Powered by Deep Web Technologies
Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GRR/Section 19-CO-h - Denver Basin and Designated Basin Permitting Process  

Open Energy Info (EERE)

9-CO-h - Denver Basin and Designated Basin Permitting Process 9-CO-h - Denver Basin and Designated Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-h - Denver Basin and Designated Basin Permitting Process 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Ground Water Commission Colorado Division of Water Resources Regulations & Policies CRS 37-90-107 Application for Use of Ground Water 2 CCR 410-1 Rules and Regulations for the Management and Control of Designated Ground Water Triggers None specified Click "Edit With Form" above to add content 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf 19COHDenverBasinAndDesignatedBasinPermittingProcess.pdf

2

SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO  

E-Print Network (OSTI)

Chapter SD SUMMARY OF TERTIARY COAL RESOURCES OF THE DENVER BASIN, COLORADO By D. J. Nichols in U.S. Geological Survey Professional Paper 1625-A 1999 Resource assessment of selected Tertiary coal beds and zones here or on this symbol in the toolbar to return. 1999 Resource assessment of selected Tertiary coal

3

File:Denver Basin.pdf | Open Energy Information  

Open Energy Info (EERE)

Basin.pdf Basin.pdf Jump to: navigation, search File File history File usage File:Denver Basin.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 625 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:00, 4 March 2013 Thumbnail for version as of 11:00, 4 March 2013 1,275 × 1,650 (625 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Retrieved from "http://en.openei.org/w/index.php?title=File:Denver_Basin.pdf&oldid=5897

4

GRR/Section 19-CO-b - Denver Basin Permitting Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 19-CO-b - Denver Basin Permitting Process GRR/Section 19-CO-b - Denver Basin Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-b - Denver Basin Permitting Process 19COBDenverBasinPermittingProcess.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Regulations & Policies CRS 37-90-103 Underground Water Definitions CRS 37-90-137 Permits to Construct Wells Outside Designated Basins CRS 37-92-302 Application for Water Rights or Change of Such Water Rights 2 CCR 402-6 The Denver Basin Rules Triggers None specified Click "Edit With Form" above to add content 19COBDenverBasinPermittingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

5

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

6

City and County of Denver - Denver Energy Challenge for Residents...  

Open Energy Info (EERE)

(DSIRE)1 Summary The City and County of Denver are providing rebates to Denver homeowners through the Denver Energy Challenge. To be eligible, participants must first sign up...

7

Cleaning up the Streets of Denver  

Science Conference Proceedings (OSTI)

Between 1913 and 1924, several Denver area facilities extracted radium from carnotite ore mined from the Paradox basin region of Colorado. Tailings or abandoned ores from these facilities were apparently incorporated into asphalt used to pave approximately 7.2 kilometers (4.5 miles) of streets in Denver. A majority of the streets are located in residential areas. The radionuclides are bound within the asphalt matrix and pose minimal risk unless they are disturbed. The City and County of Denver (CCoD) is responsible for controlling repairs and maintenance on these impacted streets. Since 2002, the CCoD has embarked on a significant capital improvement project to remove the impacted asphalt for secure disposal followed by street reconstruction. To date, Parsons has removed approximately 55 percent of the impacted asphalt. This paper discusses the history of the Denver Radium Streets and summarizes on-going project efforts. (authors)

Stegen, R.L.; Wood, T.R.; Hackett, J.R. [Parsons, 1700 Broadway, Suite 900, Denver, Colorado 80290 (United States); Sogue, A. [City and County of Denver, 201 West Colfax, Denver, Colorado 80202 (United States)

2006-07-01T23:59:59.000Z

8

File:EIA-Denver-S-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver-S-LIQ.pdf Denver-S-LIQ.pdf Jump to: navigation, search File File history File usage Denver Basin, South Part By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.62 MB, MIME type: application/pdf) Description Denver Basin, South Part By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

9

File:EIA-Denver-S-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver-S-GAS.pdf Denver-S-GAS.pdf Jump to: navigation, search File File history File usage Denver Basin, South Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.64 MB, MIME type: application/pdf) Description Denver Basin, South Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:57, 20 December 2010 Thumbnail for version as of 17:57, 20 December 2010 6,600 × 5,100 (10.64 MB) MapBot (Talk | contribs) Automated bot upload

10

File:EIA-Denver-Mid-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver-Mid-GAS.pdf Denver-Mid-GAS.pdf Jump to: navigation, search File File history File usage Denver Basin, Middle Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.22 MB, MIME type: application/pdf) Description Denver Basin, Middle Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:55, 20 December 2010 Thumbnail for version as of 16:55, 20 December 2010 6,600 × 5,100 (10.22 MB) MapBot (Talk | contribs) Automated bot upload

11

Horns and Antlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Horns and Antlers Horns and Antlers Nature Bulletin No. 730 November 2, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist HORNS AND ANTLERS A great many large grazing or browsing animals, the ones which have cloven hoofs and chew their cud, are armed with either horns or antlers. These weapons are used for defense against the attacks of bloodthirsty enemies and in duels between males for possession of a female or a harem of females. Although both horns and antlers are borne on the head and have similar uses, they are very different structures. Most of the world's cattle, sheep and goats -- both wild and domesticated -- have horns. In North America the only living horn- bearers are those noble beasts, the bison (usually called buffalo), the musk ox, the Rocky Mountain goat and the bighorn sheep.

12

2013 Race to Denver | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Race to Denver 2012 Race to DC 2011 Race to New Orleans 2010 Race to Miami 2009 Race to San Francisco 2008 Race to Boston 2007 Race to San Antonio 2013 Race to Denver The ENERGY...

13

File:EIA-Denver-N-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver Basin, Northern Part By 2001 BOE Reserve Class Denver Basin, Northern Part By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.45 MB, MIME type: application/pdf) Description Denver Basin, Northern Part By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:56, 20 December 2010 Thumbnail for version as of 17:56, 20 December 2010 6,600 × 5,100 (10.45 MB) MapBot (Talk | contribs) Automated bot upload

14

File:EIA-Denver-N-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

Denver Basin, Northern Part By 2001 Liquids Reserve Class Denver Basin, Northern Part By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.45 MB, MIME type: application/pdf) Description Denver Basin, Northern Part By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:57, 20 December 2010 Thumbnail for version as of 17:57, 20 December 2010 6,600 × 5,100 (10.45 MB) MapBot (Talk | contribs) Automated bot upload

15

Clean Cities: Denver Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Denver Clean Cities Coalition Denver Clean Cities Coalition The Denver Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Denver Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungcolorado.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak Tyler Svitak is a recent graduate of the University of Colorado, Denver, where he earned a BA in Geography with minors in political sciences and leadership studies. He became the Coordinator of Denver Metro Clean Cities Coalition in November, 2013, after serving as the Clean Cities Energy Coordinator managing DMCCC's role in Refuel Colorado. In this role he worked directly with fleet managers and local leadership to deploy

16

Denver Watts to Water | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial...

17

Denver Police Crime Lab Programming Document  

Science Conference Proceedings (OSTI)

... EXHAUST MODELING AMBIENT AIR TECHNOLOGIES, LLC ... County of Denver, Xcel Energy and the ... Flectron, or other current technology) 3. 12-ft ...

2013-06-21T23:59:59.000Z

18

Denver - Sustainable Building Guidelines (Colorado) | Open Energy...  

Open Energy Info (EERE)

the new Denver Convention Center and associated Hyatt Hotel underwent LEED analysis for energy savings, for example. Most city buildings are subject to review for energy-savings...

19

Denver Museum Taps Into Unique Geothermal Source | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source March 9, 2010 - 4:59pm...

20

File:EIA-Denver-N-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

N-GAS.pdf N-GAS.pdf Jump to: navigation, search File File history File usage Denver Basin, Northern Part By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.49 MB, MIME type: application/pdf) Description Denver Basin, Northern Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:56, 20 December 2010 Thumbnail for version as of 17:56, 20 December 2010 6,600 × 5,100 (10.49 MB) MapBot (Talk | contribs) Automated bot upload

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

File:EIA-Denver-Mid-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

BOE.pdf BOE.pdf Jump to: navigation, search File File history File usage Denver Basin, Middle Part By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.14 MB, MIME type: application/pdf) Description Denver Basin, Middle Part By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:54, 20 December 2010 Thumbnail for version as of 17:54, 20 December 2010 6,600 × 5,100 (10.14 MB) MapBot (Talk | contribs) Automated bot upload

22

File:EIA-Denver-Mid-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

LIQ.pdf LIQ.pdf Jump to: navigation, search File File history File usage Denver Basin, Middle Part By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.56 MB, MIME type: application/pdf) Description Denver Basin, Middle Part By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:55, 20 December 2010 Thumbnail for version as of 17:55, 20 December 2010 6,600 × 5,100 (10.56 MB) MapBot (Talk | contribs) Automated bot upload

23

File:EIA-Denver-S-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

S-BOE.pdf S-BOE.pdf Jump to: navigation, search File File history File usage Denver Basin, South Part By 2001 BOE Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 10.62 MB, MIME type: application/pdf) Description Denver Basin, South Part By 2001 BOE Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Colorado, Wyoming, Nebraska, Kansas File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:57, 20 December 2010 Thumbnail for version as of 17:57, 20 December 2010 6,600 × 5,100 (10.62 MB) MapBot (Talk | contribs) Automated bot upload

24

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

Gasoline and Diesel Fuel Update (EIA)

San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin...

25

Real Goods Solar Denver | Open Energy Information  

Open Energy Info (EERE)

Denver Denver Jump to: navigation, search Logo: Real Goods Solar Denver Name Real Goods Solar Denver Address 7003 E. 47th Ave Dr, Unit 700 Place Denver, Colorado Zip 80218 Sector Solar Year founded 1978 Number of employees 51-200 Phone number 303-222-8950 Website http://www.realgoodssolar.com Coordinates 39.7824444°, -104.9094738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7824444,"lon":-104.9094738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Denver, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Denver, Colorado: Energy Resources Denver, Colorado: Energy Resources (Redirected from Denver) Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Denver, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Denver, Colorado: Energy Resources Denver, Colorado: Energy Resources (Redirected from Denver, CO) Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

The World Renewable Energy Forum in Denver | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The World Renewable Energy Forum in Denver The World Renewable Energy Forum in Denver The World Renewable Energy Forum in Denver Addthis 1 of 12 Santiago Seage, CEO of Abengoa Solar speaks at the World Renewable Energy Forum held at the Denver Convention Center in Denver, Colorado. Image: Dennis Schroeder/NREL 2 of 12 Energy Secretary Steven Chu delivers the keynote speech at the World Renewable Energy Forum in Denver, Colorado. Image: Dennis Schroeder/NREL 3 of 12 Energy Secretary Steven Chu, right and Susan Greene, center, President of ASES, talk to Michael Zuercher-Martinson, left, at the Solectria Renewables booth in the exhibit hall at the World Renewable Energy Forum being held at the Denver Convention Center in Denver, Colorado. Image: Dennis Schroeder/NREL 4 of 12 L-R: Susan Greene, Center, President of ASES, Dan Arvizu, Director of NREL

29

Denver Museum Taps Into Unique Geothermal Source | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source March 9, 2010 - 4:59pm Addthis Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city’s municipal water system. | Photo courtesy of Denver Museum of Nature & Science Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city's municipal water system. | Photo courtesy of Denver Museum of Nature & Science Stephen Graff Former Writer & editor for Energy Empowers, EERE What will the project do? These energy efficient practices could save the museum up to $7 million over the next 20 years. The heating and air conditioning in the new wing of the Denver Museum if

30

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

31

Denver Solar and Wind | Open Energy Information  

Open Energy Info (EERE)

and Wind and Wind Jump to: navigation, search Logo: Denver Solar and Wind Name Denver Solar and Wind Address 12445 E. 39th Ave, Suite 310 Denver, Colorado 80239 Place Denver, Colorado Sector Efficiency, Renewable energy, Services, Solar, Wind energy Product Solar array and wind turbine purchasing and installation. Year founded 2009 Phone number 303-507-2874 Website http://www.Denversolarandwind. Coordinates 39.7722089°, -104.843365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7722089,"lon":-104.843365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Denver, Colorado: Solar in Action (Brochure)  

DOE Green Energy (OSTI)

This brochure provides an overview of the challenges and successes of Denver, Colorado, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

Not Available

2011-10-01T23:59:59.000Z

33

The Denver Hailstorm of 13 June 1984  

Science Conference Proceedings (OSTI)

A brief overview of the 13 June 1984 Denver hailstorm is presented. This storm produced very large hail in a few locations and copious amounts of small hail over a large area. Documentation of the storm includes data from a surface mesonetwork, ...

David O. Blanchard; Kenneth W. Howard

1986-09-01T23:59:59.000Z

34

Denver Public Schools Get Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System November 1, 2010 - 11:22am Addthis Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver Public Schools are expected to save more than $500,000 over a 20-year period . This school year, students in the Denver Public School system are getting a first-hand look at solar panel technology. Main Street Power, a solar development company based in Boulder, Colo., is

35

Denver Public Schools Get Solar Energy System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System Denver Public Schools Get Solar Energy System November 1, 2010 - 11:22am Addthis Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Workers install a solar photovoltaic system on the roof of a Denver school.| Photo courtesy of Main Street Power Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver Public Schools are expected to save more than $500,000 over a 20-year period . This school year, students in the Denver Public School system are getting a first-hand look at solar panel technology. Main Street Power, a solar development company based in Boulder, Colo., is

36

Radiation Research Society 2005 Annual Meeting, Denver, Colorado  

SciTech Connect

Abstracts and proceedings of the 2005 Annual Meeting of the Radiation Research Society held in Denver, Colorado on October 16-19, 2005.

Robert Ullrich, PhD

2005-10-04T23:59:59.000Z

37

EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Lovell-Yellowtail and Basin-Lovell Transmission Line 17: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana EA-1617: Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, and Big Horn and Carbon Counties, Montana Summary DOE's Western Area Power Administration prepared this EA and a finding of no significant impact for a proposal to rebuild the Lovell-Yellowtail (LV-YT) No. 1 and No. 2 115-kV transmission lines, located in Big Horn County, Wyoming, and Big Horn and Carbon Counties in Montana, and the Basin-Lovell 115-kV transmission line in Big Horn County, Wyoming. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

38

A Conversation With Tribal Leaders in Denver | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Conversation With Tribal Leaders in Denver A Conversation With Tribal Leaders in Denver A Conversation With Tribal Leaders in Denver June 27, 2012 - 2:29pm Addthis Senior Advisor for Environmental Management David Huizenga, fifth from left, and EM Office of External Affairs Director Paul Seider, first from left, stand for a photo with leaders and staff members of the Tribal Nations while on a tour of the Rocky Flats site following the Tribal Leader Dialogue in Denver on Tuesday. Senior Advisor for Environmental Management David Huizenga, fifth from left, and EM Office of External Affairs Director Paul Seider, first from left, stand for a photo with leaders and staff members of the Tribal Nations while on a tour of the Rocky Flats site following the Tribal Leader Dialogue in Denver on Tuesday.

39

DOE Seeks Proposals for Support Services at Denver Federal Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seeks Proposals for Support Services at Denver Federal Center Seeks Proposals for Support Services at Denver Federal Center DOE Seeks Proposals for Support Services at Denver Federal Center January 9, 2014 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy today issued a Request for Proposals (RFP) for Technical and Administrative Support Services for Building 55 at Denver Federal Center, Lakewood, Colorado. The RFP proposes a Fixed-Price approach with an Indefinite Delivery/Indefinite Quantity contract line item for potential addition work on records classification and declassification. The estimated price for the support services is approximately $5-10 million. The scope of work includes a range of technical and administrative services to assist in the operations and maintenance of Building 55 at the Denver

40

Denver University - International Institute for Environment and Enterprise  

Open Energy Info (EERE)

Denver University - International Institute for Environment and Enterprise Denver University - International Institute for Environment and Enterprise Jump to: navigation, search Logo: Denver University - International Institute for Environment and Enterprise Name Denver University - International Institute for Environment and Enterprise Address 2199 S. University Blvd. Place Denver, Colorado Zip 80208 Region Rockies Area Coordinates 39.6766296°, -104.9594196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6766296,"lon":-104.9594196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Health Hazard Evaluation Report HETA 84-340-1606, Denver Laundry and Dry Cleaning, Denver, Colorado  

SciTech Connect

Environmental and breathing zone samples were analyzed for tetrachloroethylene (perchloroethylene) (PCE) at Denver Laundry and Dry Cleaning, Denver, Colorado in July, 1984. The evaluation was requested by a company representative to determine if a health hazard from exposure to PCE existed during the commercial laundry and dry cleaning processes. A noise evaluation was also requested. The author concludes that a health hazard exists due to overexposure to PCE and noise at the facility. Recommendations include replacing the present transfer system by a dry/to/dry closed system if possible, improving work practices, removing clothing from each machine at the same time replacing or cleaning and oiling the bearings in the dryers, and establishing an educational program to instruct new employees on the hazards of chemical and noise exposure.

Pryor, P.

1985-07-01T23:59:59.000Z

42

Golden Field Office 15013 Denver West Parkway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Field Office 15013 Denver West Parkway Golden, Colorado 80401 FINDING OF NO SIGNIFICANT IMPACT FLORIDA ATLANTIC UNIVERSITY SOUTHEAST NATIONAL MARINE RENEWABLE ENERGY CENTER MARINE HYDROKINETIC TECHNOLOGY TESTING PROJECT DOE/EA-1965 AGENCY: U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE is proposing to provide federal funding to Florida Atlantic University (FAU) Southeast National Marine Renewable Energy Center (SNMREC) to install a non-grid- connected offshore test berth and test a variety of small-scale research and development ocean current turbine units 1 on public lands managed by the U.S. Department of Interior, Bureau of

43

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 6,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 6, January 2007 Gary A 80208 June 2007 #12;On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 6 1 EXECUTIVE SUMMARY The University of Denver conducted a three-day remote sensing study in the Denver, CO area

Denver, University of

44

Local Energy Plans in Practice: Case Studies of Austin and Denver  

SciTech Connect

Examines the successes and difficulties that Denver, CO, and Austin, TX , experienced implementing citywide energy plans.

Petersen, D.; Matthews, E.; Weingarden, M.

2011-03-01T23:59:59.000Z

45

Wirth Chair in Sustainable Development, University of Colorado Denver |  

Open Energy Info (EERE)

Wirth Chair in Sustainable Development, University of Colorado Denver Wirth Chair in Sustainable Development, University of Colorado Denver Jump to: navigation, search Name Wirth Chair in Sustainable Development, University of Colorado Denver Address 1389 Lawrence Place Denver Website http://spa.ucdenver.edu/wirthc Coordinates 39.7465507°, -104.9991512° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7465507,"lon":-104.9991512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

City extensions : the revitalization of Denver Colorado's Platte River Valley  

E-Print Network (OSTI)

This thesis examines a process for future city growth in Denver, Colorado. Its objective is to develop a model by which future expansion of the city might build qualities of continuity and identity between adjacent sections ...

Sobey, James A

1982-01-01T23:59:59.000Z

47

EEOICPA Event Rocky Flats - Denver, CO | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2:00PM to 4:00PM EST EEOICPA EVENT Joint Outreach Task Group Town Hall meeting IBEW Local 68 5660 Logan Street Denver, CO 80216 Additional information: Formal meeting starts at...

48

Habitat for Humanity of Metro Denver Zero Energy Demonstration Home  

DOE Green Energy (OSTI)

This brochure describes the 2005 demonstration home designed by NREL and the Habitat for Humanity of Metro Denver. The completed home produced 24% more energy than it consumed over 12 months.

Not Available

2008-04-01T23:59:59.000Z

49

City of Denver - Green Building Requirement for City-Owned Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver - Green Building Requirement for City-Owned Denver - Green Building Requirement for City-Owned Buildings City of Denver - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider Greenprint Denver Executive Order 123, signed in October 2007, established the Greenprint Denver Office and the Sustainability Policy for the city. The Sustainability Policy includes several goals and requirements meant to increase the sustainability of Denver by having the city government lead by

50

Horn Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Horn Wind Place Windthorst, Texas Zip 76389 Sector Wind energy Product Texas-based company that develops community-based industrial wind farms. Coordinates 33.576395°, -98.437329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.576395,"lon":-98.437329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

City and County of Denver - Solar Panel Permitting (Colorado) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Panel Permitting (Colorado) Solar Panel Permitting (Colorado) City and County of Denver - Solar Panel Permitting (Colorado) < Back Eligibility Commercial Construction General Public/Consumer Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Colorado Program Type Solar/Wind Permitting Standards Provider Department of Development Services Construction, Electrical, Plumbing and Zoning Permits* are required for Photovoltaic (PV) systems installed in the city of Denver. Denver provides same day permit review for most solar panel projects. More complex engineering projects may still be required to go through the Plan Review process. To obtain Zoning Permits for flush mounted solar panels, applicants must

52

Better Buildings Partners: Boulder, Garfield, and Denver Counties, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Boulder, Garfield, and Denver Counties, Colorado Boulder, Garfield, and Denver Counties, Colorado Boulder County, Colorado Customized Programs Help Energy Efficiency Rise in Three Colorado Counties Photo of buildings spread across a landscape with mountains in the background. An image of a map of the United States with the state for this page highlighted. Progress Within 24 Months of Program Launch* 5,868 residential evaluations completed 6,070 residential energy upgrades completed 51 residential loans provided (for a total of more than $463,000) 2,140 commercial evaluations completed 24.3 million square feet of commercial space covered by upgrades *Progress is reported through December 2012. EnergySmart Location: Boulder, Denver, and Garfield Counties, Colorado Seed Funding: $25 million Target Building Type: Residential and commercial

53

City and County of Denver - Elevations Energy Loans Program (Colorado) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City and County of Denver - Elevations Energy Loans Program City and County of Denver - Elevations Energy Loans Program (Colorado) City and County of Denver - Elevations Energy Loans Program (Colorado) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heating Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Windows, Doors, & Skylights Solar Buying & Making Electricity Program Info State Colorado Program Type Local Loan Program Rebate Amount Residential: $500 - $25,000 Commercial: $1,000 - $150,000 Provider Elevations Credit Union The Elevations Energy Loan can be used to finance a wide variety of efficiency and renewable energy projects in homes and businesses. Homes and

54

Secretary Chu at the World Renewable Energy Forum in Denver | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu at the World Renewable Energy Forum in Denver Secretary Chu at the World Renewable Energy Forum in Denver Secretary Chu at the World Renewable Energy Forum in Denver May 16, 2012 - 6:26pm Addthis 1 of 12 Santiago Seage, CEO of Abengoa Solar speaks at the World Renewable Energy Forum held at the Denver Convention Center in Denver, Colorado. Image: Dennis Schroeder/NREL 2 of 12 Energy Secretary Steven Chu delivers the keynote speech at the World Renewable Energy Forum in Denver, Colorado. Image: Dennis Schroeder/NREL 3 of 12 Energy Secretary Steven Chu, right and Susan Greene, center, President of ASES, talk to Michael Zuercher-Martinson, left, at the Solectria Renewables booth in the exhibit hall at the World Renewable Energy Forum being held at the Denver Convention Center in Denver, Colorado. Image: Dennis Schroeder/NREL

55

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 4,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 4, January 2003 Daniel A year of a multi-year remote sensing study in the Denver area. The remote sensor used in this study channel was somewhat significant. #12;On-Road Remote Sensing in the Denver Area: Year 4 2 INTRODUCTION

Denver, University of

56

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 2  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 2 Sajal S. Pokharel, Gary A Alpharetta, Georgia 30022 CRC Project No. E-23-4 #12;On-Road Remote Sensing in the Denver Area: Year 2 2 EXECUTIVE SUMMARY The University of Denver has completed the second year of a five-year remote sensing study

Denver, University of

57

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 3  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 3 Sajal S. Pokharel, Gary A Alpharetta, Georgia 30022 CRC Project No. E-23-4 #12;On-Road Remote Sensing in the Denver Area: Year 3 2 EXECUTIVE SUMMARY The University of Denver has completed the third year of a multi-year remote sensing study

Denver, University of

58

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 1  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 1 Peter J. Popp, Sajal S Center Parkway Atlanta, Georgia 30346 CRC Project No. E-23-4-99 #12;On-Road Remote Sensing in the Denver-year remote sensing study in the Denver area. The remote sensor used in this study is capable of measuring

Denver, University of

59

ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed  

E-Print Network (OSTI)

ASHRAE Installs New Officers, Directors DENVER ­ ASHRAE has installed new officers and directors for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You is William P. "Bill" Bahnfleth, Ph.D., P.E., Fellow ASHRAE, ASME Fellow, a professor of Architectural

Maroncelli, Mark

60

Denver Watts to Water | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Denver Watts to Water Denver Watts to Water Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate ENERGY STAR communications toolkit Bring Your Green to Work with ENERGY STAR

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Denver Federal Center Solar Park | Open Energy Information  

Open Energy Info (EERE)

Center Solar Park Center Solar Park Jump to: navigation, search Name Denver Federal Center Solar Park Facility Denver Federal Center Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser Xcel Energy Address West 6th Ave & Kipling Street Location Lakewood, Colorado Zip 80225 Coordinates 39.7247982353°, -105.118432045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7247982353,"lon":-105.118432045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

The Owl Horn Radar Signature in Developing Southern Plains Supercells  

Science Conference Proceedings (OSTI)

During spring 2001 in the Southern Plains, a recurring, hitherto undocumented reflectivity signature that the authors have called the Owl Horn signature (because the radar reflectivity pattern resembles the profile of the Great Horned Owl) was ...

