source Term Removal; (2) Initial (i.e., remote) Decontamination; (3) Utility Removal; and (4) Final (i.e., manual) Decontamination/Stabilization. To date, this process has been successfully utilized on 13 hot cells within JN-1, with one hot cell remaining to be decommissioned. This paper will provide a case study of the hot cell decommissioning being conducted by the BCLDP. Discussed will be the methods used to achieve the goals of each of the hot cell decommissioning stages and the lessons learned that could be applied at other sites where hot cells need to be decommissioned.

  14. FRW-type cosmologies with adiabatic matter creation

    SciTech Connect (OSTI)

    Lima, J.A. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States); [Departamento de Fisica Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Germano, A.S. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil)] [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN (Brazil); Abramo, L.R. [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)] [Physics Department, Brown University, Providence, Rhode Island 02912 (United States)

    1996-04-01T23:59:59.000Z

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density {ital n} and energy density {rho} which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate {psi}=3{beta}{ital nH}, where {beta} is a pure number of the order of unity and {ital H} is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index {gamma} of the equation of state by an effective parameter {gamma}{sub {asterisk}}={gamma}(1{minus}{beta}). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of {ital H} suggested by recent measurements. {copyright} {ital 1996 The American Physical Society.}

  15. Fluid Mechanics Explains Cosmology, Dark Matter, Dark Energy, and Life

    E-Print Network [OSTI]

    Carl H. Gibson

    2012-11-02T23:59:59.000Z

    Observations of the interstellar medium by the Herschel, Planck etc. infrared satellites throw doubt on standard {\\Lambda}CDMHC cosmological processes to form gravitational structures. According to the Hydro-Gravitational-Dynamics (HGD) cosmology of Gibson (1996), and the quasar microlensing observations of Schild (1996), the dark matter of galaxies consists of Proto-Globular-star-Cluster (PGC) clumps of Earth-mass primordial gas planets in metastable equilibrium since PGCs began star production at 0.3 Myr by planet mergers. Dark energy and the accelerating expansion of the universe inferred from SuperNovae Ia are systematic dimming errors produced as frozen gas dark matter planets evaporate to form stars. Collisionless cold dark matter that clumps and hierarchically clusters does not exist. Clumps of PGCs began diffusion from the Milky Way Proto-Galaxy upon freezing at 14 Myr to give the Magellanic Clouds and the faint dwarf galaxies of the 10^22 m diameter baryonic dark matter Galaxy halo. The first stars persist as old globular star clusters (OGCs). Water oceans and the biological big bang occurred at 2-8 Myr. Life inevitably formed and evolved in the cosmological primordial organic soup provided by 10^80 big bang planets and their hot oceans as they gently merged to form larger binary planets and small binary stars.

  16. The effects of pre-formed plasma on the generation and transport of fast electrons in relativistic laser-solid interactions

    E-Print Network [OSTI]

    Paradkar, Bhooshan S.

    2012-01-01T23:59:59.000Z

    in interaction. of short laser pulse with high-densityelectrons transport in short pulse laser-solid interactionsof hot dense matter in short-pulse laser-plasma interaction

  17. J/psi production and elliptic flow in relativistic heavy-ion collisions

    E-Print Network [OSTI]

    Song, Taesoo; Ko, Che Ming; Lee, Su Houng; Xu, Jun.

    2011-01-01T23:59:59.000Z

    upsilon(2) of J/psi in relativistic heavy-ion collisions. For the expansion dynamics of produced hot, dense matter, we introduce a schematic fireball model with its transverse acceleration determined from the pressure gradient inside the fireball...

  18. Normal matter storage of antiprotons

    SciTech Connect (OSTI)

    Campbell, L.J.

