National Library of Energy BETA

Sample records for horse wells area

  1. 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) Exploration Activity Details...

  2. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  3. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  4. Dead Horse Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS...

  5. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  6. Single-Well and Cross-Well Seismic At Salt Wells Area (Bureau...

    Open Energy Info (EERE)

    Seismic At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Seismic...

  7. Marysville Test Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Marysville Test Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Marysville Test Well Geothermal Area Contents 1 Area Overview 2 History and...

  8. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  9. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    Open Energy Info (EERE)

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  10. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  11. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  12. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  13. Observation Wells At Blue Mountain Area (Warpinski, Et Al., 2004...

    Open Energy Info (EERE)

    Blue Mountain Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Blue Mountain Area (Warpinski,...

  14. Development Wells At Jemez Pueblo Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Jemez Pueblo Area (DOE GTP) Exploration Activity...

  15. Observation Wells At Lightning Dock Geothermal Area (Reeder,...

    Open Energy Info (EERE)

    Geothermal Area (Reeder, 1957) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Geothermal Area (Reeder, 1957)...

  16. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP) Exploration Activity...

  17. Development Wells At Maui Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Maui Area (DOE GTP) Exploration Activity Details Location...

  18. Development Wells At Coso Geothermal Area (1985) | Open Energy...

    Open Energy Info (EERE)

    Coso Geothermal Area (1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Coso Geothermal Area (1985) Exploration Activity...

  19. Observation Wells At Lightning Dock Area (Warpinski, Et Al.,...

    Open Energy Info (EERE)

    Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Area (Warpinski, Et Al., 2004)...

  20. Observation Wells At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At The Needles Area (DOE GTP) Exploration Activity...

  1. Development Wells At The Needles Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    The Needles Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At The Needles Area (DOE GTP) Exploration Activity...

  2. Development Wells At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Silver Peak Area (DOE GTP) Exploration Activity...

  3. Development Wells At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Alum Area (DOE GTP) Exploration Activity Details...

  4. Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Mccoy Geothermal Area (DOE GTP) Exploration...

  5. Development Wells At Wister Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Wister Area (DOE GTP) Exploration Activity Details...

  6. Development Wells At Raft River Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal...

  7. Exploratory Well At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  8. Exploratory Well At Raft River Geothermal Area (1975) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River...

  9. Marble Hot Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Petersen...

    Open Energy Info (EERE)

    Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Roosevelt Hot Springs Geothermal Area (Petersen, 1975)...

  11. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  12. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  13. Observation Wells At East Brawley Area (Matlick & Jayne, 2008...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At East Brawley Area (Matlick & Jayne, 2008) Exploration Activity Details...

  14. Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity...

  15. Development Wells At Long Valley Caldera Geothermal Area (Associates...

    Open Energy Info (EERE)

    Associates, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Long Valley Caldera Geothermal Area (Associates, 1987)...

  16. Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2002) Exploration Activity...

  17. Development Wells At Fallon Naval Air Station Area (Sabin, Et...

    Open Energy Info (EERE)

    Fallon Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station...

  18. Production Wells At Lightning Dock Geothermal Area (Cyrq Energy...

    Open Energy Info (EERE)

    Cyrq Energy, 2014) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Production Wells At Lightning Dock Geothermal Area (Cyrq Energy, 2014)...

  19. Development Wells At Fenton Hill HDR Geothermal Area (Dreesen...

    Open Energy Info (EERE)

    Dreesen, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fenton Hill HDR Geothermal Area (Dreesen, Et Al.,...

  20. Stepout-Deepening Wells At Lightning Dock Area (Warpinski, Et...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity Details Location...

  1. Well Log Data At North Brawley Geothermal Area (Matlick & Jayne...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration Activity Details...

  2. Well Log Data At North Brawley Geothermal Area (Edmunds & W....

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At North Brawley Geothermal Area (Edmunds & W., 1977) Exploration Activity Details...

  3. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity...

  4. Well Log Techniques At Newberry Caldera Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Techniques At Newberry Caldera Area (DOE GTP) Exploration Activity Details Location Newberry...

  5. Well Log Techniques At Coso Geothermal Area (1985) | Open Energy...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Techniques At Coso Geothermal Area (1985) Exploration Activity Details Location Coso Geothermal...

  6. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At...

  7. Practical Methods for Locating Abandoned Wells in Populated Areas

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Lynn, R.J.

    2007-09-01

    An estimated 12 million wells have been drilled during the 150 years of oil and gas production in the United States. Many old oil and gas fields are now populated areas where the presence of improperly plugged wells may constitute a hazard to residents. Natural gas emissions from wells have forced people from their houses and businesses and have caused explosions that injured or killed people and destroyed property. To mitigate this hazard, wells must be located and properly plugged, a task made more difficult by the presence of houses, businesses, and associated utilities. This paper describes well finding methods conducted by the National Energy Technology Laboratory (NETL) that were effective at two small towns in Wyoming and in a suburb of Pittsburgh, Pennsylvania.

  8. Exploratory Well At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    a part of a geothermal exploration and development program within what was known as the Baca project area (now referred to as the Redondo geothermal area). Of the >42,000 m of hole...

  9. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Faulder...

    Open Energy Info (EERE)

    Unknown Exploration Basis Faulder 1991 Conceptual Geological Model compilation and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Exploratory drilling in...

  10. Production Wells At Lightning Dock Geothermal Area (McCants,...

    Open Energy Info (EERE)

    well for space heating Notes This was a project to use a low flow (25 GPM) well producing water and steam that had historically been difficult to pump. The project was for a space...

  11. Exploratory Well At North Brawley Geothermal Area (Matlick &...

    Open Energy Info (EERE)

    known geothermal area. These drilling activities led to the construction of a 10 MW experimental power plant that was put online in 1980. References Skip Matlick, Tim Jayne (2008)...

  12. Well Log Data At Valles Caldera - Redondo Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    extending to the AET-4 well near Jemez Springs. References Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel, Chandler Swanberg (1988) Lithologic Descriptions and Temperature...

  13. Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...

    Open Energy Info (EERE)

    Technique Well Deepening Activity Date Usefulness useful DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  14. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    and caldera basement. It was also the first well to intersect the metasedimentary landslide block at 466 m depth beneath the caldera's southern moat, a tumultuous mix of...

  15. Exploratory Well At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    Exploratory Well Activity Date 1985 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis After several temperature-gradient holes were drilled in 1982 to the...

  16. Well Log Techniques At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated...

  17. 1999 Well Installation Report, Project Shoal Area, Churchill...

    Office of Legacy Management (LM)

    ... HC-8 Tritium Activities During DevelopmentTest Pumping . . . . . . . . . . . . 5-16 5-11 ... Well Construction and DevelopmentTest Pumping Activities . . . . . . . . . . . . ...

  18. Drilling, Sampling, and Well-Installation Plan for the IFC Well Field, 300 Area

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Horner, Jacob A.

    2008-05-05

    The 300 Area was selected as a location for an IFC because it offers excellent opportunities for field research on the influence of mass-transfer processes on uranium in the vadose zone and groundwater. The 300 Area was the location of nuclear fuel fabrication facilities and has more than 100 waste sites. Two of these waste sites, the North and South Process Ponds received large volumes of process waste from 1943 to 1975 and are thought to represent a significant source of the groundwater uranium plume in the 300 Area. Geophysical surveys and other characterization efforts have led to selection of the South Process Pond for the IFC.

  19. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Fish Hatchery Springs in preparation for the siting of a second binary geothermal power plant, which included the CW-2 and the MPLP CW-3 (a.k.a. Chance 3) wells along the...

  20. Exploratory Well At Coso Geothermal Area (1967) | Open Energy...

    Open Energy Info (EERE)

    Notes Coso Hot Springs well No. 1 drilled to 114.3 m. References Fournier, R. O.; Thompson, J. M.; Austin, C. F. (1 January 1978) Chemical analyses and preliminary...

  1. Exploratory Well At Raft River Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion...

  2. Exploratory Well At Raft River Geothermal Area (1950) | Open...

    Open Energy Info (EERE)

    and Crank wells, encountered boiling water. References Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan, J. D. (1 January 2012) BOREHOLE PRECONDITIONING OF GEOTHERMAL...

  3. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  4. Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005)...

  5. Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999)...

  6. Development Wells At New River Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At New River Area (DOE GTP) Exploration Activity...

  7. Stepout-Deepening Wells At Colrado Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Colrado Area (DOE GTP) Exploration Activity...

  8. Development Wells At Soda Lake Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Soda Lake Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Soda Lake Area (DOE GTP) Exploration Activity...