Matthew R. Kramar; Howard B. Bluestein; Andrew L. Pazmany; John D. Tuttle

2005-09-01T23:59:59.000Z

63

Big Horn County Elec Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Twitter icon Big Horn County Elec Coop, Inc (Wyoming) Jump to: navigation, search Name Big Horn County Elec Coop, Inc Place Wyoming Utility Id 1683 References EIA Form EIA-861...

64

City of Denver - Green Building Requirement for City-Owned Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

123, signed in October 2007, established the Greenprint Denver Office and the Sustainability Policy for the city. The Sustainability Policy includes several goals and...

65

Denver SuperShuttle CNG Fleet Evaluation; Evaluacion de la flotilla de GNC de la empresa SuperShuttle de Denver  

DOE Green Energy (OSTI)

A description of a joint effort between Denver SuperShuttle, the Gas Research Institute (GRI) and DOE that evaluated two types of bi-fuel and compressed natural gas.

LaRocque, T.

2001-10-01T23:59:59.000Z

66

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 5,  

E-Print Network (OSTI)

On-Road Remote Sensing of Automobile Emissions in the Denver Area: Year 5, January 2005 Gary A, Suite 140 Alpharetta, Georgia 30022 Contract No. E-23-9 #12;On-Road Remote Sensing of Automobile-day remote sensing study in the Denver, CO area in the winter of 2005. The remote sensor used in this study

Denver, University of

67

American Wind Energy Association, Denver, May 2005 Uncertainties in Results of Measure-Correlate-Predict Analyses  

E-Print Network (OSTI)

American Wind Energy Association, Denver, May 2005 Uncertainties in Results of Measure Wind Energy Association, Denver, May 2005 Statistical models are then investigated that estimate-Correlate-Predict Analyses Anthony L. Rogers, Ph. D.* John W. Rogers, M.S.** James F. Manwell, Ph. D.* *Renewable Energy

Massachusetts at Amherst, University of

68

The Effect of Building Shadows on the Vertical Temperature Structure of the Lower Atmosphere in Downtown Denver  

Science Conference Proceedings (OSTI)

Denver's Continuous Air Monitoring Program (CAMP) site, typically recording the highest carbon monoxide levels in the metropolitan area; lies within a large region of downtown Denver shadowed by tall buildings. Two studies conducted during the ...

Dominique Ruffieux; Daniel E. Wolfe; Catherine Russell

1990-12-01T23:59:59.000Z

69

Big Horn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Geographic Relationship Tables Retrieved from "http:en.openei.orgwindex.php?titleBigHorn,Wyoming&oldid227758" Categories: Places Stubs Cities What links here Related...

70

Energy Secretary Chu to Keynote World Renewable Energy Forum in Denver |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Keynote World Renewable Energy Forum in to Keynote World Renewable Energy Forum in Denver Energy Secretary Chu to Keynote World Renewable Energy Forum in Denver May 16, 2012 - 1:13pm Addthis News Media Contact (202) 386-4940 WASHINGTON - Today, Wednesday, May 16, 2012, U.S. Energy Secretary Steven Chu will deliver a keynote address at the World Renewable Energy Forum in Denver, Colorado, where he will highlight the economic opportunities in the clean energy economy as well as the Obama Administration's commitments to strengthening U.S. leadership in the global clean energy race and helping American clean energy companies continue to create jobs and reduce our dependence on foreign oil. Following his remarks, Secretary Chu will tour the Exhibit Hall and participate in a media availability with Metro Denver Economic Development

71

NREL: Wind Research - The Denver Post Highlights the NWTC's New 5-MW  

NLE Websites -- All DOE Office Websites (Extended Search)

The Denver Post Highlights the NWTC's New 5-MW Dynamometer The Denver Post Highlights the NWTC's New 5-MW Dynamometer January 2, 2014 On January 2, a reporter from The Denver Post toured the new 5-megawatt dynamometer test facility at the National Wind Technology Center (NWTC). Denver Post Writer Mark Jaffe spoke with NWTC Center Director Fort Felker to learn more about how these innovative research capabilities can impact the wind industry as a whole. Read the full story . Officially dedicated in December, the new facility houses one of the largest dynamometers in the world, which offers advanced capabilities to test the mechanical and electrical power-producing systems of multimegawatt wind turbines in a controlled environment. The new dynamometer can also be directly connected to the electric grid or through a controllable grid

72

A Subsynoptic Analysis of the Denver Tornadoes of 3 June 1981  

Science Conference Proceedings (OSTI)

On the afternoon of 3 June 1981 a severe thunderstorm spawned two tornadoes which moved across a portion of metropolitan Denver. The tornadoes were classified as strong F2 intensity, and caused damage totaling over $1 5 million. The synoptic-...

E. J. Szoke; M. L. Weisman; J. M. Brown; F. Caracena; T. W. Schlatter

1984-04-01T23:59:59.000Z

73

Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24 - 26, 2012  

SciTech Connect

This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Summer Technical Update Meeting, held on July 24-26, 2012, in Denver, Colorado.

2012-10-01T23:59:59.000Z

74

Development of a Statistical Model for Forecasting Episodes of Visibility Degradation in the Denver Metropolitan Area  

Science Conference Proceedings (OSTI)

In 1990, the State of Colorado implemented a visibility standard of 0.076 km?1 of beta extinction for the Denver metropolitan area. Meteorologists with Colorado's Air Pollution Control Division forecast high pollution days associated with ...

P. J. Reddy; D. E. Barbarick; R. D. Osterburg

1995-03-01T23:59:59.000Z

75

Contrasting Meteorological Conditions Associated with Winter Storms at Denver and Colorado Springs  

Science Conference Proceedings (OSTI)

Case studies of heavy snowstorms at Denver and Colorado Springs, Colorado, indicate that they occur under different meteorological conditions. The authors examine the hypothesis that there are in fact fundamental differences between the synoptic ...

Jennifer Luppens Mahoney; John M. Brown; Edward I. Tollerud

1995-06-01T23:59:59.000Z

76

A Differential Reflectivity Radar Hall Measurement Technique: Observations during the Denver Hailstorm of 13 June 1984  

Science Conference Proceedings (OSTI)

A differential reflectivity radar technique for observing hailstorms is demonstrated using measurements obtained during the 13 June 1984 Denver hailstorm. The hail regions of the storm are identified with the differential reflectivity hail ...

K. Aydin; Y. Zhao; T. A. Seliga

1990-02-01T23:59:59.000Z

77

The Denver Cyclone. Part I: Generation in Low Froude Number Flow  

Science Conference Proceedings (OSTI)

A numerical model is used to study the Denver Cyclone, a mesoscale vortex that develops in eastern Colorado under southerly to southeasterly flow. Diurnal effects (e.g., surface heating/cooling) have been excluded from these simulations, but ...

N. Andrew Crook; Terry L. Clark; Mitchell W. Moncrieff

1990-12-01T23:59:59.000Z

78

Snow-Band Formation and Evolution during the 15 November 1987 Aircraft Accident at Denver Airport  

Science Conference Proceedings (OSTI)

The formation and evolution of convective rain and snow bands prior to and during the crash of Continental Airlines flight 1713 on 15 November 1987 at Denver Stapleton Airport are discussed. Convective rain occurred during the early stages of the ...

Roy M. Rasmussen; Andrew Crook; Cathy Kessinger

1993-12-01T23:59:59.000Z

79

Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24 - 26, 2012  

SciTech Connect

This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Summer Technical Update Meeting, held on July 24-26, 2012, in Denver, Colorado.

Not Available

2012-10-01T23:59:59.000Z

80

Local Energy Plans in Practice: Case Studies of Austin and Denver | Open  

Open Energy Info (EERE)

Local Energy Plans in Practice: Case Studies of Austin and Denver Local Energy Plans in Practice: Case Studies of Austin and Denver Jump to: navigation, search Name Local Energy Plans in Practice: Case Studies of Austin and Denver Agency/Company /Organization National Renewable Energy Laboratory Partner Austin Climate Protection Program (co-author: (E. Matthews), Greenprint Denver (co-author: M. Weingarden) Sector Energy Focus Area Energy Efficiency, Buildings, Biomass, Solar, Wind, Transportation, People and Policy, Water Conservation, Offsets and Certificates, Greenhouse Gas Phase Bring the Right People Together, Create a Vision, Prepare a Plan, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available; free Publication Date 2011/03/01 Website http://www.nrel.gov/docs/fy11o

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Big Horn 2 | Open Energy Information  

Open Energy Info (EERE)

2 2 Facility Big Horn 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser MSR Public Power Agency Location Near Bickleton WA Coordinates 45.871889°, -120.292354° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.871889,"lon":-120.292354,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Big Horn Rural Electric Co (Montana) | Open Energy Information  

Open Energy Info (EERE)

Co (Montana) Jump to: navigation, search Name Big Horn Rural Electric Co Place Montana Utility Id 1675 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

83

Gardner Denver and McCain Foods Teaming Profile | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Gardner Denver and McCain Foods Teaming Profile Gardner Denver and McCain Foods Teaming Profile Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

84

Program and Abstracts: DOE Solar Program Review Meeting 2004, 25--28 October 2004, Denver, Colorado  

DOE Green Energy (OSTI)

This booklet contains the agenda and abstracts for the 2004 U.S. DOE Solar Energy Technologies Program Review Meeting. The meeting was held in Denver, Colorado, October 25-28, 2004. More than 240 abstracts are contained in this publication. Topic areas for the research papers include laboratory research, program management, policy analysis, and deployment of solar technologies.

Not Available

2004-10-01T23:59:59.000Z

85

Mesoscale Weather and Aviation Safety: The Case of Denver International Airport  

Science Conference Proceedings (OSTI)

The new Denver International Airport will be the first new major commercial airport to be built in the United States in 20 years. Concern has been expressed about the meteorology at the new airport site and its potential impact on aviation ...

Steven L. Rhodes

1992-04-01T23:59:59.000Z

86

Financing Solar Installations with New Markets Tax Credits: Denver, Colorado (Fact Sheet)  

SciTech Connect

Fact sheet provides a brief overview of New Markets Tax Credits (NMTCs), a third-party financing incentive for solar installations in the public sector. NMTCs are intended to encourage economic activity in low-income and disadvantaged neighborhoods. The use of NMTCs in an innovative solar project transaction by the City of Denver, Colorado, is highlighted.

Coughlin, J.

2010-09-01T23:59:59.000Z

87

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011  

SciTech Connect

This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

2011-11-01T23:59:59.000Z

88

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011  

SciTech Connect

This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

Not Available

2011-11-01T23:59:59.000Z

89

The BigHorn Home Improvement Center; Silverthorne, Colorado  

DOE Green Energy (OSTI)

The BigHorn Home Improvement Center in Silverthorne, Colorado, was designed using a whole-building approach, looking at the way that the building's site, windows, walls, floors, electrical, and mechanical systems could work together most efficiently. The center includes a hardware store and building materials warehouse space, and features a 9.0 kw photovoltaic system to provide an average of 25% of the building's electricity. The BigHorn Center is one of the nation's first commercial buildings to integrate daylighting and natural ventilation cooling systems into a retail space. It is expected to reduce energy costs by 62% compared to conventionally designed retail buildings.

Epstein, K.; Torcellini, P.

2001-01-02T23:59:59.000Z

90

Market diffusion and the effect of demonstrations : a study of the Denver Metro Passive Solar Home program  

E-Print Network (OSTI)

This paper is a report on the reactions to and effects of the Denver Metro Passive Solar Home demonstration program, conducted in the Spring of 1981. The purpose of the program was to provide impetus to builders for ...

Lilien, Gary L.

1981-01-01T23:59:59.000Z

91

Habitat Metro Denver -- Perfecting Award-Winning Affordable Homes Using Building America's Integrated Design Approach  

DOE Green Energy (OSTI)

Habitat for Humanity's goal is to supply quality housing to poor families while reducing their energy cost burden, especially in light of ever-increasing energy prices. Habitat Metro Denver partnered with the U.S. Department of Energy's Building America Project and the National Renewable Energy Laboratory to improve their construction and design process to create an affordable home that is not only cost-effective and volunteer friendly to build but highly energy efficient and a comfortable place to live.

Not Available

2004-12-01T23:59:59.000Z

92

Horn Operational Experience in K2K, MiniBooNE, NuMI and CNGS  

E-Print Network (OSTI)

This paper gives an overview of the operation and experience gained in the running of magnetic horns in conventional neutrino beam lines (K2K, MiniBooNE, NuMI and CNGS) over the last decade. Increasing beam power puts higher demands on horn conductors but even more on their hydraulic and electrical systems, while the horn environment itself becomes more hostile due to radiation. Experience shows that designing horns for remote handling and testing them extensively without beam become prerequisites for successful future neutrino beam lines.

Pardons, A

2008-01-01T23:59:59.000Z

93

Geologic setting and natural gas potential of Niobrara formation, Williston Basin  

SciTech Connect

Chalk units in the Niobrara Formation (Upper Cretaceous) have potential for generation and accumulation of shallow, biogenic gas in the central and eastern Williston basin. Similar to area of Niobrara gas production in the eastern Denver basin, Niobrara chalks in South and North Dakota were deposited on carbonate ramps sloping westward off the stable eastern platform of the Western Interior seaway. Within the Williston basin, the Niobrara of the western Dakotas, eastern North Dakota, and central South Dakota has different stratigraphic relationships. These three areas can be further subdivided and ranked into six areas that have different exploration potential. The south margin of the Williston basin in central South Dakota is the most attractive exploration area. Niobrara chalk reservoirs, source rocks, and structural traps in the southern Williston basin are similar to those in the eastern Denver basin. Chalk porosities are probably adequate for gas production, although porosity is controlled by burial depth. Organic carbon content of the chalk is high and shows of biogenic gas are reported. Large, low-relief structural features, which could serve as traps, are present.

Shurr, G.W.; Rice, D.D.

1985-05-01T23:59:59.000Z

94

Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24-26, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summer 2012 Technical Update Meeting Report Denver, Colorado - July 24 - 26, 2012 October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

95

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project Big Horn and Carbon Counties, Montana and Big Horn County, Wyoming MITIGATION ACTION IDENTIFIER RESPONSIBLE PARTY FOR IMPLEMENTING MITIGATION ACTION LOCATION IF AVAILABLE/ STRUCTURE NUMBERS PARTY RESPONSIBLE FOR MONITORING AND ENSURING COMPLIANCE 1 Construction Contractor Western Maintenance Standard Construction Project Practices will be implemented through Phases I of Project construction and operation (Table 2.1-3 in the Final EA.) Western Construction (during Construction Phase) Western Maintenance (During maintenance of facility) NPS - WESTERN INTERAGENCY AGREEMENT FOR BIGHORN CANYON NRA 2 NPS, Western The Interagency Agreement between United

96

Evaluation of a marketing program designed to increase consumer consideration of energy-efficient products in Denver, Colorado  

SciTech Connect

A demonstration marketing program to sensitize Denver homeowners to incorporate the energy cost of ownership orientation in their decision process regarding purchase of energy-efficient products is described. Personal interviews with Denver homeowners were conducted. A first survey established a baseline for consumer awareness and acceptance of energy conservation and conservation-related products and provided information which could be utilized in developing marketing strategies related to energy conservation and the concept of energy cost of ownership. A second survey measured shifts in awareness and attitudes which might have occurred as a result of the marketing demonstration program. The methodology and results of the evaluation are discussed in detail. The Denver Test Market Media Campaign conducted through multi-media advertising and public relations campaigns to sensitize the residents to the positive consideraton of energy-efficient products is described. (MCW)

1978-08-01T23:59:59.000Z

97

Big Horn Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Wind Power Project Wind Power Project Jump to: navigation, search Name Big Horn Wind Power Project Facility Big Horn Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer PPM Energy Inc Energy Purchaser Modesto-Santa Clara-Redding Public Power Agency Location Klickitat County WA Coordinates 45.935948°, -120.284085° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.935948,"lon":-120.284085,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer (OSTI)

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

99

Bio/consult as Horns Rev. Summary of baseline surveys Dok. nr. 2041-02-03-004, rev. 2  

E-Print Network (OSTI)

Bio/consult as Horns Rev. Summary of baseline surveys Dok. nr. 2041-02-03-004, rev. 2 Prep ................................................................................................................................9 #12;Bio/consult as Horns Rev. Summary of baseline surveys Dok. nr. 2041-02-03-004, rev. 2 Page 2 1 Figure 1. Map of locations sampled in June 2001. #12;Bio/consult as Horns Rev. Summary of baseline

100

Big Horn County Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

County Elec Coop, Inc County Elec Coop, Inc Jump to: navigation, search Name Big Horn County Elec Coop, Inc Place Montana Utility Id 1683 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Rate Commercial Industrial Rate Industrial Irrigation Rate Commercial Lighting Rate- (100W HPS) Lighting Lighting Rate- (175W MVL) Lighting Lighting Rate- (250W HPS) Lighting Lighting Rate- (400W MVL) Lighting Residential Rate Residential Small Commercial- Single Phase Commercial

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

BigHorn Home Improvement Center Energy Performance  

Science Conference Proceedings (OSTI)

The BigHorn Development Project, located in Silverthorne, Colorado, is one of the nation's first commercial building projects to integrate extensive high-performance design into a retail space. The BigHorn Home Improvement Center, completed in the spring of 2000, is a 42,366-ft2 (3,936 m2) hardware store, warehouse, and lumberyard. The authors were brought in at the design stage of the project to provide research-level guidance to apply an integrated design process and perform a postoccupancy evaluation. An aggressive energy design goal of 60% energy cost saving was set early in the process, which focused the efforts of the design team and provided a goal for measuring the success of the project. The extensive use of natural light, combined with energy-efficient electrical lighting design, provides good illumination and excellent energy savings. The reduced lighting loads, management of solar gains, and cool climate allow natural ventilation to meet the cooling loads. A hydronic radiant floor system, gas-fired radiant heaters, and a transpired solar collector deliver heat. An 8.9-kW roof-integrated photovoltaic (PV) system offsets a portion of the electricity. After construction, the authors installed monitoring equipment to collect energy performance data and analyzed the building's energy performance for two and one-half years. The authors also helped program the building controls and provided recommendations for improving operating efficiency. The building shows an estimated 53% energy cost saving and a 54% source energy saving. These savings were determined with whole-building energy simulations that were calibrated with measured data. This paper discusses lessons learned related to the design process, the daylighting performance, the PV system, and the heating, ventilating, and air-conditioning system.

Deru, M.; Pless, S. D.; Torcellini, P. A.

2006-01-01T23:59:59.000Z

102

DOE Challenge Home Case Study, New Town Builders, Denver, CO, Production Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Town New Town Builders Denver, CO BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

103

2011 Residential Energy Efficiency Technical Update Meeting Summary Report: Denver, Colorado - August 9-11, 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Residential Energy 1 Residential Energy Efficiency Technical Update Meeting Summary Report Denver, Colorado - August 9-11, 2011 November 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

104

High-Penetration Photovoltaics Standards and Codes Workshop, Denver, Colorado, May 20, 2010: Workshop Proceedings  

DOE Green Energy (OSTI)

Effectively interconnecting high-level penetration of photovoltaic (PV) systems requires careful technical attention to ensuring compatibility with electric power systems. Standards, codes, and implementation have been cited as major impediments to widespread use of PV within electric power systems. On May 20, 2010, in Denver, Colorado, the National Renewable Energy Laboratory, in conjunction with the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), held a workshop to examine the key technical issues and barriers associated with high PV penetration levels with an emphasis on codes and standards. This workshop included building upon results of the High Penetration of Photovoltaic (PV) Systems into the Distribution Grid workshop held in Ontario California on February 24-25, 2009, and upon the stimulating presentations of the diverse stakeholder presentations.

Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.; Herig, C.; Bower, W.

2010-09-01T23:59:59.000Z

105

Empirical Analysis of Intraseasonal Climate Variability over the Greater Horn of Africa  

Science Conference Proceedings (OSTI)

This study examines the intraseasonal climate variability over the Greater Horn of Africa (GHA) during the rainy season of OctoberDecember (OND). The investigation is primarily based on empirical orthogonal function (EOF) analysis of the pentad ...

Jared H. Bowden; Fredrick H. M. Semazzi

2007-12-01T23:59:59.000Z

106

City and County of Denver: Technical comparison between hythane, CNG and gasoline fueled vehicles  

DOE Green Energy (OSTI)

The City and County of Denver, in cooperation with the Urban Consortium Energy Task Force of Public Technology, Inc. has completed a unique two-year research and development project designed to test and compare the technical merits of three transportation fuels. Comparisons of the tailpipe emissions from Hythane - a new, blended, alternative motor fuel comprised of 85% compressed natural gas (CNG) and 15% hydrogen measured by volume - to the emissions from gasoline and 100% CNG were conducted. This project has been one of the first pioneering studies of a hydrogen blended fuel and, through its success, has prompted eight additional Hythane research projects to date. Phase I of the project provided results from the Federal Test Procedure (FTP) testing of a light duty pick-up truck operating on Hythane. The purpose of this testing was to quantify any decrease in tailpipe emissions and to determine whether Hythane could meet the California Ultra Low Emission Vehicle standard (ULEV) for light duty trucks. During Phase I, FTP analyses were conducted in both Colorado (high altitude testing) and California (sea level testing) on a converted Chevrolet S-10, pick-up truck by Hydrogen Consultants (HCl), the Colorado Department of Health (CDH) and the California Air Resource Board (CARB). Currently, the only other non-electric vehicle which is capable of meeting the ULEV standard is Chrysler`s natural gas vehicle. There was additional interest in the role Hythane could play as a transitional fuel in the introduction of hydrogen. Hydrogen, a renewable energy carrier, may soon be categorized as a ZEV fuel by the South Coast Air Quality Management District. This factor may encourage the use of Hythane as a transportation fuel that not only meets the ULEV standard, but may provide the bridge necessary to the eventual widespread use of hydrogen.

NONE

1996-07-01T23:59:59.000Z

107

FOCUSING HORN SYSTEM FOR THE BNL VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENT.  

SciTech Connect

This paper describes the focusing horn system for the proposed very long baseline neutrino oscillation experiment using a neutrino beam from BNL to an underground facility such as the Homestake Mine in South Dakota. The proposed experiment uses a 1 MW upgraded AGS. In order to achieve this performance the AGS will operate with a cycle time of 2.5 Hz and 8.9 x 10{sup 13} protons on target at 28 GeV. This paper discusses the design criteria of a horn system necessary to handle this intense beam and the optical geometry to achieve the desired flux distribution at the detector.

KAHN,S.A.CARROLL,A.DIWAN,M.V.GALLARDO,J.C.KIRK,H.SCARLETT,C.SIMOS,N.VIREN,B.ZHANG,W.

2003-05-12T23:59:59.000Z

108

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

109

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

110

Proposed 230-kV Crossover Substation, Big Horn County, Montana: Environmental assessment  

SciTech Connect

Western proposes to construct, operate, and maintain a 230-kV substation northwest of Hardin, Big Horn County, Montana. The proposed Crossover Substation would form an interconnection between Western's Yellowtail-Custer and MPC's Colstrip-Billings 230-kV transmission lines. Impacts and mitigation strategies are discussed.

