National Library of Energy BETA

Sample records for hot cell facility

  1. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  2. General Atomics Hot Cell Facility, California, Site Fact Sheet

    Office of Legacy Management (LM)

    General Atomics Hot Cell Facility, California, Site. The U.S. Department of Energy Office of Legacy Management is responsible for maintaining records for this facility. Site Description and History The former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote

  3. Characterization report for Building 301 Hot Cell Facility

    SciTech Connect (OSTI)

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950`s and 1960`s for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970`s, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled.

  4. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  5. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

    Office of Environmental Management (EM)

    Demonstration D&D Toolbox - FIU Tech Demo FIU Technology Demonstration - Selected technology platform(s) was demonstrated at the hot cell mockup facility at the FIU's Applied Research Center tech demo site in Miami, FL. Page 1 of 2 Oak Ridge National Laboratory Tennessee Florida New York D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Challenge Many facilities slated for D&D across the DOE complex pose hazards

  6. Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Trimble Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Trimble Hot...

  7. Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Orr Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Orr Hot...

  8. Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Belknap Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Belknap Hot...

  9. Castle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Castle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Castle Hot...

  10. Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Crystal Hot...

  11. Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Austin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Austin Hot...

  12. Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steele Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Steele Hot...

  13. Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sierra Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sierra Hot...

  14. Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mono Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mono Hot...

  15. Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Salmon Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Salmon Hot...

  16. Cove Hot Spring Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Cove Hot Spring Greenhouse Low Temperature Geothermal Facility Facility Cove Hot...

  17. Camas Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camas Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Camas Hot...

  18. Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hobo Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Hobo Hot...

  19. Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Weiser Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Weiser Hot...

  20. Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lava Hot...

  1. Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Harbin Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Harbin Hot...

  2. Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bagby Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Bagby...

  3. Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Ritter Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Ritter...

  4. Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  5. Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mystic Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mystic Hot Springs Sector...

  6. Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Murphy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Murphy...

  7. Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Chico Hot Springs Sector...

  8. Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Elkhorn Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  9. Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector...

  10. Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Campbell Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Campbell...

  11. Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Circle Hot Springs Sector...

  12. Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  13. Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Dunton Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Dunton...

  14. Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Matilija Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  15. Chena Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Chena Hot Springs Sector...

  16. Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Mercey Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Mercey...

  17. Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Heise Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Heise...

  18. Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Downatta Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  19. Hot Creek Pool & Spa Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Creek Pool & Spa Low Temperature Geothermal Facility Facility Hot Creek Sector Geothermal energy...

  20. Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Boulder Hot Springs...

  1. Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Darrough Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Darrough Hot Springs...

  2. Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Tolovana Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  3. Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Miracle Hot Springs...

  4. Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Medicine Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Medicine Hot...

  5. Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bear Trap Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Bear...

  6. Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Challis Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  7. Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Broadwater...

  8. Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baileys Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  9. Hunters Hot Spring Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters...

  10. Manley Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs...

  11. Circle Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs...

  12. Desert Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot...

  13. Lava Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs...

  14. Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs...

  15. Vichy Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs...

  16. Chico Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs...

  17. Chena Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Chena Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  18. Miracle Hot Spring Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  19. Radium Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs...

  20. Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Kelly Hot Springs Aquaculture Low Temperature Geothermal Facility Facility Kelly...

  1. Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wheeler Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wheeler Hot...

  2. Hot Lake RV Park Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lake RV Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake...

  3. Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Jackson Hot...

  4. Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Red River Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Red River Hot...

  5. Chico Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Chico...

  6. Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Kaiser Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Kaiser...

  7. Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Lehman Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Lehman...

  8. Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Manley Hot Springs Sector...

  9. Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Carson Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Carson Hot...

  10. Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Wilbur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Wilbur...

  11. Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Pool & Spa Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector...

  12. Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  13. Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Goldmeyer Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  14. Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sol Duc Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sol...

  15. Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Verde Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Verde Hot Springs...

  16. Auburn Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility Auburn Hot Spring Sector Geothermal energy Type Pool and Spa Location Auburn, Wyoming Coordinates...

  17. Brady Hot Springs I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs I Geothermal Facility General Information Name Brady Hot Springs I Geothermal...

  18. Overview of Idaho National Laboratory's Hot Fuels Examination Facility

    SciTech Connect (OSTI)

    Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

    2007-09-01

    The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

  19. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  20. Avila Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524, -120.6596156 Show Map Loading...

  1. Salida Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Salida Hot Springs Sector Geothermal energy Type Pool and Spa Location Salida, Colorado Coordinates 38.5347193, -105.9989022 Show Map Loading map......

  2. Mimbres Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Mimbres Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver City, New Mexico Coordinates 32.770075,...

  3. Faywood Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Faywood Hot Springs Sector Geothermal energy Type Pool and Spa Location Faywood, New Mexico Coordinates Show Map Loading map......

  4. Riverbend Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Riverbend Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  5. Bubbles Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Bubbles Hot Spring Sector Geothermal energy Type Pool and Spa Location Catron County, New Mexico Coordinates 34.1515173,...

  6. Marshall Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Marshall Hot Springs Sector Geothermal energy Type Pool and Spa Location Truth or Consequences, New Mexico Coordinates 33.1284047,...

  7. Barkell's Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility Barkell's Hot Springs Sector Geothermal energy Type Pool and Spa Location Silver Star, Montana Coordinates 45.690204,...

  8. Pan Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Facility Pan Hot Springs Sector Geothermal energy Type Pool and Spa Location Big Bear City, California Coordinates 34.2611183, -116.84503 Show Map Loading map......

  9. Hot Fuel Examination Facility/South

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  10. Whitmore Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Facility Whitmore Hot Springs Sector Geothermal energy Type Pool and Spa Location Bishop, California Coordinates 37.3635404, -118.3951101 Show Map Loading map......

  11. DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name DeMaris Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility...

  12. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  13. GA Hot Cell D&D Closeout Report

    Office of Legacy Management (LM)

    GENERAL ATOMICS HOT CELL FACILITY DECONTAMINATION & DECOMMISSIONING PROJECT FINAL PROJECT CLOSEOUT REPORT prepared for GA HOT CELL D&D PROJECT CONTRACT NUMBERS DE-AC03-84SF11962 and DE-AC03-95SF20798 PBS VL-GA-0012 Approvals Prepared by: James Davis, III Date Project Manager, Oakland Environmental Programs Office Reviewed by: John Lee Date Deputy, Oakland Environmental Programs Office Approved by: Laurence McEwen Date Acting Director, Oakland Environmental Programs Office General Atomics

  14. McCauley Hot Spring Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Low Temperature Geothermal Facility Facility McCauley Hot Spring Sector Geothermal energy Type Pool and Spa Location Jemez Springs, New Mexico Coordinates 35.7686356,...

  15. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale,

    Office of Environmental Management (EM)

    OR | Department of Energy 76: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final Environmental Assessment Loan Guarantee for U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, Oregon December 2, 2009 EA-1676: Finding of No Significant Impact Loan Guarantee for U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, Oregon

  16. TAN Hot Shop and Support Facility Utilization Study

    SciTech Connect (OSTI)

    Picker, B.A.

    2001-11-16

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.

  17. TAN HOT SHOP AND SUPPORT FACILITY UTILIZATION STUDY

    SciTech Connect (OSTI)

    Phillips, Ken Crawforth

    2001-11-01

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D&D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D&D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.

  18. Cell Prototyping Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Prototyping Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Radioactive hot cell access hole decontamination machine

    DOE Patents [OSTI]

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  20. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Broader source: Energy.gov (indexed) [DOE]

    EA-1676: Final Environmental Assessment Loan Guarantee for U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, Oregon December 2, 2009 EA-1676: Finding of No...

  1. Remote System Technologies for Deactivating Hanford Hot Cells

    SciTech Connect (OSTI)

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  2. Hot cell shield plug extraction apparatus

    DOE Patents [OSTI]

    Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  3. Sampling System for Hot Cell Aqueous Processing Streams Julia...

    Office of Scientific and Technical Information (OSTI)

    and Sampling System for Hot Cell Aqueous Processing Streams Julia Tripp; Jack Law; Tara Smith 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS microfluidics; robotic; sampling...

  4. Evaluation of Alternatives for Hanford 327 Building Hot Cell Removal and Transport

    SciTech Connect (OSTI)

    Stevens, Ray W.; Jasen, William G.

    2003-02-27

    The Department of Energy (DOE) Hanford site 327 Building, built in 1953, played a key role in reactor material and fuel research programs. The facility includes nine shielded hot cells, a fuel storage basin, dry sample storage, and a large inerted hot (SERF) cell. In 1996, the 327 Building was transferred from Pacific Northwest National Laboratory (PNNL) to Fluor Hanford, Inc., to begin the transition from the mission of irradiated fuel examination to stabilization and deactivation. In 2001, a multi-contractor team conducted a review of the concept of intact (one piece) removal, packaging, and disposal of the 327 hot cells. This paper focuses on challenges related to preparing the 327 Building hot cells for intact one-piece disposal as Low Level Waste (LLW) at the Hanford Site. These challenges, described in this paper, are threefold and include: Sampling and characterization of the cells for low level waste designation; Packaging of the cells for transportation and waste disposal; Transportation from the facility to the disposal site. The primary technical challenges in one-piece removal, packaging, and disposal of the hot cells involve the techniques required to characterize, remove, handle, package and transport a large (approximately up to 12-feet long and 8-feet high) contaminated object that weighs 35 to 160 tons. Specific characterization results associated with two hot cells, G and H cells will be reported. A review of the activities and plans to stabilize and deactivate the 327 Building provides insight into the technical challenges faced by this project and identifies a potential opportunity to modify the baseline strategy by removing the hot cells in one piece instead of decontaminating and dismantling the cells.

