Powered by Deep Web Technologies
Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration...

2

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada...

3

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area (Redirected from Upper Hot Creek Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

4

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

5

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

6

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

7

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

Hot Creek Ranch Area (Benoit & Blackwell, Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Ten temperature gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400' encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The

8

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2005-10-31T23:59:59.000Z

9

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

10

Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Hot Springs Ranch Area (Szybinski, 2006) Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005).

11

Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski, 2006)  

Open Energy Info (EERE)

Compound and Elemental Analysis At Hot Springs Ranch Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes The brine from the drill holes, hot springs, seepages, and irrigation wells was sampled, as well as water from two nearby creeks, (total of 13 samples) and sent for analysis to Thermochem Inc. For sample locations refer to Figure 35; the geochemical data are presented in Appendix C. Geochemical results indicate the presence of two distinct waters in this group of samples (Tom Powell of Thermochem Inc., personal communication, 2005). Powell found that MDH, TRS-1 and TRS-6 are the most prospective waters and tend to be more bicarbonate rich with much higher proportions of B, Li and

12

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Donlay Ranch Hot Spring Sector Geothermal energy Type Greenhouse Location Boise County, Idaho Coordinates 43.9604787°, -115.8563106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

13

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Cement Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Cement Creek Ranch Sector Geothermal energy Type Pool and Spa Location Crested Butte, Colorado Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

14

Hot Springs Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Ranch Geothermal Area Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.761,"lon":-117.492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Furnace Creek Ranch Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Ranch Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

16

Fly Ranch Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fly Ranch Hot Springs Geothermal Area Fly Ranch Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fly Ranch Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.86666667,"lon":-119.3483333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Hot Springs Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Ranch Geothermal Area Hot Springs Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.761,"lon":-117.492,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

18

Dann Ranch Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dann Ranch Hot Spring Geothermal Area Dann Ranch Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dann Ranch Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.316,"lon":-116.433,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

19

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

20

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Facility Waunita Hot Springs Ranch Sector Geothermal energy Type Pool and Spa Location Gunnison, Colorado Coordinates 38.5458246°, -106.9253207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Guest Ranch Pool & Spa Low Temperature Geothermal Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility Blue Mountain Hot Spring Guest Ranch Sector Geothermal energy Type Pool and Spa Location Prairie City, Oregon Coordinates 44.4632135°, -118.7099477° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

22

Cuttings Analysis At Hot Springs Ranch Area (Szybinski, 2006) | Open Energy  

Open Energy Info (EERE)

Cuttings Analysis At Hot Springs Ranch Area Cuttings Analysis At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes The author was on the site throughout the drilling operations to log the drill cuttings and coordinate with the drilling staff. Small representative samples of the gravel and/or chips were collected approximately every 3m, sieved and washed by the geological technician, and examined by the author. A preliminary written description of the cuttings was prepared. Afterwards, the samples were packed in small cotton bags, transported to the warehouse located at the Nevada Geothermal office in Winnemucca and dried. Dry samples were split and a portion of each sample was placed in chip trays

23

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Hatchery Aquaculture Low Temperature Geothermal Facility Facility Hot Creek Hatchery Sector Geothermal energy Type Aquaculture Location Mammoth Lakes, California Coordinates 37.648546°, -118.972079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

24

Slate Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Slate Creek Hot Springs Geothermal Area Slate Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Slate Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.171,"lon":-114.624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Deer Creek Hot Spring Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Deer Creek Hot Spring Geothermal Area Deer Creek Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Deer Creek Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.09167,"lon":-116.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Big Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Creek Hot Springs Geothermal Area Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3067,"lon":-114.3375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Indian Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Creek Hot Springs Geothermal Area Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Indian Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8129,"lon":-115.1229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Owl Creek Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Owl Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Owl Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3439,"lon":-114.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Horse Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location North Fork, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

30

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Granite Creek Hot Spring Sector Geothermal energy Type Pool and Spa Location Teton County, Wyoming Coordinates 43.853632°, -110.6314491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

31

Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Pool & Spa Low Temperature Geothermal Facility Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy Type Pool and Spa Location Mammoth Lakes Park Area, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

32

Allison Ranch | Open Energy Information  

Open Energy Info (EERE)

Zip 79604 5451 Sector Wind energy Product Allison Ranch develops projects for wind energy industry. References Allison Ranch1 LinkedIn Connections CrunchBase Profile No...

33

Linden Ranch | Open Energy Information  

Open Energy Info (EERE)

Linden Ranch Linden Ranch Jump to: navigation, search Name Linden Ranch Facility Linden Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SCPPA Developer EnXco Location Klickitat County Coordinates 45.757°, -120.795998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.757,"lon":-120.795998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Perrin Ranch | Open Energy Information  

Open Energy Info (EERE)

Perrin Ranch Perrin Ranch Jump to: navigation, search Name Perrin Ranch Facility Perrin Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Arizona Public Service Location Williams AZ Coordinates 35.39338814°, -112.2673988° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.39338814,"lon":-112.2673988,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Busch Ranch | Open Energy Information  

Open Energy Info (EERE)

Busch Ranch Busch Ranch Jump to: navigation, search Name Busch Ranch Facility Busch Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Black Hills Colorado Electric (50%) - Altagas (50%) Developer EUI and Black Hills Colorado Electric Energy Purchaser Black Hills Energy Location Pueblo CO Coordinates 37.781886°, -104.471858° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.781886,"lon":-104.471858,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

36

NREL: Learning - Photovoltaics for Farms and Ranches  

NLE Websites -- All DOE Office Websites (Extended Search)

Farms and Ranches Farms and Ranches Photo of cows and a photovoltaic powered water pump. Photovoltaic power can be used to pump water for livestock. The following resources will provide you with more information on the uses of solar photovoltaic (PV) systems on farms and ranches, as well as guides to buying and installing a solar energy system. If you are unfamiliar with this technology, see the introduction to PV systems. General Information Energy Savers: Solar Energy Applications for Farms and Ranches Basic information about using solar energy on farms and ranches from the U.S. Department of Energy (DOE). Own Your Power! A Consumer Guide to Solar Electricity This 16-page booklet from the U.S. Department of Energy provides information about how you can use solar energy at home.

37

Sheep Valley Ranch | Open Energy Information  

Open Energy Info (EERE)

Sheep Valley Ranch Sheep Valley Ranch Jump to: navigation, search Name Sheep Valley Ranch Facility Sheep Valley Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Two Dot Wind LLC Location Wheatland MT Coordinates 46.45°, -110.07° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.45,"lon":-110.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

38

Spinning Spur Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Spur Wind Ranch Spur Wind Ranch Jump to: navigation, search Name Spinning Spur Wind Ranch Facility Spinning Spur Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer Cielo Energy Purchaser Xcel Energy Location Vega TX Coordinates 35.28707069°, -102.3208666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.28707069,"lon":-102.3208666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

Caprock Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Ranch Ranch Jump to: navigation, search Name Caprock Wind Ranch Facility Caprock Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Quay County NM Coordinates 35.043532°, -103.583422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.043532,"lon":-103.583422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Lubbock Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Ranch Ranch Jump to: navigation, search Name Lubbock Wind Ranch Facility Lubbock Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Energy Purchaser Merchant Location Lubbock TX Coordinates 33.56932604°, -101.7623663° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.56932604,"lon":-101.7623663,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004  

Science Conference Proceedings (OSTI)

This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

2005-04-01T23:59:59.000Z

42

Clark Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Ranch Geothermal Area Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clark Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8569,"lon":-118.5453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

43

Environmental Assessment : Muddy Ranch Point of Delivery.  

Science Conference Proceedings (OSTI)

Bonneville Power Administration's (BPA's) proposed action is to provide a new pint-of-delivery while Wasco Electric Cooperative (WEC, a preference customer of BPA) will build a new substation and transmission tapline for this new point-of-delivery as connected actions. If the action is not taken, system reliability in the area will be threatened in the near future. The load of the Clarno Basin, served by the Antelope substation, exclusive of the Muddy Ranch Development, is approximately 1000 kW. The connected load on the Muddy Ranch at present is approximately 2000 kW and recently has been growing at the rate of 400 kW per month. The Clarno load and the Muddy Ranch load, when totaled, is approximately 3000 kW at the present time. In an effort to maintain voltage on the system, WEC has installed three banks of regulators between Antelope and the Muddy Ranch, each of which boosts the voltage approximately 10%. Electrical service has been kept within usable standards through operation of these regulators and by voluntary curtailment of major uses on portions of the Muddy Ranch Development. However, the present condition does not meet normal standards expected under th American National Standards Institute for electrical service. With the load growth on the Muddy Ranch, and continued growth in electrical demand from the ranchers in the Clarno area, an extremely unstable operating condition is projected as early as the winter of 1982-1983. At that time, the existing facilities could be heavily overtaxed and damage could be caused to electrical pumps and other electrical applicances. 10 refs., 14 figs., 3 tabs.

United States. Bonneville Power Administration.

1982-09-01T23:59:59.000Z

44

Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

None

2007-06-01T23:59:59.000Z

45

Hueco Mountain Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Hueco Mountain Wind Ranch Hueco Mountain Wind Ranch Jump to: navigation, search Name Hueco Mountain Wind Ranch Facility Hueco Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner El Paso Electric Co Developer Cielo Wind Power Energy Purchaser El Paso Electric Co Location El Paso County TX Coordinates 31.6966°, -106.295° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.6966,"lon":-106.295,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Economic viability of rangeland based ranching enterprises  

E-Print Network (OSTI)

Ranch management's ability to cope with climate variability, especially drought, critically impacts the economic viability of rangeland based ranching enterprise alternatives. In rangeland ecosystems, drought is not uncommon and has become expected, but ranchers' management practices tend to be reactive to weather conditions rather than proactive. With increased availability and technological advancements of seasonal forecasts, this study investigates the potential for ranchers to increase the profitability of their enterprises by becoming more proactive in their management practices. An annual economic model is used to analyze the effects of using seasonal climate forecasts in cattle ranching enterprises in Sutton County, Texas. Unique to this study, is the use of stocking rate decision rules elicited from a focus group of ranchers, rather than decision rules derived from a modeling exercise. Decision rules from a previous focus group are used as the prior information scenario. A reconvened focus group was presented forecasts of forage deviations from a long-term average. Their input provided decision rules for the "with forecast" information scenario. Using an economic model and PHYGROW, a forage simulation model, the "with" and "without" forecast information scenarios are compared to evaluate the use of climate forecasts on net returns of a ranching enterprise. Results were then presented to the panel for their response. The focus group responded positively to participating in the study and to the study results. Results suggest in a market in which stocker cows are bought or sold at the same price, overall expected net returns from using seasonal climate forecasts are negative. A decrease in net returns does not necessarily imply the value of climate forecasts are negative. The single year model fails to capture improved long-term ecological conditions associated with the use of climate forecasts. If cattle prices differ for buying and selling cows (by 7-43% lower selling price depending on the scenario), the seasonal climate forecasts show a positive value. Generally, variability in expected net returns increases with the use of seasonal climate forecasts.

Jochec, Kristi Gayle

2000-01-01T23:59:59.000Z

47

Geothermal: Sponsored by OSTI -- Caldwell Ranch Exploration and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

48

Compound and Elemental Analysis At Hot Springs Ranch Area (Szybinski...  

Open Energy Info (EERE)

vary in the other constituents. References Z. Adam Szybinski (2006) Pumpernickel Valley Geothermal Project Thermal Gradient Wells Retrieved from "http:en.openei.orgw...

49

Cuttings Analysis At Bacca Ranch Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Bacca Ranch Geothermal Area (1976) Bacca Ranch Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Bacca Ranch Geothermal Area (1976) Exploration Activity Details Location Bacca Ranch Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical studies of geothermal reservoirs Retrieved from "http://en.openei.org/w/index.php?title=Cuttings_Analysis_At_Bacca_Ranch_Geothermal_Area_(1976)&oldid=473907"

50

Del Ranch (Hoch) Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Ranch (Hoch) Geothermal Facility Ranch (Hoch) Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Del Ranch (Hoch) Geothermal Facility General Information Name Del Ranch (Hoch) Geothermal Facility Facility Del Ranch (Hoch) Sector Geothermal energy Location Information Address 7029 Gentry Road Location Calipatria, California Zip 92233 Coordinates 33.164175446318°, -115.61438798904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.164175446318,"lon":-115.61438798904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Eightmile Ranch Coho Acclimation Site, Okanogan County, 9: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington SUMMARY Bonneville Power Administration and USDA Forest Service, Okanogan-Wenatchee National Forest, are jointly preparing an EA to assess the potential environmental impacts of funding a proposal by the Confederated Tribes and Bands of the Yakama Nation to construct and operate a coho salmon acclimation pond at Eightmile Ranch, which is owned and operated by the Forest Service. BPA's Mid-Columbia Coho Restoration Program EIS (DOE/EIS-0425) addressed the overall coho restoration program, with 11 acclimation sites. Some of these sites proved infeasible, so the Yakama Nation is proposing a new site at Eightmile Ranch. Young coho would be held

52

POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005  

SciTech Connect

Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with bentonite during the first quarter of 2006 and monitored during subsequent inspections. The cover vegetation was healthy and well established. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The inspections at UC-3 indicated that the sites are in excellent condition. All monuments and signs showed no displacement, damage, or removal. A small erosion gully from spring rain runoff was observed during the June inspection, but it did not grow to an actionable level during 2005. No other issues or concerns were identified. Inspections performed at UC-4 Mud Pit C cover revealed that erosion rills were formed during March and September exposing the geosynthetic clay liner. Both erosion rills were repaired within 90 days of reporting. Sparse vegetation is present on the cover. The overall condition of the monuments, fence, and gate are in good condition. No issues were identified with the warning signs and monuments at the other four UC-4 locations. Subsidence surveys were conducted at UC-1 CMP and UC-4 Mud Pit C in March and September of 2005. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. The June vegetation survey of the UC-1 CMP cover and adjacent areas indicated that the revegetation has been very successful. The vegetation should continue to be monitored to document any changes in the plant community and identify conditions that could potentially require remedial action in order to maintain a viable vegetative cover on the site. Vegetation surveys should be conducted only as required. Precipitation during 2005 was above average, with an annual rainfall total of 21.79 centimeters (8.58 inches). Soil moisture content data show that the UC-1 CMP cover is performing as designed, with evapotranspiration effectively removing water from the cover. It is recommended to continue quarterly site inspections and the collection of soil moisture data for the UC-1 CMP cove

NONE

2006-04-01T23:59:59.000Z

53

Hudson Ranch Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hudson Ranch Geothermal Project Project Location Information Coordinates 33.333055555556°, -115.83416666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.333055555556,"lon":-115.83416666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Golden Spread Panhandle Wind Ranch | Open Energy Information  

Open Energy Info (EERE)

Spread Panhandle Wind Ranch Spread Panhandle Wind Ranch Jump to: navigation, search Name Golden Spread Panhandle Wind Ranch Facility Golden Spread Panhandle Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Golden Spread Electric Cooperative Developer Cielo Energy Purchaser Golden Spread Electric Cooperative Location Wildarado TX Coordinates 35.22770741°, -102.2323751° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.22770741,"lon":-102.2323751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AV Solar Ranch I Solar Power Plant AV Solar Ranch I Solar Power Plant Jump to: navigation, search Name AV Solar Ranch I Solar Power Plant Facility AV Solar Ranch I Sector Solar Facility Type Photovoltaic Developer NextLight Renewable Power Location Antelope Valley, California Coordinates 38.70833°, -121.32889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.70833,"lon":-121.32889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

57

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292°, -117.1572551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

58

Taking stock of renewables: NREL teaches farm and ranch appliations  

Science Conference Proceedings (OSTI)

NREL workshop leaders find a receptive audience for renewable energy technologies among farmers and ranchers. As an exhibitor/participant in Denver`s National Western Stock Show, the National Renewable Energy Laboratory (NREL) of Golden, Colorado sponsored an educational workshop to demonstrate applications of solar and wind energy on the farm and ranch, offering a very non-traditional energy approach to people who pride themselves in tradition. This article describes solar and wind energy applications to farms and ranches.

Marsh, M.G. [NREL, Golden, CO (United States)

1996-09-01T23:59:59.000Z

59

Solar Goes Big: Launching the California Valley Solar Ranch | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Goes Big: Launching the California Valley Solar Ranch Goes Big: Launching the California Valley Solar Ranch Solar Goes Big: Launching the California Valley Solar Ranch October 31, 2013 - 4:14pm Addthis The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. The California Valley Solar Ranch produces clean, renewable electricity at the scale of traditional power plants. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. Aerial shot of the California Valley Solar Ranch in San Luis Obispo County, California. | Photo courtesy of SunPower. According to NRG Energy, the California Solar Valley Ranch project has created thousands of jobs and put an estimated $315 million into the local economy. | Photo courtesy of SunPower.

60

Brazos Wind Ranch Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Ranch Wind Farm Wind Ranch Wind Farm Jump to: navigation, search Name Brazos Wind Ranch Wind Farm Facility Brazos Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy/Mitsui Developer Cielo Wind Power/Orion Energy Energy Purchaser Green Mountain Power/ TXU Location Near Fluvanna TX Coordinates 32.94914°, -101.144357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.94914,"lon":-101.144357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

King Mountain Wind Ranch I | Open Energy Information  

Open Energy Info (EERE)

Ranch I Ranch I Jump to: navigation, search Name King Mountain Wind Ranch I Facility King Mountain Wind Ranch Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Cielo Wind Power/Renewable Energy Systems Energy Purchaser Texas-New Mexico Power- Reliant Energy- Austin Energy Location Upton County TX Coordinates 31.280873°, -102.195861° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.280873,"lon":-102.195861,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Llano Estacado Wind Ranch at White Deer | Open Energy Information  

Open Energy Info (EERE)

Estacado Wind Ranch at White Deer Estacado Wind Ranch at White Deer Jump to: navigation, search Name Llano Estacado Wind Ranch at White Deer Facility Llano Estacado Wind Ranch at White Deer Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy Developer Cielo Wind Power Energy Purchaser Xcel Energy Location White Deer TX Coordinates 35.4613°, -101.238° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.4613,"lon":-101.238,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Scarboro Creek Wetland  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Management: Scarboro Creek Wetland * Purple loosestrife was treated with foliar spray of Accord (glyphosphate) by ESD in 2007. Photos by Harry Quarles Invasive Non-native...

64

Caprock Wind Ranch phase II | Open Energy Information  

Open Energy Info (EERE)

phase II phase II Jump to: navigation, search Name Caprock Wind Ranch phase II Facility Caprock Wind Ranch phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Quay County NM Coordinates 35.043532°, -103.583422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.043532,"lon":-103.583422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Hillsboro Ranches, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ranches, Florida: Energy Resources Ranches, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.3218881°, -80.181578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.3218881,"lon":-80.181578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rafter J Ranch, Wyoming: Energy Resources Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248°, -110.79844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.426248,"lon":-110.79844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Cinco Ranch, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ranch, Texas: Energy Resources Ranch, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7388418°, -95.7580048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7388418,"lon":-95.7580048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Hyder Ranch Aquaculture Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Aquaculture Low Temperature Geothermal Facility Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Ranch Aquaculture Low Temperature Geothermal Facility Facility Hyder Ranch Sector Geothermal energy Type Aquaculture Location Gila Bend & Yuma, Arizona Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

69

Llano Estacado Wind Ranch at Texico | Open Energy Information  

Open Energy Info (EERE)

Texico Texico Jump to: navigation, search Name Llano Estacado Wind Ranch at Texico Facility Llano Estacado Wind Ranch at Texico Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Wind Power Developer Cielo Wind Power- RES Energy Purchaser Xcel Energy Location Curry County NM Coordinates 34.6283°, -103.387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6283,"lon":-103.387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

70

EA-1959: Eightmile Ranch Coho Acclimation Site, Okanogan County, Washington  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration and USDA Forest Service, Okanogan-Wenatchee National Forest, are jointly preparing an EA to assess the potential environmental impacts of funding a proposal by the Confederated Tribes and Bands of the Yakama Nation to construct and operate a coho salmon acclimation pond at Eightmile Ranch, which is owned and operated by the Forest Service. BPA's Mid-Columbia Coho Restoration Program EIS (DOE/EIS-0425) addressed the overall coho restoration program, with 11 acclimation sites. Some of these sites proved infeasible, so the Yakama Nation is proposing a new site at Eightmile Ranch. Young coho would be held in the pond from March to May and then released into the Chewuch River approximately 10 miles above its confluence with the Methow River.

71

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA  

SciTech Connect

The purpose of the Caldwell Ranch Exploration and Confirmation Project was to drill, test, and confirm the present economic viability of the undeveloped geothermal reservoir in the 870 acre Caldwell Ranch area of the Northwest Geysers that included the CCPA No.1 steam field. All of the drilling, logging, and sampling challenges were met. ? Three abandoned wells, Prati 5, Prati 14 and Prati 38 were re-opened and recompleted to nominal depths of 10,000 feet in 2010. Two of the wells required sidetracking. ? The flow tests indicated Prati 5 Sidetrack 1 (P-5 St1), Prati 14 (P-14) and Prati 38 Sidetrack 2 (P-38 St2) were collectively capable of initially producing an equivalent of 12 megawatts (MWe) of steam using a conversion rate of 19,000 pounds of steam/hour

Walters, Mark A.