  9. Stepout-Deepening Wells At Rye Patch Area (DOE GTP, 2011) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area...

  10. Ground Gravity Survey At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Salt Wells Area (Bureau of Land Management, 2009) Exploration...

  11. Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity Details...

  12. Stepout-Deepening Wells At San Emidio Desert Area (DOE GTP) ...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At San Emidio Desert Area (DOE GTP) Exploration Activity Details Location San Emidio...

  13. Stepout-Deepening Wells At Rye Patch Area (Warpinski, Et Al....

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stepout-Deepening Wells At Rye Patch Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Rye...

  14. Construction of MV-6 Well Pad at the Central Nevada Test Area Completed

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection ...

  15. Borehole Completion and Conceptual Hydrogeologic Model for the IFRC Well Field, 300 Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Horner, Jacob A.; Vermeul, Vincent R.; Lanigan, David C.; Thorne, Paul D.

    2009-04-20

    A tight cluster of 35 new wells was installed over a former waste site, the South Process Pond (316-1 waste site), in the Hanford Site 300 Area in summer 2008. This report documents the details of the drilling, sampling, and well construction for the new array and presents a summary of the site hydrogeology based on the results of drilling and preliminary geophysical logging.

  16. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    SciTech Connect (OSTI)

    2009-12-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008).

  17. Selection of area and specific site for drilling a horizontal well in Calhoun County, West Virginia

    SciTech Connect (OSTI)

    Reeves, T.K.; Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.

    1992-03-01

    This report discusses the data collection and analysis procedures used to establish criteria for geologic and engineering studies conducted by BDM to select a general area for more detailed study and a specific site for the drilling of a cooperative well with an industry partner, the Consolidated Natural Gas Development Company (CNGD). The results of detailed geologic studies are presented for two areas in Calhoun County, West Virginia, and one area along the Logan-Boone County line in West Virginia. The effects of Appalachian Basin tectonics and the Rome Trough Rift system were identified on seismic lines made available by (CNGD). These helped to identify and define the trapping mechanisms which had been effective in each area. Engineering analyses of past production histories provided data to support selection of target areas and then to select a specific site that met the project requirements for production, reservoir pressure, and risk. A final site was selected in Lee District at the southwestern margin of the Sand Ridge gas field based on the combination of a geologic trapping mechanism and reservoir pressures which were projected as 580 psi with a stress ratio of 0.53.

  18. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault

  19. Investigation of Accelerated Casing Corrosion in Two Wells at Waste Management Area A-AX

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey; Schaef, Herbert T.; Williams, Bruce A.; Valenta, Michelle M.; Legore, Virginia L.; Lindberg, Michael J.; Geiszler, Keith N.; Baum, Steven R.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Clayton, Ray E.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 3.13 and 3.14. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in August 2005. An overall goal of the Groundwater Performance Assessment Project, led by Pacific Northwest National Laboratory (PNNL) and per guidance in DOE Order 5400.1, includes characterizing and defining trends in the physical, chemical, and biological condition of the environment. To meet these goals, numerous Resource Conservation and Recovery Act (RCRA) monitoring wells have been installed throughout the Hanford Site. In 2003, it was determined that two RCRA monitoring wells (299-E24-19 and 299-E25-46) in Waste Management Area (WMA) A-AX failed due to rapid corrosion of the stainless steel casing over a significant length of the wells. Complete casing corrosion occurred between 276.6 and 277.7 feet below ground surface (bgs) in well 299- E24-19 and from 274.4 to 278.6 feet bgs in well 299-E25-46. CH2M HILL Hanford Group, Inc., asked scientists from PNNL to perform detailed analyses of vadose zone sediment samples collected in the vicinity of the WMA A-AX from depths comparable to those where the rapid corrosion occurred in hopes of ascertaining the cause of the rapid corrosion.

  20. Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells

    SciTech Connect (OSTI)

    P. Oberlander; D. McGraw; C. Russell

    2007-10-31

    Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and

  1. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  2. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect (OSTI)

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30

  3. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Critically stressed fault segments have a relatively high likelihood of acting as fluid flow conduits (Sibson, 1994). As such, the tendency of a fault segment to slip (slip tendency; Ts; Morris et al., 1996) or to dilate (dilation tendency; Td; Ferrill et al., 1999) provides an indication of which faults or fault segments within a geothermal system are critically stressed and therefore likely to transmit geothermal fluids. The slip tendency of a surface is defined by the ratio of shear stress to normal stress on that surface: Ts = τ / σn (Morris et al., 1996). Dilation tendency is defined by the stress acting normal to a given surface: Td = (σ1-σn) / (σ1-σ3) (Ferrill et al., 1999). Slip and dilation were calculated using 3DStress (Southwest Research Institute). Slip and dilation tendency are both unitless ratios of the resolved stresses applied to the fault plane by ambient stress conditions. Values range from a maximum of 1, a fault plane ideally oriented to slip or dilate under ambient stress conditions to zero, a fault plane with no potential to slip or dilate. Slip and dilation tendency values were calculated for each fault in the focus study areas at, McGinness Hills, Neal Hot Springs, Patua, Salt Wells, San Emidio, and Tuscarora on fault traces. As dip is not well constrained or unknown for many faults mapped in within these we made these calculations using the dip for each fault that would yield the maximum slip tendency or dilation tendency. As such, these results should be viewed as maximum tendency of each fault to slip or dilate. The resulting along-fault and fault-to-fault variation in slip or dilation potential is a proxy for along fault and fault-to-fault variation in fluid flow conduit potential. Stress Magnitudes and directions Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes

  4. Step-out Well At Blue Mountain Geothermal Area (Melosh, Et Al...

    Open Energy Info (EERE)

    stepout well was drilled 1.2 km to the west of the main well field in order to test permeability for a potential injection well and to explore for deep up flow in the range front...

  5. Stepout-Deepening Wells At Rye Patch Area (Warpinski, Et Al....

    Open Energy Info (EERE)

    Well Deepening Activity Date Usefulness not indicated DOE-funding Unknown Notes Update to Warpinski, et al., 2002 References N. R. Warpinski, A. R. Sattler, R. Fortuna, D....

  6. Well Log Data At Dixie Valley Geothermal Area (Barton, Et Al...

    Open Energy Info (EERE)

    Exploration Basis Well log data was used to investigate the relationship between permeability and the contemporary in situ stress field in the Dixie Valley Geothermal Reservoir....

  7. Bioremediation Well Borehole Soil Sampling and Data Analysis Summary Report for the 100-N Area Bioremediation Project

    SciTech Connect (OSTI)

    D. A. Gamon

    2009-09-28

    The purpose of this report is to present data and findings acquired during the drilling and construction of seven bioremediation wells in the 100-N Area in conjunction with remediation of the UPR-100-N-17 petroleum waste site.

  8. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2005-12-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

  9. Wells 1/sup 0/ x 2/sup 0/ NTMS area, Nevada. Data report (abbreviated)

    SciTech Connect (OSTI)

    Cook, J.R.

    1980-07-01

    Surface sediment samples were collected at 1336 sites, at a target sampling density of one site per 13 square kilometers. Ground water samples were collected at 112 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water and surface water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Data from ground water and surface water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, and scintillometer reading), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, Mg, Mn, Na, and V). Helium analyses are given for ground water. Data from sediment sites include (1) stream water chemistry measurements from sites where water was available, and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Areal distribution maps, histograms, and cumulative frequency plots for most elements; U/Th, U/Hf, U/(Th + Hf), and U/La ratios; and scintillometer readings at sediment sample sites are included.

  10. National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah

    SciTech Connect (OSTI)

    Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.; Wolverson, N.; Antrim, D.; Berg, J.; Witzel, F.

    1982-08-01

    The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins are unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.

  11. Addendum to the Closure Report for Corrective Action Unit 165: Area 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Krauss, Mark J

    2013-10-01

    This document constitutes an addendum to the Closure Report for Corrective Action Unit 165: Area 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada as described in the document Recommendations and Justifications To Remove Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order dated September 2013. The Use Restriction Removal document was approved by the Nevada Division of Environmental Protection on October 16, 2013. The approval of the UR Removal document constituted approval of each of the recommended UR removals. In conformance with the UR Removal document, this addendum consists of: This page that refers the reader to the UR Removal document for additional information The cover, title, and signature pages of the UR Removal document The NDEP approval letter The corresponding section of the UR Removal document This addendum provides the documentation justifying the cancellation of the UR for CAS 25-20-01, Lab Drain Dry Well. This UR was established as part of FFACO corrective actions and was based on the presence of tetrachloroethene contamination at concentrations greater than the action level established at the time of the initial investigation. Although total petroleum hydrocarbon diesel-range organics contamination at concentrations greater than the NDEP action level was present at the site, no hazardous constituents of TPH-DRO exceeded the U.S. Environmental Protection Agency (EPA) Region 9 preliminary remediation goals established at the time of the initial investigation.