  5. Preliminary design for hot dirty-gas control-valve test facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  6. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  7. Fuel Cells for Backup Power in Telecommunications Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet) Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet) Telecommunications providers ...

  8. New Facility Will Test Disposal Cell Cover Renovation | Department of

    Office of Environmental Management (EM)

    Energy Services » New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation New Facility Will Test Disposal Cell Cover Renovation PDF icon New Facility Will Test Disposal Cell Cover Renovation More Documents & Publications Design and Installation of a Disposal Cell Cover Field Test Sustainable Disposal Cell Covers: Legacy Management Practices, Improvements, and Long-Term Performance Long-Term Surveillance Operations and Maintenance

  9. RadBall Technology For Hot Cell Characterization | Department of Energy

    Energy Savers [EERE]

    RadBall Technology For Hot Cell Characterization RadBall Technology For Hot Cell Characterization A new, non-electrical, remote radiation mapping device known as RadBall has been developed by the National Nuclear Laboratory (NNL) in the United Kingdom. PDF icon RadBall Technology For Hot Cell Characterization More Documents & Publications Across the Pond Newsletter Issue 1 CX-005512: Categorical Exclusion Determination EM International Strategic Plan 2010-2015

  10. General Atomics Hot Cell Facility Decommissioning Plan, January 1998.

    Office of Legacy Management (LM)

  11. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2012-11-06

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  12. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    DOE Patents [OSTI]

    Poshusta, Joseph C; Booten, Charles W; Martin, Jerry L

    2013-12-24

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  13. Hot compression process for making edge seals for fuel cells

    DOE Patents [OSTI]

    Dunyak, Thomas J. (Blacksburg, VA); Granata, Jr., Samuel J. (South Greensburg, PA)

    1994-01-01

    A hot compression process for forming integral edge seals in anode and cade assemblies wherein the assemblies are made to a nominal size larger than a finished size, beads of AFLAS are applied to a band adjacent the peripheral margins on both sides of the assemblies, the assemblies are placed in a hot press and compressed for about five minutes with a force sufficient to permeate the peripheral margins with the AFLAS, cooled and cut to finished size.

  14. Hot Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hot Springs Wind Farm Facility Hot Springs Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Idaho...

  15. Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology

    Office of Environmental Management (EM)

    Paul Murray Oak Ridge, TN July 29, 2009 Retrieval and Repackaging of RH-TRU Waste- GENERAL PRESENTATION MODULAR HOT CELL TECHNOLOGY AREVA FEDERAL SERVICES - OAK RIDGE, TN - GENERAL PRESENTATION OF MODULAR HOT CELL TECHNOLOGY - July 29, 2009 ADAPTING AREVA'S TECHNOLOGY AREVA Worldwide Nuclear Lifecycle Transmission & Distribution Renewable Energy AREVA US Nuclear Fuel Services Nuclear Engineering Services AREVA Federal Services, LLC. (AFS) Federal Services Major Projects * MOX-MFFF * Yucca

  16. DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization

    SciTech Connect (OSTI)

    T.A. Lee

    2006-02-06

    This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

  17. ANL: Prototype Cell Fabrication Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL: Prototype Cell Fabrication Facility ANL: Prototype Cell Fabrication Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt075_es_jansen_2011_p.pdf More Documents & Publications FY 2011 Annual Progress Report for Energy Storage R&D FY 2012 Annual Progress Report for Energy Storage R&D CX-001384: Categorical Exclusion Determination

  18. Post-test Cell Characterization Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    test Cell Characterization Facility Post-test Cell Characterization Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es166_bloom_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at

  19. D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Facilities via Remote Sprayer Platforms | Department of Energy Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms D&D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms Many facilities slated for D&D across the DOE complex pose hazards (radiological, chemical, and structural) which prevent the use of traditional manual techniques. PDF icon D&D Toolbox

  20. NREL: Hydrogen and Fuel Cells Research - Research Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Photo of person at work in laboratory setting. NREL researcher evaluates catalyst activity at the Electrochemical Characterization Laboratory. Photo by Dennis Schroeder, NREL NREL conducts hydrogen and fuel cell R&D at a variety of research facilities at our main 327-acre campus in Golden, Colorado, as well as the National Wind Technology Center near Boulder, Colorado. Industry, government, and university partners benefit from access to our state-of-the-art facilities and

  1. Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss030_keller_2010_p.pdf More Documents & Publications AVTA: Quantifying the Effects of Idle Stop Systems on Fuel Economy Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and

  2. Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Green Canyon Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Green Canyon Hot...

  3. Green Canyon Hot Springs Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Green Canyon Hot Springs Greenhouse Low Temperature Geothermal Facility Facility Green Canyon Hot...

  4. Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  5. Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Facility...

  6. Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Granite Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  7. California Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name California Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility California Hot...

  8. Boulder Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot...

  9. Hot Sulphur Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur...

  10. Cottonwood Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  11. Arrowhead Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  12. Lolo Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot...

  13. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility Facility Waunita Hot...

  14. Breitenbush Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  15. Bozeman Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot...

  16. Del Rio Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  17. Miracle Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  18. Banbury Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot...

  19. Burgdorf Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot...

  20. Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs Soaking Pools Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs...

  1. Hot Springs State Park Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State...

  2. Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell

    Office of Environmental Management (EM)

    Depar tment of Energy | Office of Environmental Management For More Information on EM Recovery Act Work, Visit Us on the Web: http://www.em.doe.gov/emrecovery/ EM Recovery NEWS FLASH RECOVERY.GOV ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF November 9, 2011 Idaho Crews Overcome Challenges to Safely Dispose 1-Million-Pound Hot Cell IDAHO FALLS, Idaho - American Recovery and Reinvestment Act cleanup crews at the Idaho site recently

  3. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    SciTech Connect (OSTI)

    Michael Rodriquez

    2009-03-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the “Nuclear Renaissance”. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight precision. The gamma scanning equipment in the ALHC has taken on a new role also as a micro-gamma scanning system and has been put into service; allowing the linear and radial counting of a spent fuel segment to determine reaction characteristics within a small section of nuclear fuel. The nitrogen, oxygen and carbon analysis allows the identification of these impurities in spent nuclear fuel and also most oxides, nitrides, carbides, C-14 and tritium.

  4. Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell

    SciTech Connect (OSTI)

    Hirst, L. C.; Walters, R. J.; Führer, M. F.; Ekins-Daukes, N. J.

    2014-06-09

    An unambiguous observation of hot-carrier photocurrent from an InGaAs single quantum well solar cell is reported. Simultaneous photo-current and photoluminescence measurements were performed for incident power density 0.04–3?kW cm{sup ?2}, lattice temperature 10?K, and forward bias 1.2?V. An order of magnitude photocurrent increase was observed for non-equilibrium hot-carrier temperatures >35?K. This photocurrent activation temperature is consistent with that of equilibrium carriers in a lattice at elevated temperature. The observed hot-carrier photo-current is extracted from the well over an energy selective GaAs barrier, thus integrating two essential components of a hot-carrier solar cell: a hot-carrier absorber and an energy selective contact.

  5. Development of an ACP facility

    SciTech Connect (OSTI)

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  6. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Hohenberger, M. Stoeckl, C.; Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Lee, J. J.

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ?300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub ?}). The detectors impulse response function was measured in situ on NIF short-pulse (?90 ps) experiments, and in off-line tests.

  7. Steamboat Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Pool & Spa Low Temperature Geothermal Facility...

  8. Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bashfords Hot Mineral Spa Pool & Spa Low Temperature Geothermal Facility...

  9. Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Roman Spa Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  10. Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Donlay Ranch Hot Spring Greenhouse Low Temperature Geothermal Facility...

  11. River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name River Inn Natural Hot Spring Pool & Spa Low Temperature Geothermal Facility...

  12. Medical Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Medical Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility...

  13. Pinkerton Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility...

  14. Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Bald Mountain Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  15. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  16. Camperworld Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  17. Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Resort Pool & Spa Low Temperature Geothermal Facility...

  18. Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Baumgartner Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  19. Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Grover Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility...

  20. Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Pool & Spa Low Temperature Geothermal Facility...

  1. Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Crystal Crane Hot Springs Pool & Spa Low Temperature Geothermal Facility...