2013-04-25T23:59:59.000Z

72

AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 AV Solar Ranch AV Solar Ranch One Site One Site P A C I F I C O C E A N E d w a r d s A F B E d w a r d s A F B K e r n C o u n t y L o s A n g e l e s C o u n t y Ve n t u r a C o u n t y S a n B e r n a r d i n o C o u n t y S a n t a B a r b a r a C o u n t y S . L . O . Red Rock Red Rock Canyon Canyon State Rec Area State Rec Area P i t M St t P k T St t P k H e s p e r i H e s p e r i C a m a r i l l o C a m a r i l l o V i c t o r v i l l V i c t o r v i l l A r v i n A r v i n A g o u r a A g o u r a M o o r p a r k M o o r p a r k A d e l a n t o A d e l a n t o F i l l m o r e F i l l m o r e C a l a b a s a s C a l a b a s a s T e h a c h a p i T e h a c h a p i C a r p i n t e r i a C a r p i n t e r i a S a n t a S a n t a P a u l a P a u l a S i e r r a S i e r r a M a d r e M a d r e P o r t P o r t H u e n e m e H u e n e m e L a L a C a n a d a C a n a d a F l i n t r i d g e F l i n t r i d g e Piru Taft Somis Boron Lebec Keene Muscoy Devore Summit Saugus Gorman Mojave Atolia Cantil Lamont Edison El Rio Saticoy Garlock Montalvo Rosamond Monolith Maricopa Caliente Rosedale De Verdemont Crestline Helendale Oak View Wrightwood Littlerock Val Verde ummerland

73

Microsoft Word - FONSI_CalValleySolarRanch_Final For Silver Sig_8-2-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE TO HIGH PLAINS RANCH II, LLC FOR THE CALIFORNIA VALLEY SOLAR RANCH PROJECT IN SAN LUIS OBISPO COUNTY, CALIFORNIA AGENCY: U.S. Department of Energy, Loan Programs Office ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) conducted an environmental assessment (EA) that analyzed the potential environmental impacts associated with the California Valley Solar Ranch (CVSR) project, a 250-megawatt (MW) gross output commercial solar photovoltaic (PV) power plant project proposed by High Plains Ranch II, LLC (HPR II) in southeastern San Luis Obispo County, California. The CVSR Project would include the construction, operation, maintenance, and

74

Forrest Ranch Management and Implementation, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

Smith, Brent

2004-01-01T23:59:59.000Z

75

Forrest Ranch Acquisition, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

Through their John Day Basin Office, the Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Ranch during July of 2002. The property consists of two parcels located in the John Day subbasin within the Columbia basin. The mainstem parcel consists of 3,503 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem of the John Day River. The middle fork parcel consists of 820 acres and is located one mile to the west of the town of Austin, OR on the middle fork John Day River. The Forrest Ranch Project is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. The Forrest Ranch acquisition was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by the operation of their hydroelectric facilities on the Columbia River and its tributaries. Following lengthy negotiations with the BPA and property owner, the Tribes were able to conclude the acquisition of the Forrest Ranch in July of 2002. The intent of the acquisition project was to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, section 11.1, section 7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of program funding through a memorandum of agreement and annual statement of work. As early as 1997, the Tribes identified this property as a priority for restoration in the John Day basin. In 2000, the Tribes arranged an agreement with the landowner to seek funds for the acquisition of both the Middle Fork and upper Mainstem John Day River holdings of Mr. John Forrest. This property had been a priority of not only the Tribes, but of many other basin natural resource agencies. The contract period was the first year of the program with December 2001 through July 2nd 2002 being previous to acquisition of the property. The majority of the activities conducted under the contract period were spent on O&M and pre acquisition activities.

Smith, Brent

2003-08-01T23:59:59.000Z

76

Salt Creek Scenario  

NLE Websites -- All DOE Office Websites (Extended Search)

Scenario Scenario HELP Index Summary Scenario References Student Pages Two branches of Salt Creek run through the city of Rolling Meadows, Illinois, not far from our school. Five members of our team of eighth grade teachers from different subject areas (science, language arts, bilingual education and special education), decided to develop an interdisciplinary study of Salt Creek as a way of giving our students authentic experiences in environmental studies. The unit begins when students enter school in August, running through the third week of September, and resuming for three weeks in October. Extension activities based on using the data gathered at the creek continue throughout the school year, culminating in a presentation at a city council meeting in the spring.

77

Salt Creek Student Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Salt Creek Investigation Salt Creek Investigation</2> "Whales Dying in the Pacific Ocean" "Fish Dying in Lake Michigan" Recent headlines remind us of environmental problems near and far away. Scientists have been wondering if these problems could be due to the warmer temperatures this past spring and summer or could there be other reasons? Lack of rain and near drought conditions have forced many areas to restrict water use. We know from past history that pollution affects our drinking water and marine life. Remember what we read about Lake Erie and from reading A River Ran Wild by Lynne Cherry. There are many factors affecting the environment around us . . . even in Salt Creek which runs through our area. We may not be able to investigate the Pacific Ocean and Lake Michigan

78

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

79

Toms Creek IGCC Demonstration Project  

SciTech Connect

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

80

First Impressions Stafford Creek Correctional  

E-Print Network (OSTI)

First Impressions Stafford Creek Correctional Center in Washington state participates Project In July 2010, I found myself at the gates of Stafford Creek Corrections Center, turning over my. The program engages scientists in a medium and activity that may be unfamiliar--presenting Stafford Creek

LeRoy, Carri J.

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fairbanks Ranch, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fairbanks Ranch, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9939331°, -117.1872572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9939331,"lon":-117.1872572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Hudson Ranch Power I LLC | Open Energy Information  

Open Energy Info (EERE)

I LLC I LLC Jump to: navigation, search Name Hudson Ranch Power I, LLC Place Dallas, Texas Zip 75204 Sector Geothermal energy Product A company proposing to build a 49.9MW geothermal energy plant in southern California. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Drakesbad Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility Drakesbad Guest Ranch Sector Geothermal energy Type Pool and Spa Location Mineral, California Coordinates 40.3476588°, -121.5949804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

84

4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility 4 UR Guest Ranch Sector Geothermal energy Type Pool and Spa Location Creede, Colorado Coordinates 37.8491662°, -106.9264345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

85

Free-flow variability on the Jess and Souza Ranches, Altamont Pass  

DOE Green Energy (OSTI)

A central monitoring computer was installed on each ranch. The computers were connected by communication cables to 50 turbines on the Souza Ranch and 150 turbines on the Jess Ranch. Anemometers were installed on every other turbine on 12-foot booms at 35 feet above ground level (AGL). Spacing between anemometers was approximately 200 feet in the crosswind direction by 500 feet in the parallel direction. A total of 23 turbines on the Souza Ranch was instrumented in this fashion, as well as two multi-level meteorological towers. On the Jess Ranch, 77 turbines were instrumented; about half at 35 feet AGL and half at 50 feet AGL, plus four additional towers. Wind data were collected for approximately a 100 hour period on each ranch. All turbines were shut down during these periods so that no turbine wakes would be present. The data periods were selected by the meteorologist to insure that they occurred during typical spring-summer flow regimes. The terrain features upwind of the site appear to play as significant a role in the flow variability as terrain features within the site.

Nierenberg, R.

1988-04-25T23:59:59.000Z

86

Free-flow variability on the Jess and Souza Ranches, Altamont Pass. [Final report  

DOE Green Energy (OSTI)

A central monitoring computer was installed on each ranch. The computers were connected by communication cables to 50 turbines on the Souza Ranch and 150 turbines on the Jess Ranch. Anemometers were installed on every other turbine on 12-foot booms at 35 feet above ground level (AGL). Spacing between anemometers was approximately 200 feet in the crosswind direction by 500 feet in the parallel direction. A total of 23 turbines on the Souza Ranch was instrumented in this fashion, as well as two multi-level meteorological towers. On the Jess Ranch, 77 turbines were instrumented; about half at 35 feet AGL and half at 50 feet AGL, plus four additional towers. Wind data were collected for approximately a 100 hour period on each ranch. All turbines were shut down during these periods so that no turbine wakes would be present. The data periods were selected by the meteorologist to insure that they occurred during typical spring-summer flow regimes. The terrain features upwind of the site appear to play as significant a role in the flow variability as terrain features within the site.

Nierenberg, R.

1988-04-25T23:59:59.000Z

87

Simulation of the ghost ranch greenhouse-residence  

DOE Green Energy (OSTI)

The greenhouse-residence unit of the Sundwellings Demonstration Center at Ghost Ranch, Abiguice, New Mexico, has been studied by computer modeling and simulation techniques. A thermal network model of the building has been developed in the framework of PASOLE, the Los Alamos passive solar energy simulation program. Simulation studied based on hourly weather data recorded during the 1977--78 heating season leave been done. Model validation was done by hourly comparisons of simulation predicted temperatures in the building with measured values of corresponding temperatures. The building model was used to predict a 12-month performance with the 1976--77 Los Alamos weather data. A solar fraction, the ratio of the solar portion of the residence heat input to the total heating load, was computed to be 60%. Other performance and design questions studies with 12-month Los Alamos simulation runs include the importance of the thermocirculation vents, the effect of external insulation on the residence walls, and the effect of nighttime insulation on the greenhouse glazing.

Jones, R.W.; McFarland, R.D.

1979-01-01T23:59:59.000Z

88

,"Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Galvan Ranch, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_irp_ygrt-nmx_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_irp_ygrt-nmx_mmcfa.htm" ,"Source:","Energy Information Administration"

89

Panther Creek | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Jump to: navigation, search Name Panther Creek Facility Panther Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Affinity Wind/Suzlon Energy Limited Developer Surity Wind Location Pike County IL Coordinates 39.607275°, -90.85556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.607275,"lon":-90.85556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Pigeon Creek | Open Energy Information  

Open Energy Info (EERE)

Pigeon Creek Pigeon Creek Jump to: navigation, search Name Pigeon Creek Facility Pigeon Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric Cooperative Developer Adams Electric Cooperative Energy Purchaser Adams Electric Cooperative Location Near Payson IL Coordinates 39.83328984°, -91.19227409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83328984,"lon":-91.19227409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Bennett Creek | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Jump to: navigation, search Name Bennett Creek Facility Bennett Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho Windfarms / John Deere Developer Idaho Windfarms Location Elmore County ID Coordinates 43.0466399°, -115.485481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0466399,"lon":-115.485481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

92

Meadow Creek | Open Energy Information  

Open Energy Info (EERE)

Meadow Creek Meadow Creek Jump to: navigation, search Name Meadow Creek Facility Meadow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ridgeline Energy Developer Ridgeline Energy Energy Purchaser PacifiCorp (Rocky Mountain Power) Location Idaho Falls ID Coordinates 43.50492362°, -111.8366146° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.50492362,"lon":-111.8366146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

93

Llano Estacado Wind Ranch at Texico phase II | Open Energy Information  

Open Energy Info (EERE)

Estacado Wind Ranch at Texico phase II Estacado Wind Ranch at Texico phase II Jump to: navigation, search Name Llano Estacado Wind Ranch at Texico phase II Facility Llano Estacado Wind Ranch at Texico phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Cielo Wind Power Developer Cielo Wind Power Energy Purchaser Xcel Energy Location Curry County NM Coordinates 34.6283°, -103.387° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.6283,"lon":-103.387,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program  

SciTech Connect

Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

1999-03-01T23:59:59.000Z

95

Asotin Creek Model Watershed Plan  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

96

Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)  

SciTech Connect

Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

1979-02-01T23:59:59.000Z

97

Microsoft Word - CX-HorseRanchTap_FY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2013 7, 2013 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Dustin Liebhaber Project Manager - TELP-TPP-3 Proposed Action: Capacity Increase on Bonneville Power Administration's (BPA) Horse Ranch Tap Line PP&A Project No.: 2,707 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Snohomish County, Washington Proposed by: BPA Description of the Proposed Action: BPA proposes to install a new disconnect switch and associated modifications on the Horse Ranch Tap line in Snohomish County, Washington. BPA owns and maintains the line disconnect switch and the first 0.34 miles of the Tap line, while Puget Sound Energy (PSE) owns and operates the remaining 3.48 miles of the H-frame, wood

98

A synthesis of the pithouse architectural sequence of the Nan Ranch Ruin, Grant County, New Mexico  

E-Print Network (OSTI)

Data from twenty-one pithouses recovered beneath a large surf ace pueblo, the NAN Ranch Ruin located in the middle Mimbres River Valley in Southwestern New Mexico, was analyzed to construct an architectural sequence. The architectural style of a round or oval shaped structure gradually evolved to structures that were rectangular or square. In addition to the evolution of the architecture there were other changes found to co-occur in the construction of hearths, ceramic styles, and mortuary customs. It was found that the chronological changes in architectural style and material culture that have been proposed for this region are supported by the documented changes found at the NAN Ranch Ruin. However, the abrupt change from pithouse structures to surface pueblos did not exist. The description of these structures and their contents document the gradual changes in form and material culture through time.

Wigington, Paula Jean

1994-01-01T23:59:59.000Z

99

Prehistoric jewelry of the NAN Ranch Ruin (LA15049), Grant County, New Mexico  

E-Print Network (OSTI)

Jewelry from the NAN Ranch Ruin (A.D. 600/650-1140), southwestern New Mexico, is analyzed with the following research goals: to describe the physical properties of the jewelry, to provide a contextual analysis in the form of mortuary and spatial patterning, and to interpret the social and ceremonial roles that jewelry played for the Mimbres at the NAN Ruin. Comparative data are provided, when available, from additional sites in the Mimbres Valley and the greater Southwest. The jewelry from the NAN Ruin is of two main material types, marine shell and stone. The most common jewelry types made from these materials are beads, pendants, and bracelets. In total, 1,970 individual pieces of marine shell jewelry, both whole and fragmentary, were recovered from the site. These materials include unidentified white shell, unidentified shell, Glycymeris, Nassarius, Pecten, Haliotis, Spondylus, Olivella, Conus, Coral, Strombus, Turritella, Architectonicidae, and Columbella. The majority of the marine shell originated in the Gulf of California. Shell jewelry was likely imported into the NAN Ranch Ruin from the Hohokam, who controlled the trade of marine shell throughout the region. In total, 10, 185 individual items of stone jewelry and materials, whole and fragmentary, were present at the NAN Ruin. These materials include talc, kaolinite, turquoise, galena, unidentified stone, quartz, slate, malachite, hematite, limestone, pumice, rhyolite, copper, jadeite, and basalt. All of these materials were available locally or within a short distance from the Mimbres Valley. A little over a quarter of the mortuary population (28.1%) at the NAN Ranch Ruin was associated with jewelry. Based on the application of two statistical tests, binomial distribution and factor analysis, there is no strong evidence that the presence of jewelry in the mortuary record is indicative of particular social categories, lineage affiliations, or vertical social stratification. The association of jewelry with specific architectural features, as well as cached deposits, indicate that jewelry was included in non-mortuary ceremonial contexts. Ethnographic data supports this archaeological inference.

Parks-Barrett, Maria Shannon

2001-01-01T23:59:59.000Z

100

Wake deficit measurements on the Jess and Souza Ranches, Altamont Pass  

DOE Green Energy (OSTI)

This report is ninth in a series of documents presenting the findings of field test under DOE's Cooperative Field Test Program (CFTP) with the wind industry. This report provides results of a project conducted by Altamont Energy Corp. (AEC) to measure wake deficits on the Jess and Sousa Ranches in Altamont Pass, CA. This research enhances and complements other DOE-funded projects to refine estimates of wind turbine array effects. This project will help explain turbine performance variability caused by wake effects. 4 refs., 28 figs., 106 tabs.

Nierenburg, R. (Altamont Energy Corp., San Rafael, CA (USA))

1990-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor...

102

New Jersey Nuclear Profile - Oyster Creek  

U.S. Energy Information Administration (EIA) Indexed Site

Oyster Creek" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

103

Solar-energy-system performance evaluation. Reedy Creek Utility District office building, Lake Buena Vista, Florida, September 1978-February, 1979  

DOE Green Energy (OSTI)

The Reedy Creek site is a two-story office building in Florida whose solar heating system provides space heating and domestic hot water and space cooling. The system consists of an array of parabolic trough collectors, an absorption chiller, a 10,000-gallon hot water tank and a 10,000-gallon cold water tank. The system and its operation are briefly described, and its performance is analyzed using a system energy balance technique. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

104

Post-project appraisal of Martin Canyon Creek restoration  

E-Print Network (OSTI)

Haltiner, Jeffery. 1997. Martin Canyon Stream Stabilization:Williams & Associates, Ltd. 1999. Martin Canyon Creek StreamPost-Project Appraisal of Martin Canyon Creek Restoration

Wagner, Wayne; Roseman, Jesse

2006-01-01T23:59:59.000Z

105

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

106

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

107

Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington  

SciTech Connect

In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory's Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

Gard, H.A.; Poet, R.M.

1992-09-01T23:59:59.000Z

108

LOST CREEK ISR, LLC, LOST CREEK IN SITU RECOVERY FACILITY,  

E-Print Network (OSTI)

Commission (NRC) staff and representatives of Lost Creek ISR, LLC (LCI) was held to discuss LCIs application for a license to construct and operate a uranium in situ recovery facility (ISR) in Wyoming. The NRC staff had completed its review of LCIs application and prepared an internal draft of the Safety Evaluation Report (SER). The conference call was held as a follow-up to the conference call between the NRC and LCI on September 25, 2009 (ML093130083) to discuss open issues that NRC staff identified in preparing the draft SER. A summary of the meeting is enclosed. Within 30 days of receipt of this letter, please either provide the information identified in the meeting summary or inform us of the date you expect to provide the information. At this point in the review process, NRC staff has presented all open issues to LCI regarding the Lost Creek facility SER. The staff previously provided written discussions of incomplete responses and open issues on April 23, 2009 and November 9, 2009. The staff is therefore curtailing any further work until resolution of the open issues. Note that a delay in providing information may result in a delay in NRC staffs completion of the SER. If you have any questions regarding this letter or the enclosed meeting summary, please contact me at (301) 415-6142, or by email at

Mr. Wayne; W. Heili

2009-01-01T23:59:59.000Z

109

Preparing for Decommissioning: The Oyster Creek Experience  

Science Conference Proceedings (OSTI)

This report chronicles the process of preparing GPU Nuclear's Oyster Creek Nuclear Generating Station for early retirement and decommissioning. The Oyster Creek experience has great relevance to the nuclear industry, as future decommissioning projects will benefit from the comprehensive preplanning work performed there.

2000-06-06T23:59:59.000Z

110

Cobb Creek Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Cobb Creek Geothermal Facility Cobb Creek Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cobb Creek Geothermal Facility General Information Name Cobb Creek Geothermal Facility Facility Cobb Creek Sector Geothermal energy Location Information Location The Geysers, Californi Coordinates 38.804734473609°, -122.78414726257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.804734473609,"lon":-122.78414726257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Comment and response document for the long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon  

Science Conference Proceedings (OSTI)

This document contains comments made by the U.S. Nuclear Regulatory Commission addressing their concerns over the long-term monitoring program for the Collins Ranch Disposal Site, UMTRA project. Responses are included as well as plans for implementation of changes, if any are deemed necessary.

Not Available

1994-08-01T23:59:59.000Z

112

Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.  

DOE Green Energy (OSTI)

This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

Ashley, Paul R.

1997-01-01T23:59:59.000Z

113

Salmon Creek Project Draft Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUGUST 2004 AUGUST 2004 SALMON CREEK PROJECT Draft Environmental Impact Statement DOE/EIS-0346 Lead Agency U.S. Dept of Energy, Bonneville Power Administration Cooperating Agencies U.S. Dept of Interior, Bureau of Reclamation Confederated Tribes of the Colville Reservation Okanogan Irrigation District Salmon Creek Project Draft Environmental Impact Statement (DOE/EIS-0346) Responsible Agency: Bonneville Power Administration (BPA), U.S. Department of Energy (DOE) Cooperating Agencies: U.S. Department of Interior, Bureau of Reclamation, Confederated Tribes of the Colville Reservation, Okanogan Irrigation District. County and State Involved: Okanogan County, Washington Abstract: BPA proposes to fund activities that would restore sufficient water flows to Salmon Creek and

114

Panther Creek, Idaho, Habitat Rehabilitation, Final Report.  

SciTech Connect

The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

Reiser, Dudley W.

1986-01-01T23:59:59.000Z

115

Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek  

E-Print Network (OSTI)

1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

Gray, Matthew

116

Crane Creek known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

117

Elbow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elbow Creek Wind Farm Elbow Creek Wind Farm Jump to: navigation, search Name Elbow Creek Wind Farm Facility Elbow Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Padoma Developer Padoma Location Howard County TX Coordinates 32.133515°, -101.415676° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.133515,"lon":-101.415676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Wolverine Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wolverine Creek Wind Farm Wolverine Creek Wind Farm Jump to: navigation, search Name Wolverine Creek Wind Farm Facility Wolverine Creek Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser PacifiCorp Location East of ID Falls ID Coordinates 43.422203°, -111.83439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.422203,"lon":-111.83439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Elm Creek II | Open Energy Information  

Open Energy Info (EERE)

Elm Creek II Elm Creek II Jump to: navigation, search Name Elm Creek II Facility Elm Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Location Jackson and Martin County MN Coordinates 43.756372°, -94.956014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.756372,"lon":-94.956014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Bear Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bear Creek Wind Farm Bear Creek Wind Farm Facility Bear Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown owns majority Developer CEI Iberdrola Energy Purchaser PPL Corp. Location Near Bear Creek Village PA Coordinates 41.1801°, -75.7216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1801,"lon":-75.7216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Elm Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Elm Creek Wind Farm Elm Creek Wind Farm Jump to: navigation, search Name Elm Creek Wind Farm Facility Elm Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Great River Energy Location MN Coordinates 43.780285°, -94.845586° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.780285,"lon":-94.845586,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Tributary Fluxes into Brush Creek Valley  

Science Conference Proceedings (OSTI)

Measurements in a tributary to Brush Creek Valley during the September and October 1984 ASCOT campaign with laser anemometers, tethersondes, a minisodar, and smoke release were used to calculate the contribution by tributaries to nocturnal ...