  12. Well Completion Report for Corrective Action Unit 447, Project Shoal Area, Churchill County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Rick Findlay

    2006-09-01

    This Well Completion Report is being provided as part of the implementation of the Corrective Action Decision Document (CADD)/Corrective Action Plan (CAP) for Corrective Action Unit (CAU) 447 (NNSA/NSO, 2006a). The CADD/CAP is part of an ongoing U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) funded project for the investigation of CAU 447 at the Project Shoal Area (PSA). All work performed on this project was conducted in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996), and all applicable Nevada Division of Environmental Protection (NDEP) policies and regulations. Investigation activities included the drilling, construction, and development of three monitoring/validation (MV) wells at the PSA. This report summarizes the field activities and data collected during the investigation.

  13. Quantity and quality of stormwater runoff recharged to the Floridan aquifer system through two drainage wells in the Orlando, Florida area

    SciTech Connect (OSTI)

    German, E.R.

    1989-01-01

    Quantity and quality of inflow to two drainage wells in the Orlando, Fla., area were determined for the period April 1982 through March 1983. The wells, located at Lake Midget and at Park Lake, are used to control the lake levels during rainy periods. The lakes receive stormwater runoff from mixed residential-commercial areas of about 64 acres (Lake Midget) and 96 acres (Park Lake) and would frequently flood adjacent areas if the wells did not drain the excess stormwater. These lakes and wells are typical of stormwater drainage systems in the area.

  14. Boom And Bust With The Latest 2M Temperature Surveys- Dead Horse...

    Open Energy Info (EERE)

    of the use of two-meter temperature (2m) surveys to quickly and inexpensively reveal blind geothermal systems were documented at Dead Horse Wells, the Hawthorne Army Depot, and...

  15. 2014 Well Completion Report for Corrective Action Unit 447 Project Shoal Area Churchill County, Nevada October 2015

    SciTech Connect (OSTI)

    Findlay, Rick

    2015-11-01

    This report summarizes the drilling program conducted by the U.S. Department of Energy (DOE) Office of Legacy Management at the Project Shoal Area (Shoal) Subsurface Corrective Action Unit 447 in Churchill County, Nevada. Shoal was the location of an underground nuclear test conducted on October 26, 1963, as part of the Vela Uniform program sponsored jointly by the U.S. Department of Defense and the U.S. Atomic Energy Commission (a predecessor to DOE). The test consisted of detonating a 12-kiloton nuclear device in granitic rock at a depth of approximately 1,211 feet (ft) below ground surface (bgs) (AEC 1964). The corrective action strategy for the site is focused on revising the site conceptual model and evaluating the adequacy of the monitoring well network at the site. Field activities associated with the project were conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended) and applicable Nevada Division of Environmental Protection (NDEP) policies and regulations.

  16. Wild Horse Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Wild Horse Wind Power Project Facility Wild Horse Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind...

  17. Horse Hollow Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Horse Hollow Wind Energy Center Facility Horse Hollow Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind...

  18. Trojan Horse Project - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Trojan Horse Project Biorefinery in a Plant Sandia National Laboratories Contact SNL About This ...

  19. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  20. Drilling Specifications: Well Installations in the 300 Area to Support PNNL’s Integrated Field-Scale Subsurface Research Challenge (IFC) Project

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Vermeul, Vince R.

    2008-01-21

    Part of the 300 Area Integrated Field-Scale Subsurface Research Challenge (IFC) will be installation of a network of high density borings and wells to monitor migration of fluids and contaminants (uranium), both in groundwater and vadose zone, away from an surface infiltration plot (Figure A-1). The infiltration plot will be located over an area of suspected contamination at the former 300 Area South Process Pond (SPP). The SPP is located in the southeastern portion of the Hanford Site, within the 300-FF-5 Operable Unit. Pacific Northwest National Laboratory (PNNL) with the support of FH shall stake the well locations prior to the start of drilling. Final locations will be based on accessibility and will avoid any surface or underground structures or hazards as well as surface contamination.

  1. Field-Derived Hydraulic Properties for Perched-Water Aquifer Wells 299-E33-350 and 299-E33-351, Hanford Site B-Complex Area

    SciTech Connect (OSTI)

    Newcomer, Darrell R.

    2014-07-01

    During February and March 2014, Pacific Northwest National Laboratory conducted hydraulic (slug) tests at 200-DV-1 Operable Unit wells 299-E33-350 (C8914) and 299-E33-351 (C8915) as part of B-Complex Area Perched-Water characterization activities at the Hanford Site 200-East Area. During the construction/completion phase of each well, two overlapping depth intervals were tested within the unconfined perched-water aquifer contained in the silty-sand subunit of the Cold Creek Unit. The purpose of the slug-test characterization was to provide estimates of transmissivity and hydraulic conductivity for the perched-water aquifer at these selected well locations.

  2. Assessment of impacts and evaluation of restoration methods on areas affected by a well blowout, Naval Petroleum Reserve No. 1, California

    SciTech Connect (OSTI)

    Warrick, G.D.; Kato, T.T.; Phillips, M.V.

    1996-12-01

    In June 1994, an oil well on Naval Petroleum Reserve No. 1 blew-out and crude oil was deposited downwind. After the well was capped, information was collected to characterize the release and to assess effects to wildlife and plants. Oil residue was found up to 13.7 km from the well site, but deposition was relatively light and the oil quickly dried to form a thin crust on the soil surface. Elevated levels of hydrocarbons were found in livers collected from Heermann`s kangaroo rats (Dipodomys heermanni) from the oiled area but polycyclic aromatic hydrocarbons (known carcinogens or mutagens) were not detected in the livers. Restoration techniques (surface modification and bioremediation) and natural recovery were evaluated within three portions of the oiled area. Herbaceous cover and production, and survival and vigor of desert saltbush (Atriplex polycarpa) were also monitored within each trapping grid.

  3. Distortion effects in Trojan Horse applications

    SciTech Connect (OSTI)

    Pizzone, R. G.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A. M.; Blokhintsev, L. D.; Irgaziev, B.; Bertulani, C. A.; Spitaleri, C.

    2012-11-20

    Deuteron induced quasi-free scattering and reactions have been extensively investigated in the past few decades. This was done not only for nuclear structure and processes study but also for the important astrophysical implication (Trojan Horse Method, THM). In particular the width of the neutron momentum distribution in deuteron will be studied as a function of the transferred momentum. The same will be done for other nuclides of possible use as Trojan Horse particles. Trojan horse method applications will also be discussed because the momentum distribution of the spectator particle inside the Trojan horse nucleus is a necessary input for this method. The impact of the width (FWHM) variation on the extraction of the astrophysical S(E)-factor is discussed.

  4. Wild Horse II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Wild Horse II Wind Farm Facility Wild Horse II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  5. Grand Coulee & Hungry Horse SCADA Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Valley load area is located in eastern Idaho and western Wyoming and includes Jackson, Wyoming as well as a number of smaller communities. Customers served are Lower...

  6. Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-01-09

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of

  7. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    SciTech Connect (OSTI)

    Li, Yuejing; Tong, Yuying; Yang, Guofeng Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  8. Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Horse Creek Hot Spring Pool & Spa Low Temperature Geothermal Facility Facility...

  9. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar...

  10. Addendum to the Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2006, Closure Report for Corrective Action Unit 322: Areas 1 & 3 Release Sites and Injection Wells as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 01-25-01, AST Release • CAS 03-25-03, Mud Plant AST Diesel Release These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to

  11. Addendum to the Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada, Revison 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the June 2003, Closure Report for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the URs for: • CAS 06-20-02, 20-inch Cased Hole • CAS 06-23-03, Drain Pit These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because

  12. Closure Report (CR) for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well with Errata Sheet and Certification, Revision 0

    SciTech Connect (OSTI)

    Navarro Nevada Environmental Services

    2010-08-10

    The closure report for CAU 91 has no Use Restriction Form or drawing/map included in the document to describe the use restricted area, however, Section 3.3.3 states that the site will be fenced and signage placed indicating the area as a Resource Conservation and Recovery Act (RCRA) Unit. The drawing that was placed in the FFACO indicating the use restricted area lists the coordinates for the RCRA Unit in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the RCRA Unit with the coordinates listed showing the use restricted area.