1984-02-01T23:59:59.000Z

111

Expression of Candidate Genes for Horn Growth in Early Bovine Development  

E-Print Network (OSTI)

Bovine horns develop primarily after birth and the presence or absence of horns is due to a single gene. It has been reported that the horn bud appears in the bovine embryo at d 60 of gestation. Our hypothesis is that the gene that determines the presence of horns is expressed in osteoprogenitor cells of the early fetus and will affect the expression of RUNX2, MSX1, MSX2, and/or TWIST1. To test this hypothesis, bovine fetal samples were collected from commercial females at the Caviness Packing Company in Hereford, Texas. Fetuses ranged from d 28 to d 80 of gestation. A survey of the expression of genes from the region on bovine chromosome 1 known to contain the locus that causes horns (IFNAR1 to SOD1), was conducted using qualitative and quantitative RT-PCR, and in situ hybridization. Genes with known roles in osteogenesis and chrondrogenesis (MSX1, TWIST1, RUNX2 and SOX9) were included as positive controls. With the exception of OLIG1, which was only expressed in the brain, all of the genes investigated were expressed in fetal frontal and parietal bones by qualitative RT-PCR. The level of expression of C21orf59, C21orf66, IL10RB, and SFRS15 increased in the frontal bone of horned samples from d 55 to d 70 of gestation. At d 60 of gestation, a change in the shape of the frontal bone was observed, which has been reported to be the developmental stage when the horn bud appears. At this time point, MSX1, TWIST1, RUNX2 and SOX9 were detected in frontal bone, in cells from the osteoblast lineage, as expected. Furthermore, C21orf59, C21orf62, C21or66 and SFRS15 from the polled interval were localized to developing mesenchyme, osteoblasts and/or osteoclasts of the frontal bone, suggesting that each of these genes has a role in intramembranous bone formation. In addition, gradients of expressed C21orf66 and SFRS15 were detected in developing endochondral bone. There was evidence of an antisense transcript of C21orf66 expressed in the same cell types as the sense transcript. Further characterization of this antisense transcript demonstrated that it covered the entire sense transcript. Based on observed expression in the mesenchyme, rather than just in mature osteoblasts or osteoclasts, C21orf66 and/or its antisense transcript become the most likely candidates for the polled locus.

Vitanza, Sarah M.

2009-12-01T23:59:59.000Z

112

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

113

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

114

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

115

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING ENERGY AUDITS A/C & HEATING INSULATION LIGHTING  

E-Print Network (OSTI)

4240 Carson Street, Suite 102 Denver, CO 80239 www.sre3.com SOLAR ELECTRIC SOLAR WATER HEATING for homeowners, businesses, and government entities that assist them in lowering utility bills, reducing a unique solutions approach based on the RE3 concept, which includes: · Review ­ current energy usage

Colorado at Boulder, University of

116

QUANTITATIVE REMOTE SENSING: HORNS REV WIND FARM CASE STUDY C. B. Hasager, M. Nielsen, M. B. Christiansen  

E-Print Network (OSTI)

QUANTITATIVE REMOTE SENSING: HORNS REV WIND FARM CASE STUDY C. B. Hasager, M. Nielsen, M. B of quantitative remote sensing for wind resource estimation. 1. INTRODUCTION Possibilities and limitations

117

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

118

Method for controlling directional drilling in response to horns detected by electromagnetic energy propagation resistivity measurements  

Science Conference Proceedings (OSTI)

For use in conjunction with an earth borehole drilling apparatus that includes: a drilling rig; a drill string operating from said drilling rig for drilling an earth borehole, said drill string including a bottom hole arrangement comprising a drill bit, a downhole resistivity measuring subsystem for measuring downhole formation resistivity near said bit by propagating electromagnetic energy into earth formations near said bit, receiving electromagnetic energy that has propagated through the formations and producing measurement signals that depend on the received signals; a method is described for directing the drilling of a well bore with respect to a geological bed boundary in said earth formations, comprising the steps of: producing from said measurement signals a recording of downhole formation resistivity as a function of borehole depth, determining the presence of a horn in said resistivity recording; and implementing a change in the drilling direction of said drill bit in response to said determination of the presence of a horn.

Luling, M.

1993-08-31T23:59:59.000Z

119

205 kA pulse power supply for neutrino focusing horns  

DOE Green Energy (OSTI)

A new underground beamline is being constructed at Fermilab to generate and focus a beam of neutrinos on a detector 450 miles away in Soudan, Minnesota. A compact modulator utilizing capacitive energy storage and SCRs as the switching element has been built and tested at Fermilab. The 0.9 F capacitor bank operates at less than 1 kV. It delivers its output of up to 240 kA directly to the two series connected focusing horns via a multi-layer radiation hard stripline [1]. Dual pulse width capability allows for ready selection of 5.2 ms, for slow beam spills, or 2.6 ms operation for reduced thermal stresses on the focusing horns during fast spill. Intended for installation in an underground equipment room, the design incorporates several novel features to facilitate transport, installation, and maintenance. Various designs were examined to arrive at the most economical approach for providing the high pulse currents to the horns located in the very high radiation field, up to 3 x 10{sup 7} kRads/yr absorbed dose of the beamline. These included charge recovery and electronic polarity reversal systems. The direct coupling approach was selected for its overall economy and compactness. The system has been operational for several months and results of those tests will be discussed. Controls and safety issues will also be discussed.

Kenneth R. Bourkland, Kevin Roon and David Tinsley

2002-06-21T23:59:59.000Z

120

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Oquirrh basin revisited  

SciTech Connect

The upper Paleozoic succession in the Oquirrh basin in unusually thick, up to 9300 m, and consists mainly of a Pennsylvanian-middle Permian miogeocline of northwestern Utah. Previous workers have suggested a tectonic origin for the Oquirrh basin that is incompatible with the basin location in both time and space. There is no evidence for Pennsylvanian and Lower Permian tectonism in the middle of the miogeocline. Thermal evidence from the Mississippian Mission Canyon shale does no support the implied deep burial of the crustal sag models of basin formation. Stratigraphic and facies evidence indicates a growth fault origin for the basin. Regional isopach maps and facies maps are powerful tools in interpreting depositional environments and in reconstructing fold-and-thrust belts. However, the location of measured sections relative to the location of the growth fault basin. The Charleston-Nebo thrust may have essentially reversed the movement on a growth fault. Thick Oquirrh basin sedimentary rocks may not be required to balance structural sections across this thrust fault. A thin-skinned, extensional growth fault origin for the Oquirrh basin implies that the Cordilleran miogeocline did not participate in the Pennsylvanian north-vergent uplifts of the Ancestral Rocky Mountains.

Erskine, M.C.

1997-04-01T23:59:59.000Z

122

BigHorn Home Improvement Center: Proof that a Retail Building Can Be a Low Energy Building: Preprint  

DOE Green Energy (OSTI)

The BigHorn Home Improvement Center in Silverthorne, Colorado was one of the first commercial buildings in the United States to integrate extensive high-performance design into a retail space. After monitoring and evaluation by NREL, the BigHorn Center was found to consume 54% less source energy and have 53% lower energy costs than typical retail buildings of similar size. The extensive use of daylighting to replace electric lighting reduced lighting energy requirements by 80% and significantly contributed to the reduced energy loads in the building.

Deru, M.; Torcellini, P.; Judkoff, R.

2004-07-01T23:59:59.000Z

123

Invasive species early detection and eradication: A response to Horns (2011) M. Jake Vander Zanden , Gretchen J.A. Hansen, Scott N. Higgins 1  

E-Print Network (OSTI)

with natural disasters, where disaster preparedness and emergency response plans are the norm, even in casesCommentary Invasive species early detection and eradication: A response to Horns (2011) M. Jake. In a response to our article, Horns (2011-this issue) highlights difficulties associated with invasive species

Vander Zanden, Jake

124

Seasonal-to-Interannual Variability of Ethiopia/Horn of Africa Monsoon. Part I: Associations of Wavelet-Filtered Large-Scale Atmospheric Circulation and Global Sea Surface Temperature  

Science Conference Proceedings (OSTI)

Horn of Africa rainfall varies on multiple time scales, but the underlying climate system controls on this variability have not been examined comprehensively. This study therefore investigates the linkages between JuneSeptember Horn of Africa (...

Zewdu T. Segele; Peter J. Lamb; Lance M. Leslie

2009-06-01T23:59:59.000Z

125

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

126

K Basin safety analysis  

DOE Green Energy (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

127

K Basin Hazard Analysis  

Science Conference Proceedings (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

128

Predictability of the Normalized Difference Vegetation Index in Kenya and Potential Applications as an Indicator of Rift Valley Fever Outbreaks in the Greater Horn of Africa  

Science Conference Proceedings (OSTI)

In this paper the progress made in producing predictions of the Normalized Difference Vegetation Index (NDVI) over Kenya in the Greater Horn of Africa (GHA) for the OctoberDecember (OND) season is discussed. Several studies have identified a ...

Matayo Indeje; M. Neil Ward; Laban J. Ogallo; Glyn Davies; Maxx Dilley; Assaf Anyamba

2006-05-01T23:59:59.000Z

129

THE NATIONAL BASIN DELINEATION PROJECT  

Science Conference Proceedings (OSTI)

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and ...

Ami T. Arthur; Gina M. Cox; Nathan R. Kuhnert; David L. Slayter; Kenneth W. Howard

2005-10-01T23:59:59.000Z

130

Data Basin | Open Energy Information  

Open Energy Info (EERE)

Data Basin Data Basin Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Data Basin Agency/Company /Organization: Conservation Biology Institute Topics: GHG inventory Resource Type: Dataset, Maps Website: databasin.org/ Data Basin Screenshot References: Data Basin [1] Overview "Data Basin is an innovative, online system that connects users with spatial datasets, tools, and expertise. Individuals and organization can explore and download a vast library of datasets, upload their own data, create and publish projects, form working groups, and produce customized maps that can be easily shared. The building blocks of Data Basin are: Datasets: A dataset is a spatially explicit file, currently Arcshape and ArcGrid files. These can be biological, physical, socioeconomic, (and

131

EA-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric...

132

EA-64-A Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin...

133

Susquehanna River Basin Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

134

Abyssal Mixing in the Brazil Basin  

Science Conference Proceedings (OSTI)

One of the major objectives of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment, was to quantify the intensity and spatial distribution of deep vertical mixing within the Brazil Basin. In this study, basin-averaged ...

Michele Y. Morris; Melinda M. Hall; Louis C. St. Laurent; Nelson G. Hogg

2001-11-01T23:59:59.000Z

135

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

136

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

137

K-Basins design guidelines  

Science Conference Proceedings (OSTI)

The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

Roe, N.R.; Mills, W.C.

1995-06-01T23:59:59.000Z

138

KE Basin Sludge Flocculant Testing  

SciTech Connect

In the revised path forward and schedule for the K Basins Sludge Retrieval and Disposal Project, the sludge in K East (KE) Basin will be moved from the floor and pits and transferred to large, free-standing containers located in the pits (so as to isolate the sludge from the basin). When the sludge is pumped into the containers, it must settle fast enough and clarify sufficiently that the overflow water returned to the basin pool will not cloud the water or significantly increase the radiological dose rate to the operations staff as a result of increased suspended radioactive material. The approach being evaluated to enhance sludge settling and speed the rate of clarification is to add a flocculant to the sludge while it is being transferred to the containers. In February 2004, seven commercial flocculants were tested with a specific K Basin sludge simulant to identify those agents that demonstrated good performance over a broad range of slurry solids concentrations. From this testing, a cationic polymer flocculant, Nalco Optimer 7194 Plus (7194+), was shown to exhibit superior performance. Related prior testing with K Basin sludge and simulant in 1994/1996 had also identified this agent as promising. In March 2004, four series of jar tests were conducted with 7194+ and actual KE Basin sludge (prepared by combining selected archived KE sludge samples). The results from these jar tests show that 7194+ greatly improves settling of the sludge slurries and clarification of the supernatant.

Schmidt, Andrew J.; Hallen, Richard T.; Muzatko, Danielle S.; Gano, Sue

2004-06-23T23:59:59.000Z

139

Multiple Oscillatory Modes of the Argentine Basin. Part II: The Spectral Origin of Basin Modes  

Science Conference Proceedings (OSTI)

In this paper the spectrum of barotropic basin modes of the Argentine Basin is shown to be connected to the classical Rossby basin modes of a flat-bottom (constant depth), rectangular basin. First, the spectrum of basin modes is calculated for ...

Wilbert Weijer; Frdric Vivier; Sarah T. Gille; Henk A. Dijkstra

2007-12-01T23:59:59.000Z

140

Rivanna River Basin Commission (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Colorado River Basin Hydroclimatic Variability  

Science Conference Proceedings (OSTI)

An analysis of annual hydroclimatic variability in the Upper Colorado River basin (UCRB) for the period of 19062006 was performed to understand the dominant modes of multidecadal variability. First, wavelet-based spectral analysis was employed ...

Kenneth Nowak; Martin Hoerling; Balaji Rajagopalan; Edith Zagona

2012-06-01T23:59:59.000Z

142

Identification of geopressured occurrences outside of the Gulf Coast. Final report, Phase I  

DOE Green Energy (OSTI)

As an extension of its efforts in the development of the geopressured resources of the Gulf Coast, the Division of Geothermal Energy of the US Department of Energy is interested in determining the extent and characteristics of geopressured occurrences in areas outside the Gulf Coast. The work undertaken involved a literature search of available information documenting such occurrences. Geopressured reservoirs have been reported from various types of sedimentary lithologies representing virtually all geologic ages and in a host of geologic environments, many of which are unlike those of the Gulf Coast. These include many Rocky Mountain basins (Green River, Big Horn, Powder River, Wind River, Uinta, Piceance, Denver, San Juan), Mid-Continent basins (Delaware, Anadorko, Interior Salt, Williston, Appalachian), California basins (Sacramento, San Joaquin, Los Angeles, Ventura, Coast Ranges), Alaskan onshore and offshore basins, Pacific Coast offshore basins, and other isolated occurrences, both onshore and offshore.

Strongin, O.

1980-09-30T23:59:59.000Z

143

PP-64 Basin Electric Power Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Basin Electric Power Cooperative PP-64 Basin Electric Power Cooperative Presidential Permit Authorizing Basin Electric Power Cooperative to construct, operate, and maintain...

144

CORRECTIVE ACTION DECISION DOCUMENT/CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 527: HORN SILVER MINE, NEVADA TEST SITE, NEVADA  

SciTech Connect

This Corrective Action Decision Document/Closure Report (CADDKR) has been prepared for Corrective Action Unit (CAU) 527: Horn Silver Mine, Nevada Test Site (NTS), Nevada, in accordance with the Federal Facility Agreement and Consent Order (1996). Corrective Action Unit 527 is located within Area 26 of the NTS and consists of CAS 26-20-01, Contaminated Waste Dump No.1. This CADDKR refers to the site as CAU 527 or the Horn Silver Mine (HSM). This CADDKR provides or references the specific information necessary to support the closure of this CAU. Corrective action investigation activities were performed from November 12,2003 through January 21,2004. Additional sampling of liquid obtained from HSM-3 was conducted on May 3,2004. Corrective action investigation activities were performed as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 527 (NNSAiNV, 2002a). Assessment of the data generated from investigation activities identified the explosive nitrobenzene as a contaminant of concern (COC) on the floor of the 500-foot drift (HSM No.2). No other COCs were identified in the rock samples collected during the investigation activities. The air samples collected from borings HSM-1, HSM-2, and HSM-3 showed volatile organic compounds (primarily gasoline-related contaminants) to be present above the acceptable residential exposure criteria in the boreholes. A conservative modeling effort demonstrated that these concentrations would not migrate to the surface at concentrations that will present an unacceptable risk to future land users. However, other COCs are assumed to exist based on historical documentation on the types of waste placed in the shaft; therefore, the mine including the 300- and 500-foot drifts is considered to be contaminated above action levels. Current results of the field investigation show there are no active transport mechanisms or exposure routes for the contaminants identified in the 500-foot drift. The analytical data did not show the migration of COCs beyond the floor of the 500-foot drift or from the air within the drift. On a conservative basis, the subsurface volume of the zone of contamination is limited to a depth from 150 ft to a maximum of 670 feet below ground surface extending to a radius of 300 feet from the mineshaft. Based on these data, a use restriction will be established for this volume of soil. In addition, the security of the mineshaft is maintained and does not allow unauthorized personnel to enter the vicinity of the mineshaft. Since the removal of the contaminants is not feasible, the close in place with administrative controls corrective action alternative is appropriate because it will prevent inadvertent contact with the subsurface COCs and meets all applicable state and federal regulations for closure of the site. Post-closure monitoring will be conducted for one year. This monitoring will include using the lysimeter at HSM-3 and the data logger to measure precipitation-induced vadose zone moisture flow through the rock beneath the waste shaft at the Horn Silver Mine. Results of the monitoring will be documented in a letter report at the end of one year, anticipated in June 2005. A copy of this report will be submitted to the Nevada Division of Environmental Protection. After one year of monitoring, a determination will be made by the Nevada Division of Environmental Protection and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office if future monitoring is needed or if use restriction boundaries need to be adjusted. If a large enough pulse of water moves into the lysimeter, a sample will he collected for laboratory analysis. If there is not sufficient volume of liquid collected for a sample or if no COCs are detected in collected samples at the end of this time period, it is recommended that the monitoring wells at the HSM be sealed in accordance with the State of Nevada regulations.

NONE

2004-08-01T23:59:59.000Z

145

Great Basin | Open Energy Information  

Open Energy Info (EERE)

Great Basin Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Great Basin Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.609920257001,"lon":-114.0380859375,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Thermally Driven Circulations in Small Oceanic Basins  

Science Conference Proceedings (OSTI)

A linear, steady model of the circulation of a small (f plane) oceanic basin driven by heating or cooling at the surface is considered in order to examine the partition of upwelling (heating) or downwelling (cooling) between the basin's interior ...

Joseph Pedlosky

2003-11-01T23:59:59.000Z

147

Geochemistry of Delaware Basin groundwaters  

DOE Green Energy (OSTI)

Fluids from various formations were sampled and analyzed in order to characterize groundwaters in the Delaware Basin. Waters were analyzed for solute content and/or stable isotope ratios (D/H and /sup 18/O//sup 16/O). Three lines of geochemical arguments are summarized, in order to present the natures and probable origins of analyzed fluids: solute chemistry, thermodynamic modelling of low-temperature aqueous species, and stable isotope ratios. (JGB)

Lambert, S.J.

1977-04-25T23:59:59.000Z

148

A Numerical Study of the Thermally Driven Plain-to-Basin Wind over Idealized Basin Topographies  

Science Conference Proceedings (OSTI)

Numerical experiments have been carried out with a two-dimensional nonhydrostatic mesoscale model to investigate the diurnal temperature range in a basin and the thermally driven plain-to-basin winds. Under clear-sky conditions, the diurnal ...

Stephan F. J. de Wekker; Shiyuan Zhong; Jerome D. Fast; C. David Whiteman

1998-06-01T23:59:59.000Z

149

The Black Shale Basin of West Texas.  

E-Print Network (OSTI)

??The Black Shale Basin of West Texas covers an area in excess of 21,000 square miles and includes the region from Terrell and Pecos Counties (more)

Cole, Charles Taylor, 1913-

2012-01-01T23:59:59.000Z

150

Illinois coal production pushes Illinois Basin production ...  

U.S. Energy Information Administration (EIA)

Coal production in the Illinois Basin during the first half of 2012 (64.4 million short tons) was 13% higher than the same period in 2011. This ...

151

California - San Joaquin Basin Onshore Nonassociated Natural...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

152

,"California - San Joaquin Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

153

,"California - Los Angeles Basin Onshore Nonassociated Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation,...

154

Wetland loss dynamics in southwestern Barataria basin ...  

U.S. Energy Information Administration (EIA)

ABSTRACT We determined spatial associations of wetland loss rates in a 950-km2 study area in the southwestern Barataria basin of Louisiana's ...

155

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin,  

E-Print Network (OSTI)

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin, Nunavut18 O values near 0% (Vienna Standard Mean OceanWater). Uranium-rich apatite cement (P1) also formed during diagenetic stage1indicating that oxygenated, uranium- bearing pore water was present in the basin

Hiatt, Eric E.

156

EA-1617: Mitigation Action Plan | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation Action Plan EA-1617: Mitigation Action Plan Lovell-Yellowtail and Basin-Lovell Transmission Line Rebuild Project, Big Horn County, Wyoming, Big Horn and Carbon Counties,...

157

K Basins Field Verification Program  

SciTech Connect

The Field Verification Program establishes a uniform and systematic process to ensure that technical information depicted on selected engineering drawings accurately reflects the actual existing physical configuration. This document defines the Field Verification Program necessary to perform the field walkdown and inspection process that identifies the physical configuration of the systems required to support the mission objectives of K Basins. This program is intended to provide an accurate accounting of the actual field configuration by documenting the as-found information on a controlled drawing.

Booth, H.W.

1994-12-02T23:59:59.000Z

158

Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins  

E-Print Network (OSTI)

To continue increasing the energy supply to meet global demand in the coming decades, the energy industry needs creative thinking that leads to the development of new energy sources. Unconventional gas resources, especially those in frontier basins, will play an important role in fulfilling future world energy needs. We must identify and quantify potential unconventional gas resources in basins around the world to plan for their development. Basin analog assessment is one technique that can be used to identify and quantify unconventional gas resources that is less expensive and less time consuming. We have developed a basin analog methodology that is useful for rapidly and consistently evaluating the unconventional hydrocarbon resource potential in exploratory basins. We developed software, Basin Analog System (BAS), to perform and accelerate the process of identifying analog basins. Also, we built a database that includes geologic and petroleum systems information of intensely studied North America basins that contain well characterized conventional and unconventional hydrocarbon resources. We have selected 25 basins in North America that have a history of producing unconventional gas resources. These are â??referenceâ? basins that are used to predict resources in frontier or exploratory basins. The software assists us in ranking reference basins that are most analogous to the target basin for the primary purpose of evaluating the potential unconventional resources in the target basin. The methodology allows us to numerically rank all the reference basins relative to the target basin. The accuracy of the results depends on the descriptions of geologic and petroleum systems. We validated the software to make sure it is functioning correctly and to test the validity of the process and the database. Finding a reference basin that is analogous to a frontier basin can provide insights into potential unconventional gas resources of the frontier basin. Our method will help industry predict the unconventional hydrocarbon resource potential of frontier basins, guide exploration strategy, infer reservoir characteristics, and make preliminary decisions concerning the best engineering practices as wells are drilled, completed, stimulated and produced.

Singh, Kalwant

2006-12-01T23:59:59.000Z

159

California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

160

California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Designated Ground Water Basin Map | Open Energy Information  

Open Energy Info (EERE)

Designated Ground Water Basin Map Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Designated Ground Water Basin Map Details Activities (0) Areas...

162

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique...

163

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section...

164

Rotating Hydraulics and Upstream Basin Circulation  

Science Conference Proceedings (OSTI)

The flow in a source-fed f-plane basin drained through a strait is explored using a single-layer (reduced gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream basin circulation is found to ...

Karl R. Helfrich; Lawrence J. Pratt

2003-08-01T23:59:59.000Z

165

African sedimentary basins - Tectonic controls on prospectivity  

Science Conference Proceedings (OSTI)

An important prerequisite for the evaluation of any sedimentary basin is the understanding of its regional tectonic setting. This is especially so in the underexplored regions of Africa. The majority of African sedimentary basins developed in an extensional setting although some have undergone subsequent compressional or transpressional deformation. The geometry and evolution of these basins is often influenced by basement structure. The extensional phase of basin development controls not only the distribution of syn-rift sediments but also the magnitude of post-rift regional subsidence and the preservation or removal of pre-rift sediments. This has important consequences for exploration models of syn-rift and pre-rift source rocks and reservoirs. Post-rift basin inversion and uplift provide crucial controls on the preservation of mature source rocks and quality of reservoirs. The distribution, nature, timing, and possible mechanisms of this uplift in Africa will be addressed. The hydrocarbon prospectivity of African basis appears to be highly variable although the limited exploration of some regions makes the exact extent of this variability unclear. Basins considered potentially prospective range from late Precambrian to Tertiary in age. The various tectonic controls outlined above, and criteria for the evaluation of underexplored areas, will be demonstrated by reference to basins studied by The Robertson Group. Examples described include basins from Bagon, Angola, Namibia, East Africa, Tertiary Rift and Karoo Rifts, and North Africa (Sudan, Egypt, Algeria, and Morocco).