R. L. Coulter; Monte Orgill; William Porch

1989-07-01T23:59:59.000Z

123

Kansas Nuclear Profile - Wolf Creek Generating Station  

U.S. Energy Information Administration (EIA)

snpt3ks210 1,160 9,556 94.0 PWR Wolf Creek Generating Station Unit Type Data for 2010 PWR = Pressurized Light Water Reactor. Note: Totals may not ...

124

Twin Creeks Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Place San Jose, California Zip 95134 Product California-based silicon-based thin-film PV startup in stealth mode. References Twin Creeks Technologies1 LinkedIn...

125

Bull Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Bull Creek Wind Farm Bull Creek Wind Farm Jump to: navigation, search Name Bull Creek Wind Farm Facility Bull Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Eurus Developer Eurus Energy Purchaser Market Location Near Gail TX Coordinates 32.933099°, -101.584425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.933099,"lon":-101.584425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

FIDDLER CREEK POLYMER AUGMENTATION PROJECT  

SciTech Connect

The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1 with lesser effects in Pattern 2. These early observations did not continue to develop. The oil production for both patterns remained fairly constant to the rates established by the restart of waterflooding. The water production declined but stabilized in both patterns. The stabilization of the oil at prepolymer rates and water production at the lower rates can be attributed to the polymer injection, but the effect was not as great as originally predicted. The sweep improvement for the patterns appeared to be negatively impacted by extended shutdowns in the injection and production systems. Such problems as those experienced in this project can be expected when long-term polymer injection is started in old waterflood fields. To prevent these problems, new injection and production tubulars and pumps would be required at a cost prohibitive to the present, independent operators. Unless the future results from the continued waterflood show positive effects of the long-term polymer injection, it appears that the batch-type polymer treatment may have more promise than the long-term treatment and should be more cost effective.

Lyle A. Johnson, Jr.

2001-10-31T23:59:59.000Z

127

Permian {open_quotes}Wolfcamp{close_quotes} limestone reservoirs: Powell Ranch field, Eastern Midland Basin  

SciTech Connect

Deep-water carbonate channel reservoirs form important oil reservoirs along the toe of the Eastern Shelf of the Permian basin in west Texas. In northwestern Glasscock County, these `Wolfcamp` reservoirs are Leonardian (Early Permian) in age and define high-energy channels incised into surrounding carbonate detritus and basinal shale. Porous grain-flow material filling these channels, along with encasing detritus, was derived from the shallow shelf located six miles to the east. Reservoirs are in packstone and grainstone facies and have significant interparticle and moldic porosity. Relevant exploration began in the 1960s, but expanded slowly thereafter due to lack of success caused by complex patterns of channel occurrence. Results of a three-dimensional (3-D) seismic survey conducted in 1990 have greatly enhanced the identification and mapping of productive channels in the Powell Ranch field complex. Wells in this complex are capable of flowing 400-1200 bbl of oil per day, and have reserves ranging from 0.2 to 1.3 MBO. The new 3-D data have improved the relevant geologic model and dramatically increased rates of drilling success. Application of such data to this setting offers a potential model for other parts of the Permian basin.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-09-01T23:59:59.000Z

128

Dow Chemical Company-Oyster Creek VIII | Open Energy Information  

Open Energy Info (EERE)

Company-Oyster Creek VIII Jump to: navigation, search Name Dow Chemical Company-Oyster Creek VIII Place Texas Utility Id 5374 References EIA Form EIA-861 Final Data File for 2010 -...

129

Crane Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Wind Farm Crane Creek Wind Farm Facility Crane Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer EnXco Energy Purchaser Wisconsin P ublic Service Group Location Northeast of Riceville IA Coordinates 43.410108°, -92.51652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.410108,"lon":-92.51652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Edwards Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Edwards Creek Geothermal Project Edwards Creek Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222°, -117.67166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.617222222222,"lon":-117.67166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Reedy Creek Improvement Dist | Open Energy Information  

Open Energy Info (EERE)

Reedy Creek Improvement Dist Reedy Creek Improvement Dist Jump to: navigation, search Name Reedy Creek Improvement Dist Place Florida Utility Id 15776 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS General Service GSD General Service Demand RS Residential Service Residential Average Rates Residential: $0.1240/kWh Commercial: $0.1130/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

133

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

134

Cherry Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Cherry Creek Geothermal Area Cherry Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Cherry Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.85,"lon":-114.905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Willow Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Willow Creek Wind Farm Willow Creek Wind Farm Facility Willow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Location Morrow County OR Coordinates 45.828458°, -119.795537° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.828458,"lon":-119.795537,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Lava Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lava Creek Geothermal Area Lava Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lava Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.2283,"lon":-162.894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Papalote Creek II | Open Energy Information  

Open Energy Info (EERE)

Papalote Creek II Papalote Creek II Jump to: navigation, search Name Papalote Creek II Facility Papalote Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate & Renewables North America Developer E.ON Climate & Renewables North America Energy Purchaser Lower Colorado River Authority Location 30 miles north of Corpus Christi in San Patricio County TX Coordinates 28.254569°, -97.40015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.254569,"lon":-97.40015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Stony Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stony Creek Wind Farm Stony Creek Wind Farm Jump to: navigation, search Name Stony Creek Wind Farm Facility Stony Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.ON Climate and Renewables Developer E.ON Climate and Renewables Location Somerset County PA Coordinates 40.039256°, -78.781979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.039256,"lon":-78.781979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Eva Creek Wind Project | Open Energy Information  

Open Energy Info (EERE)

Eva Creek Wind Project Eva Creek Wind Project Jump to: navigation, search Name Eva Creek Wind Project Facility Eva Creek Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Golden Valley Electric Association Developer Golden Valley Electric Association Energy Purchaser Golden Valley Electric Association Location NE corner of Denali Natl Park AK Coordinates 64.0602°, -148.9054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.0602,"lon":-148.9054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Lost Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Lost Creek Wind Farm Lost Creek Wind Farm Jump to: navigation, search Name Lost Creek Wind Farm Facility Lost Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Associated Electric Cooperative Location DeKalb County MO Coordinates 39.98080324°, -94.55009937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.98080324,"lon":-94.55009937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Papalote Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Papalote Creek Wind Farm Papalote Creek Wind Farm Jump to: navigation, search Name Papalote Creek Wind Farm Facility Papalote Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser CPS San Antonio Location San Patricio County TX Coordinates 27.925458°, -97.394686° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.925458,"lon":-97.394686,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Forest Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Creek Wind Farm Creek Wind Farm Jump to: navigation, search Name Forest Creek Wind Farm Facility Forest Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables/RGI Energy Purchaser Luminant Location Glasscock and Sterling Counties TX Coordinates 31.937348°, -101.312513° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.937348,"lon":-101.312513,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Prairie Creek Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Creek Ethanol LLC Creek Ethanol LLC Jump to: navigation, search Name Prairie Creek Ethanol LLC Place Goldfield, Iowa Zip 50542 Product Prairie Creek Ethanol, LLC had planned to build a 55m gallon (208m litre) per year ethanol plant in Wesley, Iowa, but, as of 23 May 2008, the board of directors voted to recommend to the members of the company to dissolve the company as soon as possible. Coordinates 37.707559°, -117.233459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.707559,"lon":-117.233459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Reconstructing the past: architectural analysis of communal structures at the NAN Ranch ruin (LA2465), Grant County, New Mexico  

E-Print Network (OSTI)

Eleven seasons of field work at the NAN Ranch ruin (LA 2465), a multicomponent Mimbres site in Grant County, New Mexico, have allowed researchers to reconstruct a detailed sequence of architectural development stretching from the Three Circle phase (A.D. 750-900) to the Classic period (A.D. 1000-1130). During the course of excavation, investigators exposed a number of structures that are believed to have served in a communal or integrative capacity. This structure type served as the focus for this work. The purpose of this study was threefold: a) to present detailed descriptions of those structures believed to have served in a communal or integrative capacity; b) to trace the development of this structure type from its first known manifestations at the NAN Ranch ruin in the Three Circle phase to its latest forms at the end of the Classic period; and c) to analyze these structures as a distinct social space, both at the intramural and site level. Eleven structures are described in detail in this text. Six other spaces are also briefly described. Careful attention to detail has allowed this study to address whether previous judgements about the function of the rooms noted herein are in fact supportable. Scrutiny of architectural features also permitted a consideration of how well generally accepted indicators of communal space apply in the case of the NAN Ranch ruin. Finally, the structure provided by the architectural descriptions served as a foundation on which to base a number of inferences concerning population-guided socio-cultural change. Whereas architectural data suggest a shift away from a site-inclusive to a more privatized, lineage-based communal organization during the Late Pithouse/Classic period transition, the appearance of a new structure type at the end of the Classic period suggests that population pressures fostered social reorganization at the room block level around A.D. 1100.

Burden, Damon Andrew

2001-01-01T23:59:59.000Z

145

Preliminary Assessment of the Structural Controls of Neal Hot Springs  

Open Energy Info (EERE)

Preliminary Assessment of the Structural Controls of Neal Hot Springs Preliminary Assessment of the Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Assessment of the Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon Abstract The Neal Hot Springs geothermal field is marked by hotsprings that effuse from opaline sinter mounds just north of BullyCreek, in Malheur County, Oregon. Production wells have highflow rates and temperatures above 138C at depths of 850-915 m.On a regional scale, the geothermal field occupies a broad zonewithin the intersection between a regional, N-striking, normalfault system within the Oregon-Idaho graben and a regionalNW-striking, normal fault system within the western Snake

146

Preliminary Assessment for CAU 485: Cactus Spring Ranch Pu and DU Site CAS No. TA-39-001-TAGR: Soil Contamination, Tonopah Test Range, Nevada  

SciTech Connect

Corrective Action Unit 485, Corrective Action Site TA-39-001-TAGR, the Cactus Spring Ranch Soil Contamination Area, is located approximately six miles southwest of the Area 3 Compound at the eastern mouth of Sleeping Column Canyon in the Cactus Range on the Tonopah Test Range. This site was used in conjunction with animal studies involving the biological effects of radionuclides (specifically plutonium) associated with Operation Roofer Coaster. The location had been used as a ranch by private citizens prior to government control of the area. According to historical records, Operation Roofer Coaster activities involved assessing the inhalation uptake of plutonium in animals from the nonnuclear detonation of nuclear weapons. Operation Roofer Coaster consisted of four nonnuclear destruction tests of a nuclear device. The four tests all took place during May and June 1963 and consisted of Double Tracks and Clean Slate 1, 11, and 111. Eighty-four dogs, 84 burros, and 136 sheep were used for the Double Tracks test, and ten sheep and ten dogs were used for Clean Slate 11. These animals were housed at Cactus Spring Ranch. Before detonation, all animals were placed in cages and transported to the field. After the shot, they were taken to the decontamination area where some may have been sacrificed immediately. All animals, including those sacrificed, were returned to Cactus Spring Ranch at this point to have autopsies performed or to await being sacrificed at a later date. A description of the Cactus Spring Ranch activities found in project files indicates the ranch was used solely for the purpose of the Roofer Coaster tests and bioaccumulation studies and was never used for any other project. No decontamination or cleanup had been conducted at Cactus Spring Ranch prior to the start of the project. When the project was complete, the pits at Cactus Spring Ranch were filled with soil, and trailers where dogs were housed and animal autopsies had been performed were removed. Additional pens and sheds were built to house and manage livestock involved with the Operation Roofer Coaster activities in 1963.

NONE

1998-07-01T23:59:59.000Z

147

Solar heating and cooling system for an office building at Reedy Creek Utilities  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy system installed in a new two-story office building at the Reedy Creek Utilities Company, which provides utility service to Walt Disney World at Lake Buena Vista, Florida. The solar components were partly funded by the Department of Energy under Contract EX-76-C-01-2401, and the technical management was by NASA/George C. Marshall Space Flight Center. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The collector is a modular cylindrical concentrator type with an area of 3.840 square feet. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled. Design, construction, operation, cost, maintenance, and performance are described in depth. Detailed drawings are included.

Not Available

1978-08-01T23:59:59.000Z

148

Microsoft Word - Soos_Creek_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Timothy Wicks Timothy Wicks Realty Specialist - TERR-COVINGTON Proposed Action: Soos Creek Water & Sewer District Land Use Review Request Case No. 20120040 Budget Information: 184006 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B 4.9 - Multiple use of powerline rights-of-way Location: Covington, King County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to approve a land use review request from Soos Creek Water & Sewer District (District) to construct a new sewer line that would cross under an existing road on BPA fee-owned property near structures 1/2 and 1/3 of the Covington-Maple Valley No. 2 230-kilovolt (kV) transmission line. The proposed sewer line

149

Microsoft Word - Coyote Creek CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2013 3, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dorie Welch Project Manager - KEWM-4 Proposed Action: Provision of funds to acquire a conservation easement over the 310-acre Coyote Creek property. Fish and Wildlife Project No.: 2011-003-00, Contract # BPA-006468 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real Property transfers for cultural protection, habitat preservation and wildlife management. Location: Veneta and West Eugene quadrangles, in Lane County, Oregon (near Eugene, Oregon). Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: The BPA is proposing to fund The Nature Conservancy's (Conservancy) purchase of the Coyote Creek property, a 310-acre parcel of land located just west of the

150

Blue Creek Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser First Energy Solutions Location Van Wert County OH Coordinates 41.018286°, -84.615355° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.018286,"lon":-84.615355,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Texas Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

coil hot water storage tank, a backup instantaneous electric water heater, a hydronic fan coil unit for space heating, and an efficient plumbing manifold for domestic hot water...

152

Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991  

Science Conference Proceedings (OSTI)

The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

1992-02-01T23:59:59.000Z

153

Trout Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Trout Creek Geothermal Area Trout Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Trout Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.18822,"lon":-118.37756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

155

Post Project Appraisal of Cerrito Creek at El Cerrito Plaza  

E-Print Network (OSTI)

Works 5/15/03. (Sheets L1-L8) Friends of Five Creeks website: http://www.fivecreeks.org/ (November 10, 2005) Hanford

Berndt, Sarah; Smith, Fran

2005-01-01T23:59:59.000Z

156

Mercury distribution in Poplar Creek, Oak Ridge, Tennessee, USA  

SciTech Connect

As a result of the lithium-isotope separation process used in the production of thermonuclear fusion weapons during the mid-1950s and early 1960s. 150 t of mercury were released into Poplar Creek (via East Fork Poplar Creek) in Oak Ridge, Tennessee, USA. This project was performed as part of a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation to define the nature and extent of mercury contamination in Poplar Creek. Ultraclean sampling techniques and ultrasensitive analytical methods were used to determine methylmercury and inorganic mercury concentrations in surface water, sediment, and pore water from Poplar Creek. Total methylmercury and inorganic mercury concentrations in surface water from reaches downstream from the East Fork Poplar Creek confluence were significantly higher (p < 0.05) than the upstream reference reach. Concentrations in surface water increased with distance downstream from the source (East Fork Poplar Creek), which was opposite of expected results. Sediment methylmercury and inorganic mercury concentrations also increased with the distance downstream from the source and were highest near the mouth of Poplar Creek (1.0--12 ng/g and 630--140,000 ng/g, respectively). High concentrations in surface water and sediment near the mouth of Poplar Creek appear to be a result of sediment deposition and resuspension, apparently caused by the stronger Clinch River current acting as a barrier and its backflow into Poplar Creek as a result of hydropower operations.

Campbell, K.R. [SENES Oak Ridge, Inc., TN (United States). Center for Risk Analysis; Ford, C.J. [Highlands Soil and Water Conservation District, Sebring, FL (United States); Levine, D.A. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

157

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

158

Field Algae Measurements Using Empirical Correlations at Deer Creek Reservoir.  

E-Print Network (OSTI)

??Deer Creek Reservoir in Utah has a history of high algae concentrations. Despite recent nutrient reduction efforts, seasonal algae continue to present problems. Cost effective, (more)

Stephens, Ryan A

2011-01-01T23:59:59.000Z

159

New Jersey Nuclear Profile - PSEG Hope Creek Generating Station  

U.S. Energy Information Administration (EIA) Indexed Site

PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

160

Big Creek, Mississippi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleBigCreek,Mississippi&oldid227750" Categories: Places Stubs Cities What links here...

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon DOEEA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon Summary...

162

Big Canyon Creek Ecological Restoration Strategy.  

DOE Green Energy (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

163

Big Canyon Creek Ecological Restoration Strategy.  

Science Conference Proceedings (OSTI)

He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe then used data collected from the District's stream assessment and inventory, utilizing the Stream Visual Assessment Protocol (SVAP), to determine treatment necessary to bring 90% of reaches ranked Poor or Fair through the SVAP up to good or excellent. In 10 year's time, all reaches that were previously evaluated with SVAP will be reevaluated to determine progress and to adapt methods for continued success. Over 400 miles of stream need treatment in order to meet identified restoration goals. Treatments include practices which result in riparian habitat improvements, nutrient reductions, channel condition improvements, fish habitat improvements, invasive species control, water withdrawal reductions, improved hydrologic alterations, upland sediment reductions, and passage barrier removal. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resource Management Watershed Division (Tribe) developed this document to guide restoration activities within the Big Canyon Creek watershed for the period of 2008-2018. This plan was created to demonstrate the ongoing need and potential for anadromous fish habitat restoration within the watershed and to ensure continued implementation of restoration actions and activities. It was developed not only to guide the District and the Tribe, but also to encourage cooperation among all stakeholders, including landowners, government agencies, private organizations, tribal governments, and elected officials. Through sharing information, skills, and resources in an active, cooperative relationships, all concerned parties will have the opportunity to join together to strengthen and maintain a sustainable natural resource base for present and future generations within the watershed. The primary goal of the strategy is to address aquatic habitat restoration needs on a watershed level for resident and anadromous fish species, promoting quality habitat within a self-sustaining watershed. Seven objectives have been developed to support this goal: (1) Identify factors limiting quality

Rasmussen, Lynn; Richardson, Shannon

2007-10-01T23:59:59.000Z

164

Principal facts for a gravity survey of the Fly Ranch Extension Known Geothermal Resource Area, Pershing County, Nevada  

DOE Green Energy (OSTI)

During July 1977, forty-four gravity stations were obtained in the Fly Ranch Extension Known Geothermal Resource Area and vicinity, northwestern Nevada. The gravity observations were made with a Worden gravimeter having a scale factor of about 0.5 milligal per division. No terrain corrections have been applied to these data. The earth tide correction was not used in drift reduction. The Geodetic Reference System 1967 formula (International Association of Geodesy, 1967) was used to compute theoretical gravity. Observed gravity is referenced to a base station in Gerlach, Nevada, having a value based on the Potsdam System of 1930 (fig. 1). A density of 2.67 g per cm/sup 3/ was used in computing the Bouguer anomaly.

Peterson, D.L.; Kaufmann, H.E.

1978-01-01T23:59:59.000Z

165

Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

Bartels, Duane G.

1999-12-01T23:59:59.000Z

166

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

167

NEWTON: Green Hot  

NLE Websites -- All DOE Office Websites (Extended Search)

to two different phenomena. The 'red-hot' or 'white-hot' designations are due to black body radiation, which you can read about on-line. The colors of flames are due to ionization...

168

Madrid Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Comprehensive Assessment of Hot Water System Page 1 of 2 HOT WATER SYSTEM In general, the plumbing system in MAGIC BOX is designed to concentrate all devices, be they storage,...

169

Reedy Creek Utilities, Lake Buena Vista, Florida, solar energy system performance evaluation, December 1979-March 1980  

DOE Green Energy (OSTI)

The Reedy Creek solar system operated moderately well during the December 1979 through March 1980 heating season. The overall performance of the system was below estimated design performance but the solar system still supplied 47% of the building conditioning loads. The thermal performance is summarized. The system failed to reach design performance levels in the cooling subsystem. Since the cooling load of 40.24 million Btu was nearly three times larger than the space heating and domestic hot water loads of 14.44 million Btu, the overall system performance was significantly reduced. Although collected solar energy exceeds the system load in most months, the solar fraction is necessarily less than 100% due to the normal operating inefficiencies of pumps, heat exchanger, and particularly the absorption chiller. At Reedy Creek, excessive storage losses, presumably due to high storage temperatures, further degrade system performance. Collector array efficiency based on the total incident solar radiation was 11%. This was significantly lower than the 14% collector array efficiency for the 1979 heating season.

Logee, T.