  2. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT

  3. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities - FacilitiesTara Camacho-Lopez2015-10-27T01:52:50+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  4. Hot-carrier solar cells using low-dimensional quantum structures

    SciTech Connect (OSTI)

    Watanabe, Daiki; Kasamatsu, Naofumi; Harada, Yukihiro; Kita, Takashi

    2014-10-27

    We propose a high-conversion-efficiency solar cell (SC) utilizing the hot carrier (HC) population in an intermediate-band (IB) of a quantum dot superlattice (QDSL) structure. The bandgap of the host semiconductor in this device plays an important role as an energy-selective barrier for HCs in the QDSLs. According to theoretical calculation using the detailed balance model with an air mass 1.5 spectrum, the optimum IB energy is determined by a trade-off relation between the number of HCs with energy exceeding the conduction-band edge and the number of photons absorbed by the valence band?IB transition. Utilizing experimental data of HC temperature in InAs/GaAs QDSLs, the maximum conversion efficiency under maximum concentration (45?900 suns) has been demonstrated to increase by 12.6% as compared with that for a single-junction GaAs SC.

  5. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  6. Full-scale hot cell test of an acoustic sensor dedicated to measurement of the internal gas pressure and composition of a LWR nuclear fuel rod

    SciTech Connect (OSTI)

    Ferrandis, J. Y.; Rosenkrantz, E.; Leveque, G.; Baron, D.; Segura, J. C.; Cecilia, G.; Provitina, O.

    2011-07-01

    A full-scale hot cell test of the internal gas pressure and composition measurement by an acoustic sensor was carried on successfully between 2008 and 2010 on irradiated fuel rods in the LECA-STAR facility at Cadarache Centre. The acoustic sensor has been specially designed in order to provide a nondestructive technique to easily carry out the measurement of the internal gas pressure and gas composition of a LWR nuclear fuel rod. This sensor has been achieved in 2007 and is now covered by an international patent. The first positive result, concerning the device behaviour, is that the sensor-operating characteristics have not been altered by a two-year exposure in the hot cell ambient. We performed the gas characterisation contained in irradiated fuel rods. The acoustic method accuracy is now {+-}5 bars on the pressure measurement result and {+-}0.3% on the evaluated gas composition. The results of the acoustic method were compared to puncture results. Another significant conclusion is that the efficiency of the acoustic method is not altered by the irradiation time, and possible modification of the cladding properties. These results make it possible to demonstrate the feasibility of the technique on irradiated fuel rods. The transducer and the associated methodology are now operational. (authors)

  7. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities - An example of a probablistic solar forecast produced with PRESCIENT. Permalink Gallery Sandia Develops Stochastic Production Cost Model Simulator for Electric Power Systems Analysis, Capabilities, Computational Modeling & Simulation, DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, Modeling, Modeling, Modeling & Analysis, Modeling & Analysis, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar

  8. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOE Patents [OSTI]

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  9. EA-1053: Decontaminating and Decommissioning the General Atomics Hot Cell Facility, San Diego, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for low-level radioactive and mixed wastes generated by decontaminating and decommissioning activities at the U.S. Department of Energy's...

  10. Final Report - Verification Survey of the Hot Cell Facility Site, General Atomics, San Diego, California.

    Office of Legacy Management (LM)

  11. General Atomics Hot Cell Facility Decontamination and Decommissioning Project Records Transfer.

    Office of Legacy Management (LM)

  12. Hazards Analysis for the General Atomics Hot Cell Facility, September 1995.

    Office of Legacy Management (LM)

  13. Development of remote crane system for use inside small argon hot-cell

    SciTech Connect (OSTI)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje

    2013-07-01

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  14. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  15. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This step-by-step manual guides readers through the process of implementing a fuel cell stationary power project. The guide outlines the basics of fuel cell technology and describes how fuel cell projects can meet on-site energy service needs as well as support strategic agency objectives and sustainability requirements. This guide will help

  16. Dow/Kokam Cell/Battery Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow/Kokam Cell/Battery Production Facilities Dow/Kokam Cell/Battery Production Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt006_pham_2010_p.pdf More Documents & Publications Dow Kokam Lithium Ion Battery

  17. White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility White...

  18. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  19. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont...

  20. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility...

  1. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  2. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  3. Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Ranch Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Blue Mountain Hot Spring Guest Ranch Pool & Spa Low Temperature Geothermal Facility Facility...

  4. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson...

  5. Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Jump to: navigation, search Name Camperworld Hot Springs SCUBA Dive Pool Pool & Spa Low Temperature Geothermal Facility Facility Camperworld...

  6. Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hotel Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Hotel Pool & Spa Low Temperature Geothermal Facility Facility Glenwood...

  7. Sleeping Child Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Sleeping Child Hot Springs Pool & Spa Low Temperature Geothermal Facility Facility Sleeping...

  8. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Methods | Department of Energy Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel Cell Manufacturing Methods July 26, 2013 - 12:00am Addthis Working with BASF of Florham Park, EERE-supported efforts led to a 75% reduction of the manufacturing cost of gas diffusion electrodes-a key component of fuel cells. To accomplish this cost reduction, BASF developed a higher throughput

  9. Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Alive Polarity's Murrietta Hot Spring Pool & Spa Low...

  10. Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Hunter Hot Spring Greenhouse Greenhouse Low Temperature Geothermal...

  11. Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Jacumba Hot Springs Health Spa Pool & Spa Low Temperature Geothermal...

  12. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low...

  13. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  14. Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Spa & RV Resort Pool & Spa Low Temperature...

  15. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Broader source: Energy.gov [DOE]

    Technical paper on the development of a hydrogen reformer, vehicle refueling facility, and PEM fuel cell for Las Vegas, NV presented at the 2002 Annual Hydrogen Review held May 6-8, 2002 in Golden, CO.

  16. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  17. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  18. Blundell 2 Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Name Blundell 2 Geothermal Facility Facility Blundell 2 Geothermal Facility Sector Geothermal energy Location Information Address Roosevelt Hot Springs Road Location...

  19. Cell Fabrication Facility Team Production and Research Activities

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.

  1. Assessment of the Idaho National Laboratory Hot Fuel Examination Facility Stack Monitoring Site for Compliance with ANSI/HPS N13.1 1999

    SciTech Connect (OSTI)

    Glissmeyer, John A.; Flaherty, Julia E.

    2010-08-27

    This document reports on a series of tests to determine whether the location of the air sampling probe in the Hot Fuels Examination Facility (HFEF) heating, ventilation and air conditioning (HVAC) exhaust duct meets the applicable regulatory criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria of the ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that is representative of the effluent stream. The tests conducted by PNNL during July 2010 on the HFEF system are described in this report. The sampling probe location is approximately 20 feet from the base of the stack. The stack base is in the second floor of the HFEF, and has a building ventilation stream (limited potential radioactive effluent) as well as a process stream (potential radioactive effluent, but HEPA-filtered) that feeds into it. The tests conducted on the duct indicate that the process stream is insufficiently mixed with the building ventilation stream. As a result, the air sampling probe location does not meet the criteria of the N13.1-1999 standard. The series of tests consists of various measurements taken over a grid of points in the duct cross section at the proposed sampling-probe location. The results of the test series on the HFEF exhaust duct as it relates to the criteria from ANSI/HPS N13.1-1999 are desribed in this report. Based on these tests, the location of the air sampling probe does not meet the requirements of the ANSI/HPS N13.1-1999 standard, and modifications must be made to either the HVAC system or the air sampling probe for compliance. The recommended approaches are discussed and vary from sampling probe modifications to modifying the junction of the two air exhaust streams.

  2. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    SciTech Connect (OSTI)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 {micro}Sv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 {micro}Sv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey.

  3. HotSpot | Department of Energy

    Office of Environmental Management (EM)

    HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot

  4. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  5. Fairmont Hot Springs Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Pool and Spa Location Anaconda, Montana Coordinates...

  6. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Technologies Program Oak Ridge National Laboratory 2 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  7. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  8. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments [OSTI]

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  9. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Floorplan

  10. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  11. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    SciTech Connect (OSTI)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  12. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  13. Extending facility life by combining embankments: permitting energy solutions class a combined disposal cell

    SciTech Connect (OSTI)

    McCandless, S.J.; Shrum, D.B.

    2007-07-01

    EnergySolutions' Class A low-level radioactive waste management operations are limited to a 540-acre section of land in Utah's west desert. In order to optimize the facility lifetime, EnergySolutions has launched an effort to improve the waste disposal utilization of this acreage. A chief component of this effort is the Class A Combined embankment. The Class A Combined embankment incorporates the footprint of both the currently licensed Class A cell and the Class A North cell, and also includes an increase in the overall embankment height. By combining the cells and raising the height of the embankment, disposal capacity is increased by 50% over the two-cell design. This equates to adding a second Class A cell, at approximately 3.8 million cubic yards capacity, without significantly increasing the footprint of disposal operations. In order to justify the design, EnergySolutions commissioned geotechnical and infiltration fate and transport evaluations, modeling, and reports. Cell liner and cover materials, specifications, waste types, and construction methods will not change. EnergySolutions estimates that the Class A Combined cell will add at least 10 years of capacity to the site, improving utilization of the permitted area without unacceptable environmental impacts. (authors)

  14. INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO

    SciTech Connect (OSTI)

    Erika N. Bailey

    2011-10-10

    In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities

  15. Hot Canyon

    ScienceCinema (OSTI)

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  16. Sycamore Hot Spring Resort Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Facility Sycamore Hot Spring Resort Sector Geothermal energy Type Pool and Spa Location San Luis Obispo County, California Coordinates 35.3102296, -120.4357631 Show Map...