  13. Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Well Placement LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Finished groundwater well head with solar power Finished groundwater well head with solar power How does LANL determine where to put a monitoring well? Project teams routinely review groundwater monitoring data to verify adequate placement of wells and to plan the siting of additional wells as needed. RELATED IMAGES

  14. How Well Can We Estimate Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission in an Atlantic Coastal Area?

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Marinovici, Maria C.

    2015-10-15

    Areal-averaged albedos are particularly difficult to measure in coastal regions, because the surface is not homogenous, consisting of a sharp demarcation between land and water. With this difficulty in mind, we evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone under fully overcast conditions. To illustrate the performance of our retrieval, we find the areal-averaged albedo using measurements from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (415, 500, 615, 673, and 870 nm). These MFRSR data are collected at a coastal site in Graciosa Island, Azores supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo at four nominal wavelengths (470, 560, 670 and 860 nm). These comparisons are made during a 19-month period (June 2009 - December 2010). We also calculate composite-based spectral values of surface albedo by a weighted-average approach using estimated fractions of major surface types observed in an area surrounding this coastal site. Taken as a whole, these three methods of finding albedo show spectral and temporal similarities, and suggest that our simple, transmission-based technique holds promise, but with estimated errors of about ±0.03. Additional work is needed to reduce this uncertainty in areas with inhomogeneous surfaces.

  15. Exploratory Well At Salt Wells Area (Edmiston & Benoit, 1984...

    Open Energy Info (EERE)

    and drilled during the early 1980s that had not been documented previously in the literature, (2) summarize and compare chemical and temperature data from known moderate- to...

  16. White Horse, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White Horse is a census-designated place in Mercer County, New Jersey.1 References US...

  17. Wild Horse 69-kV transmission line environmental assessment

    SciTech Connect (OSTI)

    1996-12-01

    Hill County Electric Cooperative Inc. (Hill County) proposes to construct and operate a 69-kV transmission line from its North Gildford Substation in Montana north to the Canadian border. A vicinity project area map is enclosed as a figure. TransCanada Power Corporation (TCP), a Canadian power-marketing company, will own and construct the connecting 69-kV line from the international border to Express Pipeline`s pump station at Wild Horse, Alberta. This Environmental Assessment is prepared for the Department of Energy (DOE) as lead federal agency to comply with the requirements of the National Environmental Policy Act (NEPA), as part of DOE`s review and approval process of the applications filed by Hill County for a DOE Presidential Permit and License to Export Electricity to a foreign country. The purpose of the proposed line is to supply electric energy to a crude oil pump station in Canada, owned by Express Pipeline Ltd. (Express). The pipeline would transport Canadian-produced oil from Hardisty, Alberta, Canada, to Caster, Wyoming. The Express Pipeline is scheduled to be constructed in 1996--97 and will supply crude oil to refineries in Wyoming and the midwest.

  18. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  19. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  20. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  1. Maazama Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  2. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    by Gary Edmondo (MiniGIS, Inc., Reno, NV)24 modified by the Great Basin Center for Geothermal Energy to include symbols for geothermal surface features was used to actively...

  3. Willow Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    75C348.15 K 167 F 626.67 R 1 USGS Estimated Reservoir Volume: 1 km 1 USGS Mean Capacity: 1.3 MW 1 Click "Edit With Form" above to add content History and...

  4. Well pump

    DOE Patents [OSTI]

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  5. Corrective Action Investigation Plan for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 322 consists of three Corrective Action Sites (CASs): 01-25-01, AST Release (Area 1); 03-25-03, Mud Plant AST Diesel Release (Area 3); 03-20-05, Injection Wells (Area 3). Corrective Action Unit 322 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. The investigation of three CASs in CAU 322 will determine if hazardous and/or radioactive constituents are present at concentrations and locations that could potentially pose a threat to human health and the environment. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  6. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the period October 2000-October 2001

    SciTech Connect (OSTI)

    D. S. Tobiason

    2002-02-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2000 to October 2001 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-ft) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that may be indicative of subsidence within the disposal unit itself.

  7. Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.

    SciTech Connect (OSTI)

    Fraley, John J.; Marotz, Brian L.; DosSantos, Joseph M.

    2003-04-01

    In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and

  8. CNTA_Well_Installation_Report.book

    Office of Legacy Management (LM)

    Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area Nye ... WELL INSTALLATION REPORT FOR CORRECTIVE ACTION UNIT 443, CENTRAL NEVADA TEST AREA NYE ...

  9. Penrose Well Temperatures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  10. Hungry Horse Dam Fisheries Mitigation, 1992-1993 Progress Report.

    SciTech Connect (OSTI)

    DosSantos, Joe; Vashro, Jim; Lockard, Larry

    1994-06-01

    In February of 1900, over forty agency representatives and interested citizens began development of the 1991 Mitigation Plan. This effort culminated in the 1993 Implementation Plan for mitigation of fish losses attributable to the construction and operation of Hungry Horse Dam. The primary purpose of this biennial report is to inform the public of the status of ongoing mitigation activities resulting from those planning efforts. A habitat improvement project is underway to benefit bull trout in Big Creek in the North Fork drainage of the Flathead River and work is planned in Hay Creek, another North Fork tributary. Bull trout redd counts have been expanded and experimental programs involving genetic evaluation, outmigrant monitoring, and hatchery studies have been initiated, Cutthroat mitigation efforts have focused on habitat improvements in Elliott Creek and Taylor`s Outflow and improvements have been followed by imprint plants of hatchery fish and/or eyed eggs in those streams. Rogers Lake west of Kalispell and Lion Lake, near Hungry Horse, were chemically rehabilitated. Cool and warm water fish habitat has been improved in Halfmoon Lake and Echo Lake. Public education and public interest is important to the future success of mitigation activities. As part of the mitigation team`s public awareness responsibility we have worked with numerous volunteer groups, public agencies, and private landowners to stimulate interest and awareness of mitigation activities and the aquatic ecosystem. The purpose of this biennial report is to foster public awareness of, and support for, mitigation activities as we move forward in implementing the Hungry Horse Dam Fisheries Mitigation Implementation Plan.

  11. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring

  12. Abandoning wells working group

    SciTech Connect (OSTI)

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  13. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013 Topographic map showing placement of monitoring wells Topographic map showing placement of monitoring wells

  14. Monitoring Well Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Well Placement Monitoring Well Placement Monitoring wells are designed and placed to define groundwater flow and water quality below the surface. August 1, 2013...

  15. DOI-BLM-NV-C010-2012-0028-DNA | Open Energy Information

    Open Energy Info (EERE)

    DNA at Dead Horse Wells Geothermal Area for GeothermalWell Field DNA for Flow Test Well 85-11 and Simultaneously Injection Test Well 68-1 and 24A-6 at Dead Horse Wells...

  16. Well Placement Decision Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Well Placement Decision Process Well Placement Decision Process Determining where to place a well is a multi-step process. August 1, 2013 Investigation process for determining where to place a sentinel well Investigation process for determining where

  17. Applications of the Trojan Horse method in nuclear astrophysics

    SciTech Connect (OSTI)

    Spitaleri, Claudio

    2015-02-24

    The study of the energy production in stars and related nucleosyntesis processes requires increasingly precise knowledge of the nuclear reaction cross section and reaction rates at interaction energy. In order to overcome the experimental difficulties, arising from small cross-sections involved in charge particle induced reactions at astrophysical energies, and from the presence of electron screening, it was necessary to introduce indirect methods. Trough these methods it is possible to measure cross sections at very small energies and retrieve information on electron screening effect when ultra-low energy direct measurements are available. The Trojan Horse Method (THM) represents the indirect technique to determine the bare nucleus astrophysical S-factor for reactions between charged particles at astrophysical energies. The basic theory of the THM is discussed in the case of non-resonant.

  18. Big bang nucleosynthesis revisited via Trojan Horse method measurements

    SciTech Connect (OSTI)

    Pizzone, R. G.; Spartá, R.; Spitaleri, C.; La Cognata, M.; Tumino, A.; Bertulani, C. A.; Lalmansingh, J.; Lamia, L.; Mukhamedzhanov, A.

    2014-05-10

    Nuclear reaction rates are among the most important input for understanding primordial nucleosynthesis and, therefore, for a quantitative description of the early universe. An up-to-date compilation of direct cross-sections of {sup 2}H(d, p){sup 3}H, {sup 2}H(d, n){sup 3}He, {sup 7}Li(p, α){sup 4}He, and {sup 3}He(d, p){sup 4}He reactions is given. These are among the most uncertain cross-sections used and input for big bang nucleosynthesis calculations. Their measurements through the Trojan Horse method are also reviewed and compared with direct data. The reaction rates and the corresponding recommended errors in this work were used as input for primordial nucleosynthesis calculations to evaluate their impact on the {sup 2}H, {sup 3,4}He, and {sup 7}Li primordial abundances, which are then compared with observations.