    1987-01-01T23:59:59.000Z

    Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

  19. dark matter dark energy inflation

    E-Print Network [OSTI]

    Hu, Wayne

    theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit ­ November 28 Gravitation initial conditions beyond single-field slow roll #12;dark matter dark energy inflation NSF Site

  20. Dark Energy and Dark Matter

    E-Print Network [OSTI]

    Keith A. Olive

    2010-01-27T23:59:59.000Z

    A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.

  1. Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Zacharakis, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis,...

  2. Trace Element Geochemical Zoning in the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Capuano. 1980. Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah. In: Transactions. GRC Annual Meeting; 09091980; Salt Lake City, UT. Salt...

  3. Static Temperature Survey At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding...

  4. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding...

  5. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  6. Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

  7. Energy Design Guidelines for High Performance Schools: Hot and...

    Energy Savers [EERE]

    Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the country are finding that the smart energy choices can help them...

  8. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1981 - 1981 Usefulness useful DOE-funding Unknown Exploration...

  9. Compound and Elemental Analysis At Breitenbush Hot Springs Area...

    Open Energy Info (EERE)

    Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Breitenbush Hot Springs Area (Wood, 2002)...

  10. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  11. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  12. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This article is...

  13. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  14. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  15. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Chena Hot Springs GRED III Project: Final Report Geology, Petrology,...

  16. Geologic Setting of the Central Alaskan Hot Springs Belt: Implications...

    Open Energy Info (EERE)

    Sustainable Energy Production Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geologic Setting of the Central Alaskan Hot Springs Belt: Implications for...

  17. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir Investigations on the Hot Dry Rock Geothermal System,...

  18. Geothermal: Sponsored by OSTI -- Economics of Developing Hot...

    Office of Scientific and Technical Information (OSTI)

    Economics of Developing Hot Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search...

  19. Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Waunita Hot Springs Geothermal Area (Ringrose & Pearl, 1981) Exploration...

  20. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Commission Approves Neal Hot Springs Power Purchase Agreement Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Idaho Public Utilities Commission Approves...

  1. Membranes and MEAs for Dry, Hot Operating Conditions

    Broader source: Energy.gov (indexed) [DOE]

    durability and performance characteristics making them useful in stationary fuel cell applications. Membranes and MEA's for Dry, Hot Operating Conditions - Kick off 4 3...

  2. An inequality for potentials and the ďhotĖspotsĒ conjecture

    E-Print Network [OSTI]

    2003-06-04T23:59:59.000Z

    inequality, by the conformal invariance of Brownian motion, implies a result of Pascu [13] on ďhotĖspotsĒ for certain symmetric convex domains. ?Supported in†...

  3. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Office of Environmental Management (EM)

    Residential Hot Water Event Schedules: Preprint Presented at SimBuild 2010; New York, New York; August 1519, 2010 47685.pdf More Documents & Publications Model Simulating...

  4. Tool for Generating Realistic Residential Hot Water Event Schedules...

    Energy Savers [EERE]

    Paper NRELCP-550-47685 August 2010 Tool for Generating Realistic Residential Hot Water Event Schedules Preprint Bob Hendron and Jay Burch National Renewable Energy...

  5. Hydrogeologic investigation of Coso Hot Springs, Inyo County...

    Open Energy Info (EERE)

    for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water...

  6. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    R. H. Carpenter (Colorado Geological Survey in Cooperation with the U.S. Department of Energy). 1981. Interpretation of Water Sample Analysis, Waunita Hot Spring Project,...

  7. Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mt Princeton Hot Springs Geothermal Area (Olson & Dellechaie, 1976)...

  8. Seismic baseline and induction studies- Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Seismic baseline and induction studies- Roosevelt Hot Springs, Utah and Raft River, Idaho...

  9. Paleomagnetic Measurements At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    London, 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London, 2011)...