  17. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect (OSTI)

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  18. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect (OSTI)

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  19. EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-08-01

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  20. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of

  2. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (OSTI)

    2010-03-02

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  3. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (OSTI)

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  4. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  5. Process Optimization for High Efficiency Heterojunction c-Si Solar Cells Fabrication Using Hot-Wire Chemical Vapor Deposition: Preprint

    SciTech Connect (OSTI)

    Ai, Y.; Yuan, H. C.; Page, M.; Nemeth, W.; Roybal, L.; Wang, Q.

    2012-06-01

    The researchers extensively studied the effects of annealing or thermal history of cell process on the minority carrier lifetimes of FZ n-type c-Si wafers with various i-layer thicknesses from 5 to 60 nm, substrate temperatures from 100 to 350 degrees C, doped layers both p- and n-types, and transparent conducting oxide (TCO).

  6. Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

  7. Vehicle Technologies Office Merit Review 2015: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cell Analysis,...

  8. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Plate Station The hot plate station is comprised of four Prazitherm precision hot plates manufactured for resist processing. Each hot plate is sized 350mm x 350mm. They are flat and level, with temperature uniformity of +/- 0.5Âş. The maximum operating temperature is limited to 200ÂşC in order to maintain temperature inside the cleanroom. A hood located over the hot plate station ensures evaporated fumes are not released into the cleanroom environment. Each hot plate is controlled through

  9. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    12 MGMT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ABSORPTION HEAT; CARBON; COMBUSTORS; GAS FLOW; HEATERS; HEATING; HOT SPOTS; IMPLEMENTATION; MERCURY;...

  10. Schutz's Hot Spring Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleSchutz%27sHotSpringSpaceHeatingLowTemperatureGeothermalFacility&oldid305547" ...

  11. Woody's Feather River Hot Springs Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleWoody%27sFeatherRiverHotSpringsPool%26SpaLowTemperatureGeothermalFacility&oldid3...

  12. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect (OSTI)

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  13. In-situ gamma-ray assay of the west cell line in the 235-F plutonium fuel form facility

    SciTech Connect (OSTI)

    Couture, A. H.; Diprete, D.

    2014-09-01

    On August 29th, 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 6-9 on the west line of the PuFF facility using an uncollimated, highpurity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the West Cell Line of PuFF. The results of the assay measurements are found in the table below along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are given as 1?. The total holdup in the West Cell Line was 2.4 ± 0.7 grams. This result is 0.6 g higher than the previous estimate, a 0.4? difference.

  14. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    SciTech Connect (OSTI)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  15. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Facilities Current Schedule of Experiments Operation Schedule Janus Titan Europa COMET Facility Floorplan

  16. In-situ gamma-ray assay of the east cell line in the 235-F Plutonium fuel form facility

    SciTech Connect (OSTI)

    Diprete, D.

    2015-08-21

    On September 17th -19th , 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 1-5 on the east line of the PuFF facility using a well-collimated, high-purity germanium detector. The cell interiors were assayed along with the furnaces and storage coolers that protrude beneath the cells. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the East Cell Line of PuFF. The results of the assay measurements are found in the table on the following page along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are reported at 1?. Summing the assay results and treating MDAs as M238Pu= 0 ± MDA, the total holdup in the East Cell Line was 240 ± 40 grams. This result is 100 grams lower than the previous estimate, a 0.55? difference. The uncertainty in the Pu-238 holdup is also reduced substantially relative to the 2006 scoping assay. However, the current assay results are in agreement with the 2006 scoping assay results due to the large uncertainty associated with the 2006 scoping assays. The current assay results support the conclusion that the 2006 results bound the Pu-238 mass in Cells 1-5. These results should be considered preliminary since additional measurements of the East Cell line are scheduled for 2017 and 2018. Those measurements will provide detailed information about the distribution of Pu-238 in the cells to be used to refine the results of the current assay.

  17. Final Environmental Assessment for Decontaminating and Decommissioning the General Atomics Hot Cell Facility and Finding of No Significant Impact (FONSI) August 1995.

    Office of Legacy Management (LM)

  18. ParaView Red Blood Cell Tutorial | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ParaView Red Blood Cell Tutorial Goals This tutorial is intended to be a hands-on resource for users interested in learning the basic concepts of ParaView. The examples can easily be run on a laptop, using the example data set provided. Tour of ParaView Show range of visualization methods Walk through various visualization techniques, hopefully illustrate how these can apply to your own data. Feel for ParaView "way" Terminology and step-by-step process peculiar to ParaView, which may

  19. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    SciTech Connect (OSTI)

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

  20. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  1. Calculation Package for the Analysis of Performance of Cells 1-6, with Underdrain, of the Environmental Management Waste Management Facility Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Gonzales D.

    2010-03-30

    This calculation package presents the results of an assessment of the performance of the 6 cell design of the Environmental Management Waste Management Facility (EMWMF). The calculations show that the new cell 6 design at the EMWMF meets the current WAC requirement. QA/QC steps were taken to verify the input/output data for the risk model and data transfer from modeling output files to tables and calculation.

  2. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect (OSTI)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.

  3. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  4. Working with SRNL - Our Facilities - Glassblowing and Apparatus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Shielded Cells * High Pressure Laboratory * Primary Standards Laboratory * Gamma Irradiation Facility * Waste Treatment Laboratories * Rapid Fabrication Facility * Ultra...

  5. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  6. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  7. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    NA

    2006-03-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos.

  8. Confirmation Run of the DWPF SRAT Cycle Using the Sludge-Only Flowsheet with Tank 40 Radioactive Sludge and Frit 200 in the Shielded Cells Facility

    SciTech Connect (OSTI)

    Fellinger, T.L.

    2002-08-29

    Several basic data reports have been issued concerning the recent demonstration of the Defense Waste Processing Facility (DWPF) Sludge Receipt and Adjustment Tank (SRAT) Cycle and Slurry Mix Evaporator (SME) Cycle, conducted at the Savannah River Technology Center (SRTC). The SRTC demonstration was completed using the DWPF ''Sludge-Only'' flowsheet with washed Tank 40 sludge slurry (Sludge Batch 2 or Macrobatch 3) in the Shielded Cells facility. The DWPF ''Sludge-Only'' flowsheet calls for processing radioactive sludge slurry using nitric acid, concentrated formic acid, and frit 200.

  9. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  10. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  11. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  12. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  13. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  14. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility...

  15. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  16. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  17. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities /collaboration/_assets/images/icon-collaboration.jpg User Facilities A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities.

  18. Membranes and MEAs for Dry Hot Operating Conditions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dry Hot Operating Conditions Membranes and MEAs for Dry Hot Operating Conditions Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 1_3m.pdf More Documents & Publications Membranes and MEAs for Dry, Hot Operating Conditions Advance Patent Waiver W(A)2008-019 High Temperature Membrane Working Group

  19. Pilgrim Hot Springs, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilgrim Hot Springs, Alaska PI-Gwen Holdmann Co-PI Anupma Prakash Co-PI Jo Mongrain University of Alaska Fairbanks Validation of Innovative Geothermal Technologies May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov * Timeline - Project Length (4/1/10-12/1/12) * Preliminary planning complete * Project Funding - Total Project Funding-$6,365,222* - DOE

  20. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  1. Particulate hot gas stream cleanup technical issues

    SciTech Connect (OSTI)

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  2. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect (OSTI)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  5. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  6. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities /science-innovation/_assets/images/icon-science.jpg Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center»

  7. Hot Summer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Summer July 27, 2010 One might think that we should be into the lazy, hazy days of summer. In contrast, since the beginning of June we have experienced a heat wave, and I am not referring to the "typical" Virginia summer with 100 degrees Fahrenheit registering on the thermometer. On June 1, we made our strategic plan presentation to the Office of Science. June 3, we made our mid-year performance presentation to the local Thomas Jefferson Site Office. June 6-9, the users held their

  8. HBLED Hot Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HBLED Hot Testing 2014 Building Technologies Office Peer Review Dr. Richard Solarz, richard.solarz@kla-tencor.com KLA-Tencor Project Summary Timeline: Start date: 9/20/12 Planned end date: Early 2015 (3 or 4 month ext. request planned) Key Milestones: 1. Initial maps of CIE variation vs phosphor and film temperature variations 7/18/2013 actual 9/19/2013 2. LED partner crosscheck 2/24/2014 actual 1/13/2013 3. Conceptual Design for high throughput tool 7/28/2014 Budget: $3,994,729 DOE, $4,626,422

  9. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  10. Report of Survey of Oak Ridge Building 3597 Hot Storage Garden | Department

    Office of Environmental Management (EM)

    of Energy Oak Ridge Building 3597 Hot Storage Garden Report of Survey of Oak Ridge Building 3597 Hot Storage Garden The purpose of this document is to report the results of a survey conducted at the Hot Storage Garden facility (identified as "Building" 3597) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of 11/15/99. The primary purpose of the survey is to identify facility conditions and to define the characterization, stabilization, and

  11. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  12. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot...