1980-01-01T23:59:59.000Z

170

Granite Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Creek Geothermal Project Project Location Information Coordinates 41.058611111111°, -117.22777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.058611111111,"lon":-117.22777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Smith Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889°, -117.55083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.311388888889,"lon":-117.55083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Wind power for the Creek Nation. Final report  

SciTech Connect

An Enertech 1800 horizontal-axis wind powered electric generator was purchased and interphased with the electric utility system provided to the Creek Nation by the Public Service Company of Oklahoma. Objectives of the work include: to determine the economic feasibility of wind power for the Creek Nation region; to educate the Creek Nation and other Indian tribes about the potential use of wind power; and to accumulate valuable climatic data through an on-site wind survey at a height of 60' over a long period of time. (LEW)

Not Available

1982-01-01T23:59:59.000Z

174

The Senescent Mimbres Population: An Application of the Transition Analysis to the NAN Ranch Ruin Skeletal Sample  

E-Print Network (OSTI)

This study uses Transition Analysis on the Mimbres skeletal remains of the NAN Ranch Ruin to provide a more complete picture of its demography. Previous attempts to reconstruct the demographic structure of prehistoric populations have been hindered by aging methods that provide biased age distribution. Early methods had a tendency to produce age distribution similar to that of the reference sample that was used to create them. In addition, they often overlooked sexual dimorphism and left out the senescent portion of the population which in turns produced inaccurate population structures. Transition Analysis is a multifactorial approach to estimate the age-at-death of adult skeletons that focuses on the cranium, the pubic symphysis and the auricular surface of the ilium. The method relies heavily on the Bayesian probability that a given trait or a given combination of traits is displayed at a given age, it recognizes sexual dimorphism, performs well on fragmentary skeletons and allows for the age estimation of older individuals. The NAN Ranch Ruin sample consists of over 240 individuals, including 185 from the Classic Period. A previous study focused on the 81 individuals from the Classic period that were collected during the first five years of excavations. Following age estimation of adult skeleton I constructed composite abridged life tables. For the Classic Period, I found a high infant mortality rate (47%) and low life expectancy at birth (21.14 years) as expected. However, this analysis produced different mortality patterns than older demographic studies, where mid adult mortality increases only slightly, decreases in late adulthood (40-55 years old) and increases again in senescence (55-80 years old), instead of increasing steadily in adulthood to culminate at age 50. This difference is a consequence of the aging methods that have been used to analyze other southwestern prehistoric samples. Finally, while I was not able to confirm different mortality patterns between males and females, I found that people from the east roomblock enjoyed greater longevity than those from the south roomblock, though the difference is not statistically significant.

Lovings, Aline

2011-12-01T23:59:59.000Z

175

RFC Sand Creek Development LLC | Open Energy Information  

Open Energy Info (EERE)

RFC Sand Creek Development LLC RFC Sand Creek Development LLC Jump to: navigation, search Name RFC Sand Creek Development LLC Place Aurora, Colorado Zip 80014 Product Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Birch Creek Village Elec Util | Open Energy Information  

Open Energy Info (EERE)

Birch Creek Village Elec Util Birch Creek Village Elec Util Jump to: navigation, search Name Birch Creek Village Elec Util Place Alaska Utility Id 1747 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6070/kWh Commercial: $0.6150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Birch_Creek_Village_Elec_Util&oldid=409048" Categories:

177

Panther Creek III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Panther Creek III Wind Farm Panther Creek III Wind Farm Jump to: navigation, search Name Panther Creek III Wind Farm Facility Panther Creek III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Location TX Coordinates 31.9685988°, -99.9018131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.9685988,"lon":-99.9018131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

179

Silver Creek Farms Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Creek Farms Aquaculture Low Temperature Geothermal Facility Creek Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Silver Creek Farms Aquaculture Low Temperature Geothermal Facility Facility Silver Creek Farms Sector Geothermal energy Type Aquaculture Location Twin Falls, Idaho Coordinates 42.5629668°, -114.4608711° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

180

Floodplain and wetlands assessment of the White Oak Creek Embayment  

SciTech Connect

This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs,  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of

182

Fourche Creek Wastewater Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Fourche Creek Wastewater Biomass Facility Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type Non-Fossil Waste Location Pulaski County, Arkansas Coordinates 34.7538615°, -92.2236667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7538615,"lon":-92.2236667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Panther Creek I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Panther Creek I Wind Farm Panther Creek I Wind Farm Jump to: navigation, search Name Panther Creek I Wind Farm Facility Panther Creek I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Location TX Coordinates 32.201592°, -101.406391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201592,"lon":-101.406391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

185

Tuttle Creek Hydroelectric Project feasibility assessment report  

DOE Green Energy (OSTI)

The results are presented of a feasibility assessment study to determine if hydroelectric generation could be developed economically at the Corps of Engineers' Tuttle Creek Dam, an existing flood control structure on the Big Blue River near Manhattan, Kansas. The studies and investigations included site reconnaissance, system load characteristics, site hydrology, conceptual project arrangements and layouts, power studies, estimates of construction costs, development of capital costs, economic feasibility, development of a design and construction schedule and preliminary environmental review of the proposed Project. The dependable capacity of the Project as delivered into the existing transmission and distribution network is 12,290 kW and the average annual energy is 56,690 MWh. For the scheduled on-line date of July 1984, the Project is estimated to have a Total Investment Cost of $19,662,000 (equal to $1333/kW installed at that time frame) with an estimated annual cost for the first year of operation of $2,696,000, assuming REA financing at 9.5% interest rate. The Project is considered technically feasible and without any major environmental issues. It shows economic feasibility providing satisfactory financing terms are available. (LCL)

None

1979-03-01T23:59:59.000Z

186

Diagenesis and cement fabric of gas reservoirs in the Oligocene Vicksburg Formation, McAllen Ranch Field, Hidalgo County, Texas  

SciTech Connect

McAllen Ranch field produces natural gas from 12 deep, overpressured sandstone packages, each interpreted to be the deposit of a prograding shelf-edge delta. One hundred and sixty thin sections from 350 ft of core were petrographically described. The sandstones are feldspathic litharenites containing subequal proportions of volcanic rock fragments (VRF), feldspar, and quartz grains. Grain size ranges from very fine to coarse sand. Porosity is mostly secondary, having formed through dissolution of VRF and feldspar grains. There are four major diagenetic facies (portions of core that can be grouped by the predominance of one diagenetic cement and similar appearance in hand specimen): (1) calcite cemented; (2) chlorite cemented, tight; (3) chlorite cemented, porous; and (4) quartz overgrowths, porous. The calcite-cemented facies predominates in very fine grained sandstones and siltstones and encroaches into adjoining sandstones irrespective of grain size. Sparry calcite filled all available pores and replaced some feldspar. Core permeabilities are generally less than 0.01 md, and porosities range from 7 to 15%. Authigenic clay (predominantly chlorite) generally cements sands intermediate in grain size between those cemented by calcite and those cemented by quartz. Two types of diagenetic clay fabric are interbedded, forming distinct alternating bands 0.1 in. to 3 ft thick. Gray, tightly chlorite-cemented bands are macroscopically and microscopically distinct from green, porous chlorite-cemented bands. In the tightly chlorite-cemented facies, permeabilities are less than 0.3 md, and porosities range from 8 to 16%. Small plates of chlorite fill interparticle pores, and secondary pores are rare. In the porous chlorite-cemented facies, dissolution of framework grains and chlorite cement increased porosity, and a second chlorite cement was precipitated. Core permeability ranges from 0.1 to 1 md, and porosities range from 15 to 20%.

Langford, R.P.; Lynch, F.L. (Univ. of Texas, Austin (USA))

1990-09-01T23:59:59.000Z

187

Wolf Creek Nuclear Operating Corporation | Open Energy Information  

Open Energy Info (EERE)

Wolf Creek Nuclear Operating Corporation Wolf Creek Nuclear Operating Corporation Jump to: navigation, search Name Wolf Creek Nuclear Operating Corporation Place Burlington, Kansas Zip 66839-0411 Product Wolf Creek Nuclear Operating Corporation operates the Wolf Creek Generating Station, Kansas' first nuclear power generating station, for three utility owners in Kansas and Missouri. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

188

Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana  

SciTech Connect

The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

Nelson, W.J. (Illinois State Geological Survey, Champaign (United States))

1991-06-01T23:59:59.000Z

189

Scotch Creek Wildlife Area 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

Olson, Jim [Washington Department of Fish and Wildlife

2008-11-03T23:59:59.000Z

190

Mass and Momentum Balance in the Brush Creek Drainage Flow Determined from Single-Profile Data  

Science Conference Proceedings (OSTI)

Fluxes and flux-divergences of mass and momentum in Brush Creek Valley, computed from measurements taken by Tethersondes and Doppler sodars in the 1984 ASCOT experiment, are presented. Estimates of mass influx from open sidewalls in Brush Creek, ...

Ronald J. Dobosy; K. Shankar Rao; John W. Przybylowicz; Richard M. Eckman; Rayford P. Hosker Jr.

1989-06-01T23:59:59.000Z

191

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

192

Microsoft Word - SilverCreek-Fiber-CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

John Brank John Brank Customer Service Engineer - TPC-OLYMPIA Proposed Action: Silver Creek Substation fiber project Budget Information: Work Order 253198, Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.7 Adding fiber optic cable to transmission structures or burying fiber optic cable in existing transmission line rights of way. Locations: Silver Creek Substation, Lewis County, Washington (T12N R2E SEC17) Proposed by: Bonneville Power Administration (BPA) and Lewis County Public Utility District (PUD) Description of the Proposed Action: BPA proposes to connect a fiber optic cable from an existing Lewis County PUD transmission line into the BPA Silver Creek Substation in Lewis County, Washington. The fiber project is needed to increase transmission system

193

Town of Oak Creek, Colorado (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Creek Creek Place Colorado Utility Id 14054 Utility Location Yes Ownership M NERC Location WECC NERC SPP Yes NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate 101: Residential Residential Rate 110: Commercial Commercial Rate 202: General Service Three Phase Commercial Average Rates Residential: $0.0965/kWh Commercial: $0.0842/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Oak_Creek,_Colorado_(Utility_Company)&oldid=411791

194

Oak Creek Energy Systems Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

DOE - Office of Legacy Management -- Lost Creek - WY 01  

Office of Legacy Management (LM)

Lost Creek - WY 01 Lost Creek - WY 01 FUSRAP Considered Sites Site: Lost Creek (WY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

196

Panther Creek II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Creek II Wind Farm Creek II Wind Farm Facility Panther Creek II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser N/a Location TX Coordinates 32.201592°, -101.406391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201592,"lon":-101.406391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Oak Creek Energy Systems Wind Farm III | Open Energy Information  

Open Energy Info (EERE)

III III Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Oak Creek Energy Systems Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Oak Creek Energy Systems Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

200

Fast-growing willow shrub named `Fish Creek`  

DOE Patents (OSTI)

A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

White Creek Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

White Creek Wind Power Project White Creek Wind Power Project Facility White Creek Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Last Mile Electric Cooperative Developer Last Mile Electric Cooperative Energy Purchaser Last Mile Electric Cooperative Location Klickitat County Coordinates 45.853153°, -120.289578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.853153,"lon":-120.289578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Proposed Flyers Creek Wind Farm, Blayney Local Government Area  

E-Print Network (OSTI)

Application reference: MP 08_0252 The Flyers Creek Wind Turbine Awareness Group Inc. (FCWTAG) is comprised of a large group of concerned residents of the Blayney Local Government Area. We object to the Proposed Flyers Creek Wind Farm (the proposal) in the strongest possible terms. We believe this development is totally inappropriate. This submission details our objections. The FCWTAG requests that representatives of the group be given the opportunity to speak at the Planning Assessment Commission hearing related to this proposal. Yours faithfully,

Major Development Assessment; Sydney Nsw; Dr. Colleen; J Watts Oam

2011-01-01T23:59:59.000Z

203

Hot and Cold  

NLE Websites -- All DOE Office Websites (Extended Search)

What happens to neon gas when it gets very hot? In this experiment, liquid nitrogen and Tesla coils are used to study the effects of extreme temperatures on everyday objects. Don't...

204

Reactor hot spot analysis  

SciTech Connect

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

205

Oak Creek Phase I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Oak Creek Phase I Wind Farm Facility Oak Creek Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nichimen America/Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Ventilation planning at Energy West's Deer Creek mine  

SciTech Connect

In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

Tonc, L.; Prosser, B.; Gamble, G. [Pacific Corp., Huntington, UT (United States)

2009-08-15T23:59:59.000Z

207

Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

Bartels, Duane G.

2000-10-01T23:59:59.000Z

208

Cedar Creek Wind Farm II (GE) | Open Energy Information  

Open Energy Info (EERE)

Cedar Creek Wind Farm II (GE) Cedar Creek Wind Farm II (GE) Jump to: navigation, search Name Cedar Creek Wind Farm II (GE) Facility Cedar Creek II (GE) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.868652°, -104.092398° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.868652,"lon":-104.092398,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Oak Creek - Phase 2A | Open Energy Information  

Open Energy Info (EERE)

Phase 2A Phase 2A Jump to: navigation, search Name Oak Creek - Phase 2A Facility Oak Creek - Phase 2A Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Oak Creek Energy Systems Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Okanogan Focus Watershed Salmon Creek : Annual Report 1999.  

DOE Green Energy (OSTI)

During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

Lyman, Hilary

1999-11-01T23:59:59.000Z

211

Tillman Creek Mitigation Site As-Build Report.  

DOE Green Energy (OSTI)

This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

Gresham, Doug [Otak, Inc.

2009-05-29T23:59:59.000Z

212

A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand  

Open Energy Info (EERE)

Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Details Activities (4) Areas (1) Regions (0) Abstract: Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640 ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480 ka) extend from the canyon rim to more than 300 m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal)

213

Solar hot water heater  

SciTech Connect

A solar hot water heater includes an insulated box having one or more hot water storage tanks contained inside and further having a lid which may be opened to permit solar radiation to heat a supply of water contained within the one or more hot water storage tanks. A heat-actuated control unit is mounted on an external portion of the box, such control unit having a single pole double throw thermostat which selectively activates an electric winch gear motor to either open or close the box lid. The control unit operates to open the lid to a predetermined position when exposed to the sun's rays, and further operates to immediately close the lid in response to any sudden drop in temperature, such as might occur during a rainstorm, clouds moving in front of the sun, or the like.

Melvin, H.A.

1982-12-28T23:59:59.000Z

214

Beppu hot springs  

SciTech Connect

Beppu is one of the largest hot springs resorts in Japan. There are numerous fumaroles and hot springs scattered on a fan-shaped area, extending 5 km (3.1 miles) from east to west and 8 km (5.0 miles) from north to south. Some of the thermal manifestations are called {open_quotes}Jigoku (Hells){close_quotes}, and are of interest to visitors. The total amount of discharged hot springs water is estimated to be 50,000 ton/day (9,200 gpm) indicating a huge geothermal system. The biggest hotel in Beppu (Suginoi Hotel) installed a 3-MW geothermal power plant in 1981 to generate electricity for its own private use.

Taguchi, Schihiro [Fukuoka Univ. (Japan); Itoi, Ryuichi [Kyushu Univ., Kasuga (Japan); Yusa, Yuki [Kyoto Univ., Beppu (Japan)

1996-05-01T23:59:59.000Z

215

Hot water supply system  

SciTech Connect

A hot water supply system is described which consists of: a boiler having an exhaust; solar panels; and a frame supporting the solar panels and including a compartment beneath the solar panels, the boiler exhaust termining in the compartment beneath the solar panels, the boiler being within the compartment.

Piper, J.R.

1986-06-10T23:59:59.000Z

216

An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada  

SciTech Connect

An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting {sup 238}U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected {sup 241}Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area.

Proctor, A.E.; Hendricks, T.J.

1995-08-01T23:59:59.000Z

217

Cornell University Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water System Hot Water System The production and delivery of hot water in the CUSD home is technologically advanced, economical, and simple. Hot water is produced primarily by the evacuated solar thermal tube collectors on the roof of the house. The solar thermal tube array was sized to take care of the majority of our heating and hot water needs throughout the course of the year in the Washington, DC climate. The solar thermal tube array also provides heating to the radiant floor. The hot water and radiant floor systems are tied independently to the solar thermal tube array, preventing the radiant floor from robbing the water heater of much needed thermal energy. In case the solar thermal tubes are not able to provide hot water to our system, the hot water tank contains an electric heating

218

Cantua Creek, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cantua Creek, California: Energy Resources Cantua Creek, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.50134°, -120.3162666° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.50134,"lon":-120.3162666,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

MHK Projects/Coal Creek Project | Open Energy Information  

Open Energy Info (EERE)

Creek Project Creek Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3617,"lon":-101.094,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

220

Two Creeks, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Creeks, Wisconsin: Energy Resources Creeks, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3022186°, -87.5631378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3022186,"lon":-87.5631378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Microsoft Word - Delrio_ChiefJo_FosterCreek_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Ben Deschuytter Project Manager -TEP-CSB-1 Proposed Action: D Analog Communications Retirement at Del Rio, Chief Joseph, and Foster Creek Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.19 Microwave, meteorological, and radio towers Location: Douglas County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to upgrade communication equipment at three existing facilities in Douglas County, Washington. The work would occur at two of BPA's substations, Del Rio and Chief Joseph, and at BPA's Foster Creek radio site. Activities at these sites are in connection with the retirement of BPA's D analog communication system. At Del Rio, activities would

222

Willow Creek Wildlife Mitigation- Project Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Willow Creek Wildlife Mitigation- Project Willow Creek Wildlife Mitigation- Project Final Environmental Assessment DOE-EA-1 023 Bonneville POWER ADMINISTRATION April 1995 DISCLAIMER This report w a s prepared a s an account of work sponsored by an agency of t h e United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or a s s u m e s any legal liability or responsibility for t h e accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents t h a t its use would not infringe privately owned rights. Reference herein to any specific commercial, product, process, or service by trade name, trademark, manufacturer, or otherwise d o e s not necessarily constitute or imply its

223

Francis Creek, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Creek, Wisconsin: Energy Resources Creek, Wisconsin: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.199439°, -87.7214755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.199439,"lon":-87.7214755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

Mesquite Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mesquite Creek, Arizona: Energy Resources Mesquite Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9666691°, -114.568575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9666691,"lon":-114.568575,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Microsoft Word - CX-Wautoma-Rock Creek_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Replace spacer dampers along the Wautoma-Rock Creek No. 1 500-kV Transmission Line. Budget Information: Work Order # 00234527 PP&A Project No.: PP&A 1507 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Location: Wautoma-Rock Creek No. 1 500-kV Transmission Line. The proposed project is

226

Microsoft Word - CLT_Tide_Creek_Land_Acquisition_CX.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jason Karnezis Jason Karnezis Project Manager - KEWL-4 Proposed Action: Tide Creek Property Funding Fish and Wildlife Project No. & Contract No.: 2010-073-00, BPA-006247 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: T6N, R2W, S25 in Columbia County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund Columbia Land Trust (CLT) for the purchase of approximately 41 acres of historic Columbia River floodplain in Columbia County, Oregon. The CLT will own and manage the Tide Creek property for fish and wildlife conservation purposes and BPA will receive a conservation easement to ensure that the habitat

227

Cave Creek, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cave Creek, Arizona: Energy Resources Cave Creek, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8333716°, -111.9507042° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8333716,"lon":-111.9507042,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Cedar Creek Wind Farm I (Mitsubishi) | Open Energy Information  

Open Energy Info (EERE)

Mitsubishi) Mitsubishi) Jump to: navigation, search Name Cedar Creek Wind Farm I (Mitsubishi) Facility Cedar Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/BP America Developer Babcock & Brown/BP America Energy Purchaser Xcel Energy Location Weld County east of Grover CO Coordinates 40.873578°, -104.07825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.873578,"lon":-104.07825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Swartz Creek, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Swartz Creek, Michigan: Energy Resources Swartz Creek, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9572508°, -83.8305144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9572508,"lon":-83.8305144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Clear Creek County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clear Creek County, Colorado: Energy Resources Clear Creek County, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6904464°, -105.6412527° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6904464,"lon":-105.6412527,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Cedar Creek Wind Farm I (GE) | Open Energy Information  

Open Energy Info (EERE)

GE) GE) Jump to: navigation, search Name Cedar Creek Wind Farm I (GE) Facility Cedar Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Babcock & Brown/BP America Developer Babcock & Brown/BP America Energy Purchaser Xcel Energy Location Weld County east of Grover CO Coordinates 40.873578°, -104.07825° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.873578,"lon":-104.07825,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Cedar Creek Wind Farm II (Nordex) | Open Energy Information  

Open Energy Info (EERE)

Farm II (Nordex) Farm II (Nordex) Jump to: navigation, search Name Cedar Creek Wind Farm II (Nordex) Facility Cedar Creek II (Nordex) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy Developer BP Wind Energy Energy Purchaser Xcel Energy Location Weld County CO Coordinates 40.874623°, -104.092569° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.874623,"lon":-104.092569,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Coconut Creek, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coconut Creek, Florida: Energy Resources Coconut Creek, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.2517482°, -80.1789351° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.2517482,"lon":-80.1789351,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Blue Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Creek Winter Range: Creek Winter Range: Wildlife Mitigation Project Final Environmental Assessment I F 8 - Spokane Tribe of Indians Bonneville POWER ADMINISTRATION B r n u r r o N aF THIS D O C ~ I H ~ E E 1% utifi_;'iUzi: w DOVEA-0939 November1 994 Bureay of Indian Affairs DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

235

Ballenger Creek, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ballenger Creek, Maryland: Energy Resources Ballenger Creek, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3726022°, -77.4352636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3726022,"lon":-77.4352636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Grape Creek, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grape Creek, Texas: Energy Resources Grape Creek, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5793231°, -100.5475979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5793231,"lon":-100.5475979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Fritz Creek, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fritz Creek, Alaska: Energy Resources Fritz Creek, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 59.7361111°, -151.2952778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.7361111,"lon":-151.2952778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Burnt Creek-Riverview, North Dakota: Energy Resources | Open Energy  

Open Energy Info (EERE)

Burnt Creek-Riverview, North Dakota: Energy Resources Burnt Creek-Riverview, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.9583751°, -100.7982422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9583751,"lon":-100.7982422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

White Oak Creek embayment sediment retention structure design and construction  

SciTech Connect

White Oak Creek is the major surface water drainage throughout the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium 137 and lower level of Cobalt 60 in near surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBs. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC) agreed to initiate a time critical removal action in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent the transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work.