  19. Determining Home Range and Preferred Habitat of Feral Horses on the Nevada National Security Site Using Geographic Information Systems

    SciTech Connect (OSTI)

    Burns, Ashley V.

    2014-05-30

    Feral horses (Equus caballus) are free-roaming descendants of domesticated horses and legally protected by the Wild and Free-Roaming Horses and Burros Act of 1971, which mandates how feral horses and burros should be managed and protected on federal lands. Using a geographic information system to determine the home range and suitable habitat of feral horses on the federally managed Nevada National Security Site can enable wildlife biologists in making best management practice recommendations. Home range was estimated at 88.1 square kilometers. Site suitability was calculated for elevation, forage, slope, water presence and horse observations. These variables were combined in successive iterations into one polygon. Suitability rankings established that 85 square kilometers are most suitable habitat, with 2,052 square kilometers of good habitat 1,252 square kilometers of fair habitat and 122 square kilometers of least suitable habitat.

  20. Fracture optimization on every well

    SciTech Connect (OSTI)

    Ely, J.W.; Tiner, R.L.

    1998-01-01

    Since hydraulic fracturing was introduced in 1947, significant advances have been made in the area of fracture diagnostics, particularly in the last 20 years. Common diagnostic procedures used today to quantify fracture geometry and fracture fluid efficiency are listed in a table. During the past several years, the most popular procedure was to conduct most or all of the diagnostics on one well in a field, and apply the results to subsequent wells. However, experience has shown that critical factors can change drastically, even in fields with minimal well spacing. Although some variations in relative rock stresses have been seen, rock properties typically remain fairly consistent within a designated area. However, the factor that changes drastically from well to well--even in spacing as small as 10 acres--is fracture fluid efficiency. As much as a 60% change in fluid efficiencies has been noted for offset wells. Because of these variations, a new procedure has been developed in which fracture treatments on individual wells can be optimized on the day of the fracture treatment. The paper describes this fracture optimization procedure.

  1. The Trojan Horse method for nuclear astrophysics: Recent results on resonance reactions

    SciTech Connect (OSTI)

    Cognata, M. La; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Romano, S.; Gulino, M.; Tumino, A.; Lamia, L.

    2014-05-09

    Nuclear astrophysics aims to measure nuclear-reaction cross sections of astrophysical interest to be included into models to study stellar evolution and nucleosynthesis. Low energies, < 1 MeV or even < 10 keV, are requested for this is the window where these processes are more effective. Two effects have prevented to achieve a satisfactory knowledge of the relevant nuclear processes, namely, the Coulomb barrier exponentially suppressing the cross section and the presence of atomic electrons. These difficulties have triggered theoretical and experimental investigations to extend our knowledge down to astrophysical energies. For instance, indirect techniques such as the Trojan Horse Method have been devised yielding new cutting-edge results. In particular, I will focus on the application of this indirect method to resonance reactions. Resonances might dramatically enhance the astrophysical S(E)-factor so, when they occur right at astrophysical energies, their measurement is crucial to pin down the astrophysical scenario. Unknown or unpredicted resonances might introduce large systematic errors in nucleosynthesis models. These considerations apply to low-energy resonances and to sub-threshold resonances as well, as they may produce sizable modifications of the S-factor due to, for instance, destructive interference with another resonance.

  2. Excepted Service Authority for Exceptionally Well Qualified ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Authority for Exceptionally Well Qualified (EWQ) EQ Pay Plan Employees by Erin Moore Functional areas: Excepted Service, EWQ Pay Plan Employees The order establishes...

  3. BUFFERED WELL FIELD OUTLINES

    U.S. Energy Information Administration (EIA) Indexed Site

    OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a feature class (FC) with the following attributes: Field_name Buffer distance (can be unique for each well to represent reservoirs with different drainage radii) ...see figure below. Copy the code into a new module. Inputs: In ArcMap, data frame named "Task 1" Well FC as first layer (layer 0). Output:

  4. Well Log ETL tool

    Energy Science and Technology Software Center (OSTI)

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  5. Oil well standing valve

    SciTech Connect (OSTI)

    Holland, R. A.; Brennan, J. R.; Christ, F. C.; Petrie, H. L.

    1985-05-28

    A standing valve which may be retrievably mounted in a well production tubing and will allow the maximum possible fluid flow and also allow the valve to be easily drained and retrieved through the well production tubing. The seal between the standing valve and the bottom hole assembly is located at or below the level of the seat and fluid from the top of the valve into the well is drained through the seat.

  6. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  7. Observation Wells At Fenton Hill HDR Geothermal Area (Shevenell...

    Open Energy Info (EERE)

    the hydrothermal outflow plume issuing from the western margin of the Valles caldera (Goff et al., 1988). References Lisa Shevenell, Fraser E. Goff, Dan Miles, Al Waibel,...

  8. Compound and Elemental Analysis At Salt Wells Area (Coolbaugh...

    Open Energy Info (EERE)

    and ICP emission for anions. The hottest sampled spring appears to match the location and temperature of the Borax Spring, first described in 1885, but reportedly inactive in 1981...

  9. Radiometrics At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open...

    Open Energy Info (EERE)

    precipitation and the susceptibility of NaCl to remobilization in meteoric water at low temperature. Remote sensing methods for identifying regional-scale zoning of these...

  10. Geothermometry At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    and ICP emission for anions. The hottest sampled spring appears to match the location and temperature of the Borax Spring, first described in 1885, but reportedly inactive in 1981...

  11. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2006) |...

    Open Energy Info (EERE)

    Basis Geochemical water sampling, mineral distribution mapping, and shallow (30 cm) temperature probe measurements were conducted to expand on a previous field mapping study...

  12. Geothermometry At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    were carried out in conjunction with geologic mapping to test the application of these ground-based techniques to geothermal exploration at three prospects in Nevada by Henkle...

  13. Field Mapping At Salt Wells Area (Coolbaugh, Et Al., 2004) |...

    Open Energy Info (EERE)

    Details regarding the complete hardware specifications of the device are included in the body of the article. A custom geologic mapping software applet developed by Gary Edmondo...

  14. EA for Well Field Development at Patua Geothermal Area -DOI...

    Open Energy Info (EERE)

    Present, Potentially Affected, Not Indicated) for this property. imposed *A SAD Air Quality Operating Permit would be obtained for the project and a plan for fugitive dust...

  15. Exploratory Well At Long Valley Caldera Geothermal Area (Smith...

    Open Energy Info (EERE)

    are available online1 through the California Department of Conservation Division of Oil, Gas & Geothermal Resources and have been contributed to studies of the temperature...

  16. Observation Wells At Fenton Hill HDR Geothermal Area (Dash, Et...

    Open Energy Info (EERE)

    Dennis, Donald S. Dreesen, Leigh S. House, Hugh D. Murphy, Bruce A. Robinson, Morton C. Smith (1987) The US Hot Dry Rock Project Additional References Retrieved from "http:...

  17. Exploratory Well At Dixie Valley Geothermal Area (Allis, Et Al...

    Open Energy Info (EERE)

    An approximate discharge of hot geothermal fluid of about 5 ls is estimated from the models, this equates to a loss of about 56 MW. References R. G. Allis, Stuart D. Johnson,...

  18. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Info (EERE)

    the world's first air-cooled binary cycle geothermal power plant.4 References Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates...

  19. Development Wells At Fenton Hill HDR Geothermal Area (Dash, Et...

    Open Energy Info (EERE)

    16, 1979. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter,...

  20. Stepout-Deepening Wells At Coso Geothermal Area (1986) | Open...

    Open Energy Info (EERE)

    fluids with a temperature greater than 640 F. References Austin, C.F.; Bishop, B.P.; Moore, J. (1 May 1987) Structural interpretation of Coso Geothermal field, Inyo County,...

  1. Development Wells At Long Valley Caldera Geothermal Area (Suemnicht...

    Open Energy Info (EERE)

    the geothermal power plants. References Gene A. Suemnicht, Michael L. Sorey, Joseph N. Moore, Robert Sullivan (2007) The Shallow Hydrothermal System of Long Valley Caldera,...

  2. Exploratory Well At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    was right around sea level and the hot water layer was found to be very thin. High permeability due to cracks between successive volcanic flow layers was discovered. References...