  10. Hot water can freeze faster than cold?!?

    E-Print Network [OSTI]

    Monwhea Jeng

    2005-12-29T23:59:59.000Z

    We review the Mpemba effect, where intially hot water freezes faster than initially cold water. While the effect appears impossible at first sight, it has been seen in numerous experiments, was reported on by Aristotle, Francis Bacon, and Descartes, and has been well-known as folklore around the world. It has a rich and fascinating history, which culminates in the dramatic story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon, while simple to describe, is deceptively complex, and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. We survey proposed theoretical mechanisms for the Mpemba effect, and the results of modern experiments on the phenomenon. Studies of the observation that hot water pipes are more likely to burst than cold water pipes are also described.

  11. HOT DEBRIS DUST AROUND HD 106797

    SciTech Connect (OSTI)

    Fujiwara, Hideaki; Onaka, Takashi [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamashita, Takuya [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ishihara, Daisuke; Kataza, Hirokazu; Ootsubo, Takafumi; Murakami, Hiroshi; Nakagawa, Takao; Hirao, Takanori; Enya, Keigo [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Fukagawa, Misato [Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka (Japan); Marshall, Jonathan P.; White, Glenn J. [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)], E-mail: fujiwara@astron.s.u-tokyo.ac.jp

    2009-04-10T23:59:59.000Z

    Photometry of the A0 V main-sequence star HD 106797 with AKARI and Gemini/T-ReCS is used to detect excess emission over the expected stellar photospheric emission between 10 and 20 {mu}m, which is best attributed to hot circumstellar debris dust surrounding the star. The temperature of the debris dust is derived as T {sub d} {approx} 190 K by assuming that the excess emission is approximated by a single temperature blackbody. The derived temperature suggests that the inner radius of the debris disk is {approx}14 AU. The fractional luminosity of the debris disk is 1000 times brighter than that of our own zodiacal cloud. The existence of such a large amount of hot dust around HD 106797 cannot be accounted for by a simple model of the steady state evolution of a debris disk due to collisions, and it is likely that transient events play a significant role. Our data also show a narrow spectral feature between 11 and 12 {mu}m attributable to crystalline silicates, suggesting that dust heating has occurred during the formation and evolution of the debris disk of HD 106797.

  12. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  13. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01T23:59:59.000Z

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  14. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect (OSTI)

    Toby McIntosh, Jackola Engineering

    2012-09-26T23:59:59.000Z

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įF exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬? of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?center√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬įF or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  15. Stochastic analysis of dense nonaqueous phase liquid dissolution in naturally heterogeneous subsurface systems

    E-Print Network [OSTI]

    Fu, Xin, 1973-

    2003-01-01T23:59:59.000Z

    Field-scale Dense Nonaqueous Phase Liquid (DNAPL) dissolution in three-dimensional heterogeneous subsurface systems is investigated using a stochastic approach that treats the variability of flow properties as three-dimensional ...

  16. A Characteristic Dense Environment or Wind Signature in Prompt GRB Afterglows

    E-Print Network [OSTI]

    Shiho Kobayashi; Peter Meszaros; Bing Zhang

    2003-11-26T23:59:59.000Z

    We discuss the effects of synchrotron self-absorption in the prompt emission from the reverse shock of GRB afterglows occurring in a dense environment, such as the wind of a massive stellar progenitor or a dense ISM in early galaxies. We point out that, when synchrotron losses dominate over inverse Compton losses, the higher self-absorption frequency in a dense environment implies a bump in the reverse shock emission spectrum, which can result in a more complex optical/IR light curve than previously thought. This bump is prominent especially if the burst ejecta is highly magnetized. In the opposite case of low magnetization, inverse Compton losses lead to a prompt X-ray flare. These effects give a possible new diagnostic for the magnetic energy density in the fireball, and for the presence of a dense environment.