Van Hoesen, S.D.; Kimmell, B.L. [Oak Ridge National Lab., TN (United States); Page, D.G.; Wilkerson, R.B. [MK-Ferguson of Oak Ridge Co., TN (United States); Hudson, G.R. [USDOE Oak Ridge Field Office, TN (United States); Kauschinger, J.L. [Ground Engineering Services, Alpharetta, GA (United States); Zocolla, M. [Nashville District, US Army Corps of Engineers, Nashville, TN (United States)

1994-12-31T23:59:59.000Z

240

City of Battle Creek, Nebraska (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Battle Creek City of Battle Creek Place Nebraska Utility Id 1346 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Accounts Commercial Commercial All Electric Commercial Commercial- Single Phase Commercial Commercial- Three Phase Commercial Commercial- Three Phase School Commercial Farm- Three Phase Commercial Large Commercial Electric Heating Commercial Large Power Industrial Residential Residential Residential All Electric Residential Rural Residential Residential

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Process concept of retorting of Julia Creek oil shale  

SciTech Connect

A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

Sitnai, O.

1984-06-01T23:59:59.000Z

242

Post Irradiation Evaluation of BWR Fuel From Hope Creek Reactor  

Science Conference Proceedings (OSTI)

Occasionally, in some BWRs, fuel pellet washout from a single degraded fuel rod has resulted in high offgas levels that were sufficient to impede the reactor operation. In addition, certain sound fuel rods have exhibited high eddy-current liftoff values during routine poolside measurements. Investigators pursued these two recent BWR fuel issues by performing detailed hotcell examinations on selected fuel rods from the Hope Creek reactor. The results provided insights into the mechanisms involved and poss...

1997-03-12T23:59:59.000Z

243

Green Systems Solar Hot Water  

E-Print Network (OSTI)

Green Systems Solar Hot Water Heating the Building Co-generation: Heat Recovery System: Solar Thermal Panels (Trex enclosure) Hot Water Storage Tank (TS-5; basement) Hot Water Heaters (HW-1,2; basement) Pre-heats water so water heaters don't need to use as much energy Gas-powered, high efficiency

Schladow, S. Geoffrey

244

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Basin Creek Geothermal Area East Basin Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Basin Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2633,"lon":-114.811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Smith Creek Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Smith Creek Valley Geothermal Area Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3128,"lon":-117.5493,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

246

Foote Creek Rim I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Foote Creek Rim I Wind Farm Foote Creek Rim I Wind Farm Facility Foote Creek Rim I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp/Eugene Water & Electric Board Developer SeaWest/Tomen Energy Purchaser PacifiCorp/Eugene Water & Electric Board Location Carbon County WY Coordinates 41.652605°, -106.189914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.652605,"lon":-106.189914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

Bransford, Stephanie [Nez Perce Tribe Fisheries/Watershed Program

2009-05-01T23:59:59.000Z

248

Alturas Lake Creek Flow Augmentation, 1986 Final Report.  

DOE Green Energy (OSTI)

Two alternatives were outlined in the first statement of work as possibilities for flow augmentation in Alturas Lake Creek. The alternatives were to raise the level of Alturas Lake and to acquire necessary water rights in Alturas Lake Creek. The first alternative considered in the study was raising the water level at Alturas Lake with a low head dam. Raising Alturas Lake, appeared feasible in that it provided the necessary fish flows in Alturas Lake Creek. However, raising the level of Alturas Lake has adverse effects to other resources and forced pursuing the second alternative as defined in this report. Some of these effects included: flooding Smokey Bear boat ramp, inundation of recreation beaches for extended periods, flooding of the campground and some of the road system, potentially contaminating the quality of lake water from flooded toilet vaults, and destroying the conifer canopy around the lake. Maintenance and operation costs of the dam, along with the need to have a watermaster to distribute flows over the course of the irrigation season, raised additional concerns that detracted from this alternative. The second alternative considered was the acquisition of water rights. This led to an appraisal of the water right values which was completed by BPA with a comparison appraisal done by the Forest Service.

Andrews, John; Lloyd, John; Webster, Bert (Sawtooth National Forest, Twin Falls, ID)

1987-04-01T23:59:59.000Z

249

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open  

Open Energy Info (EERE)

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Separation Creek Area (Van Soest, Et Al., 2002) Exploration Activity Details Location Separation Creek Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Separation_Creek_Area_(Van_Soest,_Et_Al.,_2002)&oldid=687475"

250

Microsoft Word - ProvisionsFundsColvilleConfederatedTribesPurchaseLoupLoupCreekAeneasCreekProperties_CX.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dave Roberts Project Manager - KEWU-4 Proposed Action: Provisions of funds to the Colville Confederated Tribes for purchase of the Loup Loup Creek and Aeneas Creek properties. Fish and Wildlife Project No.: 2008-104-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

251

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

252

``Hot particle`` intercomparison dosimetry  

SciTech Connect

Dosimetry measurements of four ``hot particles`` were made at different density thickness values using five different methods. The hot particles had maximum dimensions of 650 {mu}m and maximum beta energies of 0.97, 046, 0.36 and 0.32 MeV. Absorbers were used to obtain the dose at different depths for each dosimeter. Measurements were made using exoelectron dosimeters, an extrapolation chamber, NE extremity tape dosimeters, Eberline RO-2 and RO-2A survey meters, and two sets of GafChromic dye film with each set read out at a different institution. From these results the dose was calculated averaged over 1 cm{sup 2} of tissue at 18, 70, 125, and 400 {mu}m depth. Comparisons of tissue-dose averaged over 1 cm{sup 2} for 18, 70 and 125 {mu}m depth based on interpolated measured values, were within 30% for the GafChromic dye film, extrapolation chamber, NE Extremity Tape dosimeters, and Eberline RO-2 and 2A survey meters except for the hot particle with 0.46 MeV maximum beta energy. The results for this source showed differences of up to 60%. The extrapolation chamber and NE Extremity Tape dosimeters under-responded for measurements at 400 {mu}m by about a factor of 2 compared with the Gaf Chromic dye films for two hot particles with maximum beta energy of 0.32 and 0.36 MeV which each emitted two 100% 1 MeV photons per disintegration. Tissue doses determined using exoelectron dosimeters were a factor of 2 to 5 less than those determined using other dosimeters, possibly due to failures of the equipment.

Kaurin, D.G.L.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States); Charles, M.W.; Darley, D.P.J. [Birmingham Univ. (United Kingdom); Durham, J.S. [Pacific Northwest Lab., Richland, WA (United States); Scannell, M.J. [Yankee Atomic Electric Co., Bolton, MA (United States); Soares, C.G. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1996-06-01T23:59:59.000Z

253

Baxter Creek Gateway Park: assessment of an urban stream restoration project  

E-Print Network (OSTI)

Restoration Project: Maintenance and Management Guide. Citythe Baxter Creek Maintenance and Management Guide and thatEOA, 2005), Maintenance & Management Guide (El Cerrito,

Goodman, Judd; Lunde, Kevin B; Zaro, Theresa

2006-01-01T23:59:59.000Z

254

Hot Springs | Open Energy Information  

Open Energy Info (EERE)

Springs Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hot Springs Dictionary.png Hot Springs: A naturally occurring spring of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37°C. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Mammoth Hot Springs at Yellowstone National Park (reference: http://www.hsd3.org/HighSchool/Teachers/MATTIXS/Mattix%20homepage/studentwork/Laura%20Cornelisse%27s%20Web%20Page/Yellowstone%20National%20Park.htm) Hot springs occur where geothermally heated waters naturally flow out of the surface of the Earth. Hot springs may deposit minerals and spectacular

255

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

256

Hot air drum evaporator  

DOE Patents (OSTI)

An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

Black, Roger L. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

257

Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.  

DOE Green Energy (OSTI)

In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-05-01T23:59:59.000Z

258

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray  

E-Print Network (OSTI)

Ice Climbing in Clear Creek Canyon A climbing trip report by Glenn Murray SUMMARY: I climb ice in to ask about local climbing. The guys there told me there was ice nearby, in Clear Creek Canyon. I. Four pitches? Five? It was time to find a partner. The only ice climber I knew in Denver was a friend

259

Life Cycle Management Plan for Main Generator and Exciter at Wolf Creek Generating Station: Generic Version  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This report provides Wolf Creek Nuclear Operating Corp. with an optimized LCM plan for the main generators and exciters at Wolf Creek Power Plant.

2003-09-30T23:59:59.000Z

260

Energy from hot dry rock  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Program is described. The system, operation, results, development program, environmental implications, resource, economics, and future plans are discussed. (MHR)

Hendron, R.H.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dmplet Interaction with Hot Surfaces  

Science Conference Proceedings (OSTI)

... served at the NGP Technical Program Manager for ... contains a 10 mW, polarized Helium-Neon laser. ... with Hot Surfaces, NGP Annual Report, 1998. ...

2013-04-15T23:59:59.000Z

262

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

SciTech Connect

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-01-01T23:59:59.000Z

263

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

Science Conference Proceedings (OSTI)

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-10-01T23:59:59.000Z

264

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

DOE Green Energy (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

265

Kerr-McGee launches talent at House Creek flood  

Science Conference Proceedings (OSTI)

Kerr-McGee Corp. gets tertiary status on potassium hydroxide treatment augmenting the polymer flood of House Creek Sussex Unit. Kerr-McGee took over the House Creek flood project when it bought some $65.6 million in Powder River Basin properties from Sonat Exploration Co. of Birmingham, Alabama. Those Campbell and Converse county properties included some 75,000 net acres of leases and approximately 11 MMboe in developed and undeveloped reserves. At first, Kerr-McGee planned to go ahead with Sonat's 3-to-1 line drive pattern for its flood, but further study persuaded the company to go to a 1-to-1 pattern. The original 3-to-1 pattern had three rows of producers for one row of injectors. The 1-to-1 pattern has one row of producers for one row of injectors. Even though it's technically a polymer flood, the project qualifies for tertiary recovery status because of the potassium hydroxide (KOH) treatment used to stabilize clays in the touchy Sussex Formation.

Lyle, D.

1992-12-01T23:59:59.000Z

266

The battle of Sailor's Creek: a study in leadership  

E-Print Network (OSTI)

The Battle of Sailor's Creek, 6 April 1865, has been overshadowed by Lee's surrender at Appomattox Court House several days later, yet it is an example of the Union military war machine reaching its apex of war making ability during the Civil War. Through Ulysses S. Grant's leadership and that of his subordinates, the Union armies, specifically that of the Army of the Potomac, had been transformed into a highly motivated, organized and responsive tool of war, led by confident leaders who understood their commander's intent and were able to execute on that intent with audacious initiative in the absence of further orders. After Robert E. Lee's Army of Northern Virginia escaped from Petersburg and Richmond on 2 April 1865, Grant's forces chased after Lee's forces with the intent of destroying the mighty and once feared protector of the Confederate States in the hopes of bringing a swift end to the long war. At Sailor's Creek, Phil Sheridan, Grant's cavalry commander was able to put his forces south and west of Lee's Army trapping it between Sheridan's cavalry and George Meade's Army of the Potomac. After fighting a brutal, close quarters engagement, Union forces captured or killed the majority of two of Lee's corps, commanded by Richard H. Anderson and Richard S. Ewell, and severely attrited a third corps under John B. Gordon, leaving Lee only James Longstreet's corps intact to continue the struggle.

Smith, Cloyd Allen, Jr.

2005-12-01T23:59:59.000Z

267

Stream sediment detailed geochemical survey for Date Creek Basin, Arizona  

SciTech Connect

Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

1980-06-30T23:59:59.000Z

268

TRUEX hot demonstration  

SciTech Connect

In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

1990-04-01T23:59:59.000Z

269

Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas  

DOE Green Energy (OSTI)

Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well. The Boles and Franks model is compatible with a steady supply of original mixed-layer I/S during the depositional history of the McAllen Ranch area. The constant content with depth of calcite, quartz, and potassium feldspar indicates that limited material, if any, is supplied by the shales to surrounding sands. The ions generated by changes within the clay minerals are involved in further clay mineral reactions as outlined above. In addition, magnesium and iron are involved in forming chlorite within the shales.

Freed, R.L.

1980-01-01T23:59:59.000Z

270

Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.  

DOE Green Energy (OSTI)

Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access for fisheries in Manastash Creek by reducing or eliminating diversions and eliminating fish passage barriers. Further study and design will be necessary to more fully develop the alternatives, evaluate their environmental benefits and impacts and determine the effect on Manastash Creek water users. Those studies will be needed to determine which alternative has the best combination of benefits and costs, and meets the goal of the Manastash Creek water users.

Montgomery Watson Harza (Firm)

2002-12-31T23:59:59.000Z

271

Campbell Creek Research Homes FY 2012 Annual Performance Report  

Science Conference Proceedings (OSTI)

The Campbell Creek project is funded and managed by the Tennessee Valley Authority (TVA) Technology Innovation, Energy Efficiency, Power Delivery & and Utilization Office. Technical support is provided under contract by the Oak Ridge National Laboratory (ORNL) and the Electric Power Research Institute.The project was designed to determine the relative energy efficiency of typical new home construction, energy efficiency retrofitting of existing homes, and high -performance new homes built from the ground up for energy efficiency. This project will compare three houses that represented the current construction practice as a base case (Builder House CC1); a modified house that could represent a major energy- efficient retrofit (Retrofit House CC2); and a house constructed from the ground up to be a high- performance home (High Performance House CC3). In order tTo enablehave a valid comparison, it was necessary to simulate occupancy in all three houses and heavily monitor the structural components and the energy usage by component. All three houses are two story, slab on grade, framed construction. CC1 and CC2 are approximately 2,400 square feet2. CC3 has a pantry option, that is primarily used as a mechanical equipment room, that adds approximately 100 square feet2. All three houses are all-electric (with the exception of a gas log fireplace that is not used during the testing), and use air-source heat pumps for heating and cooling. The three homes are located in Knoxville in the Campbell Creek Subdivision. CC1 and CC2 are next door to each other and CC3 is across the street and a couple of houses down. The energy data collected will be used to determine the benefits of retrofit packages and high -performance new home packages. There are over 300 channels of continuous energy performance and thermal comfort data collection in the houses (100 for each house). The data will also be used to evaluate the impact of energy -efficient upgrades ton the envelope, mechanical equipment, or demand -response options. Each retrofit will be evaluated incrementally, by both short -term measurements and computer modeling, using a calibrated model. This report is intended to document the comprehensive testing, data analysis, research, and findings within the January 2011 through October 2012 timeframe at the Campbell Creek research houses. The following sections will provide an in-depth assessment of the technology progression in each of the three research houses. A detailed assessment and evaluation of the energy performance of technologies tested will also be provided. Finally, lessons learned and concluding remarks will be highlighted.

Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL; Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Khowailed, Gannate A [ORNL

2013-01-01T23:59:59.000Z

272

Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.  

DOE Green Energy (OSTI)

This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the amount of habitat blocked at each site and the fish life history stages impacted. This assessment protocol will hopefully prove useful to other agencies and become a model for use in other watersheds.

Christian, Richard

2004-02-01T23:59:59.000Z

273

Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 1998: Johnson Creek Chinook Salmon Supplementation, Biennial Report 1998-2000.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon collection and spawning began in 1998. A total of 114 fish were collected from Johnson Creek and 54 fish (20 males and 34 females) were retained for Broodstock. All broodstock were transported to Lower Snake River Compensation Plan's South Fork Salmon River adult holding and spawning facility, operated by the Idaho Department of Fish and Game. The remaining 60 fish were released to spawn naturally. An estimated 155,870 eggs from Johnson Creek chinook spawned at the South Fork Salmon River facility were transported to the McCall Fish Hatchery for rearing. Average fecundity for Johnson Creek females was 4,871. Approximately 20,500 eggs from females with high levels of Bacterial Kidney Disease were culled. This, combined with green-egg to eyed-egg survival of 62%, resulted in about 84,000 eyed eggs produced in 1998. Resulting juveniles were reared indoors at the McCall Fish Hatchery in 1999. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags and 8,043 were also PIT tagged. A total of 78,950 smolts were transported from the McCall Fish Hatchery and released directly into Johnson Creek on March 27, 28, 29, and 30, 2000.

Daniel, Mitch; Gebhards, John

2003-05-01T23:59:59.000Z

274

Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

Asotin County Conservation District

2008-12-10T23:59:59.000Z

275

Hot Hydrogen Test Facility  

DOE Green Energy (OSTI)

The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellants absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

W. David Swank

2007-02-01T23:59:59.000Z

276

Line Heat-Source Guarded Hot Plate  

Science Conference Proceedings (OSTI)

Line Heat-Source Guarded Hot Plate. Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. ...

2012-03-06T23:59:59.000Z

277

Microsoft Word - CX_ThorneCreek_Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes for purchase of the Thorne Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract CR-201269 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

278

Microsoft Word - MissionCreek_Kingston_Acquisition_CX_final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

purchase purchase of the Mission Creek Property. Fish and Wildlife Project No.: 2002-003-00, Contract # BPA-44646 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 19 North, Range 21 West, Section 33 of the Dixon Quad, in Lake County, Montana Proposed by: Bonneville Power Administration (BPA) and CSKT Description of the Proposed Action: BPA proposes to fund the acquisition of 12 acres of property

279

Foote Creek Rim II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Facility Foote Creek Rim II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.663881°, -106.186001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663881,"lon":-106.186001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Microsoft Word - CX_PistolCreek_Final.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2011 25, 2011 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Provision of funds to the Confederated Salish and Kootenai Tribes for purchase of the Pistol Creek Property. Fish and Wildlife Project No.: 2002-003-00 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment. Location: Township 17 North, Range 18 West, Sections 30 and 31, Lake County, MT.

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Foote Creek Rim IV Wind Farm | Open Energy Information  

Open Energy Info (EERE)

IV Wind Farm IV Wind Farm Facility Foote Creek Rim IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Bonneville Power Admin Location Carbon County WY Coordinates 41.626456°, -106.202095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.626456,"lon":-106.202095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Foote Creek Rim III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Foote Creek Rim III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWestM&N Wind Power Energy Purchaser Xcel Energy Location Carbon County WY Coordinates 41.643488°, -106.198876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.643488,"lon":-106.198876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Microsoft Word - CX_Beaver Creek.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clearance Memorandum Clearance Memorandum Jay Marcotte Project Manager - KEWU-4 Proposed Action: Bonneville Power Administration (BPA) funding to acquire the Beaver Creek property and to maintain this property for fish and wildlife habitat protection. Budget Information: Work Order # 00225478 Fish and Wildlife Project No.: 2009-003-00, 43451 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Transfer, lease, disposition or acquisition of interests in uncontaminated land for habitat preservation or wildlife management, and only associated buildings that support these purposes. Uncontaminated means that there would be no potential for release of substances at a level, or in a form, that would pose a threat to public health or the environment.

284

Town of Black Creek, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

North Carolina (Utility Company) North Carolina (Utility Company) Jump to: navigation, search Name Town of Black Creek Place North Carolina Utility Id 202 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png EP-I Renewable Energy Industrial Industrial GS3 Electric GS4 Gov Office GS5 Commercial/Demand Commercial GS5 Commercial/Demand(with Renewable Portfolio Standards) Commercial RS 1 Residential Residential RS 1 Residential(with Renewable Portfolio Standards) Residential

285

Protect and Restore Mill Creek Watershed : Annual Report CY 2005.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

McRoberts, Heidi

2006-03-01T23:59:59.000Z

286

Castle Creek known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

287

Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinook captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation. These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.

Gebhards, John S.; Hill, Robert; Daniel, Mitch [Nez Perce Tribe

2009-02-19T23:59:59.000Z

288

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

289

Virginia Tech Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

The team chose to use a water-to-water heat pump (WWHP) connected to an earth coupled heat exchanger to provide water heating. This system provides not only domestic hot water...

290

The decay of hot nuclei  

Science Conference Proceedings (OSTI)

The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

Moretto, L.G.; Wozniak, G.J.

1988-11-01T23:59:59.000Z

291

Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992  

SciTech Connect

The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Holly Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.

1993-08-01T23:59:59.000Z

292

DOE - Office of Legacy Management -- Dow Chemical Co - Walnut Creek - CA 02  

Office of Legacy Management (LM)

Dow Chemical Co - Walnut Creek - CA Dow Chemical Co - Walnut Creek - CA 02 FUSRAP Considered Sites Site: Dow Chemical Co. - Walnut Creek (CA.02 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: 2800 Mitchell Drive , Walnut Creek , California CA.02-1 Evaluation Year: 1987 CA.02-2 CA.02-3 Site Operations: From 1947 to 1957, conducted process studies and experimental investigations on different uranium and thorium-bearing ores; pilot-scale solvent extraction of uranium from phosphoric acid; liquid waste disposal studies CA.02-1 CA.02-4 CA.02-5 Site Disposition: Eliminated - Radiation levels below criteria CA.02-6 CA.02-7 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium CA.02-1 CA.02-4

293

Observations of Nighttime Winds Using Pilot Balloons in Anderson Creek Valley, Geysers, California  

Science Conference Proceedings (OSTI)

Nighttime drainage or downslope winds along the east-facing slope of Anderson Creek Valley located in the Geysers area of northern California are examined using pilot balloons as air parcel tracers. Observations made over four nights show a ...