  3. Geothermometry At Salt Wells Area (Edmiston & Benoit, 1984) ...

    Open Energy Info (EERE)

    and drilled during the early 1980's that had not been documented previously in the literature, (2) summarize and compare chemical and temperature data from known moderate- to...

  4. Well Deepening At Lightning Dock Geothermal Area (Witcher, 2006...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown Exploration Basis Part of the Geothermal Resource Evaluation and Definition (GRED) Program administered by DOE-AAO under Cooperative...

  5. Property:FirstWellName | Open Energy Information

    Open Energy Info (EERE)

    (DB1) + C Chena Geothermal Area + Well 7 + F Fenton Hill HDR Geothermal Area + GT-1 + K Kilauea East Rift Geothermal Area + HGP-A + L Lightning Dock Geothermal Area + TFD 55-7...

  6. The Trojan Horse method for nuclear astrophysics: Recent results for direct reactions

    SciTech Connect (OSTI)

    Tumino, A.; Gulino, M.; Spitaleri, C.; Cherubini, S.; Romano, S.; Cognata, M. La; Pizzone, R. G.; Rapisarda, G. G.; Lamia, L.

    2014-05-09

    The Trojan Horse method is a powerful indirect technique to determine the astrophysical factor for binary rearrangement processes A+x→b+B at astrophysical energies by measuring the cross section for the Trojan Horse (TH) reaction A+a→B+b+s in quasi free kinematics. The Trojan Horse Method has been successfully applied to many reactions of astrophysical interest, both direct and resonant. In this paper, we will focus on direct sub-processes. The theory of the THM for direct binary reactions will be shortly presented based on a few-body approach that takes into account the off-energy-shell effects and initial and final state interactions. Examples of recent results will be presented to demonstrate how THM works experimentally.

  7. Isobaric groundwater well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  8. Geothermal Well Stimulation

    SciTech Connect (OSTI)

    Campbell, D. A.; Morris, C. W.; Sinclair, A. R.; Hanold, R. J.; Vetter, O. J.

    1981-03-01

    The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600 F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated before performance expectations can be determined. In order to avoid possible damage to the producing horizon of the formation, high temperature chemical compatibility between the in situ materials and the stimulation materials must be verified. Perhaps most significant of all, in geothermal wells the required techniques must be capable of bringing about the production of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional petroleum well stimulation and demands the creation of very high near-wellbore permeability and/or fractures with very high flow conductivity.

  9. Jet pump for oil wells

    SciTech Connect (OSTI)

    Binks, R. H.; Christ, F. C.

    1985-03-12

    A fluid operated pump system which includes power fluid supply means comprising either the annulus between well casing and production tubing, or a secondary tubing, and a production tubing, set in a well, the production tubing having a housing at the lower end with which the power fluid supply means communicates. A pump unit, including a fluid operated jet pump, is movable downwardly through the production tubing into the housing to a fixed location and maintained at the fixed location by the forces of gravity and friction. The pump is operable in the housing by operating fluid under pressure supplied through the power fluid supply means to pump fluid from the well into the production tubing. A cavity is provided at the lower end of the pump unit between two balanced seals. The cavity communicates with the power fluid supply means and with the fluid operated jet pump. Power fluid introduced into the cavity causes no net force to be exerted on the pump unit. When pumping action takes place, produced fluids are taken from a lower pressure area below the pump unit and boosted to a higher pressure area above the pump unit by the fluid operated jet pump, resulting in a net downward force on the pump unit to cause the pump unit to be restrained against its fixed location without the need of latch means.

  10. Horizontal well planning

    SciTech Connect (OSTI)

    Schuh, F.J. )

    1991-03-01

    Interest in horizontal drilling has exploded at a rate well above even the most optimistic projections. Certainly, this technique will not end with the Bakken and Austin Chalk plays. However, future reservoirs will undoubtedly require much more complicated well designs and multi-disciplined technical interaction than has been used so far. The horizontal drilling costs are too high to permit resolving of all the technical issues by trial and error. A multi-disciplinary team approach will be required in order for horizontal drilling to achieve its economic potential.

  11. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  12. "Trojan Horse" strategy for deconstruction of biomass for biofuels production.

    SciTech Connect (OSTI)

    Sinclair, Michael B.; Hadi, Masood Z.; Timlin, Jerilyn Ann; Thomson, James; Whalen, Maureen; Thilmony, Roger; Tran-Gyamfi, Mary; Simmons, Blake Alexander; Sapra, Rajat

    2008-08-01

    in cellulosic deconstruction. The unique aspects of this technology are the rationally engineered, highly productive extremophilic enzymes, targeted to specific cellular locations (apoplast) and their dormancy during normal plant proliferation, which become Trojan horses during pretreatment conditions. They have been leveraging established Sandia's enzyme-engineering and imaging capabilities. Their technical approach not only targets the recalcitrance and mass-transfer problem during biomass degradation but also eliminates the costs associated with industrial-scale production of microbial enzymes added during processing.

  13. Models for geothermal wells

    SciTech Connect (OSTI)

    Michaelides, E.E.

    1980-06-01

    The problem of two-phase flow pressure loss is examined in order to give an answer to the problem of determination of the wellhead conditions. For this purpose two models have been developed, the first based on the pattern structure of the flow and the second on the mixing length theory. The void fraction correlations and the transition conditions are presented in the first model as a means of estimating the pressure loss. Heat losses, and the effect of impurities are examined in detail. An expression for the critical flow conditions is also derived. The model is used to predict the available power at the wellhead under various conditions and an answer to the problem of well pumping is given. For the second model an outline of the mixing length theory and the boundary layer coordinates is given; a density distribution in the geothermal well is assumed and the equations for the pressure loss are derived by means of the entropy production function. Finally a comparison of the two models is made and their predictive power is tested against known well data. A brief comparison with the Denver Research Institute is also made.

  14. Exploratory Well | Open Energy Information

    Open Energy Info (EERE)

    Area (1977) Raft River Geothermal Area 1977 1977 Update on the Raft River Geothermal Reservoir Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal...

  15. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V.; Hall, R.; Colina, K.

    2008-07-01

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  16. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  17. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  18. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  19. Public health assessment for Iron Horse Park, Billerica, Middlesex County, Massachusetts, Region 1. Cerclis No. MAD051787323. Addendum

    SciTech Connect (OSTI)

    1995-01-11

    The initial health assessment and related amendment for Iron Horse Park were completed in December of 1988 and amended in April of 1990 (PB90-136128 and PB92-963707), respectively. These health assessments identified numerous data gaps which were addressed in subsequent investigations released by the United States Environmental Protection Agency (USEPA). Health concerns detailed in this addendum are based on findings of these monitoring activities conducted on or near the Shaffer Landfill at Iron Horse Park.

  20. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  1. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  2. Number of Producing Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    Producing Gas Wells Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area 2009 2010 2011 2012 2013 2014 View History U.S. 493,100 487,627 514,637 482,822 484,994 514,786 1989-2014 Alabama 6,913 7,026 7,063 6,327 6,165 6,118 1989-2014 Alaska 261 269 277 185 159 170 1989-2014 Arizona 6 5 5 5 5 5 1989-2014 Arkansas 6,314 7,397 8,388 8,538 9,843 10,150 1989-2014 California 1,643 1,580 1,308 1,423 1,335 1,118 1989-2014

  3. Third invitational well-testing symposium: well testing in low...

    Office of Scientific and Technical Information (OSTI)

    session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. ...

  4. DOI-BLM-NV-C010-2011-0517-DNA | Open Energy Information

    Open Energy Info (EERE)

    7-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0517-DNA DNA at Dead Horse Wells Geothermal Area for GeothermalExploration DNA at Dead Horse...

  5. Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.

    SciTech Connect (OSTI)

    Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

    1993-03-10

    In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

  6. Well completion process for formations with unconsolidated sands

    DOE Patents [OSTI]

    Davies, David K.; Mondragon, III, Julius J.; Hara, Philip Scott

    2003-04-29

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  7. Coiled tubing velocity strings keep wells unloaded

    SciTech Connect (OSTI)

    Wesson, H.R.; Shursen, J.L.

    1989-07-01

    Liquid loading is a problem in many older and even some newer gas wells, particularly in pressure depletion type reservoirs. This liquid loading results in decreased production and may even kill the well. The use of coiled tubing as a velocity string (or siphon string) has proved to be an economically viable alternative to allow continued and thus, increased cumulative production for wells experiencing liquid loading problems. Coiled tubing run inside the existing production string reduces the flow area, whether the well is produced up the tubing or up the annulus. This reduction in flow area results in an increase in flow velocity and thus, an increase in the well's ability to unload fluids.