Bunter, M.A.G.; Crossley, R.; Hammill, M.; Jones, P.W.; Morgan, R.K.; Needham, D.T.; Spaargaren, F.A. (Robertson Group plc, Gwynedd (England))

1991-03-01T23:59:59.000Z

166

Thermal regimes of Malaysian sedimentary basins  

Science Conference Proceedings (OSTI)

Properly corrected and calibrated thermal data are important in estimating source-rock maturation, diagenetics, evolution of reservoirs, pressure regimes, and hydrodynamics. Geothermal gradient, thermal conductivity, and heat flow have been determined for the sedimentary succession penetrated by exploratory wells in Malaysia. Geothermal gradient and heat-flow maps show that the highest average values are in the Malay Basin. The values in the Sarawak basin are intermediate between those of the Malay basin and the Sabah Basin, which contains the lowest average values. Temperature data were analyzed from more than 400 wells. An important parameter that was studied in detail is the circulation time. The correct circulation time is essential in determining the correct geothermal gradient of a well. It was found that the most suitable circulation time for the Sabah Basin is 20 hr, 30 hr for the Sarawak Basin and 40 hr for the Malay Basin. Values of thermal conductivity, determined from measurement and calibrated calculations, were grouped according to depositional units and cycles in each basin.

Abdul Halim, M.F. (Petronas Research and Scientific Services, Selangor (Malaysia))

1994-07-01T23:59:59.000Z

167

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves New Field Discoveries (Million Barrels)

168

California - Los Angeles Basin Onshore Natural Gas Plant ...  

U.S. Energy Information Administration (EIA)

California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Reserves Acquisitions (Million Barrels)

169

California - San Joaquin Basin Onshore Crude Oil Estimated ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Estimated Production from Reserves (Million Barrels)

170

Western Gas Sands Project Quarterly Basin Activities Report  

SciTech Connect

This quarterly basin activities report is a summation of three months drilling and testing activities in the Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. Detailed information is given for each study area for the first quarter of 1979.

Atkinson, C H

1979-04-30T23:59:59.000Z

171

Thermal state of the Arkoma Basin and the Anadarko Basin, Oklahoma.  

E-Print Network (OSTI)

??Chapter three addresses heat flow and thermal history of the Anadarko Basin and the western Oklahoma Platform. We found no evidence for heat flow to (more)

Lee, Youngmin.

172

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

Hinsdale Wave Basin 1 Hinsdale Wave Basin 1 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 1 Overseeing Organization Oregon State University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 104.0 Beam(m) 3.7 Depth(m) 4.6 Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 1.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 12' by 12' concrete slabs anchored to flume walls

173

K Basins Sludge Treatment Project Phase 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basins Sludge Treatment Project Phase 1 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report Herb G. Sutter Michael Poirier Art W. Etchells Gary Smith Kris Thomas Jim J. Davis Paul Macbeth November 16, 2009 Prepared by the U.S. Department of Energy Washington, D.C. K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009 ii Herbert G. Sutter, Team Lead Date Michael Poirier, Team Member Date Arthur W. Etchells, Team Member Date Gary Smith, Team Member Date Kris Thomas, Team Member Date Jim J. Davis, Team Member Date Paul Macbeth, Team Member Date Signatures 11/09/2009 11/09/2009 11/09/2009 K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment Report November 16, 2009

174

Alden Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Alden Wave Basin Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Wave Basin Length(m) 33.5 Beam(m) 21.3 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 1.0 Maximum Wave Length(m) 1.8 Wave Period Range(s) 1.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Period adjustable electronically, height adjustable mechanically Wave Direction Both Simulated Beach Yes Description of Beach Designed as needed using commercially available sand/sediment

175

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Sheets Wave Basin Sheets Wave Basin Jump to: navigation, search Basic Specifications Facility Name Sheets Wave Basin Overseeing Organization University of Rhode Island Hydrodynamic Testing Facility Type Wave Basin Length(m) 30.0 Beam(m) 3.6 Depth(m) 1.8 Cost(per day) $750(+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.0 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 10 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Pre-programmed for regular and irregular waves, but wavemaker is capable of any input motion. Wave Direction Uni-Directional

176

Haynes Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin Length(m) 38.1 Beam(m) 22.9 Depth(m) 1.5 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 3.3 Maximum Wave Length(m) 10.7 Wave Period Range(s) 3.3 Current Velocity Range(m/s) 0.2 Programmable Wavemaking Yes Wavemaking Description Directional, irregular, any spectrum, cnoidal or solitary wave Wave Direction Both Simulated Beach Yes Description of Beach Stone Channel/Tunnel/Flume Channel/Tunnel/Flume None

177

Cold Pools in the Columbia Basin  

Science Conference Proceedings (OSTI)

Persistent midwinter cold air pools produce multiday periods of cold, dreary weather in basins and valleys. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures ...

C. D. Whiteman; S. Zhong; W. J. Shaw; J. M. Hubbe; X. Bian; J. Mittelstadt

2001-08-01T23:59:59.000Z

178

Further FGGE Forecasts for Amazon Basin Rainfall  

Science Conference Proceedings (OSTI)

A series of experiments using real-data general circulation model integrations is performed to study the impact of remote tropical Pacific heating modifications upon the rainfall over the Amazon Basin. In one set of experiments, a heating term is ...

Julio Buchmann; Jan Paegle; Lawrence Buja; R. E. Dickinson

1989-05-01T23:59:59.000Z

179

The Uinta Basin Case Robert J. Bayer  

E-Print Network (OSTI)

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

180

Probabilistic Quantitative Precipitation Forecasts for River Basins  

Science Conference Proceedings (OSTI)

A methodology has been formulated to aid a field forecaster in preparing probabilistic quantitative precipitation forecasts (QPFs) for river basins. The format of probabilistic QPF is designed to meet three requirements: (i) it is compatible with ...

Roman Krzysztofowicz; William J. Drzal; Theresa Rossi Drake; James C. Weyman; Louis A. Giordano

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

What Controls Evapotranspiration in the Amazon Basin?  

Science Conference Proceedings (OSTI)

Global climate models (GCMs) and regional climate models (RCMs) generally show a decrease in the dry season evapotranspiration (ET) rate over the entire Amazon basin. Based on anecdotal observations, it has been suggested that they probably ...

Natalia Hasler; Roni Avissar

2007-06-01T23:59:59.000Z

182

Prediction of August Atlantic Basin Hurricane Activity  

Science Conference Proceedings (OSTI)

Although skillful seasonal hurricane forecasts for the Atlantic basin are now a reality, large gaps remain in our understanding of observed variations in the distribution of activity within the hurricane season. The month of August roughly spans ...

Eric S. Blake; William M. Gray

2004-12-01T23:59:59.000Z

183

Flathead Basin Commission Act of 1983 (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

184

The basins on the Argentine continental margin  

Science Conference Proceedings (OSTI)

After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

Urien, C.M. [Buenos Aires Technological Institute Petroleum School, Buenos Aires (Argentina)

1996-08-01T23:59:59.000Z

185

Snake River Basin environmental program  

DOE Green Energy (OSTI)

The Snake River Basin Environmental Program was designed to evaluate existing environmental data with respect to potential geothermal development in eight Known Geothermal Resource Areas (KGRAs) in Idaho. State and federal agencies, public interest groups, consulting groups, and universities participated in the DOE program. Final reports for the program are intended to be utilized as reference documents and planning tools for future environmental studies. Evaluation of the data indicated that the majority of the existing data base is adequate for small-scale direct-use developments. The potential impacts of development on water quality and water supply are the primary environmental concern. Preliminary data suggest that subsidence and induced seismicity may be a problem in several of the KGRAs. Sensitive animal species and habitats have been identified in each area; development in the Castle Creek KGRA may be restricted due to the Birds of Prey Natural Area. Two workshops provided public input on concerns and land use planning for geothermal development in Idaho. Based on the data evaluation and public input, a plan for supplementing the existing environmental data base was prepared.

Spencer, S.G.; Sullivan, J.F.

1979-09-01T23:59:59.000Z

186

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network (OSTI)

Unconventional resources will play an important role in filling the gap between supply and demand for future world energy. In North America, the impact of unconventional resources on energy supplies is growing continuously. However, around the world they have yet to serve as a major contributor to the energy supply, partly due to the scarcity of information about the exploration and development technologies required to produce them. Basin analogy can be used to estimate the undiscovered petroleum potential in a target basin by finding a geological analog that has been explored enough that its resource potential is fully understood. In 2006, Singh developed a basin analog system BASIN (Basin Analog Systems INvestigation) in detail that could rapidly and consistently identify analogous reference basins for a target basin. My research focused on continuing that work, comprehensively improving the basin analog system in four areas: the basin analog method; the database; the software functionality; and the validation methods. The updated system compares basins in terms of probability distributions of geological parameters. It compensates for data that are sparse or that do not represent basin-level geological parameters, and it expands the system's ability to compare widely varying quantitative parameters. Because the updated BASIN database contains more geologic and petroleum systems information on reference (existing) basins, it identifies analog basins more accurately and efficiently. The updated BASIN software was developed by using component-based design and data visualization techniques that help users better manage large volumes of information to understand various data objects and their complicated relationships among various data objects. Validation of the improved BASIN software confirms its accuracy: if a basin selected as the target basin appears in the reference basin list with other basins, the target basin is 100% analogous only to itself. Furthermore, when a target basin is analyzed by both BASIN and PRISE (Petroleum Resources Investigation and Summary Evaluation) software, results of the improved BASIN closely matched the PRISE results, which provides important support for using BASIN and PRISE together to quantitatively estimate the resource potential in frontier basins.

Wu, Wenyan 1983-

2012-12-01T23:59:59.000Z

187

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network (OSTI)

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units, (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

188

Basinfill of The Permian Tanqua depocentre, SW Karoo basin, South Africa.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: Basin subsidence analysis, employing the backstripping method, indicates that fundamentally two different basin-generating mechanisms controlled Tanqua depocentre development in SW Karoo Basin. The (more)

Alao, Abosede Olubukunola

2012-01-01T23:59:59.000Z

189

The Thermally Driven Cross-Basin Circulation in Idealized Basins under Varying Wind Conditions  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting model is used to perform large-eddy simulations of thermally driven cross-basin winds in idealized, closed basins. A spatially and temporally varying heat flux is prescribed at the surface as a function of ...

Manuela Lehner; C. David Whiteman

2012-06-01T23:59:59.000Z

190

Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan  

E-Print Network (OSTI)

are commonly found within intramontane basins that separate its constituent ranges. In order to explore of the Tien Shan, central Asia's largest mountain range, is driven by the distant collision between India found within basin interiors, 10­20 km distant from bedrock cored ranges [Avouac et al., 1993; Bullen et

Bookhagen, Bodo

191

Corrosion in ICPP fuel storage basins  

SciTech Connect

The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970`s, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate.

Dirk, W.J.

1993-09-01T23:59:59.000Z

192

Petroleum geochemistry of the Zala basin, Hungary  

Science Conference Proceedings (OSTI)

The Zala basin is a subbasin within the Pannonian basis on Hungary. Oil and smaller amounts of gas are produced from Upper Triassic through Miocene reservoirs. Our geochemical study of oils and rocks in the basin indicate that two, and possibly three, genetic oil types are present in the basin. Miocene source rocks, previously believed by explorationists to be the predominant source rock, have expelled minor amounts of hydrocarbons. The main source rock is the Upper Triassic (Rhaetian) Koessen Marl Formation or its stratigraphic equivalent. Oils derived from the Triassic source rock are recognizable by their isotopic and biological marker composition, and high content of metals. In other areas of Europe, Upper Triassic source rocks have been correlated with large oil accumulations (e.g., Molassa and Villafortuna fields, Po basin, and other fields in Italy) or are postulated to be good potential source rocks (e.g., Bristol channel Trough). Knowledge of the geochemical characteristics of oils derived from these Upper Triassic source rocks and understanding of the source rock distribution and maturation history are important for recognizing Triassic oil-source bed relationships and for further exploration in other basins in Hungary and other parts of Europe where Triassic source rocks are present.

Clayton, J.L. (Geological Survey, Denver, CO (United States)); Koncz, I. (Hungarian Oil and Gas Corp., Nagykanizsa (Hungary))

1994-01-01T23:59:59.000Z

193

Sediment Basin Flume | Open Energy Information  

Open Energy Info (EERE)

Sediment Basin Flume Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Flume Length(m) 22.7 Beam(m) 5.1 Depth(m) 1.2 Cost(per day) Contact POC Special Physical Features Two pumps provide up to 18 cfs of flow capacity Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Flow, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

194

Dan Klempel Basin Electric Power Cooperative DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dan Dan Klempel Basin Electric Power Cooperative DOE 2009 Congestion Study Workshop Oklahoma City, Oklahoma June 18, 2008 Page 1 of 5 Basin Electric Power Cooperative would like to thank the Department of Energy for this opportunity to share some of our thoughts on transmission congestion issues. Basin Electric is a wholesale power supplier to rural electric cooperatives located in the mid-west and in both the east and west interconnections. Naturally, our generation and transmission facilities also reside in both interconnections so we use asynchronous back-to-back DC facilities to balance loads with resources. With headquarters in Bismarck, North Dakota; we find ourselves in the heart of some of the nations most desirable wind patterns for potential renewable energy development as well as electric energy production from more traditional sources. Lignite coal has been a reliable

195

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

Wave Basin 2 Wave Basin 2 Jump to: navigation, search Basic Specifications Facility Name Hinsdale Wave Basin 2 Overseeing Organization Oregon State University Hydrodynamics Length(m) 48.8 Beam(m) 26.5 Depth(m) 2.1 Water Type Freshwater Cost(per day) $3500 Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.8 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Monochromatic waves (cnoidal, Stokes, Airy), solitary waves, user-defined free surface timeseries or board displacement timeseries for random waves Wave Direction Both Simulated Beach Yes Description of Beach Built to client specifications, currently rigid concrete over gravel fill

196

SWP.SanJuanBasin.factsheet0919  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Investigator Reid Grigg/Brian McPherson NMT reid@prrc.nmt.edu / brian@nmt.edu Field Test Information: Field Test Name San Juan Basin, New Mexico: Enhanced Coalbed Methane-Sequestration Test Test Location Near Navajo City, New Mexico Amount and Source of CO 2 Tons Source 20,000 - 35,000 tons; CO2 sourced from McElmo Dome, CO ConocoPhillips KinderMorgan CO 2 Company, L.P. Field Test Partners (Primary Sponsors) Summary of Field Test Site and Operations General Geology and Target Reservoirs: The San Juan basin (SJB) is one of the top ranked basins in the world for CO 2 coalbed sequestration because it has: 1) advantageous geology and high methane content; 2) abundant anthropogenic CO

197

Configuration Management Plan for K Basins  

SciTech Connect

This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.

Weir, W.R.; Laney, T.

1995-01-27T23:59:59.000Z

198

Southern Colombia's Putumayo basin deserves renewed attention  

Science Conference Proceedings (OSTI)

The Putumayo basin lies in southern Colombia between the Eastern Cordillera of the Andes and the Guyana-Brazilian shield. It covers about 50,000 sq km between 0--3[degree]N. Lat. and 74--77[degree]W. Long. and extends southward into Ecuador and Peru as the productive Oriente basin. About 3,500 sq km of acreage in the basin is being offered for licensing in the first licensing round by competitive tender. A recent review of the available data from this area by Intera and Ecopetrol suggests that low risk prospects and leads remain to be tested. The paper describes the tectonic setting, stratigraphy, structure, hydrocarbon geology, reservoirs, and trap types.

Matthews, A.J. (Intera Information Technologies Ltd., Henley (United Kingdom)); Portilla, O. (Ecopetrol, Bogota (Colombia))

1994-05-23T23:59:59.000Z

199

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

200

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Southern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Basin and Range Geothermal Region Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Southern Basin and Range Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} North-south-striking and west-dipping Basin and Range province normal faults form the western edge of the Sierra Madre Occidental plateau in northeastern Sonora. These faults and associated half-grabens extend over a distance of more than 300 km between the San Bernardino basin in the north and the Sahuaripa basin in the south. Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake [1] References ↑ "Active Tectonics of Northeastern Sonora, Mexico (Southern Basin and Range Province) and the 3 May 1887 Mw 7.4 Earthquake"

202

The Transmission of Rossby Waves through Basin Barriers  

Science Conference Proceedings (OSTI)

The response of a basin with a topographic barrier to spatially localized and time periodic forcing is considered. The barrier, which almost completely divides the full basin into two adjacent subbasins, is offered as a model of either a ...

Joseph Pedlosky

2000-03-01T23:59:59.000Z

203

Climatic Aspects of the 1993 Upper Mississippi River Basin Flood  

Science Conference Proceedings (OSTI)

The 1993 record-breaking summer flood in the Upper Mississippi River Basin resulted from an unprecedentedly persistent heavy rain pattern. Rainfall totals for the Upper Mississippi River Basin were, by a large margin, the largest of this century ...

Kenneth E. Kunkel; Stanley A. Changnon; James R. Angel

1994-05-01T23:59:59.000Z

204

Hydraulically Drained Flows in Rotating Basins. Part II: Steady Flow  

Science Conference Proceedings (OSTI)

The slow, horizontal circulation in a deep, hydraulically drained basin is discussed within the context of reduced-gravity dynamics. The basin may have large topographic variations and is fed from above or from the sides by mass sources. ...

Lawrence J. Pratt

1997-12-01T23:59:59.000Z

205

Criticality safety evaluation for K Area Disassembly Basin cleanup  

SciTech Connect

Preparations are currently being made to remove sludge from the Disassembly Basin in all reactor areas. Because this sludge contains fissile isotopes, it is necessary to perform a criticality safety evaluation for the planned activities. A previous evaluation examined the criticality safety aspects of the sludge removal process for L Area. This document addresses the criticality safety aspects of the K Area Disassembly Basin cleanup work. The K Area Disassembly Basin cleanup will involve, as a first step, pumping the basin sludge into the Monitor Basin portion of the Disassembly Basin. From the Monitor Basin, the sludge will be pumped into tanks or containers for permanent disposition. The criticality safety evaluation discussed in this document covers the transfer of the sludge to the Monitor Basin.

Rosser, M.A.

1994-02-01T23:59:59.000Z

206

YAKIMA BASIN JOINT BOARD A Partnership of Public Entities Promoting  

E-Print Network (OSTI)

YAKIMA BASIN JOINT BOARD A Partnership of Public Entities Promoting the Multiple Uses of the Yakima for the opportunity to comment. Sincerely, Jim Trull, President Yakima Basin Joint Board #12;

207

K West basin isolation barrier leak rate test  

SciTech Connect

This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

1994-10-31T23:59:59.000Z

208

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Blewitt, Et Al., 2003) Exploration...

209

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

210

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity...

211

Hanford K-Basin Sludge Characterization Overview February 2005  

E-Print Network (OSTI)

Hanford K-Basin Sludge Characterization Overview February 2005 1 Hanford K-Basin Sludge Characterization Overview February 2005 1. Summary The Hanford K-East and K-West Basins were used to store of the irradiated fuel reprocessing facility at Hanford (the PUREX facility) the N-Reactor irradiated fuel remained

212

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation is presented of the coring program site identification, and drilling and testing activity in the four primary study areas of the Western Gas Sands Project (WGSP). Pertinent information for January, February, and March, 1978 is included for each study area. The areas are the Northern Great Plains Province, the Greater Green River Basin, the Piceance Basin, and the Uinta Basin.

1978-04-01T23:59:59.000Z

213

Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historical documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

2002-12-06T23:59:59.000Z

214

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini; Donald A. Goddard

2005-08-01T23:59:59.000Z

215

OTRC Wave Basin | Open Energy Information  

Open Energy Info (EERE)

OTRC Wave Basin OTRC Wave Basin Jump to: navigation, search Basic Specifications Facility Name OTRC Wave Basin Overseeing Organization Texas A&M (OTRC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 45.7 Beam(m) 30.5 Depth(m) 5.8 Water Type Freshwater Cost(per day) $300/hour (excluding labor) Special Physical Features 4.6m wide x 9.1m long x 16.8m deep pit with adjustable depth floor in test area Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.6 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 25 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.6 Programmable Wavemaking Yes Wavemaking Description GEDAP 3D wave generation software, 48 hinged flap wave generator

216

Summary - K Basins Sludge Treatment Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin K Basin DOE is Proces the va at Han subsys oxidati objecti of-fact maturi Eleme Techn The as which seven * M * M * Pr * Pr * As The Ele Site: H roject: K P Report Date: A ited States Why DOE ns Sludge Treatme s constructing ss (STP) for re rious sludge st nford. The STP stems: sludge ion, assay, pac ive of the asse t" appraisal of t ty by first ident ents (CTEs) of t ology Readine What th ssessment team was further div CTEs and the Material Mobiliza Material Transfe rocess Chemis rocess Instrum ssay (TRL=2) To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP K Basins Slud Process/STP August 2007 Departmen K Bas E-EM Did This ent Process Flow D a K Basins Slu trieving, treatin treams stored i P is comprised containerizatio ckaging, and dr ssment was to the project's ov

217

Active oil shale operations: Eastern Uinta Basin  

SciTech Connect

A Utah Geological and Mineral survey Map of the Eastern Uinta Basin is presented. Isopach lines for the Mahogany oil shale are given, along with the locations of active oil shale operations and the land ownership (i.e. federal, state, or private).

Ritzma, H.R.

1980-01-01T23:59:59.000Z

218

KE Basin underwater visual fuel survey  

SciTech Connect

Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

Pitner, A.L.

1995-02-01T23:59:59.000Z

219

Okanogan Basin Spring Spawner Report for 2007.  

DOE Green Energy (OSTI)

The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

Colville Tribes, Department of Fish & Wildlife

2007-09-01T23:59:59.000Z

220

Delaware River Basin Commission (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rappahannock River Basin Commission (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) Rappahannock River Basin Commission (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Rappahannock River Basin Commission The Rappahannock River Basin Commission is an independent local entity

222

Interstate Commission on the Potomac River Basin (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) Interstate Commission on the Potomac River Basin (Multiple States) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State District of Columbia Program Type Environmental Regulations Siting and Permitting Provider Interstate Commission on the Potomac River Basin The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through regional and interstate

223

Denver Gasoline and Diesel Retail Prices  

Annual Energy Outlook 2012 (EIA)

588 3.565 3.509 3.456 3.417 3.380 2000-2013 All Grades - Conventional Areas 3.588 3.565 3.509 3.456 3.417 3.380 2000-2013 Regular 3.530 3.508 3.451 3.397 3.359 3.321 2000-2013...

224

Better Buildings Neighborhood Program: Denver County, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR qualified appliances to potential customers. Through a partnership with Xcel Energy, the local utility provider, the program reached out to approximately 20,000...

225

Denver Gasoline and Diesel Retail Prices  

U.S. Energy Information Administration (EIA)

EIA continued to collect LSD prices from retail outlets and included them in the Diesel Average All Types price until July 26, 2010, when no more outlets reported LSD ...

226

Why Sequencea Near-Shore Anoxic Basin?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Near-Shore Anoxic Basin? a Near-Shore Anoxic Basin? Oxygen minimum zones (OMZs; areas of low dissolved oxygen concentrations) play a major role in biogeochemical cycling within the world's oceans. They are major sinks for nitrogen and sources for the gases carbon dioxide and nitrous oxide. Microbially mediated biological activity associated with these systems affects the productivity of the deep blue sea and the balance of greenhouse gases in the atmosphere. Thus, studies aimed at evaluating the phylogenetic variation and metabolic capacity of microbial communities within these systems have great promise to enhance our understanding of the patterns and processes that drive global biogeochemical phenomena in both aquatic and atmospheric compartments of the biosphere. To this end, JGI and

227

Concealed evaporite basin drilled in Arizona  

SciTech Connect

The White Mountains of Arizona are a high forested plateau underlain by volcanic rocks of Late Pliocene and Quaternary age on the south margin of the Colorado plateau province. Elevations range from 6,000--11,590 ft, with winter snow and summer rain but ideal conditions for much of the year. There was no evidence of a Permian evaporite basin concealed beneath the White Mountain volcanic field until 1993, when the Tonto 1 Alpine-Federal, a geothermal test well, was drilled. This test did not encounter thermal waters, but it did encounter a surprisingly thick and unexpected sequence of anhydrite, dolomite, and petroliferous limestone assigned to the Supai (Yeso) formation of Permian age. The Tonto test was continuously cored through the Permian section, providing invaluable information that is now stored at the Arizona Geological Survey in Tucson. The paper describes the area geology and the concealed basin.

Rauzi, S.L. [Arizona Geological Survey, Tucson, AZ (United States)

1996-10-21T23:59:59.000Z

228

K Basin spent nuclear fuel characterization  

SciTech Connect

The results of the characterization efforts completed for the N Reactor fuel stored in the Hanford K Basins were Collected and summarized in this single referencable document. This summary provides a ''road map'' for what was done and the results obtained for the fuel characterization program initiated in 1994 and scheduled for completion in 1999 with the fuel oxidation rate measurement under moist inert atmospheres.