Carmen J. Nappo; Howell F. Snodgrass

1981-06-01T23:59:59.000Z

294

Simulation of Tracer Concentration Data in the Brush Creek Drainage Flow Using an Integrated Puff Model  

Science Conference Proceedings (OSTI)

During the 1984 ASCOT field study in Brush Creek Valley, two perfluorocarbon tracers were released into the nocturnal drainage flow at two different heights. The resulting surface concentrations were sampled at 90 sites, and vertical ...

K. Shankar Rao; Richard M. Eckman; Rayford P. Hosker Jr.

1989-07-01T23:59:59.000Z

295

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Lolo Creek Permanent Weir Construction near town of 5: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho Summary DOE's Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

296

Hot Dry Rock - Summary  

SciTech Connect

Hot Dry Rock adds a new flexibility to the utilization of geothermal energy. Almost always the approach has been to limit that utilization to places where there is a natural source of water associated with a source of heat. Actually, the result was that steam was mined. Clearly there are much larger heat resources available which lack natural water to transport that energy to the surface. Also, as is found in hydrothermal fields being mined for steam, the water supply finally gets used up. There is a strong motive in the existing capital investment to revitalize those resources. Techniques for introducing, recovering and utilizing the water necessary to recover the heat from below the surface of the earth is the subject of this session. Implicit in that utilization is the ability to forecast with reasonable accuracy the busbar cost of that energy to the utility industry. The added element of supplying the water introduces costs which must be recovered while still supplying energy which is competitive. Hot Dry Rock technology can supply energy. That has been proved long since. The basic barrier to its use by the utility industry has been and remains proof to the financial interests that the long term cost is competitive enough to warrant investment in a technology that is new to utility on-grid operations. As the opening speaker for this session states, the test that is underway will ''simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings''. Further, the Fenton Hill system is a research facility not designed for commercial production purposes, but it can give indications of how the system must be changed to provide economic HDR operations. And so it is that we must look beyond the long term flow test, at the opportunities and challenges. Proving that the huge HDR resources can be accessed on a worldwide scale must involve the construction of additional sites, preferably to the specifications of the now Federal geothermal community. These facilities will have to be engineered to produce and market energy at competitive prices. At the same time, we must not rest on our technological laurels, though they be many. Design and operational techniques have been conceived which could lead to improved economics and operations for HDR. These must be pursued and where merit is found, vigorously pursued. Accelerated research and development ought to include revolutionary drilling techniques, reservoir interrogation, and system modeling to assure the competitiveness and geographical diversity of applications of HDR. Much of this work will be applicable to the geothermal industry in general. More advanced research ought to include such innovations as the utilization of other operating fluids. Supercritical carbon dioxide and the ammonia/water (Kalina) cycle have been mentioned. But even as the near and more distant outlook is examined, today's work was reported in the HDR session. The start-up operations for the current test series at the Fenton Hill HDR Pilot Plant were described. The surface plant is complete and initial operations have begun. While some minor modifications to the system have been required, nothing of consequence has been found to impede operations. Reliability, together with the flexibility and control required for a research system were shown in the system design, and demonstrated by the preliminary results of the plant operations and equipment performance. Fundamental to the overall success of the HDR energy resource utilization is the ability to optimize the pressure/flow impedance/time relationships as the reservoir is worked. Significant new insights are still being developed out of the data which will substantially affect the operational techniques applied to new systems. However, again, these will have to be proved to be general and not solely specific to the Fenton Hill site. Nevertheless, high efficiency use of the reservoir without unintended reservoir grow

Tennyson, George P. Jr.

1992-03-24T23:59:59.000Z

297

West Foster Creek Expansion Project 2007 HEP Report.  

DOE Green Energy (OSTI)

During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

298

Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.  

DOE Green Energy (OSTI)

Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

1994-11-01T23:59:59.000Z

299

Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.  

DOE Green Energy (OSTI)

Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

NONE

1995-04-01T23:59:59.000Z

300

Vermont Marble Company, Proctor, Vermont: Otter Creek hydroelectric feasibility report  

DOE Green Energy (OSTI)

Vermont Marble Company (VMCO) owns and operates four hydroelectric projects in a 50-mile reach of Otter Creek in west central Vermont. This study concerns three of the installations - Center Rutland, Beldens, and Huntington Falls. The fourth site is known as Proctor and will be studied separately. All four plants operate as run-of-river stations, and the limited reservoir storage capacity places severe limitations on any other type of operation. The plants are presently operating at much lower outputs than can be obtained, because they do not use the available discharge and head. The results show that, under the assumptions made in this study, Beldens and Huntington Falls can be economically improved. The rehabilitation of the Center Rutland plant did not look economically attractive. However, the improvement of Center Rutland should not be eliminated from further consideration, because it could become economically attractive if the cost of energy starts escalating at a rate of around 10% per year. The study included a brief appraisal of the existing generating facilities and condition of existing concrete structures, a geological reconnaissance of the sites, analysis of the power potential, flood studies, technical and economic investigations and comparative evaluations of the alternatives for developing the streamflow for power generation, selection of the most suitable alternative, financial analysis, preparation of drawings, and preparation of detailed quantity and cost estimates.

None

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Promethus Hot Leg Piping Concept  

SciTech Connect

The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

AM Girbik; PA Dilorenzo

2006-01-24T23:59:59.000Z

302

Mitigation of light rail transit construction on jurisdictional areas in the White Rock Creek floodplain, Dallas, Texas  

E-Print Network (OSTI)

and consulting in Dallas, Texas. In this capacity, Ms.WHITE ROCK CREEK FLOODPLAIN, DALLAS, TEXAS Emily Schieffer (Boulevard, Suite 510, Dallas, Texas 75207, Phone: 214-741-

Schieffer, Emily; Smiley, Jerry

2001-01-01T23:59:59.000Z

303

Hot conditioning equipment conceptual design report  

SciTech Connect

This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

Bradshaw, F.W., Westinghouse Hanford

1996-08-06T23:59:59.000Z

304

Hot Gas Halos in Galaxies  

Science Conference Proceedings (OSTI)

We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

2010-06-08T23:59:59.000Z

305

Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.  

U.S. Energy Information Administration (EIA) Indexed Site

PENNEL PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W CABIN CREEK GASLIGHT CUPTON DEVILS PASS LITTLE MISSOURI LITTLE BEAVER COOKS PEAK LITTLE BEAVER E CORAL CREEK BEAVER CREEK MORGAN DRAW WATERHOLE CREEK DEER CREEK GRASSY BUTTE CROOKED CREEK CINNAMON CREEK HORSE CREEK KILLDEER SQUARE BUTTE GRAND RIVER RIDER ROCKY RIDGE FOUR EYES TRACY MOUNTAIN COYOTE CREEK HAY DRAW SAND CREEK ROCKY HILL

306

Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.  

U.S. Energy Information Administration (EIA) Indexed Site

PENNEL PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W CABIN CREEK GASLIGHT CUPTON DEVILS PASS LITTLE MISSOURI LITTLE BEAVER COOKS PEAK LITTLE BEAVER E CORAL CREEK BEAVER CREEK MORGAN DRAW WATERHOLE CREEK DEER CREEK GRASSY BUTTE CROOKED CREEK CINNAMON CREEK HORSE CREEK KILLDEER SQUARE BUTTE GRAND RIVER RIDER ROCKY RIDGE FOUR EYES TRACY MOUNTAIN COYOTE CREEK HAY DRAW SAND CREEK ROCKY HILL

307

Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.  

U.S. Energy Information Administration (EIA) Indexed Site

BUFFALO BUFFALO PENNEL LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK BICENTENNIAL MEDICINE POLE HILLS BIG STICK ROOSEVELT ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON BELL STATE LINE BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR HEART S STADIUM HILINE ASH MARY LAKE ILO GAYLORD BULL CREEK HALEY BULLY SHORT PINE HILLS W CABIN CREEK GASLIGHT CUPTON DEVILS PASS LITTLE MISSOURI LITTLE BEAVER COOKS PEAK LITTLE BEAVER E CORAL CREEK BEAVER CREEK MORGAN DRAW WATERHOLE CREEK DEER CREEK GRASSY BUTTE CROOKED CREEK CINNAMON CREEK HORSE CREEK KILLDEER SQUARE BUTTE GRAND RIVER RIDER ROCKY RIDGE TRACY MOUNTAIN FOUR EYES COYOTE CREEK HAY DRAW SAND CREEK

308

Enviropower hot gas desulfurization pilot  

SciTech Connect

The objectives of the project are to develop and demonstrate (1) hydrogen sulfide removal using regenerable zinc titanate sorbent in pressurized fluidized bed reactors, (2) recovery of the elemental sulfur from the tail-gas of the sorbent regenerator and (3) hot gas particulate removal system using ceramic candle filters. Results are presented on pilot plant design and testing and modeling efforts.

Ghazanfari, R.; Feher, G.; Konttinen, J.; Ghazanfari, R.; Lehtovaara, A.; Mojtahedi, W.

1994-11-01T23:59:59.000Z

309

Hot dry rock resources of the Clear Lake Area, Northern California  

DOE Green Energy (OSTI)

The Geysers-Clear Lake geothermal area of northern California is underlain by an asthenospheric upwarp. The upwarp was generated at a slabless window trailing the northward-moving Mendocino triple junction. The geothermal area lies immediately east of the Rodgers Creek rather than the San Andreas fault because of a transform jump in progress. Decompression melting of the mantle has led to basaltic underplating, and crustal anatexis. The high heat flow is due to conduction through a thin lithosphere and the latent heat of solidifying basalt, while the uniformity is due to the distribution of sources over a wide area of large flatlying sills, The Hot Dry Rock resource has heat flow exceeding 4 HFU over an area exceeding 800 km2.

Burns, K.L.

1994-10-01T23:59:59.000Z

310

The Sugar Creek zinc deposit, Jackson Co. TN -- Exploration history, geology and mineralization  

SciTech Connect

During the 60's and 70's zinc exploration of central TN and KY was active. The Sugar Creek Project was one of several investigated by Exxon. The discovery hole, Cu 15, was drilled in early 1973. The Sugar Creek Zinc Deposit was acquired by Independence Mining Co. in 1986 and I.M.C. has subsequently completed additional drilling, both stepout and confirmation holes. A total of 137 holes for 300,833 ft have been drilled. The Sugar Creek deposit is a typical Tennessee zinc deposit (Mississippi Valley Type) which occurs in solution collapse breccias in the Lower Ordovician, Knox Dolomite. The Knox consists of fine grained dolomite with interlayered limestones and crystalline dolomite. Only scattered residual limestone is found in the Sugar Creek area. Collapse breccias have formed which control zinc deposition and are similar to other TN Zn. deposits. At Sugar Creek the types of breccias include: a vertically exaggerated glory hole breakthrough breccia which extends to within 137 ft. of the Knox unconformity, has 500 ft. of zinc mineralization with 8 significant zinc intervals; holes with stacked zinc intervals interpreted to be sides of breakthrough breccia; and single zinc intervals in laterally positioned bedded mineral zones. A total of 99 holes were drilled in the more intense mineralized areas. The ratio of ore to non ore holes is nearly 1 to 1. The mineralization is typical M.V.T. with predominantly sphalerite and only minor occurrences of galena, fluorite, pyrite, etc.

Reinbold, G.; Moran, A.V.; Stevens, D.L. (Independence Mining Co. Inc., Reno, NV (United States))

1993-03-01T23:59:59.000Z

311

Evaluation of the Bell Creek Field micellar-polymer pilot  

SciTech Connect

A review of the performance of the Gary Energy Corporation micellar-polymer pilot in the Bell Creek Field has been completed. The ultimate recovery beyond waterflooding is projected to be 27,000 barrels of oil, compared to an anticipated level of 90,000 barrels from simulation studies. The projected incremental recovery is subject to uncertainties since significant secondary oil was being produced at the initiation of chemical injection. The predicted recovery from simulation studies is considered to be optimistic, principally because the displaceable oil saturations were assumed too high. Although the anticipated recovery may have been optimistic, it is clear that the level of increased oil recovery has been disappointing and that the economics of a project if expanded would be unfavorable. Several possible explanations are cited for the less-than-expected oil recovery: (1) there is evidence that a permeability barrier exists in the southeast quadrant of the pilot, which would have caused injected fluids in that quadrant to have flowed out of the pattern area. A pressure pulse test appeared to confirm the existence of the flow barrier, but the available data from two tracer surveys were inconclusive; (2) the equivalent weight of the injected sulfonate may have been too low, based upon the appearance of sulfonate in produced waters before incremental oil was recovered. This could have occurred since the lower equivalent weight fractions are highly water soluble and have low adsorption rates; and (3) the salinity of water injected with the chemical slug may have been too low to achieve the low interfacial tensions needed for efficient oil displacement. 16 figures, 8 tables.

Fanchi, J.R.; Dauben, D.L.

1982-12-01T23:59:59.000Z

312

Hot Diggity Dog CFC Fundraiser | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Hot Diggity Dog CFC Fundraiser Hot Diggity Dog CFC Fundraiser Hot Diggity Dog CFC Fundraiser December...

313

The ranch-type house.  

E-Print Network (OSTI)

??As buildings from the recent past approach fifty years in age, the question of how to preserve these cultural resources is raised. This thesis considered (more)

Chapman, Michael Kevin

2007-01-01T23:59:59.000Z

314

Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah  

DOE Green Energy (OSTI)

The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

1983-08-01T23:59:59.000Z

315

Early Guarded-Hot-Plate Apparatus  

Science Conference Proceedings (OSTI)

... published a recommended plan advocating the ... with the US Department of Energy, completed measurements ... hot plate apparatus described above. ...

2011-07-27T23:59:59.000Z

316

Commonwealth Solar Hot Water Commercial Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Program Commonwealth Solar Hot Water Commercial Program Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family Residential...

317

Johnson Creek Artificial Propagation and Enhancement Project Operations and Maintenance Program; Brood Year 2000: Johnson Creek Chinook Salmon Supplementation, Biennial Report 2000-2002.  

DOE Green Energy (OSTI)

The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek through artificial propagation. Adult chinook salmon trapping, broodstock selection, and spawning was first implemented in 1998, did not occur in 1999, and was resumed in 2000. A total of 152 salmon were trapped in Johnson Creek in 2000, of which 73 (25 males, 16 females, and 32 jacks) fish were transported to Idaho Fish and Game=s South Fork Salmon River adult holding and spawning facility for artificial propagation purposes. The remaining 79 (29 males, 16 females, and 24 jacks) fish were released above the weir to spawn naturally. A total of 65,060 green eggs were taken from 16 female salmon and transported to the McCall Fish Hatchery for incubation and rearing. Egg counts indicated an average eye-up rate of 86.0% for 55,971 eyed eggs. Average fecundity for Johnson Creek females was 4,066 eggs per female. Juvenile fish were reared indoors at the McCall Fish Hatchery through November 2001. These fish were transferred to outdoor rearing facilities in December 2001 where they remained until release in March 2002. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 9,987 were also PIT tagged. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 57,392 smolts were released into a temporary acclimation channel in Johnson Creek on March 18, 19, 20, 2002. These fish were held in this facility until a fish screen was removed on March 22, 2002 and the fish were allowed to emigrate.

Daniel, Mitch; Gebhards, John; Hill, Robert

2003-05-01T23:59:59.000Z

318

EA-1957: Cabin Creek Biomass Facility, Place County, CA | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Cabin Creek Biomass Facility, Place County, CA 7: Cabin Creek Biomass Facility, Place County, CA EA-1957: Cabin Creek Biomass Facility, Place County, CA SUMMARY DOE is proposing to provide funding to Placer County, California to construct and operate a two-megawatt wood-to-energy biomass facility at the Eastern Regional Materials Recovery Facility (MRF) and Landfill in unincorporated Placer County. The wood-to-energy biomass facility would use a gasification technology. The fuel supply for the proposed project would be solely woody biomass, derived from a variety of sources including hazardous fuels residuals, forest thinning and harvest residuals, and Wildland Urban Interface sourced waste materials from residential and commercial property defensible space clearing and property management activities

319

Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.

Peterson, Stacia

2003-08-01T23:59:59.000Z

320

Hot and Dense QCD Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

QCD Matter QCD Matter A Community White Paper on the Future of Relativistic Heavy-Ion Physics in the US Unraveling the Mysteries of the Strongly Interacting Quark-Gluon-Plasma Executive Summary This document presents the response of the US relativistic heavy-ion community to the request for comments by the NSAC Subcommittee, chaired by Robert Tribble, that is tasked to recommend optimizations to the US Nuclear Science Program over the next five years. The study of the properties of hot and dense QCD matter is one of the four main areas of nuclear physics research described in the 2007 NSAC Long Range Plan. The US nuclear physics community plays a leading role in this research area and has been instrumental in its most important discovery made over the past decade, namely that hot and dense QCD matter acts as a strongly interacting system with unique and previously unexpected

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

dist_hot_water.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

District Hot Water Usage Form District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

322

Hot atom chemistry and radiopharmaceuticals  

Science Conference Proceedings (OSTI)

The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States); University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States)

2012-12-19T23:59:59.000Z

323

HotSpot | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HotSpot HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot provides a fast and usually conservative means for estimation of the radiation effects associated with atmospheric release of radioactive materials. The HotSpot atmospheric dispersion models are designed for near-surface releases, short-range (less than 10 km) dispersion, and short-term (less than 24 hours) release durations in

324

Geochemical studies at four northern Nevada hot spring areas. [Kyle Hot Springs, Leach Hot Springs, Buffalo Hot Springs, and Beowave Hot Springs  

DOE Green Energy (OSTI)

Water samples from both hot and cold sources in the hydrologic areas surrounding the hot springs were collected and analyzed. Analyses of major, trace, and radio-element abundances of the water samples and of associated rock samples are presented. From this study it is possible that trace- and major-element abundances and/or ratios may be discerned which are diagnostic as chemical geothermometers, complementing those of silica and alkali elements that are presently used. Brief discussions of mixing calculations, possible new chemical geothermometers, and interelement relationships are also included.

Wollenberg, H.; Bowman, H.; Asaro, F.

1977-08-01T23:59:59.000Z

325

BPA Riparian Fencing and Alternative Water Development Projects Completed within Asotin Creek Watershed, 2000 and 2001 Asotin Creek Fencing Final Report of Accomplishments.  

DOE Green Energy (OSTI)

The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84,191 trees and shrubs in the Asotin Creek Watershed. In addition BPA and private cost-share dollars were utilized to drill 3 wells, provide 15 off-site alternative water developments (troughs), 5 spring developments, and 9,100 feet of riparian fencing. The trees will provide shade and long-term LWD recruitment to the stream. The wells, alternative water developments, springs and fencing will reduce direct animal impacts on the stream. In one area alone, a well, 3,000 ft of riparian fence with 5 alternative water developments will exclude 300 head of cattle from using the stream as a source of drinking water during the winter months.

Johnson, B.J. (Bradley J.)

2002-01-01T23:59:59.000Z

326

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL...  

U.S. Energy Information Administration (EIA) Indexed Site

OAK GROVE C OAL D EGAS CEDAR COVE COAL D EGAS BLU E CREEK COAL DEGAS BR OOKWOOD C OAL D EGAS ST AR ROBIN SONS BEND COAL D EGAS BLU FF COR INNE MOU NDVILLE COAL D EGAS BLU EGU T CR...

327

Site-wide remedial alternative development in Bear Creek Valley, Oak Ridge Reservation  

SciTech Connect

This paper presents a case study of an environmental restoration project at a major mixed waste site that poses unique challenges to remediation efforts. Bear Creek Valley is located immediately west of the Y-12 Plant on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. The Y-12 Plant was built in 1943 as part of the Manhattan Project, with its original mission being electromagnetic separation of uranium. Since being completed, the Y-12 Plant has also been used for chemical processing of uranium and lithium compounds as well as precision fabrication of components containing these and other materials. Wastes containing radionuclides, metals, chlorinated solvents, oils, coolants, polychlorinated biphenyis (PCBs), and others were disposed of in large quantities at Bear Creek Valley as a result of manufacturing operations at the Y-12 Plant. The Bear Creek Valley feasibility study is using innovative strategies to efficiently and thoroughly consider the information available regarding Bear Creek Valley and process options that could be combined into its remedial alternatives.

Anderson, M. [Jacobs Engineering Group, Inc., Oak Ridge, TN (United States)

1995-07-01T23:59:59.000Z

328

Evaluation of additional data from Bell Creek micellar pilot indicates greater success  

SciTech Connect

In the Oil and Gas Journal, March 14, 1983, a summary was presented of a performance evaluation of the Bell Creek micellar-polymer pilot project. The project review had been funded and published by DOE, Keplinger, and Associates made the project review.

Holm, L.W.

1983-07-01T23:59:59.000Z

329

AN INVESTIGATION OF DEWATERING FOR THE MODIFIED IN-SITU RETORTING PROCESS, PICEANCE CREEK BASIN, COLORADO  

E-Print Network (OSTI)

c:es .B~l:JJ:. }eti. ',~, Colorado School of Mines, VoL 2'1,v Piceance Creek Basin v Colorado r and 9 p' 1974. Pc:u:~tBetween 'che White and Colorado Rivers, '! \\lo:ci:hwegt:ern

Mehran, M.