  13. Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    of hot water, heated by geothermal processes in the subsurface, and typically having a temperature greater than 37C. Other definitions:Wikipedia Reegle Modern Geothermal...

  14. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions

    SciTech Connect (OSTI)

    Mäckel, V. Meissl, W.; Ikeda, T.; Meissl, E.; Kobayashi, T.; Kojima, T. M.; Ogiwara, K.; Yamazaki, Y.; Clever, M.; Imamoto, N.

    2014-01-15

    We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He{sup 2+}. In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1–2 ?m, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a ?m{sup 3} resolution, while monitoring the target in real time during and after irradiation.

  15. Lope Hot Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    ,"icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Temperature 56.0 C 132.0 F Flow 20 gpm 76 Lmin Capacity 0.10x106 Btuhr 0.030 MWt Annual Generation...

  16. Manley Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    ":"","inlineLabel":"","visitedicon":"" Hide Map Temperature 59.0 C 138.0 F Flow No Data Listed Contact 907-672-3171 References Oregon Institute of Technology's Geo-Heat...

  17. Circle Hot Springs Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    ":"","inlineLabel":"","visitedicon":"" Hide Map Temperature 59.0 C 138.0 F Flow No Data Listed Contact 907-520-5113 References Oregon Institute of Technology's Geo-Heat...

  18. Chena Hot Springs Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    (afday) Cooling Tower Water use (summer average) (afday) Cooling Tower Water use (winter average) (afday) Types of Water References 1 Map: Name This article is a...

  19. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  20. Hot hollow cathode gun assembly

    DOE Patents [OSTI]

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  2. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  3. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  4. Power Systems Development Facility

    SciTech Connect (OSTI)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  6. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired...

  7. Hot startup experience with electrometallurgical treatment of spent nuclear fuel

    SciTech Connect (OSTI)

    Benedict, R.W.; Lineberry, M.J.; McFarlane, H.F.; Rigg, R.H.

    1997-10-01

    The treatment of spent metal fuel from the EBR-II fast reactor commenced in June of 1996 at the Fuel Conditioning Facility on the Argonne-West site in Idaho, USA. During the first year of hot operations, 20 fuel assemblies entered processing and 6 low enrichment uranium product ingots were produced. Results are presented for the various process steps with decontamination factors achieved and equipment operational history reported.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  11. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    SciTech Connect (OSTI)

    Longyear, A.B.

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  12. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  13. The decay of hot nuclei

    SciTech Connect (OSTI)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  14. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility...

  15. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  16. Membranes and MEAs for Dry, Hot Operating Conditions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dry, Hot Operating Conditions Membranes and MEAs for Dry, Hot Operating Conditions This presentation by Steve Hamrock of 3M was given at a meeting on new fuel cell projects in February 2007. PDF icon new_fc_hamrock_3m.pdf More Documents & Publications High Temperature Membrane Working Group Analysis of the Durability of PEM FC Membrane Electrode Assemblies in Automotive Applications Membranes and MEAs for Dry Hot Operating Conditions

  17. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    SciTech Connect (OSTI)

    1997-05-06

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D&D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D&D activities beginning in 1997.

  18. Hot Pot Detail - Evidence of Quaternary Faulting

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-27

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  19. Hot Pot Detail - Evidence of Quaternary Faulting

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Compilation of published data, field observations and photo interpretation relevant to Quaternary faulting at Hot Pot.

  20. Assessment of Energy Use in Multibuilding Facilities

    U.S. Energy Information Administration (EIA) Indexed Site

    with buildings assigned to replication units based on the sample stratification cells. It is conceivable that buildings associated with the same facility could be...

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  3. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  4. Promethus Hot Leg Piping Concept

    SciTech Connect (OSTI)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  5. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Intermediate Facility For over 20 years, 3 intermediate facilities, within 6.2 miles (10 km) of the Central Facility, provided a

  6. ARM - Guest Instrument Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsGuest Instrument Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts Guest Instrument Facility ARM's Guest Instrument Facility at the SGP site near Lamont, Oklahoma. ARM's Guest Instrument Facility at

  7. Hot Gas Halos in Galaxies

    SciTech Connect (OSTI)

    Mulchaey, John S. [Carnegie Observatories (United States); Jeltema, Tesla E. [UCO/Lick Observatories (United States)

    2010-06-08

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  8. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  9. Stratification in hot water tanks

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1982-04-01

    Stratification in a domestic hot water tank, used to increase system performance by enabling the solar collectors to operate under marginal conditions, is discussed. Data taken in a 120 gallon tank indicate that stratification can be achieved without any special baffling in the tank. (MJF)

  10. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  11. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect (OSTI)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  12. Working with SRNL - Our Facilities - Main Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Home SRNL main campus Working with SRNL Our Facilities - Main Campus SRNL personnel put science to work in a variety of unique and traditional spaces. These include both clean and radiological laboratory facilities, as well as facilities for testing and prototype development. SRNL's Main Laboratory is a Hazard Category II Nuclear Facility, equipped to safely manage appreciable quantities of radioactive materials in containment hood, glovebox, and shielded cell processing applications. *

  13. SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather

  14. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Extended Facility For over 20 years, 23 extended facilities were distributed evenly throughout a 55,000-square-mile domain and at the corners of

  15. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect (OSTI)

    Dan Davis

    2006-09-30

    Phase I of the Hyperbaric Advanced Hot Section Materials & Coating Test Rig Program has been successfully completed. Florida Turbine Technologies has designed and planned the implementation of a laboratory rig capable of simulating the hot gas path conditions of coal gas fired industrial gas turbine engines. Potential uses of this rig include investigations into environmental attack of turbine materials and coatings exposed to syngas, erosion, and thermal-mechanical fatigue. The principle activities during Phase 1 of this project included providing several conceptual designs for the test section, evaluating various syngas-fueled rig combustor concepts, comparing the various test section concepts and then selecting a configuration for detail design. Conceptual definition and requirements of auxiliary systems and facilities were also prepared. Implementation planning also progressed, with schedules prepared and future project milestones defined. The results of these tasks continue to show rig feasibility, both technically and economically.

  16. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities About Us Projects & Facilities Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Projects & Facilities 100 Area 118-K-1 Burial Ground 200...

  17. Roosevelt Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Roosevelt Hot Springs Geothermal...

  18. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1...

  19. Neal Hot Springs Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot...

  20. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area (Redirected from Pilgrim Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area...

  1. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Crane Hot Springs Geothermal Area (Redirected from Crane Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Crane Hot Springs Geothermal Area Contents 1...

  2. Facility Representatives

    Office of Environmental Management (EM)

    DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by

  3. Facility Representatives

    Office of Environmental Management (EM)

    063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is

  4. Commonwealth Solar Hot Water Commercial Program

    Broader source: Energy.gov [DOE]

    Beginning in August 2011, the Massachusetts Clean Energy Center (MassCEC) will provide grants* for feasibility studies of commercial solar hot water systems through the Commonwealth Solar Hot Wat...

  5. Commonwealth Solar Hot Water Residential Program

    Broader source: Energy.gov [DOE]

    Since February 2011, the Massachusetts Clean Energy Center (MassCEC) has provided rebates for the installation of residential solar hot water systems through the Commonwealth Solar Hot Water Prog...

  6. Colorado's Hot Springs | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Colorado's Hot Springs Author D. Frazier Published Pruett Publishing Company, 2000 DOI Not...

  7. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  8. NETL's Hybrid Performance, or Hyper, facility

    SciTech Connect (OSTI)

    2013-06-12

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  9. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  10. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  11. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial,...

  12. Solar Works in Seattle: Domestic Hot Water

    Broader source: Energy.gov [DOE]

    Seattle's residential solar hot water workshop. Content also covers general solar resource assessment, siting, and financial incentives.

  13. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  14. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  15. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect (OSTI)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  16. Hot gas engine heater head

    DOE Patents [OSTI]

    Berntell, John O. (Staffanstorp, SE)

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  18. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    SciTech Connect (OSTI)

    Williams M.J.

    2009-09-14

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

  19. Hot

    Office of Scientific and Technical Information (OSTI)

    ... al. (2005) measured ex- perimentally, a minimal conductivity at vanishing carrier ... The constant conductivity 2 e 2 h (3.41) is the minimal conductivity Lewkowicz ...