  8. New Wells Provide Information on Groundwater at Pahute Mesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 28, 2012 New Wells Provide Information on Groundwater at Pahute Mesa New wells drilled near historic underground test areas in Nevada are helping scientists get a clearer understanding of the groundwater in these areas while contributing to the design of a long-term monitoring system. Drilled from September to October 2012, these two wells will supplement a network of more than 20 existing characterization wells in an area called Pahute Mesa, which extends from the northwestern portion

  9. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  10. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  11. GIS INTERNET MAP SERVICE FOR DISPLAYING SELENIUM CONTAMINATION DATA IN THE SOUTHEASTERN IDAHO PHOSPHATE MINING RESOURCE AREA

    SciTech Connect (OSTI)

    Roger Mayes; Sera White; Randy Lee

    2005-04-01

    Selenium is present in waste rock/overburden that is removed during phosphate mining in southeastern Idaho. Waste rock piles or rock used during reclamation can be a source of selenium (and other metals) to streams and vegetation. Some instances (in 1996) of selenium toxicity in grazing sheep and horses caused public health and environmental concerns, leading to Idaho Department of Environmental Quality (DEQ) involvement. The Selenium Information System Project is a collaboration among the DEQ, the United States Forest Service (USFS), the Bureau of Land Management (BLM), the Idaho Mining Association (IMA), Idaho State University (ISU), and the Idaho National Laboratory (INL)2. The Selenium Information System is a centralized data repository for southeastern Idaho selenium data. The data repository combines information that was previously in numerous agency, mining company, and consultants’ databases and web sites. These data include selenium concentrations in soil, water, sediment, vegetation and other environmental media, as well as comprehensive mine information. The Idaho DEQ spearheaded a selenium area-wide investigation through voluntary agreements with the mining companies and interagency participants. The Selenium Information System contains the results of that area-wide investigation, and many other background documents. As studies are conducted and remedial action decisions are made the resulting data and documentation will be stored within the information system. Potential users of the information system are agency officials, students, lawmakers, mining company personnel, teachers, researchers, and the general public. The system, available from a central website, consists of a database that contains the area-wide sampling information and an ESRI ArcIMS map server. The user can easily acquire information pertaining to the area-wide study as well as the final area-wide report. Future work on this project includes creating custom tools to increase the

  12. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  13. Induced fractures: well stimulation through fracturing

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    Seven fracture stimulation treatments were planned and executed under the Department of Energy-funded Geothermal Well Stimulation Program. The objective of this program is to demonstrate that geothermal well stimulation offers a technical alternative to additional well drilling and redrilling for productivity enhancement which can substantially reduce development costs. Well stimulation treatments have been performed at Raft River, Idaho; East Mesa, California; The Geysers, California; and the Baca Project Area in New Mexico. Six of the seven stimulation experiments were technically successful in stimulating the wells. The two fracture treatments in East Mesa more than doubled the production rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. The acid etching treatment in the well at the Geysers did not have any material effect on production rate.

  14. Methods for obtaining well-to-well flow communication

    SciTech Connect (OSTI)

    Harmon, R.A.; Wahl, H.A.

    1988-07-05

    A process is described for reducing uneven areal sweep of injection fluid in a well pattern having a central injection well surrounded by production wells, all of the wells being communicated by a fracture, comprising: (a) injecting fracturing fluid containing a proppant material into the central injection well and into the fracture to prop the fracture adjacent the injection well; (b) simultaneous with step (a), injecting fluid into one or more of the production wells toward which it is desired to reduce the flow of injection fluid, thereby causing a greater portion of the proppant material to be placed in the fracture adjacent the central injection well in directions away from the one or more of the production wells toward which it is desired to reduce the flow of injection fluid; and (c) thereby subsequently reducing uneven areal sweep of injection fluid injected into the central injection well at rates and pressures below those required to part the fracture.

  15. Pulse Wave Well Development Demonstration

    SciTech Connect (OSTI)

    Burdick, S.

    2001-02-23

    Conventional methods of well development at the Savannah River Site generate significant volumes of investigative derived waste (IDW) which must be treated and disposed of at a regulated Treatment, Storage, or Disposal (TSD) facility. Pulse Wave technology is a commercial method of well development utilizing bursts of high pressure gas to create strong pressure waves through the well screen zone, extending out into the formation surrounding the well. The patented process is intended to reduce well development time and the amount of IDW generated as well as to micro-fracture the formation to improve well capacity.

  16. Well-pump alignment system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  17. Observation Wells | Open Energy Information

    Open Energy Info (EERE)

    in that area. References Gislason, et al., 2010, http:www.sciencedirect.comsciencearticlepiiS1750583609001698 Howle, et al., 2003, http:www.sciencedirect.com...

  18. Geopressured-geothermal well activities in Louisiana

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  19. Property:FirstWellFlowComments | Open Energy Information

    Open Energy Info (EERE)

    Showing 3 pages using this property. C Chena Geothermal Area + Flow test enabled estimation of drawdown of 148 ft in the production well at the required...

  20. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  1. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  2. La Primavera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  3. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  4. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  5. Cerro Prieto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  6. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  7. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  8. Los Azufres Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  9. Property:NumRepWells | Open Energy Information

    Open Energy Info (EERE)

    NumRepWells Property Type Number Description Number of replacement wells needed in a specific Geothermal Resource Area Retrieved from "http:en.openei.orgwindex.php?titlePrope...

  10. Wellness Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational

  11. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, Chin-Fu; Doughty, Christine A.

    1985-01-01

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  12. Wellness Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Wellness Program Workers spend 200 hours per month at work, and keeping a healthy work-life balance is essential. The Headquarters Wellness Program provides support and assistance to DOE employees through a variety of programs and resources geared toward enhancing their mental and physical well-being. Wellness programs include: Accommodations, the Child Development Centers, the Employee Assistance Program (EAP), the Forrestal (FOHO) and Germantown (GOHO) Fitness Centers, the Occupational

  13. Well having inhibited microbial growth

    DOE Patents [OSTI]

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  14. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect (OSTI)

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  15. Connecticut Wells | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6751 Sector: Geothermal energy Product: A Connecticut-based geothermal heat pump installer and well driller. Coordinates: 40.04446, -80.690839 Show Map Loading...

  16. Well Monitoring System for EGS

    Broader source: Energy.gov [DOE]

    EGS well monitoring tools offer a unique set of solutions which will lower costs and increase confidence in future geothermal projects.

  17. Remote multiple string well completion

    SciTech Connect (OSTI)

    Kirkland, K.G.

    1981-04-21

    Method and apparatus for multiple string well completions by remote operations in underwater installations, by which the tubing strings are installed independently rather than simultaneously.

  18. Well Deepening | Open Energy Information

    Open Energy Info (EERE)

    can be deepened in order to reach a location with higher flow and temperature. Use in Geothermal Exploration Sometimes wells that were initially not planned for utilization...

  19. Thermal well-test method

    DOE Patents [OSTI]

    Tsang, C.F.; Doughty, C.A.

    1984-02-24

    A well-test method involving injection of hot (or cold) water into a groundwater aquifer, or injecting cold water into a geothermal reservoir is disclosed. By making temperature measurements at various depths in one or more observation wells, certain properties of the aquifer are determined. These properties, not obtainable from conventional well test procedures, include the permeability anisotropy, and layering in the aquifer, and in-situ thermal properties. The temperature measurements at various depths are obtained from thermistors mounted in the observation wells.

  20. Well drilling apparatus and method

    DOE Patents [OSTI]

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  1. Recompletion Report for Well UE-10j

    SciTech Connect (OSTI)

    M. J. Townsend

    2000-05-01

    Existing Well UE-10j was deepened and recompleted for the U.S. Department of Energy, Nevada Operations Office in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was originally drilled to a total depth of 725.4 meters in 1965 for use as a hydrologic test hole in the northern portion of Yucca Flat in Area 8 of the Nevada Test Site. The well is located up-gradient of the Yucca Flat underground test area and penetrates deep into the Paleozoic rocks that form the lower carbonate aquifer of the NTS and surrounding areas. The original 24.4-centimeter-diameter borehole was drilled to a depth of 725.4 meters and left uncompleted. Water-level measurements were made periodically by the U.S. Geological Survey, but access to the water table was lost between 1979 and 1981 due to hole sloughing. In 1993, the hole was opened to 44.5 centimeters and cased off to a depth of 670.0 meters. The hole diameter was then decreased to 31.1 centimeters for drilling to a total depth of 796.4 meters. The depth to water in the open borehole was measured at 658.7 meters on March 18, 1993.