2013-01-01T23:59:59.000Z

330

DOE/EA-1967: Hills Creek-Lookout Point Transmission Line Rebuild, Lane County, Oregon  

Energy.gov (U.S. Department of Energy (DOE))

Bonneville Power Administration is preparing an EA to assess potential environmental impacts of the proposed rebuild of its 26-mile 115 kilovolt (kV) wood-pole Hills Creek-Lookout Point transmission line, which is generally located between Lowell and Oakridge, in Lane County, Oregon.

331

Assessment of hot gas contaminant control  

SciTech Connect

The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

1996-12-31T23:59:59.000Z

332

Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.  

Science Conference Proceedings (OSTI)

The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment basin construction and the installation of strip systems are also taking place. The years 2000 through 2002 were productive years for the Pataha Creek Model Watershed but due to the fact that most of the cooperators in the watershed have reached their limitation allowed for no-till and direct seed/ two pass of 3 years with each practice, the cost share for these practices is lower than the years of the late 90's. All the upland practices that were implemented have helped to further reduce erosion from the cropland. This has resulted in a reduction of sedimentation into the spawning and rearing area of the fall chinook salmon located in the lower portion of the Tucannon River. The tree planting projects have helped in reducing sedimentation and have also improved the riparian zone of desired locations inside the Pataha Creek Watershed. The CREP (Conservation Reserve Enhancement Program) along with the CCRP (Continuous Conservation Reserve Program) are becoming more prevalent in the watershed and are protecting the riparian areas along the Pataha Creek at an increasing level every year. Currently roughly 197 acres of riparian has been enrolled along the Pataha Creek in the CREP program.

Bartels, Duane G.

2003-04-01T23:59:59.000Z

333

Resource appraisal of three rich oil-shale zones in the Green River Formation, Piceance Creek Basin, Colorado  

SciTech Connect

The main oil-shale-bearing member of the Eocene Green River Formation, the Parachute Creek Member, contains several distinct rich oil-shale zones that underlie large areas of Piceance Creek Basin in NW. Colorado. Three of these have been selected for an oil-shale resource-appraisal study. Two over-lie and one underlies the main saline zone in the Parachute Creek Member. The uppermost of these zones, the Mahogany Zone, is in the upper third of the Parachute Creek Member/ it ranges in thickness from less than 75 to more than 225 ft and is the most persistent oil- shale unit in the Green River Formation underlying an area of more than 1,200 sq miles in the Piceance Creek Basin. The second rich zone is separated from the Mahogany Zone by a variable thickness of sandstone, siltstone, or low- grade oil shale. This zone attains a maximum thickness of more than 250 ft and underlies an area of more than 700 sq miles. The third rich oil-shale zone is in the lower third of the Parachute Creek Member. It underlies an area of about 300 sq miles near the depositional center of the Piceance Creek Basin and attains a thickness of more than 150 ft. The 3 rich oil-shale zones have total resources of 317 billion bbl of oil in the areas appraised.

Donnell, J.R.; Blair, R.W. Jr.

1970-10-01T23:59:59.000Z

334

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

Zhao, L; Xiao, Y; Yelin, S F

2007-01-01T23:59:59.000Z

335

Image Storage in Hot Vapors  

E-Print Network (OSTI)

We theoretically investigate image propagation and storage in hot atomic vapor. A $4f$ system is adopted for imaging and an atomic vapor cell is placed over the transform plane. The Fraunhofer diffraction pattern of an object in the object plane can thus be transformed into atomic Raman coherence according to the idea of ``light storage''. We investigate how the stored diffraction pattern evolves under diffusion. Our result indicates, under appropriate conditions, that an image can be reconstructed with high fidelity. The main reason for this procedure to work is the fact that diffusion of opposite-phase components of the diffraction pattern interfere destructively.

L. Zhao; T. Wang; Y. Xiao; S. F. Yelin

2007-10-22T23:59:59.000Z

336

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

Matthew R. June; John L. Hurley; Mark W. Johnson

1999-04-01T23:59:59.000Z

337

Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.  

DOE Green Energy (OSTI)

In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

2004-11-01T23:59:59.000Z

338

DOE/EA-1544: Environmental Assessment for the Proposed Anadarko/Veritas Salt Creek 3D Vibroseis Project (June 2005)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

___________________________ ___________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 1 ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED ANADARKO / VERITAS SALT CREEK 3D VIBROSEIS PROJECT DOE EA No. EA-1544 BLM Case No. WYW-163071 BLM EA No. WY- 060-EA05-95 WOGCC Permit No. 025-05-015G _________________________________________________________________________________________________ Salt Creek 3D Vibroseis Project Environmental Assessment BLM Casper Field Office June 2005 Page 2 TABLE OF CONTENTS 1.0 PURPOSE AND NEED 1.1 Introduction 3 1.2 Purpose and need for action 3 1.3 Conformance with land use plan 3 1.4 Relationship to statutes, regulations, 4

339

DOE hot dry rock program  

DOE Green Energy (OSTI)

Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

Nunz, G.J.

1980-01-01T23:59:59.000Z

340

Hot-Workability of IN706 Alloy  

Science Conference Proceedings (OSTI)

increases with increasing true strain rate. Because of dynamic recrystallization during hot deformation, a turning point appears on the curves of true stress with...

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oxidation and Hot Corrosion of Superalloys  

Science Conference Proceedings (OSTI)

boiler tubes, and incinerators. Since there is a variety of conditions that can induce hot corrosion of superalloys, a number of mechanisms have been developed.

342

NEW HOT LABORATORY FACILITIES AT LOS ALAMOS  

SciTech Connect

New Hot Laboratory Facilities which support three major research programs directed by the Los Alamos Scientific Laboratory of the University of California are described. For the Nuclear Rocket Propulsion Program, a hot cell addition to the Radio Chemistry Building at Los Alamos will be completed early in 1963, and construction is expected to start soon on the hot cell addition to the Maintenance, Assembly and Disassembly Building at the Nuclear Rocket Development Station in Nevada. Integral hot laboratories are designed in the facilities for the Ultra High Temperature Reactor Experiment and the Fast Reactor Core Test at Los Alamos. (auth)

Wherritt, C.R.; Franke, P.; Field, R.E.; Lyle, A.R.

1962-01-01T23:59:59.000Z

343

Sensitivity of Orographic Moist Convection to Landscape Variability: A Study of the Buffalo Creek, Colorado, Flash Flood Case of 1996  

Science Conference Proceedings (OSTI)

A number of numerical experiments with a high-resolution mesoscale model were conducted to study the convective rainfall event that caused the 1996 Buffalo Creek, Colorado, flash flood. Different surface conditions and treatments of land surface ...

Fei Chen; Thomas T. Warner; Kevin Manning

2001-11-01T23:59:59.000Z

344

A protocol for evaluating thermal performance of 14 solar steam generators for the Kogan Creek solar boost project.  

E-Print Network (OSTI)

??The Kogan Creek Solar Boost is a world-first commercial project that sees AREVA Solar designing, supplying and constructing CLFR-based solar steam generators for CS Energy, (more)

Watson, Bond

2012-01-01T23:59:59.000Z

345

Categorization of Nocturnal Drainage Flows within the Brush Creek Valley and the Variability of Sigma Theta in Complex Terrain  

Science Conference Proceedings (OSTI)

The monthly frequencies of nocturnal drainage flows in the Brush Creek Valley were estimated over the period August 1982January 1985 for the purpose of evaluating the representativeness of the drainage flows observed during a few intensive study ...

Paul H. Gudiksen

1989-06-01T23:59:59.000Z

346

Development of a Nested Grid, Second Moment Turbulence Closure Model and Application to the 1982 ASCOT Brush Creek Data Simulation  

Science Conference Proceedings (OSTI)

An improved, second-moment turbulence-closure model and a random particle kernel diffusion model are described and tested with the 1982 ASCOT (Atmospheric Studies in Complex Terrain) data collected in Brush Creek, Colorado. Three improvements of ...

T. Yamada; S. Bunker

1988-05-01T23:59:59.000Z

347

Hot-Work Tool Steels  

Science Conference Proceedings (OSTI)

Table 9   Recommended heat-treating practices for hot-work tool steels...1600 ? O, A 58??59 6F6 Not rec 845 (pack) 1550 (peak) (p) (p) 196 650??705 (1200??1300) (q) 925??955 (q) 1700??1750 (q) ? O (r) (s) 6F7 845??870 (1550??1600) 670 1240 22 40 260??300 730 (1350) 915 1675 ? A 54??55 6H1 Not rec 845 1550 22 (t) 40 (t) 202??235 760??790 (1400??1450) 900??940 1650??1725 ? A 48??49 6H2...

348

TRUEX hot demonstration. Final report  

SciTech Connect

In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

1990-04-01T23:59:59.000Z

349

BOF steelmaking without hot metal  

SciTech Connect

This paper will discuss implementation of Z-BOP technology at Iscor's New Castle plant. The implementation program and operating results of Z-BOP-100 technology will be covered. The unique experience of the BOF shop operation without hot metal supply from the blast furnaces will also be described. This experience was a result of proprietary Z-BOP technology implementation at Iscor during its sole blast furnace reline. The Z-BOP is a family of technologies operating with scrap ratios in the charge from 30 to 100%. These technologies can be used in conventional top-blown BOF with virtually no equipment modifications. The principal additional energy source is lump coal, fed through existing BOF bin systems. Different modification of Z-BOP, originally used on the industrial scale at the West Siberian Steel Works, Russia, were utilized at several BOF facilities worldwide. Performance of the process and its main characteristics are discussed.

Gitman, G.; Galperine, G.; Grenader, I. (Zap Tech. Corp., Norcross, GA (United States)); Van der Merwe, F.O.; Newton, R.L. (Iscor Ltd., New Castle (South Africa))

1993-07-01T23:59:59.000Z

350

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

351

NETL's Gas Process Development Unit for Hot/Warm Gas Cleanup  

SciTech Connect

The long-term objectives for the GPDU project are to: (1) assess transport and fluidized bed reactor control and performance to determine the most suitable mode for continuous gas desulfurization, and (2) evaluate candidate sorbents for bulk removal of sulfurous compounds from syngas to assess the readiness of sorbents for commercial scale. The DOE has funded desulfurization and sorbent research for over 20 years and extensive laboratory-scale and bench-scale work has been conducted by government, academia and industry on the development and testing of regenerable sorbents for bulk sulfur removal from syngas (Cicero, et.al, 2000; Mitchell, 1998; Lew, 1989). However, the technologies still need to be proven in controlled conditions at a larger scale. Several Clean Coal Technology projects (i.e, the Toms Creek IGCC Demonstration Project, the Pinon Pine IGCC Power Project and the Tampa Electric Integrated Gasification Combined-Cycle Project) had proposed demonstrations of hot-gas desulfurization technology, but were not seen to completion (Clean Coal Technology Compendium website, 2002). As a result, there is a lack of data on sorbent and reactor performance under longer-term continuous conditions at a large scale. For commercial acceptance of hot- or warm-gas desulfurization, technology reliability is a question yet to be answered. The GPDU will fill the gap and has the objective to provide the proof-of-concept that is needed to foster commercialization of hot (greater than 538 C (1,000 F)) and/or warm (260 to 427 C (500 to 800 F)) gas desulfurization for IGCC processes. The GPDU facility, which includes a separate Syngas Generator (SGG) that supplies a simulated coal gas to the GPDU, is in the shakedown phase of operations with an initial reactor configuration of transport absorber-transport regenerator. The status and preliminary results of shakedown activities are presented to provide insight into startup and operations of a continuous transport desulfurization process.

Everitt, E.; Bissett, L.A.

2002-09-20T23:59:59.000Z

352

The hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

The paper presents a simplified description of the Department of Energy's Hot-Dry-Rock program conducted at Fenton Hill, New Mexico. What a hot-dry-rock resource is and what the magnitude of the resource is are also described.

Smith, M.C.

1987-09-01T23:59:59.000Z

353

Meteorological TwinHot-Film Anemometry  

Science Conference Proceedings (OSTI)

A dual-sensor, twinhot-film anemometer is applied to meteorological measurement of wind velocity in fair and rainy weather. Two sensors, each with a pair of hot-films mounted side by side, were operated in constant-temperature mode and ...

Brian E. Thompson; Robert C. Hassman Jr.

2001-04-01T23:59:59.000Z

354

Prototype solar heating and hot water systems  

DOE Green Energy (OSTI)

This document is a collection of two quarterly status reports from Colt, Inc., covering the period from October 1, 1977 through June 30, 1978. Colt is developing two prototype solar heating and hot water systems consisting of the following subsystems: collector, storage, control, transport, hot water, and auxiliary energy. The two systems are being installed at Yosemite, California and Pueblo, Colorado.

Not Available

1978-04-01T23:59:59.000Z

355

HotSpot Software Configuration Management Plan  

SciTech Connect

This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

Walker, H; Homann, S G

2009-03-12T23:59:59.000Z

356

Building Energy Software Tools Directory: HOT2000  

NLE Websites -- All DOE Office Websites (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

357

Categorical Exclusion (CX) Determination Proposed Action: Expansion of O'Fallon Creek Substation Yard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expansion of O'Fallon Creek Substation Yard Expansion of O'Fallon Creek Substation Yard Description of Proposed Action: The Western Area Power Administration (Western) is proposing to expand the current yard to accommodate an additional bay for a dedicated electrical feed to a future oil pumping station that will be part of the Keystone XL project. Number and Title of Categorical Exclusions Being Applied: 10 CFR 10210410 Subpmi D, Appendix B, B4.11: Construction of electric power substations ... or modification of existing substations and support facilities. Regulatory Requirements for CX Determination: The DOE Guidelines for Compliance with the Regulatory Requirements for the National Environmental Policy Act at 10 CFR 1021AI0(b), require the following determinations be made in order for a proposed action to be categorically

358

Microsoft Word - CX-SpringCreek-WineCountry-TowerRelocationFY13_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 29, 2012 November 29, 2012 REPLY TO ATTN OF: KEPR-4 SUBJECT: Environmental Clearance Memorandum Justin Estes Project Manager - TELM-TPP-3 Proposed Action: Spring Creek - Wine County No. 1 Transmission Tower Relocation Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Multnomah County, OR Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA is proposing to relocate one transmission tower, located on private agricultural land, which has been damaged by farm equipment. Currently, tower 29/3 on BPA's Spring Creek - Wine Country No. 1 transmission line, resides on an agricultural access road that is bordered on both sides by active agricultural fields. This

359

Microsoft Word - Spring Creek Final Draft CX 7-15-2013.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2013 6, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Cecilia Brown Project Manager - KEWM-4 Proposed Action: Spring Creek Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.25 Real property transfers for cultural resources protection, habitat preservation, and wildlife management Location: Township 17 North, Range 20 West, Section 26, Lake County, MT Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund the Salish and Kootenai Tribes for the purchase of 10 acres of property, referred to as the Spring Creek Land Acqusition in Lake

360

Microsoft Word - CX-SwanValley-Goshen_GraniteCreekBoxCulvert_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 SUBJECT: Environmental Clearance Memorandum Joe Johnson Natural Resource Specialist - TFBV-Kalispell Proposed Action: Replace existing bridge with a concrete box culvert at Granite Creek along Bonneville Power Administration's (BPA) Swan Valley-Goshen 161-kV transmission line. Budget Information: Work Order # 189268-01 PP&A Project No.: PP&A 2047 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities for structures, rights-of-way, and infrastructures, (such as roads), that are required to maintain infrastructures in a condition suitable for a facility to be used for its designated purpose. Location: The proposed project is located on Granite Creek along BPA's Swan Valley-Goshen

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2004-01-01T23:59:59.000Z

362

Chinook Salmon Adult Abundance Monitoring in Lake Creek, Idaho, 2002 Annual Report.  

DOE Green Energy (OSTI)

Underwater time- lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control stream under the Idaho Salmon Supplementation study. This project has successfully demonstrated the application of underwater video monitoring to accurately quantify chinook salmon abundance in Lake Creek in 1998, 1999, 2001 and 2002. The adult salmon spawner escapement into Lake Creek in 2002 was 410 fish. Jack salmon comprised 7.1 percent of the run. Estimated hatchery composition was 6.1 percent of the spawning run. The first fish passage on Lake Creek was recorded on June 26, 15 days after installation of the fish counting station. Peak net upstream movement of 41 adults occurred on July 8. Peak of total movement activity was August 18. The last fish passed through the Lake Creek fish counting station on September 2. Snow pack in the drainage was 91% of the average during the winter of 2001/2002. Video determined salmon spawner abundance was compared to redd count expansion method point estimates in Lake Creek in 2002. Expanded index area redd count and extensive area redd count point estimates in 2002, estimated from one percent fewer to 56 percent greater number of spawners than underwater video determined spawner abundance. Redd count expansion methods varied from two percent fewer to 55 percent greater in 2001, 11 to 46 percent fewer in 1999 and 104 to 214 percent greater in 1998. Redd count expansion values had unknown variation associated with the point estimates. Fish per redd numbers determined by video abundance and multiple pass redd counts of the larger extensive survey areas in Lake Creek have varied widely. In 2002 there were 2.05 fish per redd. There were 2.07 fish per redd in 2001, 3.58 in 1999 and in 1998, with no jacks returning to spawn, there were 1.02 fish per redd. Migrating salmon in Lake Creek exhibited two behaviorally distinct segments of fish movement in 2002. Mainly upstream only movement of both sexes characterized the first segment. The second segment consisted of upstream and downstream movement with less net upstream movement and appeared to correspond with the time of active spawning. The fish counting stations did not impede salmon movements, nor was spawning displaced downstream. Fish moved freely upstream and downstream through the fish counting structures. The downstream movement of salmon afforded by this fish counting station design may be an important factor in the reproductive success of listed salmon. This methodology provides more accurate salmon spawner abundance information than expansion of single-pass and multiple-pass redd counts. Accurate adult escapement information would allow managers to determine if recovery actions benefited listed chinook salmon in tributary streams.

Faurot, Dave; Kucera, Paul

2003-11-01T23:59:59.000Z

363

Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Inn Pool & Spa Low Temperature Geothermal Facility Inn Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Furnace Creek Inn Pool & Spa Low Temperature Geothermal Facility Facility Furnace Creek Inn Sector Geothermal energy Type Pool and Spa Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

364

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

DOE Green Energy (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

365

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

1997-10-01T23:59:59.000Z

366

Williston basin. Milestone test renews interest in Red Wing Creek field's meteor crater  

SciTech Connect

New drilling in the vicinity of Red Wing Creek field in McKenzie County, North Dakota has renewed interest in an area that has intrigued geologists for a number of years. Red Wing Creek was discovered in 1972 by True Oil Co. and has demonstrated better per-acre oil recovery than any other oil field in the Williston Basin. Fully developed several years ago, the field produces from what has been described as the central peak of an astrobleme, within a meteor crater. The current test by Milestone Petroleum Inc. is permitted to 14,200 ft and is being drilled on the rim of the crater, in SW SW 35-148n-101w, approx. a mile south of Red Wing production. The primary objective is the Ordovician Red River; but plans call for drilling deeper, through the Winnipeg, to below the Mississippian sediments that produce at Red Wing Creek field. At least 3 unsuccessful Red River tests have been drilled in or near the field in earlier years, but not in the area where Milestone is drilling. Production at Red Wing has come from porosity zones in a Mississippian oil column that measured 2600 ft in the original well; the better wells are in the heart of the field, on a rebound cone in the center of the crater.

Rountree, R.

1983-04-01T23:59:59.000Z

367

Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Wind Farm Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

2000-01-01T23:59:59.000Z

369

Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

Johnson, Bradley J.

1999-11-01T23:59:59.000Z

370

A fisheries evaluation of the Wapato, Sunnyside, and Toppenish Creek canal fish screening facilities, spring 1988  

DOE Green Energy (OSTI)

The Bonneville Power Administration, the United States Bureau of Reclamation, and the Washington State Department of Ecology are funding the construction and evaluation of fish passage and protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The programs provide offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin and address natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. The Wapato, Sunnyside, and Toppenish Creek Screens are three of the facilities in the basin. This report evaluates the effectiveness of the screens in intercepting and returning juvenile salmonids unharmed to the river from which they were diverted. We evaluated the effectiveness of new screening facilities at the Toppenish Creek, Wapato, and Sunnyside canals in southcentral Washington State. Screen integrity tests indicated that fish released in front of the screens were prevented from entering the canal behind the screens. We conducted descaling tests at the Toppenish Creek Screens. We measured the time required for fish to move through the screen facilities. Methods used in 1988 were the same as those used at Sunnyside in 1985 and in subsequent years at Richland. Toppenish/Satus, and Wapato. 11 refs., 11 figs., 14 tabs.

Neitzel, D.A.; Abernethy, C.S.; Lusty, E.W.

1990-03-01T23:59:59.000Z

371

Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.  

DOE Green Energy (OSTI)

On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

372

DOE Solar Decathlon: 2005 Contests and Scoring - Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

teams will install systems that can do even more. The Hot Water contest demonstrates that solar hot water heating systems can supply all the hot water we use daily - to bathe and...

373

Hot Leg Piping Materials Issues  

SciTech Connect

With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

V. Munne

2006-07-19T23:59:59.000Z

374

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...  