  17. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect (OSTI)

    Fisch, Nathaniel J

    2014-01-08T23:59:59.000Z

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-≠?energy-≠? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-≠?energy-≠? density plasma the ideas for steady-≠?state current drive developed for low-≠?energy-≠? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-≠?energy-≠?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  18. Particulate matter dynamics

    E-Print Network [OSTI]

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01T23:59:59.000Z

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  19. Constraining Decaying Dark Matter

    E-Print Network [OSTI]

    Ran Huo

    2011-07-13T23:59:59.000Z

    We revisited the decaying dark matter (DDM) model, in which one collisionless particle decays early into two collisionless particles, that are potentially dark matter particles today. The effect of DDM will be manifested in the cosmic microwave background (CMB) and structure formation. With a systematic modification of CMB calculation tool \\texttt{camb}, we can numerically calculated this effect, and compare it to observations. Further Markov Chain Monte Carlo \\texttt{cosmomc} runnings update the constraints in that model: the free streaming length $\\lambda_{FS}\\lesssim0.5$Mpc for nonrelativistic decay, and $((M_{DDM}/keV) Y)^2 (T_d/yr)\\lesssim5\\times10^{-5}$ for relativistic decay.

  20. Dark matter particles

    E-Print Network [OSTI]

    V. Berezinsky

    1996-10-31T23:59:59.000Z

    The baryonic and cold dark matter are reviewed in the context of cosmological models. The theoretical search for the particle candidates is limited by supersymmetric extension of the Standard Model. Generically in such models there are just two candidates associated with each other: generalized neutralino, which components are usual neutralino and axino, and axion which is a partner of axino in supermultiplet. The status of these particles as DM candidates is described.

  1. Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients

    SciTech Connect (OSTI)

    Qamar, Anisa; Ata-ur-Rahman [Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtoon Khwa 25000 (Pakistan); National Center for Physics Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2012-05-15T23:59:59.000Z

    We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.

  2. Luminous Dark Matter

    E-Print Network [OSTI]

    Brian Feldstein; Peter W. Graham; Surjeet Rajendran

    2011-01-13T23:59:59.000Z

    We propose a dark matter model in which the signal in direct detection experiments arises from electromagnetic, not nuclear, energy deposition. This can provide a novel explanation for DAMA while avoiding many direct detection constraints. The dark matter state is taken nearly degenerate with another state. These states are naturally connected by a dipole moment operator, which can give both the dominant scattering and decay modes between the two states. The signal at DAMA then arises from dark matter scattering in the Earth into the excited state and decaying back to the ground state through emission of a single photon in the detector. This model has unique signatures in direct detection experiments. The density and chemical composition of the detector is irrelevant, only the total volume affects the event rate. In addition, the spectrum is a monoenergetic line, which can fit the DAMA signal well. This model is readily testable at experiments such as CDMS and XENON100 if they analyze their low-energy, electronic recoil events.

  3. Dark matter axions revisited

    SciTech Connect (OSTI)

    Visinelli, Luca; Gondolo, Paolo [Department of Physics, University of Utah, 115 S 1400 E 201, Salt Lake City, Utah 84102 (United States)

    2009-08-01T23:59:59.000Z

    We study for what specific values of the theoretical parameters the axion can form the totality of cold dark matter. We examine the allowed axion parameter region in the light of recent data collected by the WMAP5 mission plus baryon acoustic oscillations and supernovae, and assume an inflationary scenario and standard cosmology. We also upgrade the treatment of anharmonicities in the axion potential, which we find important in certain cases. If the Peccei-Quinn symmetry is restored after inflation, we recover the usual relation between axion mass and density, so that an axion mass m{sub a}=(85{+-}3) {mu}eV makes the axion 100% of the cold dark matter. If the Peccei-Quinn symmetry is broken during inflation, the axion can instead be 100% of the cold dark matter for m{sub a}<15 meV provided a specific value of the initial misalignment angle {theta}{sub i} is chosen in correspondence to a given value of its mass m{sub a}. Large values of the Peccei-Quinn symmetry breaking scale correspond to small, perhaps uncomfortably small, values of the initial misalignment angle {theta}{sub i}.