  2. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect (OSTI)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  3. Maximize revenue from gas condensate wells

    SciTech Connect (OSTI)

    Hall, S.R. )

    1988-09-01

    A computerized oil/gas modeling program called C.O.M.P. was used to analyze comparative recovery, losses and revenues from six different producing systems on a given wellstream as tested on initial completion. A multi-stage separation/stabilization/compression system (HERO system) manufactured by U.S. Enertek, Inc., was subsequently installed to produce the well, plus five other wells in the immediate area. This article compares theoretical gains forecast by the modeling program with actual gains recorded during later testing of the same well with a two-stage separation hookup and the multi-stage unit. The test using two-stage separation was run as a basis for comparison. Operating temperatures and pressures for each test are shown.

  4. Well Monitoring Systems for EGS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our system can stay in the well and operate unmanned for days or years. This reduces cost ... - Once in place, the system can run unmanned (no logging truck) 3 | US DOE ...

  5. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  6. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  7. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    SciTech Connect (OSTI)

    Lamia, L.; Spitaleri, C.; La Cognata, M.; Palmerini, S.; Sergi, M. L.; Puglia, S. M. R.

    2015-02-24

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuterium ({sup 2}H), for the two lithium {sup 6,7}Li isotopes, for the {sup 9}Be and the one for the two boron {sup 10,11}B isotopes will be discussed.

  8. Well completion and servicing fluid

    SciTech Connect (OSTI)

    Grimsley, R.L.

    1990-09-25

    This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.

  9. Process for cementing geothermal wells

    DOE Patents [OSTI]

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  10. Remote multiple string well completion

    SciTech Connect (OSTI)

    Kirkland, K.G.

    1981-09-15

    In a remotely installed underwater well apparatus, a tubular body, typically a multiple string tubing hanger, is landed in a position oriented rotationally with respect to a reference point on the apparatus and a seal device is then energized by the same tool employed to land and orient the tubular body.

  11. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  12. Megabreccia deposits in an extensional basin: The Miocene-Pliocene Horse Camp Formation, east-central Nevada

    SciTech Connect (OSTI)

    Schmitt, J.G.; Brown, C.L. )

    1991-06-01

    Three varieties of megabreccia deposits are present in alluvial-lacustrine extensional basin fill of the Miocene-Pliocene Horse Camp Formation of east-central Nevada. Coherent debris sheets (150-300 m thick; up to 1,500 m long) consist of Oligocene-Miocene volcanic rock masses which are internally fractured yet retain their stratigraphic integrity. Fracture zones show variable amounts of displacement (up to 5 cm) and brecciation. These debris sheets overlie horizontally stratified sandstone and laminated claystone interpreted as playa deposits and are overlain by lithified grus. Emplacement of these coherent debris sheets was by landslide or block slide. Associated deposits of large boulders within playa facies suggest gliding of blocks broken from the edges of the landslides across wet playa surfaces. Large (1.6 - 2.4 km-long) allochthonous blocks consist of intact Paleozoic and Tertiary volcanic stratigraphic sequences which are brecciated and attenuated. Brecciation is accompanied in places by incorporation of muddy sand matrix. These blocks may be fragments of the upper plate of low-angle detachment faults which broke away as gravity-driven blocks from the nearby Horse Range and slid along the uplifted former detachment surface into the adjacent Horse Camp basin. Megabreccia deposits characterize Teritary extensional basins in western North America. Detailed analysis of their stratigraphic, sedimentologic, and structural relations can provide a better understanding of the complex tectonosedimentary history of these basins.

  13. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County, Nevada, USA, where surface features define a 9-km-long area that matches the...

  14. Bottom hole oil well pump

    SciTech Connect (OSTI)

    Hansen, J.E.; Hinds, W.E.; Oldershaw, P.V.

    1982-09-21

    A bottom hole well pump is disclosed comprising a pump housing supported by a control cable for raising and lowering the housing within tubing in a well, a linear motor within the housing causing reciprocation of a plunger extending into a pumping chamber formed by the housing with inlet and outlet check valves for controlling flow of oil or other liquid into the pumping chamber and from the pumping chamber into the tubing above the pump housing. In one embodiment, belleville-type springs are employed for storing energy as the plunger approaches its opposite limits of travel in order to initiate movement of the plunger in the opposite direction. In this embodiment, a single pumping chamber is formed above the linear motor with a single-valve block arranged above the pumping chamber and including inlet check valve means for controlling liquid flow into the pumping chamber and outlet check valve means for controlling liquid flow from the pumping chamber into the tubing interior above the pump housing. In another embodiment, pumping chambers are formed above and below the linear motor with a tubular plunger extending into both pumping chambers, in order to achieve pumping during both directions of travel of the plunger.

  15. Well cleanup and completion apparatus

    SciTech Connect (OSTI)

    Brieger, E.F.

    1984-03-13

    A well cleanup and completion apparatus and technique. A packer is located downhole in a borehole, and a tool string comprising a one-way vent assembly and a one-way circulating valve assembly is connected above a perforating gun. The tool string is used to run the gun downhole through the packer until the gun arrives at a location adjacent to the formation to be perforated. During this time, the packer assembly must be in a configuration which admits flow from the lower to the upper annulus. Cleaning fluid is circulated down the entire tool string to the one-way circulating valve assembly located immediately above the firing head of the gun, thereby displacing fluid from the lower annulus, and cleaning any debris from the gun firing head. The packer is next closed, the gun detonated, whereupon the formation is perforated and production fluid flows through the perforations, up the lower annulus, into the one-way vent assembly located below the packer, into the tubing, and to the surface of the ground. Accordingly, the apparatus enables the gun and the borehole annulus adjacent the gun to be cleaned, thereby assuring that the well is properly completed in a single trip into the wellbore.

  16. Improvements in subsea well technology

    SciTech Connect (OSTI)

    Halvorsen, T.

    1995-12-31

    The next generation subsea developments will be facing a number of new challenges which have to be solved to maintain a cost-efficient solution for production of oil and gas: (1) Smaller fields, i.e. cost reduction through volume will no longer be valid. (2) Freedom in configuration of subsea development. The current idea of standardization will not be directly applicable for cost reduction. (3) Various water depth. The same technology should be applicable for both guideline- and guideline less water depth. (4) Development in new areas of the world where drilling rig deployable system is a must. (5) Various types of fluid processing may be required as an integral part of a subsea production system. The next generation subsea production system should be universal and applicable to any subsea field development. Kongsberg Offshore a.s. (KOS) have gained extensive experience in supplying standardized total subsea systems. The paper presents the approach taken by KOS to develop the next generation subsea system, and discussed the challenges associated with this.

  17. Ultra Thin Quantum Well Materials

    SciTech Connect (OSTI)

    Dr Saeid Ghamaty

    2012-08-16

    This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would

  18. Category:Production Wells | Open Energy Information

    Open Energy Info (EERE)

    Wells Jump to: navigation, search Geothermalpower.jpg Looking for the Production Wells page? For detailed information on Production Wells, click here. Category:Production Wells...

  19. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  20. TWRS privatization phase 1 monitoring wells engineering study

    SciTech Connect (OSTI)

    Williams, B.A.; Newcomer, D.R.

    1998-04-01

    This engineering study provides an evaluation of existing wells and boreholes (wells) within the proposed location for the Tank Waste Remediation System (TWRS) Privatization Phase 1 demonstration site. Phase 1 is part of the TWRS program that was established to manage, retrieve, treat, immobilize, and dispose of high-level waste stored in underground tanks at the Hanford Site. This evaluation is to determine which wells will remain active within the demonstration site based on regulatory, programmatic, or other beneficial use requirements. An initial evaluation of wells within the demonstration site was conducted in 1996. However, changes in construction plans and expansion of the demonstration site necessitated a reevaluation and reclassification of the wells that are within the expanded site. Impacted wells include many of those previously evaluated as well as additional wells identified in or near the expansion areas. Thirty-three wells exist within and immediately adjacent to the identified boundary of the proposed demonstration site. The wells identified for decommissioning will be abandoned according to the well decommissioning plan. Future well requirements within the site include replacement wells for those wells impacted by construction activities, replacements for Resource Conservation and Recovery Act of 1976 (RCRA) wells going dry, and a new characterization well installed to support a TWRS Phase 2 site assessment.

  1. Bruchsal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  2. Garching Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  3. Takigami Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  4. Yamagawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  5. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  6. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  7. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  8. South Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  9. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. Adak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...