Open Energy Info (EERE)

Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

375

Energy Design Guidelines for High Performance Schools: Hot and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around...

376

Trace Element Geochemical Zoning in the Roosevelt Hot Springs...  

Open Energy Info (EERE)

Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area, Utah Abstract Chemical interaction of thermal brines with reservoir rock in the Roosevelt Hot Springs...

377

NREL: Continuum Magazine - Not Too Hot, Not Too Cold  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot, Not Too Cold Issue 5 Print Version Share this resource Not Too Hot, Not Too Cold Thermal management technologies increase vehicle energy efficiency and performance while...

378

Laser Cladding with Hybrid Hot Wire - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, Laser Cladding with Hybrid Hot Wire ... The Laser Hot Wire process is used to deposit solid and cored wire products onto hydraulic shafts and...

379

Computational Weld Mechanics of Hot Crack Nucleation in Nickel ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Computational weld mechanics (CWM) is used to estimate the likelihood of hot crack nucleation in a welded joint. A hot crack nucleates when...

380

Commercial Solar Hot Water Financing Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the commercial solar hot water industry in Massachusetts. Commercial and non-profit building owners can use the financing program to install solar hot water systems that heat...

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Direct Use for Building Heat and Hot Water Presentation Slides...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Direct Use for Building Heat and Hot Water Presentation Slides and Text Version Download...

382

Alter EGO Impact Ego Hot Oil Treatment with Garlic (Original ...  

U.S. Energy Information Administration (EIA)

Alter EGO Impact Ego Hot Oil Treatment with Garlic (Original) 1000ml best seller, Hair Loss Treatment, Alter EGO Impact Ego Hot Oil Treatment with ...

383

FEMP Solar Hot Water Calculator | Open Energy Information  

Open Energy Info (EERE)

Solar Hot Water Calculator Jump to: navigation, search Name FEMP Solar Hot Water Calculator Abstract Online tool to help Federal agencies meet Energy Independence and Security Act...

384

Charm and Beauty in a Hot Environment  

E-Print Network (OSTI)

We discuss the spectral analysis of quarkonium states in a hot medium of deconfined quarks and gluons, and we show that such an analysis provides a way to determine the thermal properties of the quark-gluon plasma.

Helmut Satz

2006-02-28T23:59:59.000Z

385

Domestic Hot Water Event Schedule Generator - Energy ...  

Residential hot water use in the United States accounts for 14-25% of all the energy consumed in a home. With the rise of more advanced water heating ...

386

Extracting hot carriers from photoexcited semiconductor nanocrystals  

DOE Green Energy (OSTI)

During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

Zhu, Xiaoyang [Columbia University Department of Chemistry

2013-09-12T23:59:59.000Z

387

Calibrating Cylindrical Hot-Film Anemometer Sensors  

Science Conference Proceedings (OSTI)

We report the results of 82 separate calibrations of cylindrical, platinum hot-film anemometer sensors in air. The calibrations for each sensor involved a determination of its temperature-resistance characteristics, a study of its heat transfer ...

Edgar L. Andreas; Brett Murphy

1986-06-01T23:59:59.000Z

388

Advanced Hot-Gas Desulfurization Sorbents  

Science Conference Proceedings (OSTI)

Integrated gasification combined cycle (IGCC) power systems are being advanced worldwide for generating electricity from coal due to their superior environmental performance, economics, and efficiency in comparison to conventional coal-based power plants. Hot gas cleanup offers the potential for higher plant thermal efficiencies and lower cost. A key subsystem of hot-gas cleanup is hot-gas desulfurization using regenerable sorbents. Sorbents based on zinc oxide are currently the leading candidates and are being developed for moving- and fluidized- bed reactor applications. Zinc oxide sorbents can effectively reduce the H{sub 2}S in coal gas to around 10 ppm levels and can be regenerated for multicycle operation. However, all current first-generation leading sorbents undergo significant loss of reactivity with cycling, as much as 50% or greater loss in only 25-50 cycles. Stability of the hot-gas desulfurization sorbent over 100`s of cycles is essential for improved IGCC economics over conventional power plants. This project aims to develop hot-gas cleanup sorbents for relatively lower temperature applications, 343 to 538{degrees}C with emphasis on the temperature range from 400 to 500{degrees}. Recent economic evaluations have indicated that the thermal efficiency of IGCC systems increases rapidly with the temperature of hot-gas cleanup up to 350{degrees}C and then very slowly as the temperature is increased further. This suggests that the temperature severity of the hot-gas cleanup devices can be reduced without significant loss of thermal efficiency. The objective of this study is to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343{degrees}C (650{degrees}F) to 538{degrees}C(1OOO{degrees}F) and regenerability at lower temperatures than leading first generation sorbents.

Jothimurugesan, K.; Gangwal, S.K.; Gupta, R.; Turk, B.S.

1997-07-01T23:59:59.000Z

389

Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.  

DOE Green Energy (OSTI)

Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of hatchery three-year-olds collected indicated that the current stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year-olds. However, supplemental creel data indicated anglers harvested two-year-old hatchery kokanee 30-45 days after release. Supplemental creel data should continue to be collected to accurately evaluate hatchery contributions to the creel.

McLellan, Holly; Scholz, Allan

2002-03-01T23:59:59.000Z

390

DOE/EIS-0265-SA-168: Supplement Analysis for the Watershed Management Program EIS - Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization (08/10/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-168) Sabrina Keen Fish and Wildlife Project Manager, KEWU-4 Proposed Action: Protect and Restore Lolo Creek Watershed - Jim Brown Creek Streambank Stabilization Project No: 1996-077-02 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 1.8 Bank Protection through Vegetation Management, 1.9 Structural Bank Protection using Bioengineering Methods Location: Clearwater County, Idaho Proposed by: Bonneville Power Administration (BPA) and the Nez Perce Tribe Description of the Proposed Action: The Bonneville Power Administration, Nez Perce Tribe, and Potlatch Corporation are proposing to stabilize streambanks along Jim Brown Creek near

391

ADVANCED HOT GAS FILTER DEVELOPMENT  

SciTech Connect

This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of coal firing at temperatures of 760 C including a severe thermal upset that resulted in the failure of several monolithic oxide elements. No failures of any kind have been reported for the MTI CFCC elements in either of these test campaigns. Additional testing is planned at the M. W. Kellogg unit and Foster Wheeler unit at the PSDF over the next year in order to qualify for consideration for the Lakeland PCFB. Process scale-up issues have been identified and manufacturing plans are being evaluated to meet the needs of future demand.

RICHARD A. WAGNER

1998-09-04T23:59:59.000Z

392

Overcoming JVM HotSwap constraints via binary rewriting  

Science Conference Proceedings (OSTI)

Java HotSpot VM provides a facility for replacing classes at runtime called HotSwap. One design property of HotSwap is that the signature of a replaced class must remain the same between different versions, which significantly constrains the programmer ... Keywords: HotSwap, JVM languages, binary refactoring, virtual superclass

Dong Kwan Kim; Eli Tilevich

2008-10-01T23:59:59.000Z

393

The Metallurgical Aspects of Hot Isotastically Pressed Superalloy ...  

Science Conference Proceedings (OSTI)

THE METALLURGICAL ASPECTS OF HOT ISOSTATICALLY. PRESSED SUPERALLOY CASTINGS. K. C. Antony. Stellite. Division,. Cabot Corporation.

394

Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York  

Science Conference Proceedings (OSTI)

SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides (/sup 137/Cs, /sup 90/Sr, /sup 239/ /sup 240/Pu, and /sup 3/H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay.

Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

1982-12-01T23:59:59.000Z

395

Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.  

DOE Green Energy (OSTI)

On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

Entz, Ray

2005-02-01T23:59:59.000Z

396

EA-1895: Lolo Creek Permanent Weir Construction near town of Weippe, Clearwater County, Idaho  

Energy.gov (U.S. Department of Energy (DOE))

DOEs Bonneville Power Administration is preparing this EA to evaluate the potential environmental impacts of replacing an existing seasonal fish weir with a permanent weir, which would be used to monitor federally-listed Snake River steelhead and collect spring Chinook salmon adults to support ongoing supplementation programs in the watershed. The Bureau of Land Management, a cooperating agency, preliminarily determined Lolo Creek to be suitable for Congressional designation into the Wild and Scenic River System. The EA includes a Wild and Scenic River Section 7 analysis.

397

Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.  

DOE Green Energy (OSTI)

During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

2009-06-09T23:59:59.000Z

398

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

A hot cell installation for the handling of highly radioactive material may comprise a dozen or more interconnected high density concrete vaults, the concrete vault walls having a thickness of approximately three feet. Typically, hot cells are constructed in rows so as to share as many shielding walls as possible. A typical overall length of a row of cells might be 70 yards. A secondary mechanism exists for placing certain objects into a cell. A typical hot cell has been constructed with 8 inch diameter holes through the exterior shielded walls in the vicinity of, and usually above, the viewing windows. It became evident that if the hot cell plugs could be removed and replaced conveniently significant savings in time and personnel exposure could be realized by using these 8 inch holes as entry ports. Fifteen inch cylindrical steel plugs with a diameter of eight inches weigh about two hundred pounds. The shield plug swing mechanism comprises a steel shielding plug mounted on a retraction device that enables the plug to be pulled out of the wall and supports the weight of the pulled out plug. The retraction device is mounted on a hinge, which allows the plug to be swung out of the way so that an operator can insert material into or remove it from the interior of the hot cell and then replace the plug quickly. The hinge mounting transmits the load of the retracted plug to the concrete wall.

Knapp, P.A.; Manhart, L.K.

1994-12-31T23:59:59.000Z

399

University of Colorado Hot Water Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot water system Brief Contest Report Hot water system Brief Contest Report Recognizing that the sun is an abundant source of clean energy that reaches the earth at an intensity of up to 1000 Watts/m 2 , the University of Colorado will be showcasing top-of-the-line technology in which solar radiation is converted into heat for the purposes of heating the home and providing domestic hot water. Solar Thermal System - Basics Colorado's 2005 Solar Decathlon team has chosen to harness the sun's thermal energy with 4 arrays of 20 Mazdon evacuated tube collectors manufactured by Thermomax, as shown in Figure 1 below. These collectors have incredibly high efficiencies - about 60% over the course of an entire day. In addition, the evacuated tube collectors resist internal condensation and corrosion more effectively than their counterparts

400

Just Hot Resources Consulting | Open Energy Information  

Open Energy Info (EERE)

Hot Resources Consulting Hot Resources Consulting Jump to: navigation, search Name Just Hot Resources Consulting Place Windsor, California Zip 95492 Sector Geothermal energy Product A California-based consulting firm specializing in geothermal drilling project management. Coordinates 43.21638°, -89.340849° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.21638,"lon":-89.340849,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Hot Pot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Project Hot Pot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Pot Geothermal Project Project Location Information Coordinates 40.996944444444°, -117.24805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.996944444444,"lon":-117.24805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Kepler constraints on planets near hot Jupiters  

SciTech Connect

We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

Steffen, Jason H.; /Fermilab; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Fabrycky, Daniel C.; /UC, Santa Cruz, Astron. Astrophys.; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Ford, Eric B.; /Florida U.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames; Welsh, William F.; /San Diego State U., Astron. Dept.; Borucki, William J.; /NASA, Ames; Boss, Alan P.; /Carnegie Inst., Wash., D.C., DTM; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

2012-05-01T23:59:59.000Z

404

Hot gas filter and system assembly  

DOE Patents (OSTI)

A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

Lippert, Thomas Edwin (Murrysville, PA); Palmer, Kathryn Miles (Monroeville, PA); Bruck, Gerald Joseph (Murrysville, PA); Alvin, Mary Anne (Pittsburgh, PA); Smeltzer, Eugene E. (Export, PA); Bachovchin, Dennis Michael (Murrysville, PA)

1999-01-01T23:59:59.000Z

405

B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA  

Office of Legacy Management (LM)

B I OENV I RONMENTAL FEATURES B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA A First Summary by The Committee on Environmental Studies for Project Chariot . . December 1960 r Division of Biology and Medicine, AEC Washington, D. C. IT U S WEGWS LIBIA3"b This page intentionally left blank NUCLEAR EXPLOSIONS -PEACE UL APPLICATIONS . . BIOLOGY AND MEDICINE BIOENVIRONMENTAL FEATURES OF THE OGOTORUK CREEK AREA . . CAPE THOMPSON, ALASKA A F i r s t Sumnary The C o d t t e e on E n v i r o n m e n t a l S t u d i e s for P r o j e c t C h a r i o t PLllWSHARE PROGRAM THE UNITED STATES ATOMIC ENERGY COMMISSION December, 1 9 6 0 MAP OF ALASKA - CHARIOT LOCATION SCALE IN MILES . 111*1.1) , FOREWORD . . This summary is based on the reports on more than 30 bioenvironmental investigations carried out' in the Cape Thompson area in Alaska since

406

West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.  

DOE Green Energy (OSTI)

A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs per acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.

Ashley, Paul R.

2008-02-01T23:59:59.000Z

407

Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.  

SciTech Connect

This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

Petti, Jason P.

2007-01-01T23:59:59.000Z

408

Toms Creek integrated gasification combined cycle demonstration project. Quarterly report, July 1--September 30, 1993  

SciTech Connect

The use of an upgraded version of General Electric`s Frame 6 gas turbine, which has been designated as Frame 6 (FA) will make a significant improvement to the thermal efficiency and overall economics of the Toms Creek Project. Replacing the smaller, less efficient Frame 6 (B) gas turbine with the new Frame 6 (FA) will increase the net power production from a nominal 55 MW to 105 MW. The coal feed rate will correspondingly increase from 430 tpd to 740 tpd. All process flows and equipment sizes will be increased accordingly. Selected process parameters for the original and revised Toms Creek IGCC plant configurations are compared in Table 2. There is an approximately 10% increase in net plant efficiency for the revised configuration. Using this increased plant size, the pressure vessels become larger due to an increased through-put, but are still dimensioned for shop fabrication and over-the-road shipment. The preliminary cost estimate for the enlarged demonstration plant was prepared by factoring the estimates for the original plant. Revised quotes for the larger equipment will be solicited and used to generate more accurate cost information for the revised plant.

Feher, G.

1993-11-30T23:59:59.000Z

409

Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.  

DOE Green Energy (OSTI)

The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

Rasmussen, Lynn

2007-02-01T23:59:59.000Z

410

Regulatory compliance issues related to the White Oak Creek Embayment time-critical removal action  

SciTech Connect

In September 1990, Martin Marietta Energy Systems (Energy Systems) discovered high levels of Cesium-137 ({sup 137}Cs) in surface sedimenus near the mouth of White Oak Creek Embayment (WOCE). White Oak Creek (WOC) receives surface water drainage from Oak Ridge National Laboratory. Since this discovery, the Department of Energy (DOE) and Energy Systems have pursued actions designed to stabilize the contaminated WOCE sediments under provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the implementing regulations in the National Contingency Plan (NCP) (40 CFR Part 300), as a time-critical removal action. By definition, a time-critical removal is an action where onsite activities are initiated within six months of the determination that a removal action is appropriate. Time-critical removal actions allow comparatively rapid mobilization to protect human health and the environment without going through the lengthy and extensive CERCLA Remedial Investigation/Feasibility Study/Record of Decision process. Many aspects of the project, in terms of compliance with the substantive requirements of the NCP and ARARs, have exceeded the regulatory requirements, despite the fact that there is no apparent authority on conducting removal actions at Federal facilities. Much of the interpretation of the NCP was groundbreaking in nature for both EPA and DOE. 4 refs., 2 figs.

Leslie, M. (CDM Federal Programs Corp., Oak Ridge, TN (United States)); Kimmel, B.L. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

411

Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.  

DOE Green Energy (OSTI)

The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

2006-07-01T23:59:59.000Z

412

The Oak Ridge Y-12 Plant biological monitoring and abatement program for East Fork Poplar Creek  

SciTech Connect

In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Oak Ridge Y-12 Plant, a nuclear weapons components production facility located in Oak Ridge, Tennessee, and operated by Martin Marietta Energy Systems, Inc., for the US Department of Energy. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Oak Ridge Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek), in particular, the growth and propagation of fish and aquatic life, as designated by the Tennessee Department of Health and Environment. A second purpose for the BMAP is to document the ecological effects resulting from implementation of a water pollution control program that will include construction of nine new wastewater treatment facilities over the next 4 years. Because of the complex nature of the effluent discharged to East Fork Poplar Creek and the temporal and spatial variability in the composition of the effluent (i.e., temporal variability related to various pollution abatement measures that will be implemented over the next several years and spatial variability caused by pollutant inputs downstream of the Oak Ridge Y-12 Plant), a comprehensive, integrated approach to biological monitoring was developed for the BMAP. 39 refs., 5 figs., 8 tabs.

Loar, J.M.; Adams, S.M.; Allison, L.J.; Giddings, J.M.; McCarthy, J.F.; Southworth, G.R.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (USA); Springborn Bionomics, Inc., Wareham, MA (USA); Oak Ridge National Lab., TN (USA))

1989-10-01T23:59:59.000Z

413

Method for hot pressing beryllium oxide articles  

DOE Patents (OSTI)

The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide - lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

Ballard, A.H.; Godfrey, T.G. Jr.; Mowery, E.H.

1986-10-10T23:59:59.000Z

414

NLTE wind models of hot subdwarf stars  

E-Print Network (OSTI)

We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.

Krticka, Jiri; 10.1007/s10509-010-0385-z

2010-01-01T23:59:59.000Z

415

Hot dry rock venture risks investigation:  

DOE Green Energy (OSTI)

This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

Not Available

1988-01-01T23:59:59.000Z

416

Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.  

Science Conference Proceedings (OSTI)

Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years. The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.

Hillson, Todd D. (Washington Department of Fish and Wildlife, Olympia, WA)

2004-09-01T23:59:59.000Z

417

Analysis of soil and water at the Four Mile Creek seepline near the F- and H-Areas of SRS  

Science Conference Proceedings (OSTI)

Several soil and water samples were collected along the Four Mile Creek (FMC) seepline at the F and H Areas of the Savannah River Site. The samples were analyzed for concentrations of metals, radionuclides, and inorganic constituents. The results of the analyses are summarized for the soil and water samples.

Haselow, J.S.

2000-05-24T23:59:59.000Z

418

Superfund Record of Decision (EPA Region 8): Anaconda Smelter Site, Mill Creek, Montana (first remedial action), October 1988  

Science Conference Proceedings (OSTI)

The 160-acre community of Mill Creek is located in Deerlodge County, Montana, immediately adjacent to the Anaconda Smelter NPL site. The community of Mill Creek has been contaminated for over 100 years with smelter emissions, fugitive emissions of flu dust at the smelter, and continued fugitive emissions emanating from adjacent highly contaminated soils. Settled flue emissions in the community of Mill Creek, from the now-defunct copper-smelting operation, contain arsenic, cadmium, and lead. Environmental siting of the community and biological testing of pre-school children, led EPA to conclude that contamination in the Mill Creek area poses an imminent and substantial endangerment to the health of individuals residing there. The primary contaminant of concern at this site is arsenic. Cadmium and lead are secondary contaminants of concern. The selected remedial action for the site includes: permanent relocation of all residents (8 homes) with temporary erosional stabilization of disturbed areas by establishing and maintaining a vegetative cover; demolition, consolidation, and storage.

Not Available

1988-10-02T23:59:59.000Z

419

Performance and operation of a crosslinked polymer flood at Sage Spring Creek Unit A, Natrona County, Wyoming  

Science Conference Proceedings (OSTI)

This paper reviews field geology and development, characterizes the reservoir, evaluates secondary performance, and describes the design and benefits of a polymer program. Performance of the Sage Spring Creek Unit A confirms a high flood efficiency and superior oil recovery. The sweep improvement program is a technical and economic success.

Mack, J.C.; Warren, J.

1984-07-01T23:59:59.000Z

420

Hot Pot Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Area Hot Pot Geothermal Area (Redirected from Hot Pot Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hot Pot Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.922,"lon":-117.108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "hot creek ranch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

422

STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)  

E-Print Network (OSTI)

: Heater Type CEC Certified Mfr Name & Model Number Distribution Type (Std, Point-of- Use, etc; and Pipe insulation for steam hydronic heating systems or hot water systems >15 psi, meets the requirements six or fewer dwelling units which have (1) less than 25' of distribution piping outdoors; (2) zero

423

Annual Meeting 2010 Hot Topics CD Set  

Science Conference Proceedings (OSTI)

For the very first time in AOCS Annual Meeting history, the Hot Topic Symposia presentations (audio synced with PowerPoint presentations) are now available on DVD. You can buy the complete set at this reduced price or choose to purchase individual

424

Transfer of hot dry rock technology  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

425

Hot-dry-rock geothermal resource 1980  

DOE Green Energy (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

426

Plasma deposited rider rings for hot displacer  

DOE Patents (OSTI)

A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.

Kroebig, Helmut L. (Rolling Hills, CA)

1976-01-01T23:59:59.000Z

427

A PORTABLE BANDSAW FOR HOT CELL USE  

SciTech Connect

A commercial light-weight portable bandsaw was fitted with a grip to permit it to be maneuvered remotely in a hot cell by means of a General Mills manipulator The bandsaw was supported in various positions to make cuts on typical pieces. Photographs show the saw in operation. (auth)

Abbatiello, A.A.

1958-02-19T23:59:59.000Z

428