  20. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect (OSTI)

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  1. Toda Cathode Materials Production Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cathode Materials Production Facility Toda Cathode Materials Production Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt017_es_han_2013_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities

  2. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  3. Not Too Hot, Not Too Cold - Continuum Magazine | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip to main content In This Issue In This Issue Dan Says From Our Director Features Not Too Hot, Not Too Cold Can "Drop-In" Biofuels Solve Integration Issues? Stories Fuel Cell Electric Vehicles: Paving the Way to Commercial Success At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive Electric Vehicle Battery Development Gains Momentum The Key to Greener Fleets Putting On the Brakes to Protect America's Natural Treasures A Closer Look Slideshow: Sustainable Transportation

  4. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  5. dist_hot_water.pdf

    Gasoline and Diesel Fuel Update (EIA)

    District Hot Water Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for

  6. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

  7. Hot Links to Cool Spots - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Department Hot Links to Cool Spots Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool Spots Contact Hanford Fire Department Hot Links to Cool Spots Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Federal Agencies Bureau of Land Management - Oregon/Washington National Highway Traffic Safety Administration U.S. Fire Administration Federal Emergency Management Agency U.S.

  8. Knox County Detention Facility Goes Solar for Heating Water

    Broader source: Energy.gov [DOE]

    Hot water demand soars at the six-building Knox County Detention Facility in Tennessee. It's open 24/7 with 1,036 inmate beds and 4,500 meals served daily—and don't forget the laundry.

  9. Paleomagnetic Measurements At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    of the Roosevelt Hot Springs Geothermal Area. Notes Paleomagnetic dating performed by Brown (1977) on opal samples in order to date the age of the hydrothermal system. The...

  10. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  11. Geothermal resistivity resource evaluation survey Waunita Hot...

    Open Energy Info (EERE)

    resistivity resource evaluation survey Waunita Hot Springs project, Gunnison County, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 16, 2005 Facility News Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Safe and sound...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2010 Facility News ARM Mobile Facility Blogs from Steamboat Springs Bookmark and Share This month, team members for the second ARM Mobile Facility (AMF2) are in Steamboat...

  14. REPORT OF SURVEY OF OAK RIDGE BUILDING 3597 HOT STORAGE GARDEN

    Office of Environmental Management (EM)

    OF SURVEY OF OAK RIDGE BUILDING 3597 HOT STORAGE GARDEN U.S. Department of Energy Office of Environmental Management & Office of Science Report of Survey of Oak Ridge Building 3597 Hot Storage Garden FINAL May 8, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Transfer Considerations 2.2 EM Path Forward & Management Risk 3. Survey Results 4. Stabilization and

  15. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  16. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  17. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  18. ARM - NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  19. NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  20. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility use by total visitor days and facility to track actual visitors and active user research computer accounts. Historical data show an apparent relationship between the...

  2. Central Receiver Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Test Facility - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2009 Facility News ARM Aerial Facility Leads International Discussions on Aircraft Research Bookmark and Share Five research aircraft participated in the VAMOS...

  6. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and systems, ensuring integration with the U.S. electric grid. Learn more Integrated Biorefinery Research Facility (IBRF) Integrated Biorefinery Research Facility (IBRF) Work with...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to our new ARM News Center. The RSS feed will alert readers to the latest ARM science and ARM Climate Research Facility news, events, feature stories, facility updates,...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the SGP site, and will begin in March for the ARM Mobile Facility deployment in Point Reyes, California. Launches for the ARM Climate Research Facility Tropical Western Pacific...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The ARM Mobile Facility's (AMF's) inaugural field...

  11. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas Bookmark and Share In late April, the ARM Technical Director attended an annual...

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 2007 Facility News Interferometers Compared for ARM Mobile Facility Deployment in China Bookmark and Share During the 2-week instrument comparison, the AERI planned for Linze...

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announcements, Facility News Data Available from ARM Mobile Facility Deployment in China Bookmark and Share The Study of Aerosol Indirect Effects in China was anchored by the...

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2008 Facility News Mobile Facility Anchors Multi-site Aerosol Study in China Bookmark and Share The AMF installation in Shouxian includes the primary shelters and operations...

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2005 Facility News Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides...

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in...

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa Island in the...

  18. Carbon Fiber Technology Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm003_warren_2011_o .pdf More Documents & Publications Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Lower Cost Carbon Fiber Precursors

  19. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  20. Ceramic hot-gas filter

    DOE Patents [OSTI]

    Connolly, Elizabeth Sokolinski (Wilmington, DE); Forsythe, George Daniel (Landenberg, PA); Domanski, Daniel Matthew (New Castle, DE); Chambers, Jeffrey Allen (Hockessin, DE); Rajendran, Govindasamy Paramasivam (Boothwyn, PA)

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  1. Process and equipment development for hot isostatic pressing treatability study

    SciTech Connect (OSTI)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  2. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  3. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer calibrations traceable

  4. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  5. Idaho Waste Retrieval Facility Begins New Role

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – A waste retrieval facility constructed over a former buried radioactive waste disposal cell, known as Pit 9, at the Idaho site has been repurposed for treating 6,000 drums of...

  6. Remote Sealing of Canisters for Hot Isostatic Pressing

    SciTech Connect (OSTI)

    Wahlquist, Dennis; Bateman, Ken; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance, LLC, has successfully tested a remote welding process to seal radioactive waste containers prior to hot isostatic pressing (HIP). Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP during trials within Idaho National Laboratory (INL) hot cells. For HIP treatment at INL, waste was loaded into a stainless-steel or aluminum canister, which was evacuated, seal welded, and placed in a HIP furnace. HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its stability, thus lowering the cost and risk associated with disposal. Weld integrity must be ensured in order to prevent the spread of contamination during HIP. This paper presents a process for sealing HIP canisters remotely using modified, commercially available equipment. This process includes evacuation, heating, welding, and weld inspection. The process and equipment have proven to reliably seal canisters in continued HIP trials.

  7. HotSpot Software Configuration Management Plan

    SciTech Connect (OSTI)

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  8. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  9. Power Systems Development Facility Gasification Test Campaign TC25

    SciTech Connect (OSTI)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  10. Power Systems Development Facility Gasification Test Campaign TC24

    SciTech Connect (OSTI)

    Southern Company Services

    2008-03-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

  11. NREL: Energy Systems Integration Facility - Facility Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the country provided feedback on the proposed design and functionality. The resulting capabilities, both human and equipment, provide high-value assets that might otherwise be cost-prohibitive for private-sector organizations to build, maintain, and operate on their own. Planning for the research facility and its innovative

  12. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2016 [Facility News] Opportunity for Cloud Properties Retrieval Algorithm Development: Request for Interest Opened Bookmark and Share The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud radars. The ARM Facility is seeking a scientific consultant to develop an operational cloud property algorithm, using data from ARM facilities and instruments like these scanning cloud

  14. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    SciTech Connect (OSTI)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.

  15. NREL: Research Facilities - Test and User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test

  16. FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview

    Office of Environmental Management (EM)

    will become candidate for transfer to DOE-EM for deactivation and decommissioning. ... used for transferring facilities from a transition status to a deactivation status. ...

  17. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chamber In-Air Station Software Support Support During experiments at the Radiation Effects Facility users are assisted by the experienced on-site support staff. Our...

  18. Working with SRNL - Our Facilities - F/H Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or shielded cells for analysis in other facility locations. Core Capabilities: Chromatography - IC, GC (TCDFID) Classical Wet Chemistry Electrochemistry - Coulometry Radio...

  19. Section E Nuclear Facility D&D, Remainder of Hanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    months Completed annual surveillance of Redox facilities. Completed replacement of PUREX uninterruptible power supply (UPS) battery cell. EMS Objectives and Target Status...

  20. Hot Leg Piping Materials Issues

    SciTech Connect (OSTI)

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  1. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    SciTech Connect (OSTI)

    Patil, S.B.; Srivastava, P.; Mishra, S.K.; Khan, S.S.; Nair, K.N.S.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of its longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)

  2. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  3. Calibration Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards

  4. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Giesbrecht, Alan

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  5. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  6. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Arrow Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Arrow Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  7. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Licks Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Licks Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  8. Broadwater Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Broadwater Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Broadwater Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  9. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  10. Sitka Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sitka Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sitka Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  11. Ishtalitna Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Ishtalitna Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ishtalitna Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  12. Bradfield Canal Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bradfield Canal Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bradfield Canal Hot Spring Geothermal Area Contents 1 Area Overview 2...

  13. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  14. Dann Ranch Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dann Ranch Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dann Ranch Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  15. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Upper Division Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Upper Division Hot Spring Geothermal Area Contents 1 Area Overview 2 History...

  16. Fisher Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fisher Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fisher Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  17. Macfarlane's Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Macfarlane's Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Macfarlane's Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  18. Geology and Geothermal Potential of the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    Field Mapping At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Geothermometry At...

  19. GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY,...

    Open Energy Info (EERE)

    GEOTHERMAL CASE STUDY: WAUNITA HOT SPRINGS, GUNNISON COUNTY, COLORADO Travis Brown and Kamran Bakhsh, Colorado School of Mines I. Details 1. Area Overview Waunita Hot Springs is...

  20. Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Crump's Hot...

  1. Kelly Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Kelly Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Kelly Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  2. DOE ZERH Webinar: Efficient Hot Water Distribution I -- What...