  4. Hidden vector dark matter

    E-Print Network [OSTI]

    Thomas Hambye

    2010-03-16T23:59:59.000Z

    We show that dark matter could be made of massive gauge bosons whose stability doesn't require to impose by hand any discrete or global symmetry. Stability of gauge bosons can be guaranteed by the custodial symmetry associated to the gauge symmetry and particle content of the model. The particle content we consider to this end is based on a hidden sector made of a vector multiplet associated to a non-abelian gauge group and of a scalar multiplet charged under this gauge group. The hidden sector interacts with the Standard Model particles through the Higgs portal quartic scalar interaction in such a way that the gauge bosons behave as thermal WIMPS. This can lead easily to the observed dark matter relic density in agreement with the other various constraints, and can be tested experimentally in a large fraction of the parameter space. In this model the dark matter direct detection rate and the annihilation cross section can decouple if the Higgs portal interaction is weak.

  5. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    SciTech Connect (OSTI)

    Mahmood, S.; Sadiq, Safeer; Haque, Q. [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)] [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2013-12-15T23:59:59.000Z

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.

  6. HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT

    SciTech Connect (OSTI)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2013-08-20T23:59:59.000Z

    We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

  7. Observable consequences of cold clouds as dark matter

    E-Print Network [OSTI]

    E. Kerins; J. Binney; J. Silk

    2002-01-10T23:59:59.000Z

    Cold, dense clouds of gas have been proposed as baryonic candidates for the dark matter in Galactic haloes, and have also been invoked in the Galactic disc as an explanation for the excess faint sub-mm sources detected by SCUBA. Even if their dust-to-gas ratio is only a small percentage of that in conventional gas clouds, these dense systems would be opaque to visible radiation. This presents the possibility of detecting them by looking for occultations of background stars. We examine the possibility that the data sets of microlensing experiments searching for massive compact halo objects can also be used to search for occultation signatures by cold clouds. We compute the rate and timescale distribution of stellar transits by clouds in the Galactic disc and halo. We find that, for cloud parameters typically advocated by theoretical models, thousands of transit events should already exist within microlensing survey data sets. We examine the seasonal modulation in the rate caused by the Earth's orbital motion and find it provides an excellent probe of whether detected clouds are of disc or halo origin.

  8. Self-contained hot-hollow cathode gun source assembly

    DOE Patents [OSTI]

    Zeren, Joseph D. (Boulder, CO)

    1986-01-01T23:59:59.000Z

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  9. Self-contained hot-hollow cathode gun source assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1984-08-01T23:59:59.000Z

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  10. High Beta Observations of the Hot Electron Interchange Instability

    E-Print Network [OSTI]

    High Beta Observations of the Hot Electron Interchange Instability E.E. Ortiz, M.E. Mauel, D observed in high-beta plasma created in the Levitated Dipole Experiment (LDX). We have previously of anisotropic high beta equilibrium · Measuring Electrostatic Fluctuations · Hot Electron Interchange (HEI

  11. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01T23:59:59.000Z

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  12. ATMOSPHERIC CHARACTERIZATION OF THE HOT JUPITER KEPLER-13Ab

    E-Print Network [OSTI]

    Shporer, Avi

    Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler ...

  13. CANADIAN METALLURGICAL QUARTERLY HOT WORKABILITY OF 2304 AND 2205 DUPLEX

    E-Print Network [OSTI]

    Niewczas, Marek

    339 CANADIAN METALLURGICAL QUARTERLY HOT WORKABILITY OF 2304 AND 2205 DUPLEX STAINLESS STEELS E, 2002; in revised form December, 2003) Abstract -- The duplex stainless steels 2304 and 2205 were that the hot workability of 2304 and 2205 duplex stainless steels can be improved modestly by multistage

  14. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19T23:59:59.000Z

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  15. Hot Spot Conditions during Cavitation in Water Yuri T. Didenko,