LAWRENCE, L.A.

1999-02-10T23:59:59.000Z

229

Ohio River Basin Trading Project Listening Workshops  

Science Conference Proceedings (OSTI)

In March 2010, American Farmland Trust held two listening workshops in the Wabash River Watershed to provide information and collect feedback on the Ohio River Basin Trading Project. Each session began with a basic primer on water quality trading given by Jim Klang of Kieser Associates. The presentations were followed by facilitated discussions. Participants were prompted with several questions, developed from earlier listening sessions, addressing issues that producers will likely face in water quality ...

2010-09-15T23:59:59.000Z

230

Neptunium-239 in disassembly basin water  

SciTech Connect

Since the presence of neptunium-239 in disassembly basin water had been suggested, analysis of the water was undertaken. The occurrence of Np-239 was thought to be due to its diffusion through the slugs. Samples of water from the D and E Canals in K and R-Areas were analyzed to determine the presence of Np-239. Samples from and K and R Areas both showed Np-239 to be present in quantities greater than 50% of the initial total activity.

Carlton, W.H.; Boni, A.L.

1956-08-13T23:59:59.000Z

231

Geothermal fluid genesis in the Great Basin  

DOE Green Energy (OSTI)

Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

Flynn, T.; Buchanan, P.K.

1990-01-01T23:59:59.000Z

232

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network (OSTI)

The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected to spatially and temporally variable, complex inversion events during Miocene time. Fault orientations on inversion structures in the West Natuna Basin and the Western NCSB closely parallel the western side of the Natuna Arch, which may have served as a regional "buttress" where stress was concentrated and strain was deflected from Early to Late Miocene time. Early to Middle Miocene basin inversion across the Western NCSB was coincident with the most intense phase of basin inversion in the West Natuna and Malay basins. Contraction in the Western NCS, West Natuna, and Malay basins was accommodated through reactivation of major basin-bounding fault systems that resulted in asymmetric fault-bend folding of syn- and early post-rift strata. Inversion of western Sunda Shelf basins progressed from the West Natuna and Western Nam Con Son basins into the southern Malay Basin from Early to Middle Miocene time. The most intense inversion was recorded in the West Natuna Basin during Early Miocene time with regional uplift of the southern Malay and West Natuna basins during Middle Miocene time. Whereas both the Eastern and Western NCS sub-basins experienced fault reactivation during Miocene time, the timing and styles of inversion are different. Unlike the Western NCSB, the Eastern NCSB experienced only mild positive reactivation of pre-existing synthetic and antithetic hanging-wall faults, causing simple amplification of pre-existing rollover in the hanging-wall fill during Middle Miocene time. Basin inversion of the West Natuna, Western Nam Con Son, and Malay basins is attributed to collision-induced clockwise rotation of Borneo and the attached, rigid Natuna Arch and Natuna Basement Ridge, beginning during Early Miocene time. This accounts for: 1) the south to north progression of inversion from Early to Late Miocene time, 2) magnitudes of inversion documented within each basin, 3) the suggested NW-SE orientation of []?,4) the approximately N-S azimuth of compression that caused observed styles of inversion to form.

Olson, Christopher Charles

2001-01-01T23:59:59.000Z

233

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

234

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

235

Northwest Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Northwest Basin and Range Geothermal Region Northwest Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (48) Power Plants (8) Projects (15) Techniques (33) The Basin and Range Province in northwestern Nevada and northeastern California is characterized by late Cretaceous - early Cenozoic regional erosion, Oligocene - Miocene volcanism, and subsequent late Miocene extension. Extensional faulting in northwestern Nevada began everywhere at 12 Ma and has continued up to the present. Faulting in the Warner Range in northeastern California can only be constrained to have begun between 14 and 3 Ma, but may represent westward migration of Basin and Range extension during the Pliocene. Compared to the many parts of the Basin and Range in

236

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

237

CRAD, Emergency Management - Office of River Protection K Basin Sludge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Emergency Management program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Engineering - Office of River Protection K Basin Sludge Waste System

238

Naturally-Fractured Tight-Gas Reservoirs Phase II Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoirs, San Juan 12 Basin, New Mexico," SPE paper 11642, presented at the 1983 Symposium on Low Permeability, Denver, CO. Munoz, J.: "Delineation of Drainage Area and Flow...

239

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

240

Geothermal Resource Analysis and Structure of Basin and Range...  

Open Energy Info (EERE)

Energy, 2003 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems,...

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Council, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal...

242

Geologic And Geophysical Evidence For Intra-Basin And Footwall...  

Open Energy Info (EERE)

the TertiaryQuaternary basin-fill sediments. Correlation with seismic reflection and gravity surveys shows that some faults recognized by minor displacements at the surface...

243

Oil and Gas Resources of the Fergana Basin (Uzbekistan ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-0575(94) Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan) December 1994 Energy Information Administration

244

California - Los Angeles Basin Onshore Natural Gas Plant Liquids...  

Annual Energy Outlook 2012 (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

245

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled

246

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

247

Haynesville-Bossier Shale Play, Texas-Louisiana Salt Basin  

U.S. Energy Information Administration (EIA)

Haynesville-Bossier Shale Play, Texas-Louisiana Salt Basin Source: Energy Information Administration based on data from HPDI, TX Railroad Commission, ...

248

,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

249

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

250

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0...

251

,"California - Los Angeles Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

252

,"California - San Joaquin Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

253

,"California--San Joaquin Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

254

,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million...

255

,"California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

256

,"California - San Joaquin Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

257

,"California - Los Angeles Basin Onshore Dry Natural Gas Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic...

258

,"California - Los Angeles Basin Onshore Associated-Dissolved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease...

259

,"California--Los Angeles Basin Onshore Natural Gas Plant Liquids...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--Los Angeles Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million...

260

Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

onsh Shale Proved Reserves (Billion Cubic Feet) Calif--San Joaquin Basin onsh Shale Proved Reserves (Billion Cubic Feet) No Data Available For This Series - No Data Reported; --...

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration...

262

Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search...

263

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer...

264

Lithium In Tufas Of The Great Basin- Exploration Implications...  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper:...

265

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

266

Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump...

267

Micro-Earthquake At Northwest Basin and Range Geothermal Region...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Northwest Basin and Range Geothermal Region (1976) Exploration Activity Details...

268

Dissolution of Uranium Metal from Hanford K Basin Sludge Simulant ...  

Dissolution of Uranium Metal from Hanford K Basin Sludge Simulant, Without Producing Hydrogen Stephanie Bruffey and Paul Taylor Background About 2100 metric tons of ...

269

Microearthquake surveys of Snake River plain and Northwest Basin...  

Open Energy Info (EERE)

(2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture...

270

Preparing T Plant to Store K-Basin Sludge  

SciTech Connect

This paper will explain the history and status of the modification of the Hanford T Plant facility for storage of K Basin sludge.

MCKENNEY, D.E.

2003-01-01T23:59:59.000Z

271

Geographic Information System At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration...

272

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to:...

273

Geographic Information System At Nw Basin & Range Region (Blewitt...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity...

274

River Basins Advisory Commissions (South Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) River Basins Advisory Commissions (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider Catawba Wateree River Basin Advisory Commission

275

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 29 Appendix A Petroleum Geology The petroleum geology discussion is copied ...

276

GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY  

SciTech Connect

From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

Millings, M.; Denham, M.; Looney, B.

2012-05-08T23:59:59.000Z

277

Sedimentation of shelf sandstones in Queen Formation, McFarland and Means fields, central basin platform of Permian basin  

SciTech Connect

The Queen Formation is a sequence of carbonates, evaporites, and sandstones of Permian (Guadalupian) age that is found across the subsurface of the Central Basin platform of the Permian basin. The formation is a major hydrocarbon reservoir in this region, and its primary reservoir facies are porous shelf sandstones and dolomites. Cores and well logs from McFarland and Means fields (on the northwest margin of the Central Basin platform) were examined to determine the sedimentary history of the shelf sandstones.

Malicse, A.; Mazzullo, J.; Holley, C.; Mazzullo, S.J.

1988-01-01T23:59:59.000Z

278

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

279

Devonian shale gas resource assessment, Illinois basin  

Science Conference Proceedings (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

280

HANFORD K BASINS SLUDGE RETREIVAL & TREATMENT  

SciTech Connect

This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the US and the UK to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, thus removing the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building is described, and the uranium-corrosion and grout encapsulation processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. The grout process to produce the final waste form is backed by BNG America's 20 years experience of grouting radioactive waste at Sellafield and elsewhere. The use of transportable and re-usable equipment is emphasized and its role noted in avoiding new plant build that itself will require cleanup. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup worldwide.

VASQUEZ, D.A.

2005-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Supai salt karst features: Holbrook Basin, Arizona  

SciTech Connect

More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

Neal, J.T.

1994-12-31T23:59:59.000Z

282

Pacific basin biofuel workshop report: November 1984  

SciTech Connect

The Hawaii Natural Energy Institute (HNEI), in cooperation with the State Department of Planning and Economic Development, and industry, sponsored the Pacific Basin Biofuel Workshop on November 1 and 2, 1984. The purpose of the workshop was to identify issues or problems that should be addressed, to prioritize plant species that grow rapidly in the local climate, and to formulate a plan of action for the development of Hawaii's biomass resources, for possible Pacific-wide implementation. The workshop discussions are summarized and conclusions and recommendations are presented.

1984-01-01T23:59:59.000Z

283

Screening model optimization for Panay River Basin planning in the Philippines.  

E-Print Network (OSTI)

??The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, (more)

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

284

Sequence stratigraphy of the lower Pierre Shale in southern Powder River Basin, Wyoming, USA.  

E-Print Network (OSTI)

??Powder River Basin is one of the biggest interior sedimentary basins in the Rocky Mountain region. The Upper Cretaceous section of the southern Powder River (more)

Kaykun, Armagan

2013-01-01T23:59:59.000Z

285

Late Mississippian (Chesterian) Through Early Pennsylvanian (Atokan) Strata, Michigan Basin, U.S.A.  

E-Print Network (OSTI)

?? Over 2,000 linear feet of core material was analyzed to evaluate the stratigraphy and basin evolution of Carboniferous strata in the Michigan basin. Rock (more)

Towne, Shannon M

2013-01-01T23:59:59.000Z

286

ADCP-Referenced Geostrophic Circulation in the Bering Sea Basin  

Science Conference Proceedings (OSTI)

A month-long circumnavigation of the Bering Sea basin in August 1991 was designed to study the basin-scale circulation. For the first time in this region vessel-mounted acoustic Doppler current profiler (ADCP) measurements provided an absolute ...

E. D. Cokelet; M. L. Schall; D. M. Dougherty

1996-07-01T23:59:59.000Z

287

Thermally Driven Gap Winds into the Mexico City Basin  

Science Conference Proceedings (OSTI)

A southeasterly flow in the form of a low-level jet that enters the Mexico City basin through a mountain gap in the southeast corner of the basin developed consistently in the afternoons or early evenings during a four-week 1997 winter field ...

J. C. Doran; S. Zhong

2000-08-01T23:59:59.000Z

288

On the Low-Frequency Motions in the Cilician Basin  

Science Conference Proceedings (OSTI)

The presence of low-frequency motions in the Cilician Basin (the northeastern Mediterranean Sea) is investigated. An f-plane, barotropic, wind-driven model is utilized by taking advantage of the channel-like geometry of the basin. An asymptotic ...

mit nlata

1982-02-01T23:59:59.000Z

289

Potential Vorticity Constraint on the Flow between Two Basins  

Science Conference Proceedings (OSTI)

This paper examines the role of potential vorticity (PV) balance in source- and sink-driven flows between two basins. As shown in previous studies, PV advection into a basin, say a positive PV advection, requires a negative frictional torque to ...

Jiayan Yang; James F. Price

2007-09-01T23:59:59.000Z

290

Shale Gas Development in the Susquehanna River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Water Resource Challenges Water Resource Challenges From Energy Production Major Types of Power Generation in SRB - Total 15,300 Megawatts - 37.5% 4.0% 12.0% 15.5% 31.0% Nuclear Coal Natural Gas Hydroelectric Other Marcellus Shale Gas Development in the Susquehanna River Basin The Basin: * 27,510-square-mile watershed * Comprises 43 percent of the Chesapeake Bay watershed * 4.2 million population * 60 percent forested * 32,000+ miles of waterways The Susquehanna River: * 444 miles, largest tributary to the Chesapeake Bay * Supplies 18 million gallons a minute to the Bay Susquehanna River Basin Geographic Location of Marcellus Shale within Susq. River Basin 72% of Basin (20,000 Sq. Miles) Underlain by Marcellus Shale Approximate Amount of Natural Gas in Marcellus Shale * U.S. currently produces approx. 30 trillion

291

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin and Cold Vacuum K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS) was to observe the operations associated with processing a Multi-Canister Overpack (MCO) of "found fuel" (small quantities of spent fuel discovered during cleanup of the reactor burial grounds) at the Cold Vacuum Drying Facility (CVDF). The found fuel MCO was transported from the K West Basin on the Hanford

292

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford K Basin and Cold Vacuum Hanford K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations The purpose of this independent oversight review by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS) was to observe the operations associated with processing a Multi-Canister Overpack (MCO) of "found fuel" (small quantities of spent fuel discovered during cleanup of the reactor burial grounds) at the Cold Vacuum Drying Facility (CVDF). The found fuel MCO was transported from the K West Basin on the Hanford

293

Numerical Modeling of Transient Basin and Range Extensional Geothermal  

Open Energy Info (EERE)

Transient Basin and Range Extensional Geothermal Transient Basin and Range Extensional Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Numerical Modeling of Transient Basin and Range Extensional Geothermal Systems Abstract A suite of models utilizing a range of bulkrock permeabilities were developed to analyze thetransient behavior of basin and range extensionalgeothermal systems, and particularly, the evolution ofthe system temperature with time. Each modelconsists of two mountain ranges (~1 km relief fromthe valley floor) separated by a thick sequence (about4 km) of clastic sediments derived from the adjacentranges, and a relatively permeable, high angle faultthat functions as a conduit for subsurface fluids. Thisgeometry is typical of Basin and Range extensionalsystems.We

294

EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Grande Ronde Basin Endemic Spring Chinook Salmon 3: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon EA-1173: Grande Ronde Basin Endemic Spring Chinook Salmon Supplemental Program (Preliminary), Oregon SUMMARY This EA evaluates the environmental impacts for the U.S. Department of Energy Bonneville Power Administration's proposal to fund a program designed to prevent the extinction and begin the recovery of spring Chinook salmon stocks in the Grande Ronde River Basin in the Upper Grande Ronde River, Lostine River, and Catherine Creek in Northeastern Oregon. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 18, 2003 EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program

295

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

296

Accomplishments At The Great Basin Center For Geothermal Energy | Open  

Open Energy Info (EERE)

Accomplishments At The Great Basin Center For Geothermal Energy Accomplishments At The Great Basin Center For Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Accomplishments At The Great Basin Center For Geothermal Energy Details Activities (0) Areas (0) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) has been funded by DOE since March 2002 to conduct geothermal resource exploration and assessment in the Great Basin. In that time, those efforts have led to significant advances in understanding the regional and local conditions necessary for the formation of geothermal systems. Accomplishments include the development of GPS-based crustal strain rate measurements as a geothermal exploration tool, development of new methods of detecting geothermal features with remotely sensed imagery, and the detection of

297

Relating Geothermal Resources To Great Basin Tectonics Using Gps | Open  

Open Energy Info (EERE)

Relating Geothermal Resources To Great Basin Tectonics Using Gps Relating Geothermal Resources To Great Basin Tectonics Using Gps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Relating Geothermal Resources To Great Basin Tectonics Using Gps Details Activities (8) Areas (4) Regions (0) Abstract: The Great Basin is characterized by non-magmatic geothermal fields, which we hypothesize are created, sustained, and controlled by active tectonics. In the Great Basin, GPS-measured rates of tectonic "transtensional" (shear plus dilatational) strain rate is correlated with geothermal well temperatures and the locations of known geothermal fields. This has led to a conceptual model in which non-magmatic geothermal systems are controlled by the style of strain, where shear (strike-slip faulting)

298

Basin-centered gas accumulation in the Timan-Pechora Basin, Russia  

SciTech Connect

As a consequence of the USAID-funded program between the USGS and ROSCOMNEDRA, a very large basin-centered gas accumulation has been identified in Permian orogenic flysch and molasse rocks in the pre-Ural (Kosyu-Rogov) depression of the Timan-Pechora Basin, Russia. In the Timan-Pechora Basin the Artinskian, Kungurian, and Ufimian (Leonardian-Guadalupian) gas-bearing sequence is as thick as 2,000 in and is composed of interbedded sandstone, siltstone, shale, and coal. Sandstone porosity ranges from 3 to 15% and permeability is commonly less than 0.1 md. Drill-stem and production tests indicate that these rocks are gas saturated with little or no producible water. Pore pressures are abnormally high with gradients of about 0.50 to 0.60 psi/ft. The source of the gas is most likely the interbedded coals and other carbonaceous lithologies. The organic carbon content of these rocks, exclusive of coal, ranges from <0.2 to 4.0 weight percent, averaging 1.5%. The top of the gas accumulation is interpreted to cut across structural and stratigraphic boundaries similar to basin-centered gas accumulations in North America. However, south of the Kosyu-Rogov depression, coal-bearing Kungurian rocks have undergone a facies change into evaporates, forming a regional seal that extends southward into the Volga-Ural Province. The southern extent of the gas accumulation below the evaporate seal is unknown, but it may extend far to the south, making it one of the largest gas accumulations in the world.

Law. B.E. (Geological Survey, Denver, CO (United States)); Bogatsky, V.; Danileksky, S.; Galkina, L. (TPO, VNIGRI, Ukhta (Russian Federation)) (and other)

1996-01-01T23:59:59.000Z

299

square-mile Black Warrior Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

will inject CO will inject CO 2 into a coalbed methane (CBM) well in Tuscaloosa County, Alabama, to assess the capability of mature CBM reservoirs to receive and adsorb large volumes of CO 2 . Injection began at the test site on June 15; the site was selected because it is representative of the 23,000- square-mile Black Warrior Basin located in northwestern Alabama and northeastern Mississippi. It is estimated that this area has the potential to store in the range of 1.1 to 2.3 Gigatons of CO 2 , which is approximately the amount that Alabama's coal-fired power plants emit in two decades. The targeted coal seams range from 940 to 1,800 feet deep and are one to six feet thick. Approximately 240 tons of CO 2 will be injected over a 45- to 60-day period. More information

300

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-03-01T23:59:59.000Z

302

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Larry A. Carrell

1997-12-31T23:59:59.000Z

303

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-12-31T23:59:59.000Z

304

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determination of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in- place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1997-12-01T23:59:59.000Z

305

Carderock Maneuvering & Seakeeping Basin | Open Energy Information  

Open Energy Info (EERE)

Maneuvering & Seakeeping Basin Maneuvering & Seakeeping Basin Jump to: navigation, search Basic Specifications Facility Name Carderock Maneuvering & Seakeeping Basin Overseeing Organization United States Naval Surface Warfare Center Hydrodynamic Testing Facility Type Wave Basin Length(m) 109.7 Beam(m) 73.2 Depth(m) 6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned lengthwise by a 114.6m bridge supported on a rail system that permits the bridge to traverse one-half the width of the basin and to rotate through angles up to 45 degrees from the longitudinal centerline of the basin, ship models can be towed in head or following seas at any angle from 0 to 90 degrees, tracks attached to the bottom of the bridge support the towing carriage, bridge width is constant 6.1m.

306

Closure of the R Reactor Disassembly Basin at the SRS  

Science Conference Proceedings (OSTI)

The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.

Austin, W.E.

2001-01-09T23:59:59.000Z

307

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

308

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

309

Geochemistry of oils from the Junggar basin, northwest China  

SciTech Connect

The Junggar basin of northwestern China is a structural basin containing a thick sequence of Paleozoic-Pleistocene rocks with estimated oil reserves of as much as 5 billion bbl. Analyses of 19 oil samples from nine producing fields and two oil-stained cores in the Junggar basin revealed the presence of at least five genetic oil types. The geo-chemistry of the oils indicates source organic matter deposited in fresh to brackish lake and marine environments, including coaly organic matter sources. The volumetrically most important oil type discovered to date is produced from Late Carboniferous-Middle Triassic reservoirs in the giant Karamay field and nearby fields located along the northwestern margin of the Junggar basin. Oil produced from the Mahu field, located downdip in a depression east of the Karamay field, is from a different source than Karamay oils. Unique oil types are also produced from an upper Permian reservoir at Jimusar field in the southeastern part of the basin, and from Tertiary (Oligocene) rocks at Dushanzi field and Lower Jurassic rocks at Qigu field, both located along the southern margin of the basin. Previous studies have demonstrated the presence of Upper Permian source rocks, and the possibility of Mesozoic or Tertiary sources has been proposed, but not tested by geochemical analysis, although analyses of some possible Jurassic coal source rocks have been reported. Our findings indicate that several effective source rocks are present in the basin, including local sources of Mesozoic or younger age for oil accumulations along the southern and southeastern margins of the basin. Future exploration or assessment of petroleum potential of the basin can be improved by considering the geological relationships among oil types, possible oil source rocks, and reservoirs.

Clayton, J.L.; King, J.D.; Lillis, P.G. [Geological Survey, Denver, CO (United States)] [and others

1997-11-01T23:59:59.000Z

310

Climatological Basin-Scale Amazonian Evapotranspiration Estimated through a Water Budget Analysis  

Science Conference Proceedings (OSTI)

Spatially averaged evapotranspiration [ET] over the Amazon Basin is computed as the residual of the basins atmospheric water balance equation, at the monthly time scale and for the period 19882001. Basin-averaged rainfall [P] is obtained from ...

Hanan N. Karam; Rafael L. Bras

2008-10-01T23:59:59.000Z

311

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini

2004-02-05T23:59:59.000Z

312

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

313

Permian evolution of sandstone composition in a complex back-arc extensional to foreland basin: The Bowen Basin, eastern Australia  

SciTech Connect

The Bowen Basin is a Permo-Triassic, back-arc extensional to foreland basin that developed landward of an intermittently active continental volcanic arc associated with the eastern Australian convergent plate margin. The basin has a complex, polyphase tectonic history that began with limited back-arc crustal extension during the Early Permian. This created a series of north-trending grabens and half grabens which, in the west, accommodated quartz-rich sediment derived locally from surrounding, uplifted continental basement. In the east, coeval calc-alkaline, volcanolithic-rich, and volcaniclastic sediment was derived from the active volcanic arc. This early extensional episode was followed by a phase of passive thermal subsidence accompanied by episodic compression during the late Early Permian to early Late Permian, with little contemporaneous volcanism. In the west, quartzose sediment was shed from stable, polymictic, continental basement immediately to the west and south of the basin, whereas volcanolithic-rich sediment that entered the eastern side of the basin during this time was presumably derived from the inactive, and possibly partly submerged volcanic arc. During the late Late Permian, flexural loading and increased compression occurred along the eastern margin of the Bowen Basin, and renewed volcanism took place in the arc system to the east. Reactivation of this arc led to westward and southward spread of volcanolithic-rich sediment over the entire basin. Accordingly, areas in the west that were earlier receiving quartzose, craton-derived sediment from the west and south were overwhelmed by volcanolithic-rich, arc-derived sediment from the east and north. This transition from quartz-rich, craton-derived sediments to volcanolithic-rich, arc-derived sediments is consistent with the interpreted back-arc extensional to foreland basin origin for the Bowen Basin.