    Energy Savers [EERE]

    DOE ZERH Webinar: Efficient Hot Water Distribution I -- What's At Stake (Text Version) Below is the text version of the webinar, Efficient Hot Water Distribution I -- What's At ...

  3. Quenching and Partitioning Process Development to Replace Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Quenching and Partitioning Process Development to Replace Hot Stamping of ...

  4. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Port Moller Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Port Moller Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  5. Crump's Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Survey GTP ARRA Spreadsheet Ground Magnetics At Crump's Hot Springs Area (DOE GTP) Ground Magnetics GTP ARRA Spreadsheet Reflection Survey At Crump's Hot Springs Area (DOE...

  6. Raman spectroscopy in hot compressed hydrogen and nitrogen -...

    Office of Scientific and Technical Information (OSTI)

    Raman spectroscopy in hot compressed hydrogen and nitrogen - implications for the intramolecular potential Citation Details In-Document Search Title: Raman spectroscopy in hot...

  7. Silver Star Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Silver Star Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Silver Star Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  8. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  9. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  10. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  11. Pilgrim Hot Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pilgrim Hot Springs Geothermal Project Project Location...

  12. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  13. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  14. Reflection Survey At Neal Hot Springs Geothermal Area (Colwell...

    Open Energy Info (EERE)

    At Neal Hot Springs Geothermal Area (Colwell, Et Al., 2012) Exploration Activity Details Location Neal Hot Springs Geothermal Area Exploration Technique Reflection Survey Activity...

  15. Petrography Analysis At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Roosevelt Hot...

  16. Energy Design Guidelines for High Performance Schools: Hot and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Guidelines for High Performance Schools: Hot and Humid Climates Energy Design Guidelines for High Performance Schools: Hot and Humid Climates School districts around the...

  17. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and...

  18. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Brady Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  19. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Brady Hot Springs Area (Combs 2006)...

  20. Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Wesnousky, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Brady Hot Springs Area...

  1. Micro-Earthquake At Brady Hot Springs Geothermal Area (2011)...

    Open Energy Info (EERE)

    At Brady Hot Springs Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Brady Hot Springs Geothermal Area...

  2. Direct-Current Resistivity Survey At Brady Hot Springs Area ...

    Open Energy Info (EERE)

    Brady Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Brady Hot Springs Area...

  3. Geophysical Characterization of a Geothermal System Neal Hot...

    Open Energy Info (EERE)

    (Colwell, Et Al., 2012) Micro-Earthquake At Neal Hot Springs Geothermal Area (Nichols & Cole, 2010) Paleomagnetic Measurements At Neal Hot Springs Geothermal Area (London, 2011)...

  4. Ch. IV, A hydrogeochemical comparison of the Waunita Hot Springs...

    Open Energy Info (EERE)

    A hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock and Anderson Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  5. Controlled Source Audio MT At Roosevelt Hot Springs Area (Combs...

    Open Energy Info (EERE)

    Audio MT At Roosevelt Hot Springs Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Audio MT At Roosevelt Hot...

  6. Sleeping Child Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sleeping Child Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sleeping Child Hot Springs Geothermal Area Contents 1 Area Overview 2...

  7. Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot

    Office of Science (SC) Website

    Plasma | U.S. DOE Office of Science (SC) Using Nuclear Fusion Reactions to Peer Inside the Core of a Dense Hot Plasma Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email

  8. CRAD, Facility Safety- Nuclear Facility Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Design.

  9. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  10. Task 6.5 - Gas Separation and Hot-Gas Cleanup (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Task 6.5 - Gas Separation and Hot-Gas Cleanup Citation Details In-Document Search Title: Task 6.5 - Gas Separation and Hot-Gas Cleanup Catalytic gasification of coal to produce H{sub 2}- and CH{sub 4}-rich gases for consumption in molten carbonate fuel cells is currently under development; however, to optimize the fuel cell performance and extend its operating life, it is desired to separate as much of the inerts (i.e., CO{sub 2} and N{sub 2}) and impurities (i.e., H{sub 2}S and

  11. Optimum hot water temperature for absorption solar cooling

    SciTech Connect (OSTI)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  12. Canyon Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Canyon Facilities About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental

  13. ORPS Facility Registration Form

    Energy Savers [EERE]

    ORPS FACILITY REGISTRATION FORM Submit completed form to: U.S. Department of Energy AU User Support EMAIL: ORPSsupport@hq.doe.gov PHONE: 800-473-4375 FAX: 301-903-9823 Note: ď‚· Only one facility per form ď‚· Type or print all entries 1. TYPE OF CHANGE ď‚  Add a Facility (Complete Section 1.A, then go to Section 2) ď‚  Change a Facility (Complete Section 1.B, then go to Section) ď‚  Delete a Facility (Complete Section 1.C, then go to Section 2) A. Add a New Facility Use this section if you are

  14. Lithium-Ion Battery Recycling Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Lithium-Ion Battery Recycling Facilities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt020_es_coy_2012_p.pdf More Documents & Publications Lithium-Ion Battery Recycling Facilities Recycling Hybrid and Elecectric Vehicle Batteries EA-1722: Final Environmental Assessment

  15. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt017_es_han_2012_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Cathode Materials Production Facility Toda Material/Component Production Facilities

  16. Toda Material/Component Production Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt017_es_han_2011_p.pdf More Documents & Publications Toda Material/Component Production Facilities Toda Material/Component Production Facilities Toda Cathode Materials Production Facility

  17. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2013-09-12

    During this funding period, we made a significant breakthrough and established for the first time that hot electron transfer from photoexcited NCs to an electron acceptor was indeed possible.

  18. Light Duty Utility Arm System hot test

    SciTech Connect (OSTI)

    Howden, G.F.; Conrad, R.B.; Kiebel, G.R.

    1996-02-01

    This Engineering Task Plan describes the scope of work and cost for implementing a hot test of the Light Duty Utility Arm System in Tank T-106 in September 1996.

  19. Hydrothermal Exploration at Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Office, Department of Energy, explored hydrothermal potential at Pilgrim Hot Springs, Alaska and discovered a resource siginificant enough for a spectrum of geothermal energy developments, including on-site power generation.

  20. Quantification of ceramic preconverter hot vibration durability

    SciTech Connect (OSTI)

    Locker, R.J.; Sawyer, C.B.; Schad, M.J.

    1996-09-01

    The hot vibration durability of ceramic preconverters was examined in this study. Two preconverter designs were investigated. A Generation 1 design, utilizing 4,070 g/m{sup 2} intumescent mat, was examined at 900 C/75g. A Generation 2 design, possessing 6,200 g/m{sup 2} intumescent mat and insulated end cones, was evaluated at 1,050 C/75g. Three consecutive Generation 1 samples passed 900 C/75g exposures of 100 hours. Three Generation 2 preconverters tested at 1,050 C/75g similarly passed 100 hour exposures. The residual shear strength of each preconverter tested in hot vibration was measured to quantify durability. Hot push shear evaluations were performed to obtain the residual shear strength. Following 900 C/75g hot vibration exposures, the Generation 1 samples possessed an average residual shear strength of 450 kPa. Generation 2 samples, tested at 1,050 C/75g retained an average mat shear strength of 61 kPa. A minimum calculated shear strength of 15 kPa is required. An alternative thermal aging technique was applied to new sets of Generation 1 and 2 specimens. These samples did not experience mechanical vibration. Results of hot push shear measurements on these components indicated that the residual shear strengths were similar to those obtained for specimens exposed to hot vibration. These results indicated that the thermal conditions were the primary cause of Mat deterioration in hot vibration. The supplemental test methods investigated in this study represent an economical and quantitative alternative to hot vibration testing.

  1. Hot Plasma Partial to Bootstrap Current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot Plasma Partial to Bootstrap Current Hot Plasma Partial to Bootstrap Current New calculations shed light on self-generated current, which could help reduce fusion reactor costs July 9, 2014 Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Supercomputers at NERSC are helping plasma physicists "bootstrap" a potentially more affordable and sustainable fusion reaction. If successful, fusion reactors could provide almost limitless clean energy. In a fusion reaction, energy is released

  2. On the origin of super-hot electrons from intense laser interactions with solid targets having moderate scale length preformed plasmas

    SciTech Connect (OSTI)

    Krygier, A. G.; Schumacher, D. W.; Freeman, R. R.

    2014-02-15

    We use particle-in-cell modeling to identify the acceleration mechanism responsible for the observed generation of super-hot electrons in ultra-intense laser-plasma interactions with solid targets with pre-formed plasma. We identify several features of direct laser acceleration that drive the generation of super-hot electrons. We find that, in this regime, electrons that become super-hot are primarily injected by a looping mechanism that we call loop-injected direct acceleration.

  3. EA-1295: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Proposed Decontamination and Decommissioning of Building 301 Hot Cell Facility at Argonne National Laboratory

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2008 Facility News ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility...

  6. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 11, 2007 Facility News ARM Mobile Facility Moves to China in 2008 for Study of Aerosol Impacts on Climate Bookmark and Share Onshore winds and a mountain range to the...