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Hot Spot Conditions during Cavitation in Water Yuri T. Didenko, William B. McNamara III-13 the effective hot spot temperature during aqueous cavitation remains unresolved. Given the importance of aqueous cavitation (sonography and bioeffects of ultrasound, sonochemical remediation of aqueous pollutants

  16. Polytropes: Implications for Molecular Clouds and Dark Matter

    E-Print Network [OSTI]

    Christopher F. McKee

    2000-08-02T23:59:59.000Z

    Polytropic models are reasonably successful in acounting for the observed features of molecular clouds. Multi-pressure polytropes include the various pressure components that are important in molecular clouds, whereas composite polytropes provide a representation for the core halo structure. Small, very dense (n~10^{11} cm^{-3}) molecular clouds have been proposed as models for both dark matter and for extreme scattering events. Insofar as the equation of state in these clouds can be represented by a single polytropic relation (pressure varies as a power of the density), such models conflict with observation. It is possible to contrive composite polytropes that do not conflict with observation, but whether the thermal properties of the clouds are consistent with such structure remains to be determined.

  17. Combined x-ray scattering, radiography, and velocity interferometry/streaked optical pyrometry measurements of warm dense carbon using a novel technique of shock-and-release

    SciTech Connect (OSTI)

    Falk, K.; Collins, L. A.; Kagan, G.; Kress, J. D.; Montgomery, D. S.; Srinivasan, B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gamboa, E. J. [University of Michigan, Ann Arbor, Michigan 48109 (United States) [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72, Menlo Park, California 94025 (United States); Tzeferacos, P. [Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637 (United States)] [Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637 (United States); Benage, J. F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-05-15T23:59:59.000Z

    This work focused on a new application of the shock-and-release technique for equation of state (EOS) measurements. Warm dense matter states at near normal solid density and at temperatures close to 10?eV in diamond and graphite samples were created using a deep release from a laser-driven shock at the OMEGA laser facility. Independent temperature, density, and pressure measurements that do not depend on any theoretical models or simulations were obtained using imaging x-ray Thomson scattering, radiography, velocity interferometry, and streaked optical pyrometry. The experimental results were reproduced by the 2-D FLASH radiation hydrodynamics simulations finding a good agreement. The final EOS measurement was then compared with widely used SESAME EOS models as well as quantum molecular dynamics simulation results for carbon, which were very consistent with the experimental data.

  18. Ceramic oxide composite hot gas filters

    SciTech Connect (OSTI)

    Wagner, R.A.; Weitzel, P. [Babcock and Wilcox, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    This paper describes the development and testing of continuous fiber ceramic composites (CFCC) based hot gas filters. The work was divided into three primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of the first task were then used to identify the most promising compositions for sub-scale fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to assess the thermo-chemical stability of the CFCC materials. The results of this testing were used to down-select the filter composition for full-scale filter fabrication and testing in the third phase of the program.

  19. Discovery of magnetic fields in hot subdwarfs

    E-Print Network [OSTI]

    S. J. O'Toole; S. Jordan; S. Friedrich; U. Heber

    2004-10-02T23:59:59.000Z

    We present initial results of a project to measure mean longitudinal magnetic fields in a group of sdB/OB/O stars. The project was inspired by the discovery of three super-metal-rich sdOB stars, each having metals (e.g. Ti, V) enhanced by factors of 10^3 to 10^5. Similar behaviour is observed in chemically peculiar A stars, where strong magnetic fields are responsible for the enrichment. With this in mind, we obtained circularly polarised spectra of two of the super-metal-rich sdOBs, two "normal" sdBs and two sdOs using FORS1 on the ESO/VLT. By examining circular polarisation in the hydrogen Balmer lines and in helium lines, we have detected magnetic fields with strengths of 1-2 kG in most of our targets. This suggests that such fields are relatively common in hot subdwarfs.

  20. Alternatives for reducing hot-water bills

    SciTech Connect (OSTI)

    Bennington, G.E.; Spewak, P.C.

    1981-06-01T23:59:59.000Z

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)