Baker, J.C. (Univ. of Queensland, (Australia). Centre for Microscopy and Microanalysis); Fielding, C.R. (Univ. of Queensland, (Australia). Dept. of Earth Sciences); Caritat, P de (Australian National Univ., Canberra (Australia). Dept. of Geology); Wilkinson, M.M. (Santos Petroleum, Queensland (Australia))

1993-09-01T23:59:59.000Z

314

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 2 of the project is the determination of the burial and thermal maturation histories and basin modeling and petroleum system identification of the North Louisiana Salt Basin. In the first six (6) to nine (9) months of Year 2, the research focus is on the determination of the burial and thermal maturation histories and the remainder of the year the emphasis is on basin modeling and petroleum system identification. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2004-11-05T23:59:59.000Z

315

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

Science Conference Proceedings (OSTI)

The principal research effort for Year 2 of the project is the determination of the burial and thermal maturation histories and basin modeling and petroleum system identification of the North Louisiana Salt Basin. In the first six (6) to nine (9) months of Year 2, the research focus is on the determination of the burial and thermal maturation histories and the remainder of the year the emphasis is on basin modeling and petroleum system identification. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2005-03-31T23:59:59.000Z

316

DeFrees Small Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Wave Basin Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Small Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 15.0 Beam(m) 0.8 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.3 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 30 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled hydraulic paddle, arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes Description of Beach 1:10 sloping glass with dissipative horsehair covering if needed

317

Geographic Information System At Northern Basin & Range Region (Coolbaugh,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa-

318

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

319

Contemporary Tectonic Deformation of the Basin and Range Province, Western  

Open Energy Info (EERE)

Contemporary Tectonic Deformation of the Basin and Range Province, Western Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Contemporary Tectonic Deformation of the Basin and Range Province, Western United States: 10 Years of Observation with the Global Positioning System Abstract [1] We have estimated patterns and rates of crustal movement across 800 km of the Basin and Range at ∼39° north latitude with Global Positioning System surveys in 1992, 1996, 1998, and 2002. The total rate of motion tangent to the small circle around the Pacific-North America pole of rotation is 10.4 ± 1.0 mm/yr, and motion normal to this small circle is 3.9 ± 0.9 mm/yr compared to the east end of our network. On the Colorado

320

Atlantic Basin Refining Dynamics from U.S. Perspective  

Gasoline and Diesel Fuel Update (EIA)

This presentation focuses on the current refining situation in the Atlantic Basin, This presentation focuses on the current refining situation in the Atlantic Basin, Page 1 including some discussion on how we got here, and on drivers that will influence the next 5 years. I will focus on three topics today that are critical to the petroleum product dynamics of Page 2 the Atlantic Basin over the next several years. The first is product demand growth - something that has been affected both by the recession and legislation. Next I will cover the supply situation for gasoline and distillates in the Atlantic Basin, since Europe and the U.S. are closely entwined in these markets. Last, we will visit the outlook for those drivers affecting profitability - an area of large uncertainty. I will begin today with a short discussion of important underlying long-term trends in U.S.

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Magnetotellurics At Northern Basin & Range Region Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best way to find "hidden" basin and range geothermal resources of this general type is to carry out simultaneous SP and low-frequency MT surveys, and then

322

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

323

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

324

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

325

L-Shaped Flume Wave Basin | Open Energy Information  

Open Energy Info (EERE)

L-Shaped Flume Wave Basin L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Wave Basin Length(m) 76.2 Beam(m) 15.2 Depth(m) 1.8 Water Type Freshwater Special Physical Features Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Maximum Wave Height(m) at Wave Period(s) 10.0 Wave Period Range(s) 10.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach No Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control sys

326

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

327

Coal Pile Basin Project (4595), 5/31/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Pile Basin Project (4595) Coal Pile Basin Project (4595) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is provide demolish and deactivate the coal pile basin to grade where practical and backfill below grade portion of basin; the remaining underground portion of the stock out conveyor structure, both entrances and backfill pit; and remove universal waste, conveyor belt, asbestos; and, miscellaneous shed type structure at the south entrance to the coal pile. Categorical Exclusion(s) Applied: 81.29- Disposal facilities for construction and demolition waste For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each

328

DeFrees Large Wave Basin | Open Energy Information  

Open Energy Info (EERE)

Large Wave Basin Large Wave Basin Jump to: navigation, search Basic Specifications Facility Name DeFrees Large Wave Basin Overseeing Organization Cornell University Hydrodynamics Hydrodynamic Testing Facility Type Wave Basin Length(m) 32.0 Beam(m) 0.6 Depth(m) 0.9 Water Type Freshwater Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 3.0 Maximum Wave Length(m) 64 Wave Period Range(s) 3.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Computer controlled 4m hydraulic wave paddle stroke allows a series of solitary waves to be generated; arbitrary wave shape possible Wave Direction Uni-Directional Simulated Beach Yes

329

EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program;  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

495: Walla Walla Basin Spring Chinook Hatchery Program; 495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington EIS-0495: Walla Walla Basin Spring Chinook Hatchery Program; Milton-Freewater, Oregon, and Dayton, Washington SUMMARY Bonneville Power Administration (BPA) is preparing an EIS to analyze the potential environmental impacts of funding a proposal by the Confederated Tribes of the Umatilla Indian Reservation to construct and operate a hatchery for spring Chinook salmon in the Walla Walla River basin. Additional information is available at the project website: http://efw.bpa.gov/environmental_services/Document_Library/WallaWallaHatchery/. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILALE FOR DOWNLOAD March 28, 2013 EIS-0495: Notice of Intent to Prepare an Environmental Impact Statement

330

Inversion Breakup in Small Rocky Mountain and Alpine Basins  

Science Conference Proceedings (OSTI)

Comparisons are made between the postsunrise breakup of temperature inversions in two similar closed basins in very different climate settings, one in the eastern Alps and one in the Rocky Mountains. The small, high-altitude, limestone sinkholes ...

C. David Whiteman; Bernhard Pospichal; Stefan Eisenbach; Philipp Weihs; Craig B. Clements; Reinhold Steinacker; Erich Mursch-Radlgruber; Manfred Dorninger

2004-08-01T23:59:59.000Z

331

The Water Budget of the Kuparuk River Basin, Alaska  

Science Conference Proceedings (OSTI)

A water budget study that considers precipitation, river runoff, evapotranspiration, and soil moisture for the Kuparuk River basin on the North Slope of Alaska is presented. Numerical simulations of hydrologic processes using the NASA Catchment-...

Stephen J. Dry; Marc Stieglitz; sa K. Rennermalm; Eric F. Wood

2005-10-01T23:59:59.000Z

332

Basin Electric Power Coop (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Basin Electric Power Coop Place South Dakota Utility Id 1307 References EIA Form EIA-861 Final Data File for 2010 - File220101 LinkedIn...

333

Improving Seasonal Hurricane Predictions for the Atlantic Basin  

Science Conference Proceedings (OSTI)

This paper demonstrates that improved forecasts of the annual number of hurricanes in the Atlantic tropical basin are possible by separating tropical-only hurricanes from hurricanes influenced by extratropical factors. It is revealed that ...

J. C. Hess; J. B. Elsner; N. E. LaSeur

1995-06-01T23:59:59.000Z

334

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Annual Energy Outlook 2012 (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

335

Negotiating nature : expertise and environment in the Klamath River Basin  

E-Print Network (OSTI)

"Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

Buchanan, Nicholas Seong Chul

2010-01-01T23:59:59.000Z

336

Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 August  

Science Conference Proceedings (OSTI)

More than 90% of all seasonal Atlantic tropical cyclone activity typically occurs after 1 August. A strong predictive potential exists that allows seasonal forecasts of Atlantic basin tropical cyclone activity to be issued by 1 August, prior to ...

William M. Gray; Christopher W. Landsea; Paul W. Mielke Jr.; Kenneth J. Berry

1993-03-01T23:59:59.000Z

337

Roanoke River Basin Bi-State Commission (Multiple States)  

Energy.gov (U.S. Department of Energy (DOE))

The Roanoke River Basin Bi-State Commission was established as a bi-state commission composed of members from the Commonwealth of Virginia and the State of North Carolina.The purpose of the...

338

California - San Joaquin Basin Onshore Dry Natural Gas Proved...  

Annual Energy Outlook 2012 (EIA)

Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

339

California - San Joaquin Basin Onshore Crude Oil Proved Reserves ...  

U.S. Energy Information Administration (EIA)

California - San Joaquin Basin Onshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's:

340

Streamflow Characteristics and Changes in Kolyma Basin in Siberia  

Science Conference Proceedings (OSTI)

This study documents major changes in streamflow hydrology over the Kolyma watershed due to climatic variations and human impacts. Streamflow seasonal cycles over the basin are characteristic of the northern region, with the lowest runoff in ...

Ipshita Majhi; Daqing Yang

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Three-Dimensional Tidal Flow in an Elongated, Rotating Basin  

Science Conference Proceedings (OSTI)

The three-dimensional tidal circulation in an elongated basin of arbitrary depth is described with a linear, constant-density model on the f plane. Rotation fundamentally alters the lateral flow, introducing a lateral recirculation comparable in ...

Clinton D. Winant

2007-09-01T23:59:59.000Z

342

Pemex plans large program to expand Burgos basin gas output  

Science Conference Proceedings (OSTI)

Although Burgos basin fields have been in production since 1945--maximum production rate to date was in 1970 with just over 600 MMcfd--Pemex officials are optimistic the basin has sufficient reserves to warrant further exploration. Rather than just explore for new fields and pools, Pemex aims to use 3D seismic technology to get a better picture of existing reservoirs and use new drilling techniques and hydraulic fracturing to boost production levels Because gas reservoirs in the Burgos basin and in the Rio Grande basin of Texas tend to be compact, it is unlikely any cross-border production issues--such as those still to be settled between the two countries in the Gulf of Mexico--will arise. The paper discusses Burgos development, domestic versus US gas, the geologic framework, and Mexico`s infrastructure needs.

NONE

1997-11-10T23:59:59.000Z

343

Predicting Atlantic Basin Seasonal Tropical Cyclone Activity by 1 June  

Science Conference Proceedings (OSTI)

This is the third in a series of papers describing the potential for the seasonal forecasting of Atlantic basin tropical cyclone activity. Earlier papers by the authors describe seasonal prediction from 1 December of the previous year and from 1 ...

William M. Gray; Christopher W. Landsea; Paul W. Mielke Jr.; Kenneth J. Berry

1994-03-01T23:59:59.000Z

344

Conflicting Signals of Climatic Change in the Upper Indus Basin  

Science Conference Proceedings (OSTI)

Temperature data for seven instrumental records in the Karakoram and Hindu Kush Mountains of the Upper Indus Basin (UIB) have been analyzed for seasonal and annual trends over the period 19612000 and compared with neighboring mountain regions ...

H. J. Fowler; D. R. Archer

2006-09-01T23:59:59.000Z

345

Winter Circulation and Convection in the Antalya Basin (Eastern Mediterranean)  

Science Conference Proceedings (OSTI)

From an oceanographic survey of the Antalya Basin in February 1997 the following horizontal circulation pattern was found: the Asia Minor Current (AMC) was detached from the Turkish coast flowing to the southwest. The Cilician Current was present ...

Reiner Onken; Hseyin Yce

2000-05-01T23:59:59.000Z

346

Baroclinic Modes in a Two-Layer Basin  

Science Conference Proceedings (OSTI)

The objective of this study is to investigate the time-dependent circulation in a closed basin where the steady circulation is included and long Rossby wave speeds are consistent with observations. Specifically, the large-scale baroclinic ...

Matthew Spydell; Paola Cessi

2003-03-01T23:59:59.000Z

347

Slow Instabilities in Tropical Ocean BasinGlobal Atmosphere Models  

Science Conference Proceedings (OSTI)

The effect of ocean boundaries on instability in coupled ocean-natmosphere models is determined. Eigenvalues and eigenvectors are calculated for coupled systems featuring an ocean basin bounded zonally by a flat continent. The atmosphere is ...

Anthony C. Hirst

1988-03-01T23:59:59.000Z

348

The Hydrometeorology of a Deforested Region of the Amazon Basin  

Science Conference Proceedings (OSTI)

A series of numerical simulations were performed to evaluate the capability of the Regional Atmospheric Modeling System (RAMS) to simulate the evolution of convection in a partly deforested region of the Amazon basin during the rainy season, and ...

Renato Ramos da Silva; Roni Avissar

2006-10-01T23:59:59.000Z

349

Pacific Decadal Variability: Paced by Rossby Basin Modes?  

Science Conference Proceedings (OSTI)

A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, ...

Wilbert Weijer; Ernesto Muoz; Niklas Schneider; Franois Primeau

2013-02-01T23:59:59.000Z

350

Modal Decay in the AustraliaAntarctic Basin  

Science Conference Proceedings (OSTI)

The barotropic intraseasonal variability in the AustraliaAntarctic Basin (AAB) is studied in terms of the excitation and decay of topographically trapped barotropic modes. The main objective is to reconcile two widely differing estimates of the ...

Wilbert Weijer; Sarah T. Gille; Frdric Vivier

2009-11-01T23:59:59.000Z

351

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

352

Oil and gas resources in the West Siberian Basin, Russia  

Science Conference Proceedings (OSTI)

The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

NONE

1997-12-01T23:59:59.000Z

353

oil and Gas Resources of the West Siberian Basin, Russia  

U.S. Energy Information Administration (EIA)

Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia 139 Appendix D Field Summaries Tables 1D and 2D lists the fields of the West

354

On the Horizontal Extent of the Canada Basin Thermohaline Steps  

Science Conference Proceedings (OSTI)

Microstructure profiles of temperatures through the diffusive thermohaline staircase above the Atlantic layer core in the Canada Basin of the Arctic Ocean are used to investigate the horizontal scales of layers. Daily profiles during two periods, ...

Laurie Padman; Thomas M. Dillon

1988-10-01T23:59:59.000Z

355

Intensification of Geostrophic Currents in the Canada Basin, Arctic Ocean  

Science Conference Proceedings (OSTI)

Continuous sampling of upper-ocean hydrographic data in the Canada Basin from various sources spanning from 2003 through 2011 provides an unprecedented opportunity to observe changes occurring in a major feature of the Arctic Ocean. In a 112-km-...

Miles G. McPhee

2013-05-01T23:59:59.000Z

356

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network (OSTI)

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

357

Basin-Scale Opportunity Assessment Initiative Background Literature Review  

SciTech Connect

As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-10-01T23:59:59.000Z

358

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

SciTech Connect

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03T23:59:59.000Z

359

Basin-Scale Opportunity Assessment Initiative Background Literature Review  

DOE Green Energy (OSTI)

As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-10-01T23:59:59.000Z

360

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

362

Repository site definition in basalt: Pasco Basin, Washington  

SciTech Connect

Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

1982-03-01T23:59:59.000Z

363

Evolutionary sequences and hydrocarbon potential of Kenya sedimentary basins  

Science Conference Proceedings (OSTI)

Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustatic sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.

Cregg, A.K. (Western Atlas International, Inc., Carrollton, TX (United States))

1991-03-01T23:59:59.000Z

364

The ecology of Barataria Basin, Louisiana: An estuarine profile  

SciTech Connect

The Barataria Basin lies entirely in Louisiana between the natural levees of the active Mississippi River and the abandoned Bayou Lafourche distributary. It is characterized by a network of interconnecting water bodies which allows transport of water, materials, and migrating organisms throughout the basin. Natural and artificial levees and barrier islands are the only high, well-drained ground in the basin, which is otherwise characterized by extensive swamp forests and fresh, brackish, and salt marshes. These wetlands and water bodies are extremely productive biologically and provide valuable nursery habitat for a number of commercial and recreational fish and shellfish, as well as habitat for wintering waterfowl and furbearers. The basin is a dynamic system undergoing constant change because of geologic and human processes. The network of bays, lakes, and bayous has gradually enlarged over time due to natural subsidence and erosion. Superimposed on these natural processes has been the construction of levees for flood control and network of canals constructed for oil and gas exploration and extraction. These human activities have altered natural hydrologic patterns in the basin and may directly or indirectly contribute to wetland losses. Controlling wetland deterioration in the basin is a major management concern.

Conner, W.H.; Day, J.W. Jr. (eds.)

1987-07-01T23:59:59.000Z

365

Yakima Basin Fish Passage Project, Phase 2  

DOE Green Energy (OSTI)

Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

366

Selecting major Appalachian basin gas plays  

SciTech Connect

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-01-01T23:59:59.000Z

367

Selecting major Appalachian basin gas plays  

Science Conference Proceedings (OSTI)

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-06-01T23:59:59.000Z

368

Understanding Long-Term Solute Transport in Sedimentary Basins: Simulating Brine Migration in the Alberta Basin. Final Report  

Science Conference Proceedings (OSTI)

Mass transport in deep sedimentary basins places important controls on ore formation, petroleum migration, CO2 sequestration, and geochemical reactions that affect petroleum reservoir quality, but large-scale transport in this type of setting remains poorly understood. This lack of knowledge is highlighted in the resource-rich Alberta Basin, where geochemical and hydrogeologic studies have suggested residence times ranging from hundreds of millions of years to less than 5 My, respectively. Here we developed new hydrogeologic models that were constrained by geochemical observations to reconcile these two very different estimates. The models account for variable-density fluid flow, heat transport, solute transport, sediment deposition and erosion, sediment compressibility, and dissolution of salt deposits, including Cl/Br systematics. Prior interpretations of Cl/Br ratios in the Alberta Basin concluded that the brines were derived from evaporatively-concentrated brines that were subsequently diluted by seawater and freshwater; models presented here show that halite dissolution must have contributed strongly as well, which implies significantly greater rates of mass transport. This result confirms that Cl/Br ratios are subject to significant non-uniqueness and thus do not provide good independent indicators of the origin of brines. Salinity and Cl/Br ratios provided valuable new constraints for basin-scale models, however. Sensitivity studies revealed that permeabilities obtained from core- and field-scale tests were appropriate for basin-scale models, despite the differences in scale between the tests and the models. Simulations of groundwater age show that the residence time of porefluids in much of the basin is less than 100 My. Groundwater age increases with depth and approaches 200 My in the deepest part of the basin, but brines are significantly younger than their host rocks throughout the basin.

Alicia M. Wilson

2009-11-30T23:59:59.000Z

369

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2003-09-11T23:59:59.000Z

370

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

Science Conference Proceedings (OSTI)

The principal research effort for Year 1 of the project is data compilation and the determination of the tectonic and depositional histories of the North Louisiana Salt Basin. In the first three (3) to six (6) months of Year 1, the research focus is on data compilation and the remainder of the year the emphasis is on the tectonic and depositional histories of the basin. No major problems have been encountered to date, and the project is on schedule.

Ernest A. Mancini

2003-11-11T23:59:59.000Z

371

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa |  

Open Energy Info (EERE)

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Details Activities (2) Areas (1) Regions (0) Abstract: The San Luis basin is the largest and deepest basin in the Neogene Rio Grande rift, and has many similarities to the basins of the US Basin and Range Province. It is asymmetric with a displacement of as much as 9 km on its eastern margin, and approximately 6.4 km of sedimentary rocks of late Oligocene or younger age in the deepest portion of the basin. Temperature measurements in shallow wells in the northern basin have an average geothermal gradient of 59.0 ± 11.8°C km-1 (± standard

372

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

BOE Reserve Class BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1- 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

373

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Liquids Reserve Class Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1- 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

374

BASIN BLAN CO BLAN CO S OT ERO IGNAC IO-BLANCO AZ TEC BALLAR  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Reserve Class Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1- 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline AZ UT NM CO 1 2 Index Map for 2 Paradox-San Juan Panels 2001 Reserve Summary for All Paradox-San Juan Basin Fields Total Total Total Number Liquid Gas BOE of Reserves Reserves Reserves Fields (Mbbl) (MMcf) (Mbbl) Paradox-San Juan 250 174,193 20,653,622 3,616,464 Basin CO NM IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO IGNAC IO-BLANCO BASIN BASIN BLAN CO BLAN CO BASIN BASIN BASIN BASIN BASIN BASIN BISTI BAL LAR D BASIN BISTI BLA NCO S OT ERO BAL LAR D LIND RITH W BASIN BLA NCO BLA NCO S BLA NCO S TAPAC ITO GAVIL AN BASIN BLA NCO The mapped oil and gas field boundary outlines were created by the Reserves and Production Division, Office of Oil and Gas, Energy Information Administration pursuant to studies required by

375

Fortescue field, Gippsland basin: Flank potential realized  

SciTech Connect

Fortescue field was the last major oil field to be discovered in the offshore Gippsland basin, southeastern Australia. The discovery well, 1 West Halibut, was drilled in 1978 on the basis of a 1-km seismic grid as a follow up to the dry 1 Fortescue wildcat. Data from this well were interpreted to indicate that there was a high probability of a stratigraphic trap occurring on the western flank of the giant Halibut-Cobia structure. The 2, 3, and 4 Fortescue wells were drilled by early 1979 to determine the limits of the field, delineate the stratigraphy, and define the hydrocarbon contacts. Cobia A had the dual purpose of developing the Cobia field and the southern extent of the Fortescue reservoirs that were inaccessible to the Fortescue A plat-form. At the conclusion of development drilling in early 1986, eight Cobia A wells and 20 Fortescue A wells were capable of producing from Fortescue reservoirs. The Fortescue reservoirs are Eocene sandstones that were deposited in coastal plain, upper shoreface, and lower shoreface environments. Integration of well log correlations, stratigraphic interpretations, reservoir pressure data, and seismic data indicates that these Fortescue reservoirs are stratigraphically younger than, and are hydraulically separated from, the underlying Halibut-Cobia fields. Pressure data acquired during development drilling and while monitoring subsequent production performance have conclusively demonstrated that there are at least three separate hydraulic systems active within the Fortescue field. Fortescue field dimensions are approximately 11 km x 4 km with a maximum relief of 100 m above the original oil-water contact. Reserves are estimated at 280,000 STB, based on original oil in place estimates of 415,000 STB and recovery factors in the 65-70% range. Production rate peaked in 1984 at 100 K BOPD from the combined development facilities and was sustained until late 1986. More than two-thirds of the reserves have been produced to date.

Hendrich, J.H.; Schwebel, D.A.; Palmer, I.D. (Esso Asustralia Ltd., Sydney, New South Wales (Australia))

1990-09-01T23:59:59.000Z

376

Potential for Generation of Flammable Mixtures of Hydrogen from Aluminum-Grout Interaction in the K Basins During Basin Grouting  

DOE Green Energy (OSTI)

During the course of deactivation and decommissioning (D&D) of the K-Basins, the basins will be partially filled with grout so as to immobilize residual equipment and debris. Some of this residual debris, principally empty fuel canisters, identification tags, and long-handled tools, contain aluminum metal. The aluminum metal will corrode when contacted with the high pH grout, resulting in the generation of hydrogen. Pacific Northwest National Laboratory (PNNL) evaluated existing experimental and analytical studies of this issue to (1) determine whether sufficient hydrogen will be generated and collected during the K-Basins grouting activity to potentially create the conditions for hydrogen deflagration/explosion and (2) identify process constraints that will provide assurance that the conditions for hydrogen deflagration/explosion will not exist. Based on the review of available experimental and analytical studies, it was concluded that the likelihood of generating a flammable mixture of hydrogen from interaction of residual aluminum metal with grout is low but not zero. However, a flammable mixture of hydrogen will not be generated anywhere in the basin facility during grouting of the KE Basin as long as the following conditions are met: (1) The residual aluminum metal inventory in the basin, especially the fuel canisters, are not stacked on top of one another. This will prevent over-concentrating the aluminum metal inventory over a small surface area of the basin floor. (2) The temperature of the grout is maintained below 90 C (194 F) during pouring and at least three hours after the aluminum metal has been covered (lower grout temperatures result in lower hydrogen generation rates). After about three hours immersed in the grout, an oxide or corrosion layer has formed on the aluminum metal significantly reducing the corrosion/hydrogen generation rates assumed in this analysis. (3) The basin water temperature is maintained at less than 60 C (140 F) for at least three hours after interruption of the grout pour if the aluminum metal in the basin has not been completely covered (so as to minimize reaction of the uncovered aluminum metal with Ca(OH)2). This can effectively be done by ensuring that the basin water temperature is less than 70 F (21 C) prior to initiating grouting of the basin and ensuring that the basin water level is at least 10 feet above the surface of the grout. (4) The basin water is not removed at the same time as grout is being poured (to avoid removing the hydrogen to another potential collection point). This condition is not necessary if the water removal system is appropriately vented to prevent accumulation of hydrogen in the system or after the aluminum metal has been covered with grout for at least three hours. These conclusions are supported as long as the amount and physical configuration of the residual aluminum inventory in the KE Basin is consistent with the assumptions described in Appendix A.

Short, Steven M.; Parker, Brian M.