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farewell to Dan Nelson, SGP Facilities Manager Bookmark and Share Dan Nelson Dan Nelson Dan Nelson, long-time facilities manager at the ARM Southern Great Plains site, is heading...

  9. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  10. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect (OSTI)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  11. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision ...

  12. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities State-Of-The-Art Supporting all elements of IMS projects Facilities Labs and Test Sites Integrated Military Systems maintains a number of state-of-the-art testing and fabrication facilities. Supporting all elements of IMS projects including design, prototyping, fabrication, development, testing, and assessments, these facilities enable customers to quickly realize their projects and get the information they need in a fast and effective way. Use the "left" and

  13. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16,

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2014 [Facility News] ARM Facility Embarks on Expansion in the United States Bookmark and Share A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. A reconfiguration plan is being set in motion for the ARM Facility that will result in even better observations of atmospheric processes at the SGP site. Through 20 years of measurements at its observations sites around the world, the ARM

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 24, 2009 [Facility News] Mobile Facility Deployments Featured in ClimateWire Bookmark and Share Several ARM science team members are quoted in an article published in ClimateWire, an online publication devoted to climate change issues and their effects on business, the environment, and society. The article highlights deployments of the ARM Mobile Facility and its contribution to the overall climate record obtained through the ARM Climate Research Facility. ClimateWire is one of several

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 21, 2015 [Facility News] First Ever ARM / ASR Joint User Facility PI Meeting Bookmark and Share Over 300 ARM Facility users and ASR scientists participated in the first ever ARM / ASR joint meeting, beginning with opening plenary March 17. Over 300 ARM Facility users and ASR scientists participated in the first ever ARM / ASR joint meeting, beginning with opening plenary March 17. A recent joint meeting of the users and staff from the Atmospheric Radiation Measurement (ARM) Climate

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2015 [Facility News] New Science Board Members Tackle ARM's Expanding Landscape Bookmark and Share With facilities around the world hosting field campaigns on a regular basis, the ARM Climate Research Facility continues to be an important resource to the scientific community. Thanks to the vigilance of the ARM Science Board, the ARM Facility is able to support quality science with over 70 campaigns a year. Comprised of highly-respected scientists from the external climate research community,

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 13, 2008 [Facility News] Facility Update Highlights Progress Bookmark and Share As the ARM Climate Research Facility has grown, so has its bimonthly report. With key accomplishments and activities encompassing the entire ARM infrastructure, the "Operations Update" report has been renamed "Facility Update." Along with this change, the report's web page has a new, more streamlined look that provides more information at a glance. Stay tuned for a more detailed

  1. Expertise & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise & Facilities Expertise & Facilities Our full spectrum of end-to-end integrated capabilities in explosives make Los Alamos the ideal place to develop, characterize, and test all types of explosives and explosives threat scenarios. v Award-winning scientists, state-of-the-art facilities LACED is built upon Los Alamos' unparalleled explosives detection capabilities derived from the expertise of award-winning scientists and state-of-the-art facilities. LACED is made up of 57

  2. Jupiter Laser Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting the broad community of high-energy-density researchers The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at Lawrence Livermore National Laboratory (LLNL). The facility is designed to provide a high degree of experimental flexibility and high laser shot rates, and to allow direct user operation of experiments. The Jupiter Laser Facilities missions are to support lab-wide research pertinent to LLNL programs (e.g. High Energy

  3. CMI Unique Facility: Bulk Combinatoric Materials Synthesis Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulk Combinatoric Materials Synthesis Facility The Bulk Combinatoric Materials Synthesis Facility is one of half a dozen unique facilities developed by the Critical Materials...

  4. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    8947.1 09/13 On-Site Disposal Facility Inspection Report September 2013 6319-D6242 8947.2 09/13 East Face Cell 1 West Face Cell 1 6319D-6208 6319D-6231 8947.3 09/13 North Face Cell 1 North Drainage (looking west) 6319D-6206 6319D-6205 8947.4 09/13 East Face Cell 2 West Face Cell 2 6319D-6230 6319D-6209 8947.5 09/13 East Face Cell 3 West Face Cell 3 6319D-6229 6319D-6210 8947.6 09/13 East Face Cell 4 West Face Cell 4 6319D-6227 6319D-62111 8947.7 09/13 East Face Cell 5 West Face Cell 5 6319D-6226

  5. On-Site Disposal Facility Inspection Report

    Office of Legacy Management (LM)

    72.1 06/14 On-Site Disposal Facility Inspection Report June 2014 6319-D6320 8972.2 06/14 East Face Cell 1 West Face Cell 1 6319D-6322 6319D-6346 8972.3 06/14 North Face Cell 1 North Drainage (looking west) 6319D-6321 6319D-6320 8972.4 06/14 East Face Cell 2 West Face Cell 2 6319D-6345 6319D-6324 8972.5 06/14 East Face Cell 3 West Face Cell 3 6319D-6344 6319D-6325 8972.6 06/14 East Face Cell 4 West Face Cell 4 6319D-6342 6319D-63261 8972.7 06/14 East Face Cell 5 West Face Cell 5 6319D-6341

  6. Manufacturing Demonstration Facility

    Office of Environmental Management (EM)

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  7. In-House Facility for Building Batteries and Performance Behavior...

    Office of Scientific and Technical Information (OSTI)

    of SNL-Built 18650 Li(CFx)n Cells. Citation Details In-Document Search Title: In-House Facility for Building Batteries and Performance Behavior of SNL-Built 18650 Li(CFx)n Cells. ...

  8. Nuclear Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear Facilities List: Argonne National ...

  9. ARM - Facility News Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events Employment Research

  10. ARM - Facility News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media Contact Hanna Goss hanna-dot-goss-at-pnnl-dot-gov @armnewsteam Field Notes Blog Topics Field Notes107 AGU 3 AMIE 10 ARM Aerial Facility 2 ARM Mobile Facility 1 6 ARM Mobile Facility 2 47 ARM Mobile Facility 3 1 BAECC 1 BBOP 4 ENA 1 GOAMAZON 7 MAGIC 15 MC3E 17 PECAN 3 SGP 7 STORMVEX 29 TCAP 3 Search News Search Blog News Center All Categories What's this? Social Media Guidance News Center All Categories Features and Releases Facility News Field Notes Blog Events Employment Research

  11. Post-Test Facility At Argonne | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Facility At Argonne Post-Test Facility At Argonne 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt077_es_bloom_2011_p.pdf More Documents & Publications Post-test Cell Characterization Facility Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at

  12. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  13. Hydrodynamic Testing Facilities Database | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamic Testing Facilities Database (Redirected from Hydrodynamic Testing Facilities) Jump to: navigation, search Facility Operators By viewing Hydrodynamic Testing Facilities...

  14. Pyrotek Graphitization Facility Expansion Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt016_es_sekedat_2012_p.pdf More Documents & Publications Pyrotek Graphitization Facility Expansion Project Pyrotek Graphitization Facility Expansion Project Fabricate PHEV Cells for Testing & Diagnostics

  15. Working with SRNL - Our Facilities- Rapid Fabrication Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Fabrication Facility Working with SRNL Our Facilities - Rapid Fabrication Facility At SRNL's Rapid Fabrication Facility, low-cost prototypes are produced, as well as parts and complete working models

  16. HYTEST Phase I Facility Commissioning and Modeling

    SciTech Connect (OSTI)

    Lee P. Shunn; Richard D. Boardman; Shane J. Cherry; Craig G. Rieger

    2009-09-01

    The purpose of this document is to report the first year accomplishments of two coordinated Laboratory Directed Research and Development (LDRD) projects that utilize a hybrid energy testing laboratory that couples various reactors to investigate system reactance behavior. This work is the first phase of a series of hybrid energy research and testing stations - referred to hereafter as HYTEST facilities – that are planned for construction and operation at the Idaho National Laboratory (INL). A HYTEST Phase I facility was set up and commissioned in Bay 9 of the Bonneville County Technology Center (BCTC). The purpose of this facility is to utilize the hydrogen and oxygen that is produced by the High Temperature Steam Electrolysis test reactors operating in Bay 9 to support the investigation of kinetic phenomena and transient response of integrated reactor components. This facility provides a convenient scale for conducting scoping tests of new reaction concepts, materials performance, new instruments, and real-time data collection and manipulation for advance process controls. An enclosed reactor module was assembled and connected to a new ventilation system equipped with a variable-speed exhaust blower to mitigate hazardous gas exposures, as well as contract with hot surfaces. The module was equipped with a hydrogen gas pump and receiver tank to supply high quality hydrogen to chemical reactors located in the hood.

  17. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL IGNITION FACILITY American Fusion News Category: National Ignition Facility Link: NATIONAL IGNITION FACILITY

  18. Department of Energy Facilities | Department of Energy

    Energy Savers [EERE]

    Department of Energy Facilities Department of Energy Facilities Department of Energy Facilities View All Maps Addthis...

  19. Department of Energy Facilities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Facilities Department of Energy Facilities Department of Energy Facilities

  20. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt002_es_flicker_2012_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results