2005-04-29T23:59:59.000Z

377

Hydrogeochemistry of the Antrim Shale (Devonian) in the Michigan Basin  

SciTech Connect

The Antrim shale has been the focus of active exploration and production in the Michigan Basin since 1987. The producing trend is presently located along the northern rim of the basin, but new ventures are expanding into the southern part of the basin and a predictive model for gas generation and production is greatly needed. The authors have undertaken a geochemical investigation of the waters co-produced with gases in the Antrim shale. There is unusual regional variability in the water chemistry. For example, salinity ranges from near potable water to nearly 10 times the salinity of ocean water within a distance of 80 km. Understanding the origin of solutes, waters and natural gas being produced from the Antrim Shale will aid in developing a model for natural gas generation and migration within the basin. The chemical and isotopic compositions of Antrim waters suggest that there are two sources of water and salinity within the reservoir: (1) saline, high-bromide basinal brine moving updip into the producing areas, and (2) ancient, dilute glacial melt water. Either of these waters can gain additional NaCl from dissolving Br-poor halite located within the updip pinch-out of the Detroit River Salt. When plotted geographically, variations in these components exhibit distinct regional patterns and may ultimately highlight major water and gas migration avenues. In addition to variable water salinity, the authors' preliminary results suggest that complexities in natural gas chemistry are reflected in the composition of coexisting waters.

Martini, A.M.; Walter, L.M.; Richards, J.A.; Budai, J.M. (Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Geological Sciences)

1994-04-01T23:59:59.000Z

378

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin | Open  

Open Energy Info (EERE)

Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Jump to: navigation, search Name Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin Agency/Company /Organization Environment Canada, International Institute for Sustainable Development (IISD) Sector Climate, Energy, Land, Water Focus Area Non-renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Greenhouse Gas, Grid Assessment and Integration, Industry, Land Use, Offsets and Certificates, Transportation Topics Adaptation, Background analysis, Baseline projection, GHG inventory, Low emission development planning, -NAMA, Pathways analysis, Policies/deployment programs Program Start 2012 Program End 2013 Country Angola, Burundi, Cameroon, Central African Republic, Democratic Republic of Congo, Republic of Congo, Rwanda

379

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

Numerical Modeling Of Basin And Range Geothermal Systems Numerical Modeling Of Basin And Range Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Numerical Modeling Of Basin And Range Geothermal Systems Details Activities (3) Areas (3) Regions (0) Abstract: Basic qualitative relationships for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal systems, as described in this paper, rely on deep circulation of groundwater rather than on cooling igneous bodies for heat, and rely on extensional fracture systems to provide permeable upflow paths. A series of steady-state, two-dimensional simulation models is used to evaluate the effect of permeability and structural variations on an idealized, generic

380

oil and Gas Resources of the West Siberian Basin, Russia  

Gasoline and Diesel Fuel Update (EIA)

report was prepared by the Energy Information Administration, the independent statistical and analytical agency report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. DOE/EIA - 0617 Distribution Category UC-950 Oil and Gas Resources of the West Siberian Basin, Russia November 1997 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 Energy Information Administration Oil and Gas Resources of the West Siberian Basin, Russia iii Preface Oil and Gas Resources of the West Siberian Basin, Russia is part of the Energy Information Administration's

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Microsoft Word - Powder River Basin 1_6_06.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics of Powder River Basin Economics of Powder River Basin Coalbed Methane Development Prepared for: U.S. Department of Energy Prepared by: Gregory C. Bank Vello A. Kuuskraa vkuuskraa@adv-res.com Advanced Resources International, Inc. January 2006 Disclaimer This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. The Economics of Powder River Basin Coalbed Methane Development

382

Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site (SRS) recently cleaned up a 17- Site (SRS) recently cleaned up a 17- acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a cost of $8.9 million, $2.9 million under budget. The manmade earthen basin received ash from the former R Area Pow- erhouse operations, which ended in 1964. The first of five reactors con- structed at SRS, the R Reactor produced nuclear materials for national defense. Recovery Act funding allowed SRS to accelerate cleanup of the basin and complete the project five years earlier than the target set in a regu- latory schedule. In late 2010, the U.S. Environmental Protection Agency and South Carolina Department of Health and Environmental Control determined the closure met all regulatory requirements after inspection

383

Why sequence thermophiles in Great Basin hot springs?  

NLE Websites -- All DOE Office Websites (Extended Search)

thermophiles in Great Basin hot springs? thermophiles in Great Basin hot springs? A thermophile is an organism that thrives in extremely hot temperature conditions. These conditions are found in the Great Basin hot springs, where the organisms have been exposed to unique conditions which guide their lifecycle. High temperature environments often support large and diverse populations of microorganisms, which appear to be hot spots of biological innovation of carbon fixation. Sequencing these microbes that make their home in deadly heat could provide various insights into understanding energy production and carbon cycling. Converting cellulosic biomass to ethanol is one of the most promising strategies to reduce petroleum consumption in the near future. This can only be achieved by enhancing recovery of fermentable sugars from complex

384

Kinematic model for postorogenic Basin and Range extension | Open Energy  

Open Energy Info (EERE)

Kinematic model for postorogenic Basin and Range extension Kinematic model for postorogenic Basin and Range extension Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Kinematic model for postorogenic Basin and Range extension Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River extensional shear zone is exposed in the Albion-Raft River-Grouse Creek metamorphic core complex. Several studies of ductile deformation have shown that it accommodated crustal stretching in Tertiary time during late orogenic collapse of the thickened Cordilleran crust. Progressive deformation that results from mixed pure and simple shear produces a complex strain pattern along the shear zone. The authors propose a numerical kinematic model that relates strain variations in the shear zone to the different amounts of extension between the brittlely

385

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

386

Gas Generation from K East Basin Sludges - Series II Testing  

Science Conference Proceedings (OSTI)

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focused on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report will present results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2001-03-14T23:59:59.000Z

387

Thermal Conductivity and Shear Strength of K Basin Sludge  

DOE Green Energy (OSTI)

Hanford K Basin sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and, consequently, generate heat and hydrogen gas during storage. Heat is generated within the K Basin sludge by radiolytic decay and the reaction of uranium metal with water. To maintain thermal stability, the sludge must be retrieved, staged, transported, and stored in systems designed to provide a rate of heat removal that prevents the temperature in the sludge from increasing beyond acceptable limits. To support the dispositioning of the sludge to T Plant, modeling and testing and analyses are being performed to predict the behavior of sludge when placed into the storage containers. Two physical properties of the sludge that are critical to the modeling and analyses efforts are thermal conductivity and the sludge shear strength (yield stress). This report provides the results of thermal conductivity and shear strength measurements performed on representative sludge samples from the K East Basin.

Poloski, Adam P. (BATTELLE (PACIFIC NW LAB)); Bredt, Paul R. (BATTELLE (PACIFIC NW LAB)); Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Swoboda, Robert G. (BATTELLE (PACIFIC NW LAB)); Chenault, Jeffrey W. (BATTELLE (PACIFIC NW LAB)); Gano, Sue (BATTELLE (PACIFIC NW LAB))

2002-05-17T23:59:59.000Z

388

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation of information is presented on geology and drilling activity in the four primary study areas of the Western Gas Sands Project. The areas of interest are the Greater Green River Basin, the Piceance Basin, the Uinta Basin, and the Northern Great Plains Province. Drilling activity is discussed for the months of October, November, and December, 1977, with the major emphasis on wells located in low permeability sandstone areas, having significant gas production and utilizing hydraulic fracturing treatments. The drilling information was obtained primarily from ''The Rocky Mountain Region Report'' published by Petroleum Information Corporation on a daily basis. Another source of information was the ''Montana Oil and Gas Journal'' which is released weekly.

1978-01-01T23:59:59.000Z

389

University of Iowa Wave Basin | Open Energy Information  

Open Energy Info (EERE)

University of Iowa Wave Basin University of Iowa Wave Basin Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Wave Basin Length(m) 40.0 Beam(m) 20.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mappingv Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.5 Length of Effective Tow(m) 25.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable for regular or irregular waves Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Trusses overlaid with lattice and matting Channel/Tunnel/Flume

390

The Illinois basin as a flow path for ore fluids  

SciTech Connect

Three major Mississippi Valley-type Pb-Zn{plus minus}F districts may be the result of fluid migration through the Illinois basin. To establish aquifers and flow vectors possibly associated with mineralizing fluids, the authors measured trace element and F abundances on acid insoluble residues in samples from 63 drill holes in the southern part of the basin and S and Pb isotopes for a subset of these samples. Anomalously high amounts of F associated with barite and sphalerite are common in Ordovician and Mississippian strata of the basin, as well as in an area to the southwest of the basin in Ste. Genevieve and Perry counties, Missouri. Fluorine anomalies also extend north of the Illinois-Kentucky fluorspar district into Galatin County, Illinois. Previous studies report elevated Zn (>200 ppm) and Pb (>100 ppm) contents at several stratigraphic intervals, with elevated Pb contents predominant in Cambrian rocks and Zn relatively more abundant upsection. A prominent Pb enrichment in the deepest part of the basin resides largely in FeS{sub 2}. Similar Pb isotope data for these Pb-rich pyrites and for galena from the overlying fluorspar district suggests possible vertical transport of ore-forming fluids. This Pb is isotopically distinct from and was not involved in the formation of the southeast Missouri Pb belts. Sulfur isotope data suggest that isotopically heavy H{sub 2}S ({delta}{sup 34}S > 10{per thousand}), characteristic of thermochemical sulfate reduction has sulfidized parts of the Mt. Simon formation and lighter H{sub 2}S, having small positive or negative {delta}{sup 34}S values, has sulfidized the overlying carbonate strata. They have not recognized a signature coincident with the upper Mississippi Valley ores at the north end of the basin.

Goldhaber, M.B.; Mosier, E.; Church, S.; Whitney, H.; Gacetta, G. (Geological Survey, Denver, CO (USA)); Eidel, J.; Hackley, K. (Illinois State Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

391

Late Quaternary Geochronology and Recent Faulting Along the Eastern Margin of the Shukash Basin, Central Cascade Range, Oregon.  

E-Print Network (OSTI)

??Part I: Seismic Stratigraphy Transecting the Eastern Margin of the Shukash Basin, Central Cascade Range, Oregon The Shukash Basin is a sediment filled-trough that lies (more)

Lyon, Edward W., Jr.

2001-01-01T23:59:59.000Z

392

Response of Streamflow to Climate Changes in the Yellow River Basin, China  

Science Conference Proceedings (OSTI)

Climate changes impact hydrological processes and control streamflow at the basin scale. The present study was conducted to investigate the impact of climate change on streamflow in the Yellow River basin (YRB), China. The temporal trends of ...

Zhifeng Yang; Qiang Liu

2011-10-01T23:59:59.000Z

393

Deep-Water Renewal in the Upper Basin of Loch Sunart, a Scottish Fjord  

Science Conference Proceedings (OSTI)

Recording current meters were deployed near the surface and bottom in the upper basin of Loch Sunart during the summers of 1987, 1989, and 1990. The measurements revealed frequent, though irregular, deep-water renewal events when the basin water ...

Philip A. Gillibrand; William R. Turrell; Alan J. Elliott

1995-06-01T23:59:59.000Z

394

Wintertime Evolution of the Temperature Inversion in the Colorado Plateau Basin  

Science Conference Proceedings (OSTI)

The Colorado Plateau, surrounded by a ring of mountains, has the meteorological characteristics of a basin. Deep, persistent potential temperature inversions form in this basin in winter. The formation, maintenance, and dissipation of these ...

C. David Whiteman; Xindi Bian; Shiyuan Zhong

1999-08-01T23:59:59.000Z

395

Harper et al., eds.: Natural History of the Colorado Plateau and Great Basin  

E-Print Network (OSTI)

Natural History of the Colorado Plateau and Great Basin. K.University Press of Colorado, 1994, viii -I- 294 pp. , 41Natural History of the Colorado Plateau and Great Basin

Livingston, Stephanie

1995-01-01T23:59:59.000Z

396

Great Lakes-St. Lawrence River Basin Water Resources Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

This Act describes the management of the Great Lakes - St. Lawrence River basin, and regulates water withdrawals, diversions, and consumptive uses from the basin. The Act establishes a Council,...

397

Challenges in Forecasting the 2011 Runoff Season in the Colorado Basin  

Science Conference Proceedings (OSTI)

Historically large snowpack across the upper Colorado basin and the Great Basin in 2011 presented the potential for widespread and severe flooding. While widespread flooding did occur, its impacts were largely moderated through a combination of ...

Kevin Werner; Kristen Yeager

2013-08-01T23:59:59.000Z

398

Screening model optimization for Panay River Basin planning in the Philippines  

E-Print Network (OSTI)

The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity, and to increase irrigated rice areas. The goal of this ...

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

399

Compound and Elemental Analysis At Northern Basin & Range Region  

Open Energy Info (EERE)

(Coolbaugh, Et Al., 2010) (Coolbaugh, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes "This second paper provides more detailed documentation on water and rock geochemistries and describes diagnostic major and trace element ratios and concentrations that can be used to distinguish tufa columns formed from thermal waters from those that formed from non-thermal waters." "In addition to providing a potentially diagnostic lithogeochemical tool for

400

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility- August 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat Budget Analysis of Nocturnal Cooling and Daytime Heating in a Basin  

Science Conference Proceedings (OSTI)

Nocturnal cooling and daytime heating in a basin were studied on clear and calm days by means of heat budget observations. In the nighttime, drainage flow occurs along the basin sideslope and advects cold air to the boundary layer over the basin ...

Junsei Kondo; Tsuneo Kuwagata; Shigenori Haginoya

1989-10-01T23:59:59.000Z

402

Gravity modeling of 21/2-D sedimentary basins - a case of variable density contrast  

Science Conference Proceedings (OSTI)

An algorithm and associated codes are developed to determine the depths to bottom of a 2^1^/^2-D sedimentary basin in which the density contrast varies parabolically with depth. This algorithm estimates initial depths of a sedimentary basin automatically ... Keywords: Basement, Gravity anomaly, Modeling, Parabolic density profile, Sedimentary basin

V. Chakravarthi; N. Sundararajan

2005-08-01T23:59:59.000Z

403

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil  

E-Print Network (OSTI)

Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993

Watts, A. B. "Tony"

404

Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits  

E-Print Network (OSTI)

Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits of sedimentary basins hosting unconformity-type uranium deposits. In addition, these techniques have great potential as a guide for exploration of uranium and other types of deposits in basins of any age. Isotope

Hiatt, Eric E.

405

Dynamics in the Deep Canada Basin, Arctic Ocean, Inferred by Thermistor Chain Time Series  

Science Conference Proceedings (OSTI)

A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical ...

M-L. Timmermans; H. Melling; L. Rainville

2007-04-01T23:59:59.000Z

406

Evolution of the Deep Water in the Canadian Basin in the Arctic Ocean  

Science Conference Proceedings (OSTI)

An overflow of magnitude 0.25 Sv (Sv ? 106 m?3 s?1) has been predicted to enter the Makarov Basin (part of the Canadian Basin in the Arctic Ocean) from the Eurasian Basin via a deep gap in the dividing Lomonosov ridge. The authors argue that this ...

M-L. Timmermans; Chris Garrett

2006-05-01T23:59:59.000Z

407

Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico  

SciTech Connect

The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.

Hoak, T. [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. [Phillips Petroleum Co., Bartlesville, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States)

1998-12-31T23:59:59.000Z

408

488-D Ash Basin Vegetative Cover Treatibility Study  

SciTech Connect

The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

2003-01-01T23:59:59.000Z

409

Synoptic Activity in the Arctic Basin, 197985  

Science Conference Proceedings (OSTI)

Synoptic activity in the Arctic basin from 70907deg;N is examined for the period 197985, using improved pressure analyses incorporating data from a network of drifting buoys. Geographical and seasonal variations in cyclone and anticyclone ...

Mark C. Serreze; Roger G. Barry

1988-12-01T23:59:59.000Z

410

California - San Joaquin Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

San Joaquin Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

411

California - Los Angeles Basin Onshore Coalbed Methane Proved...  

Annual Energy Outlook 2012 (EIA)

Los Angeles Basin Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's...

412

Geological model for oil gravity variations in Oriente Basin, Ecuador  

Science Conference Proceedings (OSTI)

The Oriente basin is one of the major productive Subandean basins. Most of the fields produce 29/sup 0/-33/sup 0/ API paraffinic oils, but oils have been discovered with gravities ranging from 10/sup 0/to 35/sup 0/ API. All the oils have been recovered from multiple middle to Late Cretaceous sandstone reservoirs (Hollin and Napo Formations). Wells display a variety of oil gravities by reservoir. The origin of the Oriente oils is problematical and controversial, but structural, geochemical, and well evidence suggest a vast oil kitchen west of the present Andean foothills that was mature for oil generation by at least early Tertiary. Oil analyses indicate a single family of oils is present. Oil gravity variations can be explained systematically in terms of the various alteration processes suffered by the oil in each reservoir. Intermittent early Andean uplift (latest Cretaceous to Mid-Eocene) resulted in biodegradation and water-washing of oils, particularly in the uppermost Napo reservoirs. The main Andean orogeny (Pliocene) uplifted the Hollin reservoir to outcrop in the west, and tilted the basin down to the south. This movement resulted in water washing or flushing of the Hollin aquifer and a phase of northward remigration of oil. Late Andean structures postdated primary oil migration. Almost all structures displaying growth during the Late Cretaceous to early Eocene have been oil bearing, but some, particularly those located on the present-day basin flanks, were later severely biodegraded or breached.

Dashwood, M.F.; Abbotts, I.L.

1988-01-01T23:59:59.000Z

413

New basins invigorate U.S. gas shales play  

SciTech Connect

While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

Reeves, S.R.; Kuuskraa, V.A. [Advanced Resources International Inc., Arlington, VA (United States); Hill, D.G. [Gas Research Inst., Chicago, IL (United States)

1996-01-22T23:59:59.000Z

414

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network (OSTI)

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

415

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network (OSTI)

Chapter PQ COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA By G.D. Stricker Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

416

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network (OSTI)

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

417

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network (OSTI)

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

418

In-Cloud Icing in the Columbia Basin  

Science Conference Proceedings (OSTI)

On 24 November 2005, 11 lattice steel towers of a high-voltage electrical transmission line running along the edge of an escarpment were damaged by an accumulation of rime on overhead ground wires. Cold air pooling in the Columbia basin of ...

Ronald M. Thorkildson; Kathleen F. Jones; Maggie K. Emery

2009-12-01T23:59:59.000Z

419

Modelling the vertical heat exchanger in thermal basin  

Science Conference Proceedings (OSTI)

In geographical area characterize by specific geological conformations such as the Viterbo area which comprehend active volcanic basins, it is difficult to use conventional geothermal plants. In fact the area presents at shallow depths thermal falde ... Keywords: heat, thermal aquifer, thermal energy

Maurizio Carlini; Sonia Castellucci

2007-06-01T23:59:59.000Z

420

GAMA-LLNL Alpine Basin Special Study: Scope of Work  

SciTech Connect

For this task LLNL will examine the vulnerability of drinking water supplies in foothills and higher elevation areas to climate change impacts on recharge. Recharge locations and vulnerability will be determined through examination of groundwater ages and noble gas recharge temperatures in high elevation basins. LLNL will determine whether short residence times are common in one or more subalpine basin. LLNL will measure groundwater ages, recharge temperatures, hydrogen and oxygen isotopes, major anions and carbon isotope compositions on up to 60 samples from monitoring wells and production wells in these basins. In addition, a small number of carbon isotope analyses will be performed on surface water samples. The deliverable for this task will be a technical report that provides the measured data and an interpretation of the data from one or more subalpine basins. Data interpretation will: (1) Consider climate change impacts to recharge and its impact on water quality; (2) Determine primary recharge locations and their vulnerability to climate change; and (3) Delineate the most vulnerable areas and describe the likely impacts to recharge.

Singleton, M J; Visser, A; Esser, B K; Moran, J E

2011-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INTRODUCTION The Great Basin Center for Geothermal Energy (GBCGE)  

E-Print Network (OSTI)

in part- nership with U.S. industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western United States by (1) providing neededINTRODUCTION The Great Basin Center for Geothermal Energy (GBCGE) was established at the University

Arehart, Greg B.

422

Geothermal resources of the Southern Powder River Basin, Wyoming  

DOE Green Energy (OSTI)

This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

1985-06-13T23:59:59.000Z

423

COUPON SURVEILLANCE FOR CORROSION MONITORING IN NUCLEAR FUEL BASIN  

SciTech Connect

Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

Mickalonis, J.; Murphy, T.; Deible, R.

2012-10-01T23:59:59.000Z

424

Evaluation and combined geophysical interpretations of NURE and related geoscience data in the Van Horn, Pecos, Marfa, Fort Stockton, Presidido, and Emory Peak quadrangles, Texas. Volume 1. Final report  

SciTech Connect

This report (two volumes) is the culmination of a two-year study of the six Trans-Pecos Texas quadrangles (Van Horn, Pecos, Marfa, Fort Stockton, Presidio, and Emory Park) surveyed as part of the National Uranium Resource Evaluation (NURE) program. Volume I contains a discussion of the aeromagnetic, gravity and geochemical data, their processing, and their analysis. The geologic history and setting of the Trans-Pecos are discussed along with the uranium potential of the region. Uranium anomalies and occurrences characteristic of numerous different NURE classes are present in the study area, and information is presented on 33 drill holes into these targets. Volume II is a folio of maps reduced to a scale of 1:500,000. Geologic maps for each of the six quadrangles are included and the geophysical maps have been prepared to be overlays for the goelogic maps. In addition to the geologic maps, residual aeromagnetic anomaly, complete Bouguer gravity anomaly, flight line index, gravity station index, and anomaly interpretative maps were prepared for each quadrangle. A large suite of digitally processed maps of gravity and aeromagnetic data were prepared and are included in Volume II.

Keller, G.R.; Hinze, W.J.; Aiken, C.L.V.; Goodell, P.C.; Roy, R.F.; Pingitore, N.E.

1981-09-01T23:59:59.000Z

425

A geological and geophysical study of the Sergipe-Alagoas Basin  

E-Print Network (OSTI)

Extensional stresses caused Africa and South America to break up about 130 Million Years. When Africa rifted away from South America, a large onshore triple junction began at about 13 S and propagated northward. This triple junction failed and created the Reconcavo-Tucano-Jupato rift (R-T-J), located in northeastern Brazil (north of Salvador). The extensional stress that created this rift was caused by a change in the force acting on the plate during the Aptian. A series of offshore rifts also opened at this time, adjacent to the R-T-J rift; this series of basins are referred to as Jacuipe, Sergipe, and Alagoas (J-S-A). The basins are separated by bathymetric highs to the north and the south of the Sergipe-Alagoas basin. The Sergipe-Alagoas basin has a Bouguer gravity anomalies more negative than -35 mGal, and the other two basins have values more negative than -100 mGal; the total magnetic intensity is also about 60-80 nT higher in the Sergipe-Alagoas basin than the surrounding basins. The gravity and magnetic values in the Sergipe-Alagoas basin, when compared to the Jacuipe and the Sergipe-Alagoas basins, indicate that the depositional history and/or the formation of the Sergipe-Alagoas basin is different from the other two basins. This study was done by analyzing the gravity and magnetic anolamies in the region, and comparing these anomalies to the stratigraphy of the basin. This research has allowed the stratigraphy and structures of the Sergipe-Alagoas basin to be better understood - the location of the Sergipe fracture zone will also be outlined. This study provides a comprehensive view of the Sergipe-Alagoas basin and outlines a method for using Gravity and Magnetics to better understand the stratigraphy and structure of the Sergipe-Alagoas basin.

Melton, Bradley Douglas

2008-05-01T23:59:59.000Z

426

Forward stratigraphic modeling of the Permian of the Delaware Basin  

SciTech Connect

Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world's most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

Qiucheng, Ye; Kerans, C.; Bowman, S. (Univ. of Texas, Austin, TX (United States)) (and others)

1996-01-01T23:59:59.000Z

427

Table 10. Estimated rail transportation rates for coal, basin to state, STB dat  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, basin to state, STB data" Estimated rail transportation rates for coal, basin to state, STB data" ,,"Real Dollars per Ton",,,,,,,,,,"Annual Percent Change" "Basin","Destination State",2001,2002,2003,2004,2005,2006,2007,2008,2009,," 2001-2009"," 2008-2009" "Northern Appalachian Basin","Delaware"," W"," W"," $16.45"," $14.29"," W"," -"," W"," W"," -",," -"," -" "Northern Appalachian Basin","Florida"," $21.45"," W"," W"," W"," W"," $28.57"," W"," W"," W",," W"," W"

428

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

429

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

in the growing Horn River Basin, processing both conventional and unconventional shale gas resources. - The proposed Fort Nelson CCS project is a potential solution to...

430

CRAD, Management - Office of River Protection K Basin Sludge Waste System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Sludge Waste Office of River Protection K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Management at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge

431

File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information  

Open Energy Info (EERE)

Black.Warrior.Basin usgs.map.pdf Black.Warrior.Basin usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size of this preview: 742 × 600 pixels. Full resolution ‎(1,860 × 1,504 pixels, file size: 148 KB, MIME type: application/pdf) Description Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Sources USGS Related Technologies Oil, Gas Creation Date 2007 Extent Black Warrior Basin Province Countries United States UN Region Northern America States Alabama, Mississippi Location of the Black Warrior Basin Province in northwestern Alabama and northeastern Mississippi, published in the USGS report entitled, Geologic Assessment of Undiscovered Oil and Gas Resources of the Black Warrior Basin

432

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process  

Open Energy Info (EERE)

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-CO-c - Designated Ground Water Basin Well Permitting Process 19COCDesignatedGroundWaterBasinWellPermit.pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Ground Water Commission Regulations & Policies CRS 37-90-107 CRS 37-90-108 Ground Water Management District Rules 2 CCR 410-1 - Rules and Regulations for the Management and Control of Designated Ground Water Basins Triggers None specified Click "Edit With Form" above to add content 19COCDesignatedGroundWaterBasinWellPermit.pdf 19COCDesignatedGroundWaterBasinWellPermit.pdf

433

Northern Basin and Range Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

and Range Geothermal Region and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northern Basin and Range Geothermal Region Details Areas (34) Power Plants (3) Projects (7) Techniques (33) Map: {{{Name}}} Examination of seismicity and late Quaternary faults in Montana and Idaho north of the Snake River Plain shows a geographic correspondence between high seismicity and 24 faults that have experienced surface rupture during the late Quaternary. The Lewis and Clark Zone delineates the northern boundary of this tectonically active extensional region. Earthquakes greater than magnitude 5.5 and all identified late Quaternary faults are confined to the Montana-Idaho portion of the Basin and Range Province south of the Lewis and Clark Zone. Furthermore, all 12 Holocene faults are

434

California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas Plant Liquids, Proved Reserves (Million Barrels) Gas Plant Liquids, Proved Reserves (Million Barrels) California - San Joaquin Basin Onshore Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 77 1980's 81 57 124 117 105 120 109 107 101 95 1990's 86 75 83 85 75 80 80 82 58 60 2000's 64 52 68 78 95 112 100 103 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Liquids Proved Reserves as of Dec. 31 CA, San Joaquin Basin Onshore Natural Gas Liquids Proved Reserves Natural Gas Liquids Proved Reserves as of Dec.

435

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

436

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

437

Interactive Maps from the Great Basin Center for Geothermal Energy  

DOE Data Explorer (OSTI)

The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

438

INTEC CPP-603 Basin Water Treatment System Closure: Process Design  

SciTech Connect

This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

2002-09-01T23:59:59.000Z

439

Hazardous waste research and development in the Pacific Basin  

SciTech Connect

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

440

Walla Walla River Basin Screening, Annual Report 2002.  

DOE Green Energy (OSTI)

In order to meet the need for protective fish screening, the Walla Walla County Conservation District (WWCCD) and the Washington Department of Fish and Wildlife (WDFW) formed a partnership to implement the WDFW Cooperative Compliance Review and Cost-Share Program. The program provides technical and financial assistance to irrigators in order to bring existing surface water diversions into compliance with state and federal juvenile fish screen criteria. The Walla Walla basin has two priority salmonid species currently listed as threatened under the Endangered Species Act, the Bull Trout and Mid-Columbia Basin Steelhead. Other partners in this effort include the Washington Department of Ecology, National Marine Fisheries Service, US Fish and Wildlife Service, and the Walla Walla Community College Irrigation Department. A Screening Oversight Committee of representatives from these agencies sets policy and resolves issues.

Ahmann, Audrey; Jones, Rick

2003-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Updated Volumetric Expansion Factors for K Basin Sludge During Storage  

SciTech Connect

Sludge has accumulated in the K East (KE) and K West (KW) Basins at the Hanford Site. This sludge contains metallic uranium and uranium oxides that will corrode, hydrate, and generate and consume gases during containerized storage. From these corrosion reactions, two sludge expansion mechanisms can be expected: 1) expansion of the volume of the sludge solids from the generation of corrosion oxidation products that occupy more space than the starting-state sludge; and 2) expansion of the bulk sludge volume from the retention of hydrogen gas bubbles. This report provides a review and updated projections of the volumetric expansion occurring due to corrosion and gas retention during the containerized storage of K Basin sludge. New design and safety basis volume expansion values are provided for the following sludge streams: KW Floor, KW North Loadout Pit, KW canister, and fuel piece sludge.

Schmidt, Andrew J. (BATTELLE (PACIFIC NW LAB)); Delegard, Calvin H. (BATTELLE (PACIFIC NW LAB))

2003-03-14T23:59:59.000Z

442

California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Dry Natural Gas Proved Reserves (Billion Cubic Feet) Dry Natural Gas Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 255 178 163 1980's 193 154 96 107 156 181 142 148 151 137 1990's 106 115 97 102 103 111 109 141 149 168 2000's 193 187 207 187 174 176 153 144 75 84 2010's 87 97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 CA, Los Angeles Basin Onshore Dry Natural Gas Proved Reserves Dry Natural Gas Proved Reserves as of 12/31 (Summary)

443

Staging Effects on Catalyst Deactivation with Powder River Basin Coal  

Science Conference Proceedings (OSTI)

The objectives of the current study were to investigate cost benefits or disadvantages resulting from operating Powder River Basin (PRB-) fired boilers at different combustion staging levels. The study's inherent assumption is that increased staging levels increases catalyst deactivation, requiring less ammonia consumption at the selective catalytic reduction (SCR) unit but more catalyst replacement events. The program sought to evaluate the impacts of staging on total SCR operation and maintenance (OM) ...

2010-11-10T23:59:59.000Z

444

Greece licensing round to focus on western sedimentary basins  

SciTech Connect

New opportunities for international oil companies to explore for hydrocarbons in Greece will emerge shortly. Parliament ratified a new petroleum law in January 1995, and DEP-EKY SA will undertake an international licensing round for offshore-onshore areas mainly in western Greece during second half 1995. The paper describes the fold and thrust belt of western Greece; the Katakolon oil field; the tertiary basins of eastern Greece; the Prinos and Prinos North oil fields; and the Epanomi gas field.

Roussos, N.; Marnelis, F. (Public Petroleum Corp. of Greece, Athens (Greece))

1995-03-06T23:59:59.000Z

445

Ohio River Basin Trading Project Agricultural Stakeholder Listening Workshops  

Science Conference Proceedings (OSTI)

On October 14, 2010, American Farmland Trust held a listening workshop in Sardinia, Ohio, to provide information to and collect feedback from farmers and agricultural representatives on the Ohio River Basin Trading Project. The session began with a basic primer on water quality trading given by Jim Klang of Kieser & Associates. The presentation was followed by facilitated discussions. Participants were prompted with a variety of questions developed from earlier listening workshops held in other regions o...

2011-04-26T23:59:59.000Z

446

Ohio River Basin Trading Project Joint Session: Air, Water, Climate  

Science Conference Proceedings (OSTI)

Electric Power Research Institute (EPRI) project managers in air, water, and climate programs are working together to address the complex, interrelated issues associated with water and air quality in the United States. This session provided background and told the story of the pilot effort in the Ohio River Basin to develop broad, nontraditional collaborations that will support multi-stakeholder programs for water quality trading, carbon trading, and ecosystem services protection. Through this pilot effo...

2010-08-09T23:59:59.000Z

447

Underbalanced drilling in the Piceance basin. Final report, June 1997  

Science Conference Proceedings (OSTI)

Underbalanced drilling technology is established and fairly well understood in some areas in the U.S. such as Appalachia. The primary objective of this cooperative project in the Piceance Basin was to use underbalanced drilling technologies to reduce rates of penetration such that significant cost reductions could occur. Fluids evaluated included air/mist, stiff foams and aerated muds. Underbalanced drilling was successful particularly in the surface hole; however, heaving shales in the Wasatch section were problematic.

Lewis, C.A.; Graham, R.L.

1997-06-01T23:59:59.000Z

448

Maintenance and Operations study for K basins sludge treatment  

SciTech Connect

This study evaluates maintenance and operating concepts for the chemical treatment of sludge from the 100 K Basins at Hanford. The sludge treatment equipment that will require remote operation or maintenance was identified. Then various maintenance and operating concepts used in the nuclear industry were evaluated for applicability to sludge treatment. A hot cell or cells is recommended as the best maintenance and operating concept for a sludge treatment facility.

WESTRA, A.G.

1998-11-30T23:59:59.000Z

449

Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin  

Science Conference Proceedings (OSTI)

To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

NONE

1998-05-01T23:59:59.000Z

450

East Basin Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

East Basin Creek Geothermal Area East Basin Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: East Basin Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2633,"lon":-114.811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

Data Quality Objectives Process for Designation of K Basins Debris  

SciTech Connect

The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO process and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.

WESTCOTT, J.L.

2000-05-22T23:59:59.000Z

452

Oil shale of the Uinta Basin, northeastern Utah  

SciTech Connect

The Tertiary rocks, which occupy the interior of the Uinta basin, have been subdivided into four formations: Wasatch, Green River, Bridger, and Uinta. The division is based on stratigraphic and paleontologic evidence. Hydrocarbon materials have been found in all four formations, although bedded deposits (asphaltic sandstone and oil shale) are known only in the Wasatch and Green River. Veins of gilsonite, elaterite, ozocerite, and other related hydrocarbons cut all the Tertiary formation of the Uinta basin. Good oil shale (Uinta basin of Utah) is black or brownish black except on weathered surfaces, where it is blue-white or white. It is fine grained, slightly calcareous, and usually free from grit. It is tough and in thin-bedded deposits remarkably flexible. Although oil shale consists of thin laminae, this is not apparent in some specimens until after the rock has been heated and the oil driven off. Freshly broken oil shale gives off a peculiar odor similar to that of crude petroleum. Oil shale contains a large amount of carbonaceous matter (largely remains of lower plants, including algae), which is the source of the distillation products. Thin splinters of oil shale will burn with a very sooty flame and give off an asphaltic odor. Lean specimens of oil shale have a higher specific gravity than rich specimens and are generally heavier than coal.

Winchester, D.E.

1918-01-01T23:59:59.000Z

453

Southern Mozambique basin: most promising hydrocarbon province offshore eat Africa  

Science Conference Proceedings (OSTI)

Recent offshore acquisition of 12,800 km (8,000 mi) of seismic reflection data, with gravity and magnetic profiles encompassing the southern half of the Mozambique basin, reveals new facets of the subsurface geology. Integrated interpretation of these new geophysical data with old well information results in the development of depositional and tectonic models that positively establish the hydrocarbon potential of the basin. The recent comprehensive interpretation affords the following conclusions. (1) Significant oil shows accompany wet gas discoveries suggest that the South Mozambique basin is a mature province, as the hydrocarbon associations imply thermogenic processes. (2) Super-Karoo marine Jurassic sequences have been encountered in Nhamura-1 well onshore from the application of seismic stratigraphy and well correlation. (3) Steeply dipping reflectors truncated by the pre-Cretaceous unconformity testify to significant tectonic activity preceding the breakup of Gondwanaland. Hence, preconceived ideas about the depth of the economic basement and the absence of mature source rocks of pre-Cretaceous age should be revised. (4) Wildcats in the vicinity of ample structural closures have not been, in retrospect, optimally positioned nor drilled to sufficient depth to test the viability of prospects mapped along a major offshore extension of the East African rift system delineated by this new survey.

De Buyl, M.; Flores, G.

1984-09-01T23:59:59.000Z

454

Thermal springs in the Salmon River basin, central Idaho  

DOE Green Energy (OSTI)

The Salmon River basin within the study area occupies an area of approximately 13,000 square miles in central Idaho. Geologic units in the basin are igneous, sedimentary, and metamorphic rocks; however, granitic rocks of the Idaho batholith are predominant. Water from thermal springs ranges in temperature from 20.5/sup 0/ to 94.0/sup 0/ Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30/sup 0/ to 184/sup 0/ Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old. Stable-isotope data indicate it is unlikely that a single hot-water reservoir supplies hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 2.7 x 10/sup 7/ calories per second.

Young, H.W.; Lewis, R.E.

1982-02-01T23:59:59.000Z

455

Gas Generation from K East Basin Sludges - Series II Testing  

SciTech Connect

This report describes work to examine the gas generation behavior of actual K East (KE) Basin floor, pit and canister sludge. Mixed and unmixed and fractionated KE canister sludge were tested, along with floor and pit sludges from areas in the KE Basin not previously sampled. The first report in this series focuses on gas generation from KE floor and canister sludge collected using a consolidated sampling technique. The third report presents results of gas generation testing of irradiated uranium fuel fragments with and without sludge addition. The path forward for management of the K Basin Sludge is to retrieve, ship, and store the sludge at T Plant until final processing at some future date. Gas generation will impact the designs and costs of systems associated with retrieval, transportation and storage of sludge. This report was originally published in March 2001. In January 2004, a transcription error was discovered in the value reported for the uranium metal content of KE North Loadout Pit sample FE-3. This revision of the report corrects the U metal content of FE-3 from 0.0013 wt% to 0.013 wt%.

Bryan, Samuel A.; Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Silvers, Kurt L.; Gano, Susan R.; Thornton, Brenda M.

2004-04-26T23:59:59.000Z

456

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

457

Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.  

DOE Green Energy (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect an additional 1.3 miles of stream and 298.3 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Improving fish passage in Bear Creek to restore tributary and mainstem access; (4) Planting and seeding 6.7 stream miles with 7,100 plants and 365 lbs. of seed; (5) Establishing 18 new photopoints and retaking 229 existing photopoint pictures; (6) Monitoring stream temperatures at 12 locations on 6 streams; (7) completing riparian fence, water gap and other maintenance on 98.7 miles of project fences. Since initiation of the project in 1984 over 62 miles of anadromous fish bearing streams and 1,910 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

2001-04-01T23:59:59.000Z

458

EIS-0245: Management of Spent Fuel from the K Basins at the Hanford Site -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

245: Management of Spent Fuel from the K Basins at the Hanford 245: Management of Spent Fuel from the K Basins at the Hanford Site - Supplement Analysis, Richland, Washington EIS-0245: Management of Spent Fuel from the K Basins at the Hanford Site - Supplement Analysis, Richland, Washington Overview Overview to be provided. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 15, 2011 EIS-0245-SA-03: Supplement Analysis Management of Spent Nuclear Fuel from the K Basins at the Hanford Site, Richland, Washington August 1, 2001 EIS-0245-SA-02: Supplement Analysis Management of Spent Nuclear Fuel from the K Basins at the Hanford Site, Richland, Washington August 1, 1998 EIS-0245-SA-01: Supplement Analysis Management of Spent Nuclear Fuel from the K Basins at the Hanford Site,

459

Geodetic Survey At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Geodetic Survey At Northern Basin & Range Region Geodetic Survey At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

460

Field Mapping At Nw Basin & Range Region (Blewitt, Et Al., 2003) | Open  

Open Energy Info (EERE)

Nw Basin & Range Region (Blewitt, Et Nw Basin & Range Region (Blewitt, Et Al., 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date Usefulness could be useful with more improvements DOE-funding Unknown References Geoffrey Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Nw_Basin_%26_Range_Region_(Blewitt,_Et_Al.,_2003)&oldid=510752" Categories: Exploration Activities DOE Funded Activities What links here Related changes Special pages

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett,  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett (2004) Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Pritchett,_2004)&oldid=401423"

462

Geodetic Survey At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geodetic Survey At Nw Basin & Range Region (Laney, Geodetic Survey At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geodetic Survey Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Targeting of Potential Geothermal Resources in the Great Basin from Regional to Basin-Scale Relationships Between Geodetic Strain and Geological Structures, Geoffrey Blewitt. The objectives of this project are to assess the use of inter-seismic crustal strain rates derived from GPS-stations as an exploration tool for non-magmatic high-temperature geothermal systems, and to use this technique to target potential geothermal resources in the Great Basin. Two potential target areas were identified in year one (FY03) by regional-scale studies: (1) the area

463

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et  

Open Energy Info (EERE)

Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=40142

464

CRAD, Training - Office of River Protection K Basin Sludge Waste System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Sludge Waste Office of River Protection K Basin Sludge Waste System CRAD, Training - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge

465

CRAD, Conduct of Operations - Office of River Protection K Basin Sludge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Conduct of Operations program at the Office of River Protection, K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Occupational Safety & Health - Office of River Protection K Basin

466

CRAD, Engineering - Office of River Protection K Basin Sludge Waste System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Office of River Protection K Basin Sludge Waste Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Engineering program at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge

467

Modeling-Computer Simulations At Northern Basin & Range Region (Blackwell,  

Open Energy Info (EERE)

Northern Basin & Northern Basin & Range Region (Blackwell, Et Al., 2003) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dixie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Northern_Basin_%26_Range_Region_(Blackwell,_Et_Al.,_2003)&oldid=401422

468

Dixie Valley - Geothermal Development in the Basin and Range | Open Energy  

Open Energy Info (EERE)

- Geothermal Development in the Basin and Range - Geothermal Development in the Basin and Range Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Dixie Valley - Geothermal Development in the Basin and Range Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie Valley - Geothermal Development in the Basin and Range [Internet]. [updated 2013/01/01;cited 2013/01/01]. Available from: http://www.geothermex.com/projects-dixie-valley.php Retrieved from "http://en.openei.org/w/index.php?title=Dixie_Valley_-_Geothermal_Development_in_the_Basin_and_Range&oldid=682561" Categories: References Geothermal References Uncited

469

Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et  

Open Energy Info (EERE)

Nw Basin & Range Region (Coolbaugh, Et Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Mark Coolbaugh, Richard Zehner, Corne Kreemer, David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_At_Nw_Basin_%26_Range_Region_(Coolbaugh,_Et_Al.,_2005_-_2)&oldid=401452

470

Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin  

SciTech Connect

The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

Wood, James R.; Harrison, William B.

2002-12-02T23:59:59.000Z

471

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al.,  

Open Energy Info (EERE)

Biasi, Et Al., Biasi, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Nw_Basin_%26_Range_Region_(Biasi,_Et_Al.,_2009)&oldid=401461" Categories: Exploration Activities DOE Funded

472

Audit of the Western Area Power Administration's Contract with Basin Electric Power Cooperative, IG-0409  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 25, 1997 June 25, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Western Area Power Administration's Contract with Basin Electric Power Cooperative" BACKGROUND: At the request of the Western Area Power Administration (Western), we conducted an audit of charges to Western made by Basin Electric Power Cooperative (Basin), under Contract No. DE- MP65-82WP-19001. The contract for Westernms purchase of electric power from Basin was entered into on April 15, 1982, and was in effect from January 1, 1986, through October 31, 1990. Western identified 17 areas where overcharges might have occurred. The

473

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

474

The Thermal Regime Of The San Juan Basin Since Late Cretaceous...  

Open Energy Info (EERE)

Thermal Regime Of The San Juan Basin Since Late Cretaceous Times And Its Relationship To San Juan Mountains Thermal Sources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

475

K East basin sludge volume estimates for integrated water treatment system  

Science Conference Proceedings (OSTI)

This document provides estimates of the volume of sludge expected from Integrated Process Strategy (IPS) processing of the fuel elements and in the fuel storage canisters in K East Basin. The original estimates were based on visual observations of fuel element condition in the basin and laboratory measurements of canister sludge density. Revision 1 revised the volume estimates of sludge from processing of the fuel elements based on additional data from evaluations of material from the KE Basin fuel subsurface examinations. A nominal Working Estimate and an upper level Working Bound is developed for the canister sludge and the fuel wash sludge components in the KE Basin.

Pearce, K.L.

1998-08-19T23:59:59.000Z

476

Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--San Joaquin Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million...

477

Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)...

478

Geochemical controls on production in the Barnett Shale, Fort Worth Basin.  

E-Print Network (OSTI)

??The Newark East field (Barnett Shale) in the Fort Worth Basin, Texas currently has the largest daily production of any gas field in Texas. Major (more)

Klentzman, Jana L.

2009-01-01T23:59:59.000Z

479

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

480

Pricaspian depression - the unique oil & gas-bearing basin of the World  

SciTech Connect

The Pricaspian depression is a unique oil and gas-bearing basin. The total sedimentary rock volume in the basin is about 8 million km{sup 3}. More than 100 oil and gas fields have been discovered in the basin including extremely large fields, such as Tengiz, Astrakhan, and Karachaganak. The basin is filled with Devonian to Neogene sediments, a very wide range in age for a single sedimentary basin. The range in age and composition of the rocks results in complex geology, complex conditions for producing oil and gas, and complex phase states of the hydrocarbons present. The basin fill comprises the Paleozoic section below the Kungurian salt, the Kungurian and Kungurian to Permian salt-bearing section, and the upper Permian to Paleogene and Neogene sedimentary complexes above the salt. The thick sedimentary succession and specific oil and gas productivity are what make the Pricaspian basin a unique sedimentary basin. The geologic structure and basin evolution during the Paleozoic, details of sedimentation in the Devonian to Early Permian, initial salt deposition and the dynamic evolution of salt domes, hydrocarbon generation and accumulation zones, various trap types, field types, hydrodynamic regimes, and hydrochemical content of groundwater are discussed in the paper.

Abdulin, A.A.; Daukeev, S.Z.; Votsalevsky, E.S. [Kazakh Academy of Sciences, Almaty (Kazakhstan)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "horn basin denver" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Harper et al., eds.: Natural History of the Colorado Plateau and Great Basin  

E-Print Network (OSTI)

BASIN ANTHROPOLOGY master-apprentice language programs, thedescribes the six master-apprentice language teams that havemaster can in- struct the apprentice and, in doing so, pass

Livingston, Stephanie

1995-01-01T23:59:59.000Z

482

A Case Study For Geothermal Exploration In The Ne German Basin...  

Open Energy Info (EERE)

icon Twitter icon A Case Study For Geothermal Exploration In The Ne German Basin- Integrated Interpretation Of Seismic Tomography, Litho-Stratigraphy, Salt Tectonics, And...

483

A Paleoenvironmental Study of the 2.7 GA Tumbiana Formation, Fortescue Basin, Western Australia.  

E-Print Network (OSTI)

??A paleoecological and paleoenvironmental study was conducted on the 2.7 Ga Meentheena Member of the Tumbiana Formation, Fortescue Basin, Western Australia. It involved the integrated (more)

Coffey, Jessica

2011-01-01T23:59:59.000Z

484

Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment  

E-Print Network (OSTI)

investigations on natural gas storage fields in the basin (using data from natural gas storage fields and large-scalefrom the nearest natural gas storage fields in operation,

Zhou, Q.

2010-01-01T23:59:59.000Z

485

GRR/Section 19-CO-c - Designated Ground Water Basin Well Permitting...  

Open Energy Info (EERE)

GRRSection 19-CO-c - Designated Ground Water Basin Well Permitting Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help...

486

Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2012 (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0...

487

Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0...

488

Origin and geochemical evolution of the Michigan basin brine  

Science Conference Proceedings (OSTI)

Chemical and isotopic data were collected on 126 oil field brine samples and were used to investigate the origin and geochemical evolution of water in 8 geologic formations in the Michigan basin. Two groups of brine are found in the basin, the Na-Ca-Cl brine in the upper Devonian formations, and Ca-Na-Cl brine from the lower Devonian and Silurian aged formations. Water in the upper Devonian Berea, Traverse, and Dundee formations originated from seawater concentrated into halite facies. This brine evolved by halite precipitation, dolomitization, aluminosilicate reactions, and the removal of SO{sub 4} by bacterial action or by CaSO{sub 4} precipitation. The stable isotopic composition (D, O) is thought to represent dilution of evapo-concentrated seawater by meteoric water. Water in the lower Devonian Richfield, Detroit River Group, and Niagara-Salina formations is very saline Ca-Na-Cl brine. Cl/Br suggest it originated from seawater concentrated through the halite and into the MgSO{sub 4} salt facies, with an origin linked to the Silurian and Devonian salt deposits. Dolomitization and halite precipitation increased the Ca/Na, aluminosilicate reactions removed K, and bacterial action or CaSO{sub 4} precipitation removed SO{sub 4} from this brine. Water chemistry in the Ordovician Trenton-Black River formations indicates dilution of evapo-concentrated seawater by fresh or seawater. Possible saline end-members include Ordovician seawater, present-day upper Devonian brine, or Ca-Cl brine from the deeper areas in the basin.

Wilson, T.P.

1989-01-01T23:59:59.000Z

489

Controls on reservoir development in Devonian Chert: Permian Basin, Texas  

SciTech Connect

Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily a