Powered by Deep Web Technologies
Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Horizontal flow drilling requires focus on well control  

Science Conference Proceedings (OSTI)

Horizontal wells drilled underbalanced or while flowing must have surface equipment and a blow-out preventer stack specially designed for circulating operations. Functional well control methods for drilling horizontal wells have been developed in specific regions worldwide. Special safety equipment and procedures, however, are still required in most horizontal development applications. The challenge for horizontal drilling development and underbalanced drilling is to overcome the obstacles of government regulation, reduce pollution dangers, and improve personnel and equipment safety. Well control techniques tailored to the demands of each field can help overcome these challenges. Several well control elements must be addressed carefully on each horizontal well: drilling fluid requirements, well control procedures and equipment, and surface equipment and special considerations for handling hydrocarbons produced while drilling. The paper discusses each of these elements for underbalanced horizontal drilling.

Tangedahl, M.J. (RBOP Oil Tools International Inc., Houston, TX (United States))

1994-06-13T23:59:59.000Z

2

Drilling Sideways -- A Review of Horizontal Well Technology and ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-TR-0565 Distribution Category UC-950 Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application April 1993 Energy Information ...

3

Horizontal underbalanced drilling of gas wells with coiled tubing  

Science Conference Proceedings (OSTI)

Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

Cox, R.J.; Li, J.; Lupick, G.S.

1999-03-01T23:59:59.000Z

4

Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

Not Available

1992-12-31T23:59:59.000Z

5

Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia  

Science Conference Proceedings (OSTI)

This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

1992-03-01T23:59:59.000Z

6

Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application  

Reports and Publications (EIA)

Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

Robert F. King

1993-04-01T23:59:59.000Z

7

Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia. Final report  

Science Conference Proceedings (OSTI)

This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

1992-03-01T23:59:59.000Z

8

A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs  

Science Conference Proceedings (OSTI)

Recent years have witnessed a renewed interest in development of coalbed methane (CBM) reservoirs. Optimizing CBM production is of interest to many operators. Drilling horizontal and multilateral wells is gaining Popularity in many different coalbed reservoirs, with varying results. This study concentrates on variations of horizontal and multilateral-well configurations and their potential benefits. In this study, horizontal and several multilateral drilling patterns for CBM reservoirs are studied. The reservoir parameters that have been studied include gas content, permeability, and desorption characteristics. Net present value (NPV) has been used as the yard stick for comparing different drilling configurations. Configurations that have been investigated are single-, dual-, tri-, and quad-lateral wells along with fishbone (also known as pinnate) wells. In these configurations, the total length of horizontal wells and the spacing between laterals (SBL) have been studied. It was determined that in the cases that have been studied in this paper (all other circumstances being equal), quadlateral wells are the optimum well configuration.

Maricic, N.; Mohaghegh, S.D.; Artun, E. [Chevron Energy Technology Co., Houston, TX (USA)

2008-12-15T23:59:59.000Z

9

Underbalanced coiled-tubing-drilled horizontal well in the North Sea  

Science Conference Proceedings (OSTI)

Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

Wodka, P.; Tirsgaard, H.; Damgaard, A.P. [Maersk Oil, Copenhagen (Denmark); Adamsen, C.J. [Maersk Oil, Esbjerg (Denmark)

1996-05-01T23:59:59.000Z

10

Evaluation of polymer free drill-in fluids for use in high productivity, horizontal well completions  

E-Print Network (OSTI)

Advancements in deepwater drilling have necessitated the use of more specialized reservoir drill-in fluids (RDIF). These RDIFs must exhibit unique rheological properties while minimizing formation damage. Xanthan gum biopolymer is generally used as a primary viscosifier in RDIFs. In high salinity brines the high shear rate viscosity that xanthan gum provides can approach levels that could exceed the fracture gradient of the well. Therefore, it is important to maintain a xanthan gum concentration that keeps the equivalent circulating density at a modest level. Reducing the xanthan gum level, however, compromises the hole cleaning properties that the low- shear-rate viscosity provides. Xanthan gum biopolymers are also associated with formation damage, which inhibits the flow of oil and gas during production. A new RDIF, which utilizes no xanthan gum biopolymer, has been recently developed. The new product uses a starch instead of polymer to develop rheological properties. This fluid will primarily be targeted for production zone drilling in highly deviated and horizontal wells. This research focused on filtercake cleanup and the reduced formation damage associated with this biopolymer-free fluid. The behavior of the polymer free fluid was analyzed developing tests at different temperatures, at different drill solids content, and with different treatment fluids. The laboratory methods used were a ceramic disc cell and a linear flow cell. The former will permit an analysis of the time that a certain cleaning treatment takes to flow through a filter cake. The latter simulates well completions in unconsolidated horizontal well reservoirs permitting the estimation of formation damage produced by drilling and completion fluids and the effectiveness of the cleaning treatment applied. Multivariate statistical analysis was performed with the experimental results obtained. Comparison with conventional RDIF data from polymer carbonate and sized salt fluids provided informative contrasts in performance.

Falla Ramirez, Jorge H

2001-01-01T23:59:59.000Z

11

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network (OSTI)

AND HIGHLY DEVIATED WELLS Doguhan Yilmaz, Mayang Tyagi Craft & Hawkins Department of Petroleum Engineering Louisiana State University Abstract In oil well drilling, the efficient transport of drilled cuttings from the well bottom to the surface is an important process affecting the overall drilling performance

Ullmer, Brygg

12

Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application  

Gasoline and Diesel Fuel Update (EIA)

TR-0565 TR-0565 Distribution Category UC-950 Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application April 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This report was prepared by the Energy Information Administration, Office of Oil and Gas, under the general direction of Diane W. Lique, Director of the Reserves and Natural Gas Division, Craig H. Cranston, Chief of the Reserves and Production Branch, and David F. Morehouse, Senior Supervisory Geologist. Information regarding

13

Geological aspects of drilling horizontal wells in steam flood reservoirs, west side, southern San Joaquin Valley, California  

Science Conference Proceedings (OSTI)

Shell Western E P Inc. has drilled 11 horizontal wells in four mature steam floods in the Coalinga, South Belridge, and Midway-Sunset fields. Two medium radius wells are producing from the Pliocene Etchegoin Formation in Coalinga. One medium radius well is producing from the Pleistocene Tulare Formation in South Belridge field. Three short radius and five medium radius wells are producing from the upper Miocene, Sub-Hoyt and Potter sands in Midway-Sunset field. Horizontal wells at the base of these reservoirs and/or structurally downdip near the oil-water contact are ideally suited to take advantage of the gravity drainage production mechanism. Reservoir studies and production experience have shown these horizontal wells should increase reserves, improve recovery efficiency, improve the oil-steam ratio, and improve project profitability. Geological considerations of targeting the wells vary between fields because of the different depositional environments and resulting reservoir characteristics. The thin sands and semicontinuous shales in the Tulare Formation and the Etchegoin Formation require strict structural control on the top and base of the target sand. In the Sub-Hoyt and Potter sands, irregularities of the oil-water contact and sand and shale discontinuities must be understood. Logging and measurement while drilling provide geosteering capability in medium radius wells. Teamwork between all engineering disciplines and drilling and producing operations has been critical to horizontal well success.

Crough, D.D.; Holman, M.L.; Sande, J.J. (Shell Western E P Inc., Bakersfield, CA (United States))

1994-04-01T23:59:59.000Z

14

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011  

E-Print Network (OSTI)

://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

15

Method for drilling directional wells  

Science Conference Proceedings (OSTI)

A method is described of locating a substantially horizontal bed of interest in a formation and maintaining a drill string therein during the drilling operation, said drill string including a measurement-while-drilling (MWD) electromagnetic propagation resistivity sensor, comprising the steps of: drilling a substantially vertical offset well in a formation having at least one selected substantially horizontal bed therein; measuring resistivity in the formation at the offset well to provide a first resistivity log as a function of depth; modeling the substantially horizontal bed to provide a modeled resistivity log indicative of the resistivity taken along the substantially horizontal bed, said modeling being based on said first resistivity log; drilling a directional well in said formation near said offset well, a portion of said directional well being disposed in said substantially horizontal bed; measuring resistivity in said directional well using the MWD electromagnetic propagation resistivity sensor to provide a second log of resistivity taken substantially horizontally; comparing said second log to said modeled log to determine the location of said directional well; and adjusting the directional drilling operation so as to maintain said drill string within said substantially horizontal bed during the drilling of said directional well in response to said comparing step.

Wu, Jianwu; Wisler, M.M.

1993-07-27T23:59:59.000Z

16

Fundamentals of horizontal well completions  

Science Conference Proceedings (OSTI)

Oil and gas wells are drilled horizontally for a variety of reasons, chiefly to improve production without drilling multiple vertical wells and to prevent water or gas coning. Benefits of horizontal drilling are well documented. This article addresses the fundamentals of completing a horizontal well, discussing completion by (1) open hole, (2) casing packers, (3) slotted or perforated liner, and (4) cemented casing/liner. Completion methods 1 through 3 are generally known as ''drain hole'' completions, and method 4 is commonly called the ''case hole'' or ''stimulated'' completion.

Austin, C.; Zimmerman, C.; Sullaway, B.; Sabins, F.

1988-05-01T23:59:59.000Z

17

Cementing horizontal wells  

SciTech Connect

Since the introduction of horizontal drilling, most completions have been open hole. Open-hole or slotted-liner completions may be satisfactory in straight, thick formations, if stimulation is not required. But if the wellbore wanders out of the reservoir, whether due to loss of directional control or spotty knowledge of formation dimensions, casing becomes a necessity. In addition, a wellbore that stays in the formation but comes uncomfortably close to the water-oil contact or gas cap requires casing to prevent coning. Further, if stimulation is anticipated, or may become a necessity, it is essential that the hole be cased and cemented. Otherwise, there is no control of the stimulation treatment. Even if the horizontal wellbore itself does not require casing, intermediate casing in the high-angle hole is needed. This is especially critical in open-hole completions below a gas cap, for example. The keys to effective horizontal cementing are fundamentally the same as for cementing vertical wells: proper centralization of casing in the bore-hole to ensure efficient mud removal and well-designed cement slurries.

Baret, F.; Griffin, T.J.

1989-05-01T23:59:59.000Z

18

Horizontal drilling method and apparatus  

Science Conference Proceedings (OSTI)

This patent describes an apparatus for drilling a highly deviated well into a petroleum formation the apparatus comprising a drill pipe extending from a surface location to a down-hole drilling assembly through a curved wellbore. It comprises a down-hole motor attached to a bit at a first end, the down-hole motor having a bent housing; a bent sub in the down-hole drilling assembly located above the motor; and a pony collar located between the motor and the bent sub, the pony collar having sufficient mass to substantially hold the motor against a wellbore wall during drilling operations.

Rehm, W.A.; Trunk, T.D.; Baseflug, T.D.; Cromwell, S.L.; Hickman, G.A.; Nickel, R.D.; Lyons, M.S.

1991-08-27T23:59:59.000Z

19

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

20

Shallow horizontal drilling in unconsolidated sands offshore California  

SciTech Connect

Four shallow horizontal wells were drilled from Platform C in Dos Cuadras field offshore California to recover reserves inaccessible with conventional drilling techniques. The wells had true vertical depths (TVD's) ranging from 746 to 989 ft with total horizontal displacements from 1,613 to 3,788 ft. The wells had horizontal displacement TVD ratios up to 3.95. The targets were unconsolidated, high-permeability sands. This paper details well planning, drilling, and completion.

Payne, J.D.; Bunyak, M.J. (Unocal Corp., Los Angeles, CA (United States)); Huston, C.W. (Smith International Inc., Tyler, TX (United States))

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Well drilling apparatus and method  

DOE Patents (OSTI)

Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

Alvis, Robert L. (Albuquerque, NM); Newsom, Melvin M. (Albuquerque, NM)

1977-01-01T23:59:59.000Z

22

Laboratory tests to evaluate and study formation damage with low-density drill-in fluids (LDDIF) for horizontal well completions in low pressure and depleted reservoirs  

E-Print Network (OSTI)

The increasing number of open hole horizontal well completions in low-pressure and depleted reservoirs requires the use of non-damaging low-density drill-in fluids (LDDIF) to avoid formation damage and realize optimum well productivity. To address this need we have formulated new LDDIFS with specific density lower than 1.0 sg (8.34 ppg) specifically to drill and complete low pressure and depleted reservoirs with minimum formation damage and maximum production. These materials exhibit typical drilling fluid characteristics, allowing the well to be safely drilled (0 required well depth but also perform as completion fluids, lessening formation damage to a greater extent than fluids with greater density and higher wellbore pressures. The new LDDIF incorporates low-density hollow glass spheres (HGS) to allow near-balanced drilling in low pressure and depleted reservoirs. The LDDIF uses potassium chloride (KCI) brine as the base fluid because of its low density and inhibition of clay hydration and employs low concentrations of the HGS so that fluid rheology is not altered. We have conducted extensive laboratory testing to compare performance of the HGS LDDIF with that of conventional horizontal well DIFs. Experiments consisted of permeability regain tests on unconsolidated sands with sand control screens. Test variables included temperature, concentration of drill solids cleanup technique and HGS concentration. Test results have shown that the new fluids are up to 50% easier to remove from the wellbore formation faces and provide higher productivity than higher density fluids. Such results indicate that higher well productivity from wells with less impairment would offset any added costs of HGS additives in the fluids.

Chen, Guoqiang

2002-01-01T23:59:59.000Z

23

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

24

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

25

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical to development of new cleanup correlation techniques (the continuing goal of the CEA-73 industry consortium). Project results are intended to advance the technology progression of cleanup in horizontal welts by using a "Best Completion Practices'' well to establish a baseline analysis for development of rigsite DIF cleanup correlations. Presented in this thesis are: * Completion specifics of subject well * Audit of horizontal well design/well construction process * Documentation (on-location) of lignite practices * Laboratory analyses of DO cleanup * Well performance analysis Well audit results show that prudent DIF selection requires a thorough understanding of formation and reservoir specifics, along with completion and cleanup operations. Adequate pre-planning by lignite personnel for handling, weather problems, storage/mixing requirements and fluid property maintenance are very important for successful operations using DIF. Proper maintenance of solids control systems is essential for quality control of DIF properties. Detailed well planning by the operator (Vastar Resources), coupled with a conscientious mud service company (TBC-Brinadd, Houston), led to smooth execution of well completion/cleanup operations.aboratory analyses of field DIF samples taken during drilling show that entrained drill solids in DIF can greatly impact mudcaps removal during cleanup. However, well performance was roughly three times original expectations, achieving a stabilized gas flow rate of approximately 34 MMCF/D. Horizontal well decline type curve techniques and a proprietary analysis method developed by Conoco were used to estimate formation properties, using only wellhead production rates and pressures. Using these results, we estimated DIF cupcake removal for various reservoir permeability scenarios. Results suggest that a high percentage of DIF filtercake removal was achieved only if reservoir permeability was less than the permeability range (100-500 md) initially estimated by the operator.

Lacewell, Jason Lawrence

1999-01-01T23:59:59.000Z

26

Formation damage studies of lubricants used with drill-in fluids systems on horizontal open-hole wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the effect of lubricants in formation damage. Two types of lubricants were tested along with two types of drill-in fluids. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Also a set of variables including drill solids content (2%-6%), hydrochloric acid concentration (2%-10%), and temperature (110°F-160°F) were changed during the testing procedure. A matrix design was used to determine the behavior in regain permeability and break through time depending on the different variables in the testing, and two devices were used to measure responses, Conoco cell and ceramic disc cell respectively. Results have shown that regain permeability and break through time responses are not affected in a greater degree when lubricants (Idlube or Mil-Lube) are added to the DIF systems (SS and SCC). When comparing results between lubricants, Idlube gives a higher regain permeability percentage and faster break through time at higher concentrations than Mil-Lube in both DIF systems. Overall, sized calcium carbonate seems to be a better DIF system than Sized salt for these types of experiments, being much more efficient in reducing break through times than in increasing regain permeability.

Gutierrez, Fernando A

2000-01-01T23:59:59.000Z

27

Horizontal drilling boosts Pennsylvania’s natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

28

Analysis of wellbore instability in vertical, directional, and horizontal wells using field data  

E-Print Network (OSTI)

Analysis of wellbore instability in vertical, directional, and horizontal wells using field data M and directional wells is being redeveloped by drilling horizontal wells. The experience gained while drilling vertical and directional wells is not useful for drilling horizontal wells, as the failure rate is 1 in 3

Al-Majed, Abdulaziz Abdullah

29

Well descriptions for geothermal drilling  

DOE Green Energy (OSTI)

Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

Carson, C.C.; Livesay, B.J.

1981-01-01T23:59:59.000Z

30

Feasibility of Optimizing Recovery and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore Calif. Reservoir through the Drilling and Completion of a Trilateral Horizontal Well, Class III  

SciTech Connect

The intent of this project was to increase production and extend the economic life of this mature field through the application of advanced reservoir characterization and drilling technology, demonstrating the efficacy of these technologies to other small operators of aging fields. Two study periods were proposed; the first to include data assimilation and reservoir characterization and the second to drill the demonstration well. The initial study period showed that a single tri-lateral well would not be economically efficient in redevelopment of Carpinteria's multiple deep water turbidite sand reservoirs, and the study was amended to include the drilling of a series of horizontal redrills from existing surplus well bores on Pacific Operators' Platform Hogan.

Pacific Operators Offshore, Inc.

2001-04-04T23:59:59.000Z

31

Guided Horizontal Drilling: A Primer for Electric Utilities  

Science Conference Proceedings (OSTI)

This document is intended to be an introduction to guided horizontal drilling, also termed horizontal directional drilling (HDD), as an alternative construction method to open trenching for the installation of underground power cables, pipes, ducts, or conduits. It is written for an audience that includes electric power engineers, designers, operations and procurement personnel. The document introduces guided horizontal drilling technology, the equipment, and several critical aspects of operating the equ...

1997-02-18T23:59:59.000Z

32

Feasibility of optimizing recovery and reserves from a mature and geological complex multiple turbidite offshore California reservoir through the drilling and completion of a trilateral horizontal well. Annual report, September 1, 1995--December 31, 1996  

Science Conference Proceedings (OSTI)

The main objective of this project is to devise an effective re-development strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals were proposed: develop an integrated database of all existing data from work done by the former ownership group; expand reservoir drainage and reduce sand problems through horizontal well drilling and completion; operate and validate reservoir`s conceptual model by incorporating new data from the proposed trilateral well; and transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. A computer based data retrieval system was developed to convert hard copy documents containing production, well completion and well log data into easily accessible on-line format. To ascertain the geological framework of the reservoir, a thorough geological modeling and subsurface mapping of the Carpinteria field was developed. The model is now used to examine the continuity of the sands, characteristics of the sub-zones, nature of water influx and transition intervals in individual major sands. The geological model was then supplemented with a reservoir engineering study of spatial distribution of voidage in individual layers using the production statistics and pressure surveys. Efforts are continuing in selection of optimal location for drilling and completion of probing wells to obtain new data about reservoir pressure, in-situ saturation and merits of drilling a series of horizontal wells.

Coombs, S.; Edwards, E.; Fleckenstein, W.; Ershaghi, I.; Sobbi, F.; Coombs, S.

1998-07-01T23:59:59.000Z

33

Horizontal drilling in the Lower Glen Rose Formation, Maverick County, Texas  

Science Conference Proceedings (OSTI)

This paper presents preliminary results of a project to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing Department of Energy investigation of directional drilling in the development of gas resources within the United States. The paper includes: project description; results covering geologic setting, reservoir engineering, and seismic surveys; and future work on drilling location selection, drilling, and well completion. (AT)

Drimal, C.E.; Muncey, G.

1992-01-01T23:59:59.000Z

34

Horizontal drilling in the Lower Glen Rose Formation, Maverick County, Texas  

Science Conference Proceedings (OSTI)

This paper presents preliminary results of a project to assess the economic viability of horizontal drilling in the Lower Glen Rose Formation of Maverick County, Texas. This project is part of an ongoing Department of Energy investigation of directional drilling in the development of gas resources within the United States. The paper includes: project description; results covering geologic setting, reservoir engineering, and seismic surveys; and future work on drilling location selection, drilling, and well completion. (AT)

Drimal, C.E.; Muncey, G.

1992-10-01T23:59:59.000Z

35

Downhole Temperature Prediction for Drilling Geothermal Wells  

DOE Green Energy (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

36

Acid Placement in Acid Jetting Treatments in Long Horizontal Wells  

E-Print Network (OSTI)

In the Middle East, extended reach horizontal wells (on the order of 25,000 feet of horizontal displacement) are commonly acid stimulated by jetting acid out of drill pipe. The acid is jetted onto the face of the openhole wellbore as the drill pipe is withdrawn from the well. The jetting action helps to remove the drilling fluid filter cake and promote the acid to penetrate into the formation and form wormholes to stimulate the well. However, with very long sections of wellbore open to flow, the acid placement and subsequent wormhole distribution and penetration depths are uncertain. This study has modeled the acid jetting process using a comprehensive model of acid placement and wormhole propagation in a horizontal well. It is presumed that the acid jetting tool removes the drilling mud filter cake, so that no filter cake exists between the end of the drill pipe and the toe of the well. Correspondingly, the model also assumes that there is an intact, low-permeability filter cake on the borehole wall between the end of the drill pipe and the heel of the well. The drill pipe is modeled as being withdrawn from the well during the acid jetting treatment, as is done in practice. The acidizing simulator predicts the distribution of acid and the depths of wormholes formed as functions of time and position during the acid jetting treatment. The model shows that the acid jetting process as typically applied in these wells preferentially stimulates the toe region of the horizontal well. Comparisons of the simulation predictions with published data for acid jetting treatments in such wells showed good general agreement. Based on the simulation study, this study presents recommendations for improved acid jetting treatment procedures to improve the distribution of acid injected into the formation.

Sasongko, Hari

2012-05-01T23:59:59.000Z

37

Technology assessment of vertical and horizontal air drilling potential in the United States. Final report  

SciTech Connect

The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

Carden, R.S.

1993-08-18T23:59:59.000Z

38

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

39

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

40

Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling  

Science Conference Proceedings (OSTI)

The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

Larry Stolarczyk

2008-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Horizontal well improves oil recovery from polymer flood--  

Science Conference Proceedings (OSTI)

Horizontal drilling associated with an injection scheme appears to be highly promising for obtaining additional oil recovery. Horizontal well CR 163H, in the Chateaurenard field is discussed. It demonstrated that a thin unconsolidated sand can be successfully drilled and cased. The productivity index (PI) of the well was much greater than vertical wells, and an unproduced oil bank was successfully intersected. On the negative side, it was necessary to pump low in a very deviated part of the well, and the drilling cost was high compared to an onshore vertical well. CR 163H was the fifth and probably most difficult horizontal well drilled by Elf Aquitaine. Located within a polymer-flood project, the target was a 7-m thick sand reservoir at a vertical depth of 590:0080 m. In this inverted seven-spot configuration with one injector in the center and six producers at a distance of 400 m, a polymer solution was injected from 1977 to 1983, followed by water injection.

Bruckert, L. (Elf Aquitaine, Boussens, (FR))

1989-12-18T23:59:59.000Z

42

Drilling and operating geothermal wells in California  

SciTech Connect

The following procedural points for geothermal well drilling and operation are presented: geothermal operators, definitions, geothermal unit, agent, notice of intention, fees, report on proposed operations, bonds, well name and number, well and property sale on transfer, well records, and other agencies. (MHR)

1979-01-01T23:59:59.000Z

43

Geothermal wells: a forecast of drilling activity  

DOE Green Energy (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

44

Horizontal wells in the Java Sea  

SciTech Connect

The utilization of the Navigation Drilling System in recent drilling activity has established that: Continuous build rates as high as 6.75 degrees/100 ft are achievable (with a .74 degree DTU), making possible the tapping of near platform reserves. The system provides the flexibility necessary to drill a continuous curve or an irregular path without bottomhole assembly changes. The system provides the flexibility for sidetracks to the ''low side'' of the well bore without coming out of the hole for bottomhole assembly changes or a cement plug. Geological objectives can be reached with a high degree of accuracy. The system greatly reduces the costly learning curve associated with rotary bottomhole assemblies and substantially increases the confidence of the operator. Significant drilling cost reductions resulted from the use of the system. The cost per foot was further reduced as additional familiarity with the equipment was gained.

Barrett, S.L.; Lyon, R.

1988-05-01T23:59:59.000Z

45

Gravel packing feasible in horizontal well completions  

SciTech Connect

Successful completion of horizontal wells in unconsolidated formations depends on proper equipment selection and installation method balanced with reservoir objectives, formation parameters, and costs. The guidelines for designing these completions are based on generalized field experience, including horizontal cases where applicable.

Zaleski, T.E. Jr.; Ashton, J.P. (Baker Sand Control, Houston, TX (US))

1990-06-11T23:59:59.000Z

46

Water Wells and Drilled or Mined Shafts (Texas) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Wells and Drilled or Mined Shafts (Texas) Water Wells and Drilled or Mined Shafts (Texas) Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial...

47

Case history of an opposed-bore, dual horizontal well in the Austin Chalk formation of south Texas  

Science Conference Proceedings (OSTI)

Petro-Hunt Corp. used a unique horizontal-well design to optimize development of an irregularly shaped lease in the Austin chalk formation in Texas. Two medium-radius horizontal bores were drilled in opposite directions from one vertical hole to maximize horizontal displacement in the lease. Underbalanced drilling techniques were used to prevent formation damage. The well design resulted in a significant cost savings per horizontal foot compared with 24 offset wells that the operator drilled. This paper reviews well planning and drilling and emphasizes techniques used to intersect thin horizontal targets and to initiate the second horizontal bore. Production results and drilling economics are discussed briefly, and ideas on future dual-horizontal-well applications are presented.

Cooney, M.F.; Rogers, C.T.; Stacey, E.S.; Stephens, R.N.

1993-03-01T23:59:59.000Z

48

Proper centralizers can improve horizontal well cementing  

SciTech Connect

The selection and spacing of appropriate centralizers can improve the cementation of high-angle and horizontal wells. Mud removal is one of the most important factors in obtaining a good cement job. Effective centralization assists in mud removal and helps ensure an even cement coat around the casing. Centralizers for horizontal wells have to fulfill two requirements: They should have a high restoring capability and a low moving force, and they should allow pipe rotation and reciprocation. Conventional bow-type centralizers have been used successfully in some horizontal wells. But as the horizontal section length increases, special centralizers, such as low-moving-force, bow-type centralizers and rigid centralizers, may be necessary. The paper describes the following: cementing liners, centralization, torque and drag, centralizer placement, the bow-type centralizer, the rigid centralizer, and the downhole activated centralizer.

Kinzel, H. (Weatherford Oil Tool, Langenhagen (Germany))

1993-09-20T23:59:59.000Z

49

Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation  

Science Conference Proceedings (OSTI)

Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

Goranson, C.

1992-09-01T23:59:59.000Z

50

Casing pull tests for directionally drilled environmental wells  

SciTech Connect

A series of tests to evaluate several types of environmental well casings have been conducted by Sandia National Laboratories (SNL) and it`s industrial partner, The Charles Machine Works, Inc. (CMW). A test bed was constructed at the CMW test range to model a typical shallow, horizontal, directionally drilled wellbore. Four different types of casings were pulled through this test bed. The loads required to pull the casings through the test bed and the condition of the casing material were documented during the pulling operations. An additional test was conducted to make a comparison of test bed vs actual wellbore casing pull loads. A directionally drilled well was emplaced by CMW to closely match the test bed. An instrumented casing was installed in the well and the pull loads recorded. The completed tests are reviewed and the results reported.

Staller, G.E.; Wemple, R.P. [Sandia National Labs., Albuquerque, NM (United States); Layne, R.R. [Charles Machine Works, Inc., Perry, OK (United States)

1994-11-01T23:59:59.000Z

51

Horizontal Devonian shale well, Columbia Natural Resources, Inc.`s, Pocohontas Development Corp. Well 21747, Martin County, Kentucky. Final report  

SciTech Connect

Columbia Gas and the United States Department of Energy (DOE) have successfully completed field work on a horizontally drilled Devonian shale well located in Martin County, Kentucky. The objective of this cofunded project is to assess the effectiveness and economic feasibility of applying horizontal drilling and hydraulically fracturing stimulation techniques to enhance the extraction of natural gas from the Devonian shale. The well is comprised of three segments: a conventional vertical section, an angle build section and a horizontal section. The well reached a measured depth (MD) of 6263 feet, 3810 feet true vertical depth (TVD), with a horizontal displacement of 2812 feet achieved in the desired direction of N10{degrees}W. Both air and foam were used as drilling fluids. The vertical, lateral and tangent sections were drilled using conventional rotary drilling methods. Downhole motors were used to build angle. A total combined final open flow of 3.1 MMcfd was measured from all zones. Total well expenditures are approximately $1,460,000. Of this amount, $700,000 is directly related to the research and learning curve experience aspects. It is projected that the same horizontal well could be drilled with existing technology for $700,000. If advanced can be made in MWD systems for air drilling environments, wells of this type could be drilled routinely for $500,000. It appears that application of horizontal drilling will result in at least acceleration of gas production and possibly the addition of recoverable reserves from the Devonian shale. Production data, necessary to validate this statement, are also required to determine the economics. As we gain experience and technology advances, cost reductions will occur; this will result in economic improvement.

Koziar, G.; Ahmad, M.M.; Friend, L.L.; Friend, M.L.; Rothman, E.M.; Stollar, R.L. [Columbia Gas System Service Corp., Columbus, OH (United States)] [Columbia Gas System Service Corp., Columbus, OH (United States)

1991-05-01T23:59:59.000Z

52

Horizontal Devonian shale well, Columbia Natural Resources, Inc. 's, Pocohontas Development Corp. Well 21747, Martin County, Kentucky  

SciTech Connect

Columbia Gas and the United States Department of Energy (DOE) have successfully completed field work on a horizontally drilled Devonian shale well located in Martin County, Kentucky. The objective of this cofunded project is to assess the effectiveness and economic feasibility of applying horizontal drilling and hydraulically fracturing stimulation techniques to enhance the extraction of natural gas from the Devonian shale. The well is comprised of three segments: a conventional vertical section, an angle build section and a horizontal section. The well reached a measured depth (MD) of 6263 feet, 3810 feet true vertical depth (TVD), with a horizontal displacement of 2812 feet achieved in the desired direction of N10{degrees}W. Both air and foam were used as drilling fluids. The vertical, lateral and tangent sections were drilled using conventional rotary drilling methods. Downhole motors were used to build angle. A total combined final open flow of 3.1 MMcfd was measured from all zones. Total well expenditures are approximately $1,460,000. Of this amount, $700,000 is directly related to the research and learning curve experience aspects. It is projected that the same horizontal well could be drilled with existing technology for $700,000. If advanced can be made in MWD systems for air drilling environments, wells of this type could be drilled routinely for $500,000. It appears that application of horizontal drilling will result in at least acceleration of gas production and possibly the addition of recoverable reserves from the Devonian shale. Production data, necessary to validate this statement, are also required to determine the economics. As we gain experience and technology advances, cost reductions will occur; this will result in economic improvement.

Koziar, G.; Ahmad, M.M.; Friend, L.L.; Friend, M.L.; Rothman, E.M.; Stollar, R.L. (Columbia Gas System Service Corp., Columbus, OH (United States)) [Columbia Gas System Service Corp., Columbus, OH (United States)

1991-05-01T23:59:59.000Z

53

Sand-control alternatives for horizontal wells  

SciTech Connect

This paper reports that it has been well documented that horizontal completions increase production rates, as much as two to five times those of conventional techniques, because more of the producing formation is exposed to the wellbore. Although productivity improvements are highly sensitive to reservoir parameters, it is becoming generally accepted that optimum horizontal lengths will be 2,000 to 4,000 ft. The length of these completions generally causes the velocity of the fluid at the sandface to be an order of magnitude less than that observed in conventional completions. Because drag forces contributed to sand production, horizontal wells can produce at higher sand-free flow rates than conventional completions in the same reservoir. While it is frequently argued that horizontal wells do not need sand control, the potential for sand production increases significantly as reserves deplete and rock stresses increase. This is becoming more evident today in several major North Sea oil fields with conventional completions. Also, many unconsolidated formations produce sand for the first time with the onset of water production, a typical problem in such areas as the Gulf of Mexico. Operators must decide whether to implement sand control in the original horizontal-completion program because of an immediate concern or because the potential exists for a problem to arise as the well matures.

Zaleski, T.E. Jr. (Baker Sand Control (US))

1991-05-01T23:59:59.000Z

54

Horizontal well success spurs more Devonian work in Michigan  

Science Conference Proceedings (OSTI)

The principal objective of this DOE-sponsored project was to drill a horizontal demonstration well in order to test the viability of using horizontal wells to recover bypassed oil from the Dundee reservoir in Crystal field. In addition, a modern log suite through the entire Dundee formation and a conventional core through the productive interval, the oil/water contact, and the upper part of the water leg were to be obtained. During the early years of Dundee development in central Michigan, it was common practice to drill only a short distance below the cap limestone into the top of the Dundee porosity zone before completing a well in order to prevent lost circulation and blowouts in vuggy and fractured dolomites and to avoid penetration of the oil/water contact and minimize water coning. As a result, the characteristics of the Dundee reservoir in central Michigan are poorly known and the decision to attempt an improved recovery program in Crystal field had to be based on field volumetrics, individual well productivities, and well development/abandonment histories. The new core and log data from the demonstration well will provide an important anchor point for regional Dundee reservoir characterization studies.

Wood, J.R.; Allan, J.R.; Huntoon, J.E.; Pennington, W.D. [Michigan Technological Univ., Houghton, MI (United States); Harrison, W.B. III [Western Michigan Univ., Kalamazoo, MI (United States); Taylor, E.; Tester, C.J. [Cronus Development Corp., Traverse City, MI (United States)

1996-10-28T23:59:59.000Z

55

Economic viability of multiple-lateral horizontal wells.  

E-Print Network (OSTI)

??Horizontal wells are gaining popularity throughout the petroleum industry as a means to increase well productivity and enhance incremental economics. Horizontal wells provide greater reservoir… (more)

Smith, Christopher Jason

2012-01-01T23:59:59.000Z

56

Method and apparatus for drilling horizontal holes in geological structures from a vertical bore  

DOE Patents (OSTI)

This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

Summers, David A. (Rolla, MO); Barker, Clark R. (Rolla, MO); Keith, H. Dean (Rolla, MO)

1982-01-01T23:59:59.000Z

57

Laser Oil & Gas Well Drilling [Laser Applications Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

benefit in reducing the high costs of operating a drill rig. Today, a typical land-based oil or gas well costs around 400,000 to drill, while costs for an offshore well average...

58

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Well Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Oil and Gas Well Drilling Author Jeff Tester Published NA, 2011 DOI Not...

59

Optimization of fractured well performance of horizontal gas wells  

E-Print Network (OSTI)

In low-permeability gas reservoirs, horizontal wells have been used to increase the reservoir contact area, and hydraulic fracturing has been further extending the contact between wellbores and reservoirs. This thesis presents an approach to evaluate horizontal well performance for fractured or unfractured gas wells and a sensitivity study of gas well performance in a low permeability formation. A newly developed Distributed Volumetric Sources (DVS) method was used to calculate dimensionless productivity index for a defined source in a box-shaped domain. The unique features of the DVS method are that it can be applied to transient flow and pseudo-steady state flow with a smooth transition between the boundary conditions. In this study, I conducted well performance studies by applying the DVS method to typical tight sandstone gas wells in the US basins. The objective is to determine the best practice to produce horizontal gas wells. For fractured wells, well performance of a single fracture and multiple fractures are compared, and the effect of the number of fractures on productivity of the well is presented based on the well productivity. The results from this study show that every basin has a unique ideal set of fracture number and fracture length. Permeability plays an important role on dictating the location and the dimension of the fractures. This study indicated that in order to achieve optimum production, the lower the permeability of the formation, the higher the number of fractures.

Magalhaes, Fellipe Vieira

2007-08-01T23:59:59.000Z

60

APPLICATION OF WATER-JET HORIZONTAL DRILLING TECHNOLOGY TO DRILL AND ACIDIZE HORIZONTAL DRAIN HOLES, TEDBIT (SAN ANDRES) FIELD, GAINES COUNTY, TEXAS  

SciTech Connect

The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.

Michael W. Rose

2005-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

An Intelligent System for Petroleum Well Drilling Cutting Analysis  

Science Conference Proceedings (OSTI)

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting ... Keywords: Cutting analysis, petroleum well drilling monitoring, optimum-path forest

Aparecido N. Marana; Giovani Chiachia; Ivan R. Guilherme; João P. Papa

2009-09-01T23:59:59.000Z

62

Interpretation of drill cuttings from geothermal wells  

DOE Green Energy (OSTI)

Problems in interpreting drill cuttings, as opposed to drill cores, and methods to solve these problems are outlined. The following are covered: identification of lithology; recognition of faults and fractures; interpretation of hydrothermal alteration; geochemistry; sample collection; sample preparple examination; and sample storage. (MHR)

Hulen, J.B.; Sibbett, B.S.

1981-06-01T23:59:59.000Z

63

Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994  

SciTech Connect

Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

McDonald, W.J.

1993-06-03T23:59:59.000Z

64

Kick circulation analysis for extended reach and horizontal wells.  

E-Print Network (OSTI)

??Well control is of the utmost importance during drilling operations. Numerous well control incidents occur on land and offshore rigs. The consequences of a loss… (more)

Long, Maximilian Mark

2005-01-01T23:59:59.000Z

65

Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...  

Office of Scientific and Technical Information (OSTI)

Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

66

Improved recovery using horizontal drilling in the Dundee Formation Michigan Basin  

SciTech Connect

The goal of this project is to demonstrate that oil production from selected fields in the Dundee Formation (Dev.) of Michigan can be substantially increased, perhaps restored to near--original production levels in some fields in Michigan, by utilizing horizontal drain wells. Devonian rocks have been the most prolific hydrocarbon producers of any system in the Michigan Basin. The Traverse, Dundee, and Lucas Formations have produced nearly all of the 525 Mbbls of oil and 150 Bcf of gas since the late 1920`s, 50% of the state`s oil and 7% of the state`s natural gas production. The Dundee Formation is Michigan`s all-time leader with 352 million barrels of oil and 42 billion cubic feet of gas. Crystal Field in Montcalm County, MI, selected as a field trial for this project is such a field. Analysis of production data for Crystal Field suggests that an additional 200,000 bbls of oil can be produced using 1 strategically located horizontal well. Total addition production from the Crystal Field could be as much as 6-8 Mbbls. Spin-offs from the technology developed in this project to other fields has the potential to increase Dundee production in Michigan by 35%, adding 80-100 Mbbls to the cumulative production. The approach combines proven, cost-effective horizontal drilling technology with modern reservoir characterization and management. A total of 30 Dundee fields will be characterized including the Crystal Field. Well logs, other well data, drilling, and production data and rock samples from the Dundee Fm. will be obtained, assembled, and input into digital databases designed for this project. Computer models describing the diagenetic, stratigraphic and thermal evolution of the Michigan Basin will be developed and applied to the Crystal Field reservoir. A post-mortem study is scheduled to monitor the effect of the horizontal well on Crystal Field production.

Harrison, W.B. III; Wood, J.R.; Huntoon, J.E.; Pennington, W.; Tester, C.; Taylor, E.

1996-12-31T23:59:59.000Z

67

Drilling Operations Plan for the Magma Energy Exploratory Well  

DOE Green Energy (OSTI)

This paper is a summary of the proposed drilling plan for the first phase (to 2500 feet depth) of the Magma Energy Exploratory Well. The drilling program comprises four phases, spaced approximately one year apart, which culminate in a large-diameter well to a total depth near 20,000 feet. Included here are descriptions of the well design, predictions of potential drilling problems, a list of restrictions imposed by regulatory agencies, an outline of Sandia's management structure, and an explanation of how the magma energy technology will benefit from this drilling.

Finger, John T.; Livesay, Bill J.; Ash, Don

1989-03-21T23:59:59.000Z

68

Resonant acoustic transducer system for a well drilling string  

DOE Patents (OSTI)

For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

Nardi, Anthony P. (Burlington, MA)

1981-01-01T23:59:59.000Z

69

Resonant acoustic transducer system for a well drilling string  

DOE Patents (OSTI)

For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

1981-01-01T23:59:59.000Z

70

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List This list is in no way exhaustive. Rather, it attempts to provide a set of primary references that offer key pieces of  

E-Print Network (OSTI)

development Impact Assessment of Natural Gas Production in the New York City Water Supply Watershed (2009). NYCDEP http://home2.nyc.gov/html/dep/html/news/natural_gas_drilling.shtml Review of water related and infiltration events Short Scholarly Features Natural Gas Plays in the Marcellus Shale: Challenges & Potential

Wang, Z. Jane

71

Chemical wellbore plug for zone isolation in horizontal wells  

E-Print Network (OSTI)

A new technique for zone isolation in horizontal wells has been proposed. The new technique consists of three sequential stages: (i) setting a chemical wellbore plug in the horizontal section upstream of the zone to be isolated, (ii) spotting a gel just downstream of the wellbore plug and squeezing the gel into the zone to be isolated, and (iii) washing or drilling through excess gel and the wellbore plug to clean the borehole prior to production. The main objective of this research is to investigate the feasibility of setting a chemical wellbore plug in a horizontal wellbore. Two main problems associated with the wellbore plug were investigated: (a) method of placement of the plug so that slumping would not occur, and (b) selection and testing of chemicals that could be used to make wellbore plugs with sufficiently high holding pressures. Three chemicals, used in the oil industry for gas and/or water shut-off, were selected for the study. The commercial names of these chemicals were SEAL, PERMASEAL and TEXPLUG. Experimental apparatus were designed and constructed to study placement techniques and to measure the holding pressures of the wellbore plugs. The horizontal wellbore models consisted of PVC pipes internally lined with sand. The X-ray CT scanner was used to obtain cross-sectional images of the plug to help understand the shear mechanisms involved. The experimental results indicate that a plug could be placed in a horizontal wellbore with minimum slumping, if the plug is introduced into a viscous completion brine pill. For TEXPLUG, a suitable completion brine would contain 100,000 ppm NaCi and 4 lb/bbl CMC (carboxyl methyl cellulose). Further, results indicate that only TEXPLUG has a sufficiently high holding pressure (about 340 psi for 37 in. long, 1 in. I.D. plug) necessary for a wellbore plug. Based on experimental results, the proposed new isolation technique appears to be viable. However, further experimental studies are required, particularly to evaluate the effectiveness of the wellbore plug in conjunction with displacement of formation gels.

Saavedra, Nestor Fernando

1996-01-01T23:59:59.000Z

72

Directional Drilling and Equipment for Hot Granite Wells  

DOE Green Energy (OSTI)

Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

1981-01-01T23:59:59.000Z

73

Drilling, Completing, and Maintaining Geothermal Wells in Baca, New Mexico  

DOE Green Energy (OSTI)

A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water drilling and the methods of solving corrosion problems in aerated water. lost circulation control in mud drilling and its effect on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbo-drill and attempts at chemical inhibition.

Pye, S.

1981-01-01T23:59:59.000Z

74

Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling  

SciTech Connect

A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

Deshpande, A.; Flemings, P.B. (Pennsylvania State Univ., University Park, PA (United States)); Huang, J. (Exxon Production Research Co., Houston, TX (United States))

1996-01-01T23:59:59.000Z

75

Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...  

Open Energy Info (EERE)

09142009 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-...

76

Laser Spallation of Rocks for Oil Well Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

LASER SPALLATION OF ROCKS FOR OIL WELL DRILLING Zhiyue Xu 1 , Claude B. Reed 1 , Richard Parker 2 , Ramona Graves 3 1 Argonne National Laboratory, Argonne, IL 60439, USA 2 Parker...

77

Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report  

Science Conference Proceedings (OSTI)

Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

78

The Foundation and Application of Horizontal Well Deliverability Type Curves  

Science Conference Proceedings (OSTI)

As a development technique to improve oil and gas deliverability, horizontal wells have recently become an important technical support to develop low permeability or extra-low permeability and unconventional oil and gas fields. Therefore, it is quite ... Keywords: Horizontal well, Impermeable and circular boundary reservoir, Stehfest numerical inversion, Blasingame decline curves, Single well dynamic reserves

Rong Wang; Yonggang Duan; Quantang Fang; Cao Tingkuan; Mingqiang Wei

2011-10-01T23:59:59.000Z

79

Rigs Drilling Gas Wells Are At  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

80

Horizontal well taps bypassed Dundee oil in Crystal field, Mich.  

SciTech Connect

The Dundee formation (Middle Devonian) has yielded more oil than any other producing interval in Michigan. The Dundee trend, which forms an east-west band across the central Michigan basin, consists of 137 fields which together have yielded more than 350 million bbl of oil. The first commercial Dundee production was established at Mt. Pleasant field in 1928, and most Dundee fields were discovered and brought on production during the 1930s--40s. Wells in many of the fields had very high initial production (IP) rates. IPs in excess of 1,000 b/d of oil were common, with values as high as 9,000 b/d reported. These high flow rates, combined with a thin (10--30 ft) oil column and a strong water drive, resulted in water coning that left significant volumes of oil unrecovered in some fields. One such field, Crystal field in Montcalm County, is the focus of a US Department of energy (DOE) Class 2 Reservoir Demonstration Project designed to demonstrate that horizontal drilling can recover significant volumes of this bypassed oil. The paper describes the demonstration project, regional setting, and the history of the Crystal field.

Wood, J.R.; Allan, J.R.; Huntoon, J.E.; Pennington, W.D. [Michigan Technological Univ., Houghton, MI (United States); Harrison, W.B. III [Western Michigan Univ., Kalamazoo, MI (United States); Taylor, E.; Tester, C.J. [Cronus Development Corp., Traverse City, MI (United States)

1996-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of Parameters Affecting Costs of Horizontal Directional Drilling Projects in the United States for Municipal Infrastructure.  

E-Print Network (OSTI)

??Horizontal Directional Drilling (HDD) is a growing and expanding trenchless method utilized to install pipelines from 2 to 60 inch diameters for lengths over 10,000… (more)

Vilfrant, Emmania Claudyne

2010-01-01T23:59:59.000Z

82

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

SciTech Connect

Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

2012-03-31T23:59:59.000Z

83

Drilling and Completion of the Urach III HDR Test Well  

DOE Green Energy (OSTI)

The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

Meier, U.; Ernst, P. L.

1981-01-01T23:59:59.000Z

84

Application of horizontal wells in steeply dipping reservoirs  

E-Print Network (OSTI)

A three-dimensional reservoir simulation study is performed to evaluate the impact of horizontal well applications on oil recovery from steeply dipping reservoirs. The Provincia field, located in Colombia, provided the basic reservoir information for the study. Reservoir simulation results indicate that for reservoir dip angles greater than about 40', this parameter has little or no effect on the primary recovery performance for homogeneous high-permeability reservoirs, The initial gascap size and the anisotropy of permeability (kv/kh ratio) are the dominant parameters affecting the oil recovery. For thin reservoirs, the location of the horizontal injector will not significantly affect the oil recovery. Simultaneous gas and water injection through horizontal wells can increase the oil recovery factor from almost 35% under primary production to 40%. A significant incremental oil recovery could be expected by employing horizontal wells for simultaneous gas and water injection. A comparison of the production performance of horizontal and vertical producers shows that a horizontal well can produce oil up to 2.5 times the oil rate of a vertical well, without a high rate of gas production. Also, the use of horizontal producers significantly accelerates the oil recovery. For the case of a homogeneous reservoir under simultaneous gas and water injection, the horizontal well system does not give a significant increment in the oil recovery compared to the vertical well system.

Lopez Navarro, Jose David

1995-01-01T23:59:59.000Z

85

Improved Efficiency of Oil Well Drilling through Case Based Reasoning  

E-Print Network (OSTI)

A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil company. From several reoccurring problems during oil well drilling the problem of "lost circulation", i.e. loss of circulating drilling fluid into the geological formation, was picked out as a pilot problem. An extensive general knowledge model was developed for the domain of oil well drilling. About fifty different cases were created on the basis of information from one North Sea operator. When the completed CBR-system was tested against a new case, five cases with descending similarity were selected by the tool. In an informal evaluation, the two best fitting cases proved to give the operator valuable advise on how to go about solving the new case. Introduction Drilling of oil wells is an expensive operation, costing around 150 000 US $ pr. day, and any loss of time caused...

Paal Skalle; Jostein Sveen; Agnar Aamodt

2000-01-01T23:59:59.000Z

86

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer (OSTI)

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

87

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

Science Conference Proceedings (OSTI)

This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

2002-07-24T23:59:59.000Z

88

Solicitation - Geothermal Drilling Development and Well Maintenance Projects  

DOE Green Energy (OSTI)

Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

Sattler, A.R.

1999-07-07T23:59:59.000Z

89

A model for matrix acidizing of long horizontal well in carbonate reservoirs  

E-Print Network (OSTI)

Horizontal wells are drilled to achieve improved reservoir coverage, high production rates, and to overcome water coning problems, etc. Many of these wells often produce at rates much below the expected production rates. Low productivity of horizontal wells is attributed to various factors such as drilling induced formation damage, high completion skins, and variable formation properties along the length of the wellbore as in the case of heterogeneous carbonate reservoirs. Matrix acidizing is used to overcome the formation damage by injecting the acid into the carbonate rock to improve well performance. Designing the matrix acidizing treatments for horizontal wells is a challenging task because of the complex process. The estimation of acid distribution along wellbore is required to analyze that the zones needing stimulation are receiving enough acid. It is even more important in cases where the reservoir properties are varying along the length of the wellbore. A model is developed in this study to simulate the placement of injected acid in a long horizontal well and to predict the subsequent effect of the acid in creating wormholes, overcoming damage effects, and stimulating productivity. The model tracks the interface between the acid and the completion fluid in the wellbore, models transient flow in the reservoir during acid injection, considers frictional effects in the tubulars, and predicts the depth of penetration of acid as a function of the acid volume and injection rate at all locations along the completion. A computer program is developed implementing the developed model. The program is used to simulate hypothetical examples of acid placement in a long horizontal section. A real field example of using the model to history match actual treatment data from a North Sea chalk well is demonstrated. The model will help to optimize acid stimulation in horizontal wells.

Mishra, Varun

2007-08-01T23:59:59.000Z

90

Simulation studies of waterflood performance with horizontal wells.  

E-Print Network (OSTI)

??Two-and three-dimensional simulation studies have been carried out to evaluate waterflood oil recovery in a 40-acre 5-spot pattern using horizontal and vertical well systems. The… (more)

Ferreira, Horacio

2012-01-01T23:59:59.000Z

91

Directional drilling and equipment for hot granite wells  

DOE Green Energy (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

92

Integrated approach towards the Application of Horizontal Wells to Improve Waterflooding Performance. Annual report  

SciTech Connect

This annual report describes the progress during the first year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvial-dominated deltaic deposits. The project involves an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The type of data the authors intend to integrate includes cross bore hole seismic surveys, geological interpretation based on logs and cores, and engineering information. This report covers the first phase of the project which includes a detailed reservoir description of the field based on the available information, followed by flow simulation of the Self Unit to compare the simulated result with the historical performance. Based on the simulated results, a vertical test well was drilled to validate this reservoir description. The well will also be used as a source well for a cross bore hole seismic survey. This report discusses the related geophysical, geological and engineering activities leading to the drilling of the vertical test well. The validation phase and the collection of the cross bore hole survey has just begun, and the results will be presented in the next annual report.

Kelkar, M.; Liner, C.; Kerr, D.

1994-06-01T23:59:59.000Z

93

Proper planning improves flow drilling  

Science Conference Proceedings (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

94

Directional drilling equipment and techniques for deep hot granite wells  

DOE Green Energy (OSTI)

Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

1980-01-01T23:59:59.000Z

95

What Is Well Yield? Private wells are frequently drilled in rural areas to  

E-Print Network (OSTI)

1 What Is Well Yield? Private wells are frequently drilled in rural areas to supply water to individual homes or farms. The maximum rate in gallons per minute (GPM) that a well can be pumped without lowering the water level in the borehole below the pump intake is called the well yield. Low-yielding wells

Keinan, Alon

96

Petroleum well drilling monitoring through cutting image analysis and artificial intelligence techniques  

Science Conference Proceedings (OSTI)

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, ... Keywords: Applied artificial intelligence, Artificial Neural Networks, Optimum-path forest, Petroleum well drilling, Support vector machines

Ivan R. Guilherme; Aparecido N. Marana; João P. Papa; Giovani Chiachia; Luis C. S. Afonso; Kazuo Miura; Marcus V. D. Ferreira; Francisco Torres

2011-02-01T23:59:59.000Z

97

Horizontal Well Placement Optimization in Gas Reservoirs Using Genetic Algorithms  

E-Print Network (OSTI)

Horizontal well placement determination within a reservoir is a significant and difficult step in the reservoir development process. Determining the optimal well location is a complex problem involving many factors including geological considerations, reservoir and fluid properties, economic costs, lateral direction, and technical ability. The most thorough approach to this problem is that of an exhaustive search, in which a simulation is run for every conceivable well position in the reservoir. Although thorough and accurate, this approach is typically not used in real world applications due to the time constraints from the excessive number of simulations. This project suggests the use of a genetic algorithm applied to the horizontal well placement problem in a gas reservoir to reduce the required number of simulations. This research aims to first determine if well placement optimization is even necessary in a gas reservoir, and if so, to determine the benefit of optimization. Performance of the genetic algorithm was analyzed through five different case scenarios, one involving a vertical well and four involving horizontal wells. The genetic algorithm approach is used to evaluate the effect of well placement in heterogeneous and anisotropic reservoirs on reservoir recovery. The wells are constrained by surface gas rate and bottom-hole pressure for each case. This project's main new contribution is its application of using genetic algorithms to study the effect of well placement optimization in gas reservoirs. Two fundamental questions have been answered in this research. First, does well placement in a gas reservoir affect the reservoir performance? If so, what is an efficient method to find the optimal well location based on reservoir performance? The research provides evidence that well placement optimization is an important criterion during the reservoir development phase of a horizontal-well project in gas reservoirs, but it is less significant to vertical wells in a homogeneous reservoir. It is also shown that genetic algorithms are an extremely efficient and robust tool to find the optimal location.

Gibbs, Trevor Howard

2010-05-01T23:59:59.000Z

98

U.S. Average Depth of Dry Holes Developmental Wells Drilled ...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

99

U.S. Average Depth of Natural Gas Exploratory Wells Drilled ...  

Annual Energy Outlook 2012 (EIA)

Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

100

U.S. Average Depth of Natural Gas Developmental Wells Drilled...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Natural Gas Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet...  

Annual Energy Outlook 2012 (EIA)

Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

102

U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

103

U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Natural Gas Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

104

U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars...  

Annual Energy Outlook 2012 (EIA)

Oil Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

105

U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled...  

Annual Energy Outlook 2012 (EIA)

Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand Dollars per Well) Decade Year-0...

106

U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dry Well Drilled (Thousand Dollars per Well) U.S. Nominal Cost per Dry Well Drilled (Thousand Dollars per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

107

U.S. Average Depth of Crude Oil Developmental Wells Drilled ...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Crude Oil Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

108

Modeling performance of horizontal, undulating, and multilateral wells  

E-Print Network (OSTI)

Horizontal, undulating, and multilateral wells are relatively new alternatives in field development because they can increase the productivity per well and reduce the cost of field development. Because the feasibility of these wells may not be valid in some reservoirs, well performance should be verified before making decisions. Undulation is usually associated to horizontal wells with some degrees. Existing inflow performance models do not account for the undulation of the well, which can cause significant error and economic loss. Moreover, some of the inflow models ignore pressure drop along the lateral, which is definitely not true in high production and long lateral wells. The inflow performance models of horizontal, undulating, and multilateral wells are developed in this study. The models can be divided into two main categories: the closed form model and the line source model. The closed form model applies for relatively low vertical permeability formations for the single-phase system and twophase system. The model is flexible and easy to apply with reasonable accuracy. The line source model does not have any restrictions with permeability. The model applies for single-phase system. The model is very accurate and easy to use. Both models can be applied to various well trajectories with realizable accuracy. As a result of this study, the well performance of unconventional well trajectories can be predicted and optimized.

Kamkom, Rungtip

2007-08-01T23:59:59.000Z

109

Mobil completes deep, tight, horizontal gas well in Germany  

Science Conference Proceedings (OSTI)

A completion and fracturing program for stimulating a horizontal well in the ultra-tight Rotliegendes sand onshore Germany included casing design, completion fluid selection, overbalanced perforation, analysis of the stimulation treatment, design modification, zone and fracture isolation, well testing and acid stimulation. This paper reviews the field geology, the well design, casing design, describes the completion fluids, perforation techniques, fracture treatment, and methods for zone isolation.

Abou-Sayed, I.S.; Chambers, M.R. [Mobil E and P Technical Center, Dallas, TX (United States); Mueller, M.W. [Mobil Erdgas-Erdoel GmbH, Celle (Germany)

1996-08-01T23:59:59.000Z

110

Sampling and Interpretation of Drill Cuttings from Geothermal Wells  

DOE Green Energy (OSTI)

Drill cuttings from geothermal and mineral exploration boreholes, by contrast with those from most petroleum wells, commonly are derived highly fractured and faulted, hydrothermally altered igneous and metamorphic rock sequences, and are likely to be severely contaminated. Characterization of a subsurface resource from cuttings thus requires not only especially careful sample collection, preparation, storage and examination, but also a thorough knowledge of drilling technology, local geology and the full range of potential borehole contaminants. Accurate identification of lithology from cuttings is critical for recognition and correlation of rock types likely to selectively host the desired commodity. However, many of the rocks encountered in geothermal and mineral exploration boreholes (such as gneisses and granitic rocks) can resemble one another closely as cuttings even though dissimilar in outcrop or core. In such cases, the actual rock type(s) in a cuttings sample generally can be determined by comparison with simulated cuttings of representative surface rocks, and with various geophysical and other well logs. Many other clues in cuttings, such as diagnostic metamorphic mineralogy, or sedimentary rounding and sorting, may help identify subsurface lithologies. Faults and fractures commonly are the dominant physical controls on geothermal and mineral resources. Faults occasionally can be recognized directly in cuttings by the presence of slickensiding, gouge, or other crushed material. More commonly, however, the ''gouge'' observed in cuttings actually is pseudo-gouge created beneath a bit during drilling. Since most faults and all fractures produce no direct evidence apparent in cuttings, they are best recognized indirectly, either by commonly associated hydrothermal alteration, or by responses on appropriate geophysical well logs. Hydrothermal alteration, useful for locating and defining a geothermal or mineral resource, is far more difficult to recognize and interpret in cuttings than in core or outcrop. Alteration textures and paragenetic relationships can be obscured or obliterated as cuttings are produced. Less resistant alteration (and rock-forming) minerals can be disaggregated during drilling and lost from cuttings during sampling or washing. Relict and contemporary alteration can be indistinguishable, and a wide variety of borehole contaminants can closely resemble natural alteration products encountered during drilling. These contaminants also can produce confusing geochemical signatures.

Hulen, Jeffrey B.; Sibbett, Bruce S.

1981-01-01T23:59:59.000Z

111

Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance  

Science Conference Proceedings (OSTI)

This final report describes the progress during the six year of the project on ''Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance.'' This report is funded under the Department of Energy's (DOE's) Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially-dominated deltaic deposits. The project involves using an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The project was divided into two budget periods. In the first budget period, many modern technologies were used to develop a detailed reservoir management plan; whereas, in the second budget period, conventional data was used to develop a reservoir management plan. The idea was to determine the cost effectiveness of various technologies in improving the performance of mature oil fields.

Kelkar, Mohan; Liner, Chris; Kerr, Dennis

1999-10-15T23:59:59.000Z

112

Footage Drilled for Crude Oil and Natural Gas Wells  

Gasoline and Diesel Fuel Update (EIA)

Footage Drilled for Crude Oil and Natural Gas Wells Footage Drilled for Crude Oil and Natural Gas Wells (Thousand Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History Exploratory and Development Wells 176,867 203,997 240,969 285,398 308,210 331,740 1949-2008 Crude Oil 38,495 42,032 51,511 63,649 66,527 88,382 1949-2008 Natural Gas 115,833 138,503 164,353 193,595 212,753 212,079 1949-2008 Dry Holes 22,539 23,462 25,104 28,154 28,931 31,280 1949-2008 Exploratory Wells 17,785 22,382 25,955 29,630 36,534 35,585 1949-2008 Crude Oil 2,453 3,141 4,262 4,998 6,271 7,389 1949-2008 Natural Gas 6,569 9,998 12,347 14,945 19,982 17,066 1949-2008 Dry Holes

113

Vapor Flow to Horizontal Wells in Unsaturated Zones Hongbin Zhan* and Eungyu Park  

E-Print Network (OSTI)

Vapor Flow to Horizontal Wells in Unsaturated Zones Hongbin Zhan* and Eungyu Park ABSTRACT and vaporthree dimensional form for a horizontal-well sink in an unsaturated zone. This is done by solving; horizontal-well axis to obtain the solution of flow to a horizontal-well Zhan and Cao, 2000). Horizontal

Zhan, Hongbin

114

Costs of Crude Oil and Natural Gas Wells Drilled  

Gasoline and Diesel Fuel Update (EIA)

Costs of Crude Oil and Natural Gas Wells Drilled Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003 2004 2005 2006 2007 View History Thousand Dollars per Well All (Real*) 1,011.9 1,127.4 1,528.5 1,522.3 1,801.3 3,481.8 1960-2007 All (Nominal) 1,054.2 1,199.5 1,673.1 1,720.7 2,101.7 4,171.7 1960-2007 Crude Oil (Nominal) 882.8 1,037.3 1,441.8 1,920.4 2,238.6 4,000.4 1960-2007 Natural Gas (Nominal) 991.9 1,106.0 1,716.4 1,497.6 1,936.2 3,906.9 1960-2007 Dry Holes (Nominal) 1,673.4 2,065.1 1,977.3 2,392.9 2,664.6 6,131.2 1960-2007 Dollars per Foot All (Real*) 187.46 203.25 267.28 271.16 324.00 574.46 1960-2007 All (Nominal) 195.31 216.27 292.57 306.50 378.03 688.30 1960-2007

115

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents (OSTI)

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

116

U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars...  

Annual Energy Outlook 2012 (EIA)

Natural Gas Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Natural Gas Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

117

U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

Oil Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Crude Oil Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

118

The Performance of Fractured Horizontal Well in Tight Gas Reservoir  

E-Print Network (OSTI)

Horizontal wells have been used to increase reservoir recovery, especially in unconventional reservoirs, and hydraulic fracturing has been applied to further extend the contact with the reservoir to increase the efficiency of development. In the past, many models, analytical or numerical, were developed to describe the flow behavior in horizontal wells with fractures. Source solution is one of the analytical/semi-analytical approaches. To solve fractured well problems, source methods were advanced from point sources to volumetric source, and pressure change inside fractures was considered in the volumetric source method. This study aims at developing a method that can predict horizontal well performance and the model can also be applied to horizontal wells with multiple fractures in complex natural fracture networks. The method solves the problem by superposing a series of slab sources under transient or pseudosteady-state flow conditions. The principle of the method comprises the calculation of semi-analytical response of a rectilinear reservoir with closed outer boundaries. A statistically assigned fracture network is used in the study to represent natural fractures based on the spacing between fractures and fracture geometry. The multiple dominating hydraulic fractures are then added to the natural fracture system to build the physical model of the problem. Each of the hydraulic fractures is connected to the horizontal wellbore, and the natural fractures are connected to the hydraulic fractures through the network description. Each fracture, natural or hydraulically induced, is treated as a series of slab sources. The analytical solution of superposed slab sources provides the base of the approach, and the overall flow from each fracture and the effect between the fractures are modeled by applying superposition principle to all of the fractures. It is assumed that hydraulic fractures are the main fractures that connect with the wellbore and the natural fractures are branching fractures which only connect with the main fractures. The fluid inside of the branch fractures flows into the main fractures, and the fluid of the main fracture from both the reservoir and the branch fractures flows to the wellbore. Predicting well performance in a complex fracture network system is extremely challenged. The statistical nature of natural fracture networks changes the flow characteristic from that of a single linear fracture. Simply using the single fracture model for individual fracture, and then adding the flow from each fracture for the network could introduce significant error. This study provides a semi-analytical approach to estimate well performance in a complex fracture network system.

Lin, Jiajing

2011-12-01T23:59:59.000Z

119

EM Telemetry Tool for Deep Well Drilling Applications  

Science Conference Proceedings (OSTI)

This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

Jeffrey M. Gabelmann

2005-11-15T23:59:59.000Z

120

Geopressured-geothermal well report. Volume I. Drilling and completion  

DOE Green Energy (OSTI)

Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

Not Available

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Corrosion Resistant Metallic Materials for Ultra-deep Well Drilling ...  

Science Conference Proceedings (OSTI)

... corrosion fatigue, etc., can be a primary cause of catastrophic degradation of tubular components during ultra-deep drilling of oil and natural gas shale.

122

Natural Gas Horizontal Well Control Act (West Virginia) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

drilling method, and which disturbs three acres or more of surface, excluding pipelines, gathering lines and roads, or utilizes more than two hundred ten thousand gallons...

123

Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia  

SciTech Connect

This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

1992-03-01T23:59:59.000Z

124

Drilling, completion, stimulation, and testing of BDM/CNGD Well 3997, Lee District, Calhoun County, West Virginia. Final report  

SciTech Connect

This report discusses the detailed field operations in drilling, casing, completing, and stimulating the Hunter Bennett No. 3997 well located in Lee District, Calhoun County West Virginia. The project was designed and managed by BDM in cooperation with CNG Development Company. The well was spudded on November 9, 1990, and drilling was completed on December 14, 1990. The well was drilled on an average asmuth of 312 degrees with a total horizontal displacement of 2459 feet. The well was turned to a 90 degree inclination from the vertical over a measured course length of 1216 feet. Approximately 1381 feet of the well had an inclination higher than 86 degrees, while 2179 feet had an inclination greater than 62 degrees. The well was partitioned into five zones for stimulation purposes. Each zone is a little more than 300 feet long. The well was stimulated with nitrogen gas in zones one and two. Early production results are encouraging. The BDM/CNGD horizontal well averaged 147 mcfd of gas over the first week of production and, in week five, began to produce oil at a rate of about 2 bbl/day.

Overbey, W.K. Jr.; Carden, R.S.; Salamy, S.P.; Locke, C.D.; Johnson, H.R.

1992-03-01T23:59:59.000Z

125

The Temperature Prediction in Deepwater Drilling of Vertical Well  

E-Print Network (OSTI)

The extreme operating conditions in deepwater drilling lead to serious relative problems. The knowledge of subsea temperatures is of prime interest to petroleum engineers and geo-technologists alike. Petroleum engineers are interested in subsea temperatures to better understand geo-mechanisms; such as diagenesis of sediments, formation of hydrocarbons, genesis and emplacement of magmatic formation of mineral deposits, and crustal deformations. Petroleum engineers are interested in studies of subsurface heat flows. The knowledge of subsurface temperature to properly design the drilling and completion programs and to facilitate accurate log interpretation is necessary. For petroleum engineers, this knowledge is valuable in the proper exploitation of hydrocarbon resources. This research analyzed the thermal process in drilling or completion process. The research presented two analytical methods to determine temperature profile for onshore drilling and numerical methods for offshore drilling during circulating fluid down the drillstring and for the annulus. Finite difference discretization was also introduced to predict the temperature for steady-state in conventional riser drilling and riserless drilling. This research provided a powerful tool for the thermal analysis of wellbore and rheology design of fluid with Visual Basic and Matlab simulators.

Feng, Ming

2011-05-01T23:59:59.000Z

126

Resonant acoustic transducer and driver system for a well drilling string communication system  

DOE Patents (OSTI)

The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

Chanson, Gary J. (Weston, MA); Nicolson, Alexander M. (Concord, MA)

1981-01-01T23:59:59.000Z

127

Simulation of air and mist drilling for geothermal wells  

SciTech Connect

An improved method for calculating downhole temperatures, pressures, fluid densities and velocities during air drilling has been developed. The basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressures in typical air and mist drilling situations. 8 refs.

Mitchell, R.F.

1981-01-01T23:59:59.000Z

128

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge Water Management for Discharge Water Management for Horizontal Shale Gas Well Development Final Report Start Date: October 1, 2009 End Date: March 31, 2012 Authors: Paul Ziemkiewicz, PhD Jennifer Hause Raymond Lovett, PhD David Locke Harry Johnson Doug Patchen, PG Report Date Issued: June 2012 DOE Award #: DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV 26506-6064 FilterSure, Inc. PO Box 1277 McLean, VA 22101 ShipShaper, LLP PO Box 2 Morgantown, WV 26507 2 | P a g e Acknowledgment "This material is based upon work supported by the Department of Energy under Award Number DE-FE0001466." Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States

129

Sand control in horizontal wells in heavy-oil reservoirs  

SciTech Connect

Recent advances in horizontal-well technology has greatly improved the potential for heavy oil recovery. Such recovery may be hampered, however, by sanding problems associated with most heavy-oil reservoirs. These reservoir sands are mostly unconsolidated and may lead to severe productivity-loss problems if produced freely. This paper offers recommendations for sand control in three Canadian heavy-oil reservoirs. Experimental evidence has shown that minimizing the annular space between the casing and the open hole is important, especially in the case of smaller wire space, lower oil viscosity, and thinner pay zone. Several types of wire-wrapped screens and flexible liners were tested for sand control. Only flexible liners reduced sand production to a negligible amount.

Islam, M.R. (Nova Husky Research Corp. (CA)); George, A.E. (Energy, Mines, and Resources (CA))

1991-07-01T23:59:59.000Z

130

Simulation of air and mist drilling for geothermal wells  

SciTech Connect

An air drilling model has been developed that accounts for cuttings and mist. Comparison of the model results with previous work shows this model to be more conservative. The equations developed are simple enough to be used in hand calculations, but the full capability of the model is more easily obtained with a computer program. Studies with the model show that volume requirements and standpipe pressures are significantly different for mist drilling compared with air drilling. An improved method for calculating downhole temperatures, pressures, fluid densities, and velocities during air drilling has been developed. Improvements on previous methods include the following. A fully transient thermal analysis of the wellbore and formation is used to determine the flowing temperatures. The effects of flow acceleration are included explicitly in the calculation. The slip velocity between the gas and the cuttings is determined by the use of a separate momentum equation for the cuttings. The possibility of critical flow in the wellbore is tested and appropriate changes in the volume flow rate and standpipe pressure are made automatically. The standpipe and flowing pressures are predicted. The analysis is conservative. The effect of the cuttings on the wellbore flow will tend to overpredict the required volume flow rates. In this paper, the basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressure in typical air and mist drilling situations.

Mitchell, R.F.

1983-11-01T23:59:59.000Z

131

U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes  

Open Energy Info (EERE)

Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2010 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Citation U.S. Geothermal Inc.. 2010. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project. Boise Idaho: (!) . Report No.: N/A.

132

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

133

Interpreting Horizontal Well Flow Profiles and Optimizing Well Performance by Downhole Temperature and Pressure Data  

E-Print Network (OSTI)

Horizontal well temperature and pressure distributions can be measured by production logging or downhole permanent sensors, such as fiber optic distributed temperature sensors (DTS). Correct interpretation of temperature and pressure data can be used to obtain downhole flow conditions, which is key information to control and optimize horizontal well production. However, the fluid flow in the reservoir is often multiphase and complex, which makes temperature and pressure interpretation very difficult. In addition, the continuous measurement provides transient temperature behavior which increases the complexity of the problem. To interpret these measured data correctly, a comprehensive model is required. In this study, an interpretation model is developed to predict flow profile of a horizontal well from downhole temperature and pressure measurement. The model consists of a wellbore model and a reservoir model. The reservoir model can handle transient, multiphase flow and it includes a flow model and a thermal model. The calculation of the reservoir flow model is based on the streamline simulation and the calculation of reservoir thermal model is based on the finite difference method. The reservoir thermal model includes thermal expansion and viscous dissipation heating which can reflect small temperature changes caused by pressure difference. We combine the reservoir model with a horizontal well flow and temperature model as the forward model. Based on this forward model, by making the forward calculated temperature and pressure match the observed data, we can inverse temperature and pressure data to downhole flow rate profiles. Two commonly used inversion methods, Levenberg- Marquardt method and Marcov chain Monte Carlo method, are discussed in the study. Field applications illustrate the feasibility of using this model to interpret the field measured data and assist production optimization. The reservoir model also reveals the relationship between temperature behavior and reservoir permeability characteristic. The measured temperature information can help us to characterize a reservoir when the reservoir modeling is done only with limited information. The transient temperature information can be used in horizontal well optimization by controlling the flow rate until favorite temperature distribution is achieved. With temperature feedback and inflow control valves (ICVs), we developed a procedure of using DTS data to optimize horizontal well performance. The synthetic examples show that this method is useful at a certain level of temperature resolution and data noise.

Li, Zhuoyi

2010-12-01T23:59:59.000Z

134

GRR/Section 5-NV-a - Drilling Well Development | Open Energy Information  

Open Energy Info (EERE)

5-NV-a - Drilling Well Development 5-NV-a - Drilling Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-NV-a - Drilling Well Development 05NVADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Nevada Division of Minerals Nevada Division of Water Resources Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 05NVADrillingWellDevelopment.pdf 05NVADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A person may not drill or operate a geothermal well or drill an exploratory well without obtaining a permit from the Administrator of the Nevada

135

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

136

U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per...  

Annual Energy Outlook 2012 (EIA)

Dry Wells Drilled (Dollars per Foot) U.S. Nominal Cost per Foot of Dry Wells Drilled (Dollars per Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

137

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling  

E-Print Network (OSTI)

Private Water Well Testing in Areas Impacted by Marcellus Shale Gas Drilling (Updated November 15th in the absence of shale-gas drilling, well owners are strongly encouraged to evaluate their water on a regular testing in order to more specifically document potential impacts of Marcellus Shale gas development

Manning, Sturt

138

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

Science Conference Proceedings (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

139

GRR/Section 5-TX-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-TX-a - Drilling and Well Development GRR/Section 5-TX-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-TX-a - Drilling and Well Development 05TXADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Water Development Board Regulations & Policies 16 TAC 3.5: Application To Drill, Deepen, Reenter, or Plug Back 16 TAC 3.78: Fees and Financial Security Requirements 16 TAC 3.37: Statewide Spacing Rule 16 TAC 3.38: Well Densities 16 TAC 3.39: Proration and Drilling Units: Contiguity of Acreage and Exception 16 TAC 3.33: Geothermal Resource Production Test Forms Required Triggers None specified Click "Edit With Form" above to add content

140

Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells  

DOE Green Energy (OSTI)

This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

Huttrer, G.W. [Geothermal Management Company, Inc., Frisco, CO (United States)

1997-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GRR/Section 5-CA-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

5-CA-a - Drilling and Well Development 5-CA-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-CA-a - Drilling and Well Development 05CAADrillingApplicationProcess (1).pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 05CAADrillingApplicationProcess (1).pdf 05CAADrillingApplicationProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The California Department of Conservation, Division of Oil and Gas (DOGGR) administers geothermal well drilling activities (permitting, drilling,

142

U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

143

U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's...

144

U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

145

U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet...  

Gasoline and Diesel Fuel Update (EIA)

Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 26,439...

146

U.S. Footage Drilled for Dry Exploratory and Developmental Wells...  

Gasoline and Diesel Fuel Update (EIA)

and Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Exploratory and Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

147

U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet...  

Gasoline and Diesel Fuel Update (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

148

U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand...  

Annual Energy Outlook 2012 (EIA)

Developmental Wells (Thousand Feet) U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

149

U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...  

Open Energy Info (EERE)

U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells Needed for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library...

150

U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet ...  

U.S. Energy Information Administration (EIA)

U.S. Average Depth of Crude Oil Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1940's: 4,232 ...

151

Drilled, driven or bored wells are best disinfected by a well or pump contractor, because it is difficult  

E-Print Network (OSTI)

Drilled, driven or bored wells are best disinfected by a well or pump contractor, because it is difficult for the private owner to thoroughly disinfect these wells. If you suspect that your well may advice on disinfecting your well. The suggestions below are intended to supplement flood precautions

Tullos, Desiree

152

Automatic detection and diagnosis of problems in drilling geothermal wells  

DOE Green Energy (OSTI)

Sandia National Laboratories and Tracor Applied Sciences have developed a proof-of-concept Expert System for the automatic detection and diagnosis of several important problems in geothermal drilling. The system is designed to detect loss of circulation, influx, loss of pump efficiency, and sensor problems. Data from flow sensors (including the rolling float meter), the pump stroke counter and other sensors are processed and examined for deviations from expected patterns. The deviations from expected patterns. The deviations are transformed into evidence for a Bayesian Network (a probabilistic reasoning tool), which estimates the probability of each fault. The results are displayed by a Graphical User Interface, which also allows the user to see data related to a specific fault. The prototype was tested on real data, and successfully detected and diagnosed faults.

Harmse, J.E.; Wallace, R.D.; Mansure, A.J.; Glowka, D.A.

1997-11-01T23:59:59.000Z

153

GRR/Section 5-AK-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-AK-a - Drilling and Well Development GRR/Section 5-AK-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-AK-a - Drilling and Well Development 05AKADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Alaska Oil and Gas Conservation Commission Alaska Department of Natural Resources Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 05AKADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative All wells drilled in search or in support of the recovery of geothermal

154

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

The overall purpose of the proposed project is to improve secondary recovery performance of a marginal oil field through the use of a horizontal injection well. The location and direction of the well will be selected based on the detailed reservoir description using integrated approach. The authors expect that 2 to 5 % of original oil in place will be recovered using this method. This should extend the life of the reservoir by at least 10 years. To accomplish the goals of the project, it is divided into two stages. In Stage 1, they will select part of the Glenn Pool field (William B. Self Unit), and collect additional reservoir data by conducting cross bore hole tomography surveys and formation micro scanner logs through newly drilled well. In addition, they will also utilize analogous outcrop data. By combining the state of the art data with conventional core and log data, they will develop a detailed reservoir description based on integrated approach. After conducting extensive reservoir simulation studies, they will select a location and direction of a horizontal injection well. The well will be drilled based on optimized design, and the field performance will be monitored for at least six months. If the performance is encouraging, they will enter into second budget period of the project. This progress report is divided into three sections. In the first section, they discuss the preliminary results based on the cross bore hole seismic surveys. In the second section, they discuss the geological description of the Self Unit. In the last section, they present petrophysical properties description of the reservoir followed by the flow simulation results. Based on a thorough evaluation of the geological and flow simulation results, they finalized the initial test well location followed by drilling of the well in late Dec.

Kelkar, B.G.; Liner, C.; Kerr, D.

1993-12-31T23:59:59.000Z

155

GRR/Section 5-WA-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-WA-a - Drilling and Well Development GRR/Section 5-WA-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-WA-a - Drilling and Well Development 5-WA-a.pdf Click to View Fullscreen Contact Agencies Washington State Department of Natural Resources Regulations & Policies Geothermal Act 78.60 RCW Geothermal Rules 332-17 WAC Triggers None specified In Washington geothermal drilling and well development are regulated by the Washington State Department of Natural Resources (WSDNR). Geothermal production wells and core holes deeper than 750ft require the developer go through the whole WSDNR permitting process (which requires a public hearing) and require that the developer complete the State Environmental

156

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

157

Geothermal Well Costs and their Sensitivities to Changes in Drilling and Completion Operations  

SciTech Connect

This paper presents a detailed analysis of the costs of drilling and completing geothermal wells. The basis for much of the analysis is a computer-simulation-based model which calculates and accrues operational costs involved in drilling and completing a well. Geothermal well costs are discussed in general, with special emphasis on variations among different geothermal areas in the United States, effects of escalation and inflation over the past few years, and comparisons of geothermal drilling costs with those for oil and gas wells. Cost differences between wells for direct use of geothermal energy and those for electric generation, are also indicated. In addition, a breakdown of total well cost into its components is presented. This provides an understanding of the relative contributions of different operations in drilling and completions. A major portion of the cost in many geothermal wells is from encountered troubles, such as lost circulation, cementing difficulties, and fishing. These trouble costs are considered through both specific examples and statistical treatment of drilling and completions problems. The sensitivities of well costs to variations in several drilling and completion parameters are presented. The mode1 makes it possible to easily vary parameters such as rates of penetration; bit lifetimes; bit rental, or rig costs; delay times; number of cement plugs; etc. are compared.

Carson, C. C.; Lin, Y.T.

1981-01-01T23:59:59.000Z

158

Drilling for geothermal resources: rules and regulations and minimum well construction standards  

DOE Green Energy (OSTI)

The following geothermal rules and regulations are presented: authority; policy; definitions; drilling; records; blow out prevention; injection wells; abandonment; maintenance; hearings; notice procedures; hearings on refused, limited, or conditioned permit; appeals; penalties; and forms;

Not Available

1978-06-01T23:59:59.000Z

159

U.S. Crude Oil Developmental Wells Drilled (Number of Elements)  

U.S. Energy Information Administration (EIA)

U.S. Crude Oil Developmental Wells Drilled (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ... Crude Oil and Natural Gas Exploratory and ...

160

Modeling studies to evaluate performance of the horizontal wells completed in shale.  

E-Print Network (OSTI)

??The results of the modeling studies to determine the production performance of multiple fractured horizontal wells completed in shale formation has been summarized in this… (more)

Belyadi, Abbas.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

162

Rigs Drilling Gas Wells Are At - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The increasing number of resulting gas well completions have been expanding production in major producing States, such as Texas. For the year 2000, ...

163

Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations  

Science Conference Proceedings (OSTI)

There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

2012-09-30T23:59:59.000Z

164

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

DOE Green Energy (OSTI)

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

165

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

SciTech Connect

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

166

GRR/Section 5-UT-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-UT-a - Drilling and Well Development GRR/Section 5-UT-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-UT-a - Drilling and Well Development 05UTADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Utah Division of Water Rights Regulations & Policies Utah Geothermal Resource Conservation Act Utah Administrative Code Section R655-1 Triggers None specified Click "Edit With Form" above to add content 05UTADrillingAndWellDevelopment.pdf 05UTADrillingAndWellDevelopment.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Although not regulated under the Administrative Rules for Water Wells,

167

GRR/Section 5-MT-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-MT-a - Drilling and Well Development GRR/Section 5-MT-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-MT-a - Drilling and Well Development 05MTADrillingAndWellDevelopment (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Montana Department of Environmental Quality Regulations & Policies MCA 37-43-104: Monitoring Wells MCA 37-43-302: License Requirements MCA 37-43-306: Bonding Requirements Triggers None specified Click "Edit With Form" above to add content 05MTADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

168

GRR/Section 5-CO-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

CO-a - Drilling and Well Development CO-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-CO-a - Drilling and Well Development 05COADrillingAndWellDevelopment (1).pdf Click to View Fullscreen Contact Agencies Colorado Division of Water Resources Colorado Oil and Gas Conservation Commission Regulations & Policies Rules and Regulations for Permitting the Development and Appropriation of Geothermal Resources Through the Use of Wells CRS 37-90.5-107 Triggers None specified Click "Edit With Form" above to add content 05COADrillingAndWellDevelopment (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

169

New approach for describing transient pressure response generated by horizontal wells of arbitrary geometry  

Science Conference Proceedings (OSTI)

This paper is aimed at developing a methodology for studying the transient pressure behavior of horizontal wells with any curvilinear trajectory in an isotropic/anisotropic arbitrarily shaped reservoir. This methodology employs generalized functions ... Keywords: curved/twisted trajectory, diffusivity equation, finite elements method, generalized functions, horizontal well, mathematical modeling, sources, transient pressure

Reinaldo J. González-Requena; Juan M. Guevara-Jordan

2002-03-01T23:59:59.000Z

170

Bachaquero-01 reservoir, Venezuela-increasing oil production by switching from cyclic steam injection to steamflooding using horizontal wells  

E-Print Network (OSTI)

The Bachaquero-01 reservoir of the Lagunillas field is located in the eastern part of the Maracaibo Lake, Venezuela. The field is operated by the national oil company of Venezuela, PDVSA (Petroleos de Venezuela, S.A.). The Bachaquero-01 heavy oil reservoir lies at about 3,000 ft. ss. and contains 7.037 BSTB of 1 1.7 degrees API gravity oil with an in-situ viscosity of 635 cp. Cold production began in 1960, but since 1971 the reservoir was produced under a massive cyclic steam injection system. To-date some 370 cyclic-steam injection welts have produced from the reservoir, yielding a cumulative oil recovery of only about 5.6% of initial oil-in-place. The reservoir pressure has dropped from an initial 1,370 psia to its present value of about 700 psia. Maximum oil production peaked at 45.0 MSTB/D in 1991, and has since continued to decline. To arrest production decline, three horizontal cyclic-steam injection wells were drilled and completed in the reservoir in 1995-1997. The horizontal sections were from 1,280 to 1,560 ft long and were drilled in locations with existing vertical cyclic steam injection welts. Three-dimensional thermal-compositional simulation studies were conducted to evaluate the performance of the three horizontal welts under cyclic steam injection and steamflooding. The Cartesian model dimensions of the three horizontal welts were 11x22x4, 11x27x5, and 12x20x5. In the steamflooding scheme investigated, the existing horizontal welts were used as injectors while existing (and new) vertical welts surrounding the horizontal welts were used as producers. Simulation results indicate oil recovery under cyclic steam injection to be about 15% of initial oil-in-place, compared to about 25% under steamflooding with no new producers, and about 50% under steamflooding with additional producers. The main advantages of steamflooding over cyclic steam injection were in the re-pressurization and improved thermal efficiency for the Bachaquero-01 reservoir. Higher oil recovery with additional wells resulted from improved areal sweep efficiency. Further study is planned to investigate steamflooding for the rest of the reservoir.

Rodriguez, Manuel Gregorio

1999-01-01T23:59:59.000Z

171

GRR/Section 5-ID-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

ID-a - Drilling and Well Development ID-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-ID-a - Drilling and Well Development 05IDADrillingWellDevelopment.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies IC §42-233: Appropriation of Water, Geothermal IC §42-4003: Permits IC §42-4004: Processing Applications IC §42-4011: Name of Owner Triggers None specified Click "Edit With Form" above to add content Best Practices Community outreach Talk to the local county Potential Roadblocks Incomplete applications result in longer approval times by IDWR 05IDADrillingWellDevelopment.pdf Error creating thumbnail: Page number not in range.

172

GRR/Section 5-HI-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

GRR/Section 5-HI-a - Drilling and Well Development GRR/Section 5-HI-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-HI-a - Drilling and Well Development 05HIADrillingAndModificationOfWellsForInjectionUsePermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Administrative Code §13-183-65 Draft Rules Triggers None specified Click "Edit With Form" above to add content 05HIADrillingAndModificationOfWellsForInjectionUsePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

173

GRR/Section 5-OR-a - Drilling and Well Development | Open Energy  

Open Energy Info (EERE)

5-OR-a - Drilling and Well Development 5-OR-a - Drilling and Well Development < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5-OR-a - Drilling and Well Development 05ORADrillingAndWellDevelopment.pdf Click to View Fullscreen Contact Agencies Oregon Department of Geology and Mineral Industries Oregon Water Resources Department Oregon Department of Fish and Wildlife Oregon Department of Environmental Quality Oregon Department of Land Conservation and Development Oregon Department of State Lands Oregon Department of Energy Oregon Parks and Recreation Department Regulations & Policies ORS 522.005(11) ORS 522.025 ORS 522.115 ORS 522.125 ORS 522.135 Triggers None specified Click "Edit With Form" above to add content 05ORADrillingAndWellDevelopment.pdf

174

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

2003-10-05T23:59:59.000Z

175

Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)  

DOE Green Energy (OSTI)

During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

Finger, J.T.; Jacobson, R.D.

1999-06-01T23:59:59.000Z

176

Unique aspects of drilling and completing hot-dry-rock geothermal wells  

DOE Green Energy (OSTI)

Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

1983-01-01T23:59:59.000Z

177

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing  

DOE Green Energy (OSTI)

This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

Henkle, William R.; Ronne, Joel

2008-06-15T23:59:59.000Z

178

Phase 1 drilling operations at the Magma Energy Exploratory Well (LVF 51-20)  

DOE Green Energy (OSTI)

This report describes the Phase 1 drilling operations for the Magma Energy Exploratory Well near Mammoth Lakes, California. An important part of the Department of Energy's Magma Energy Program, this well is designed to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degree}C, whichever comes first. There will be four drilling phases, at least a year apart, with scientific investigations in the borehole between the drilling intervals. Phase 1 of this project resulted in a 20 inch cased hole to 2558 feet, with 185 feet of coring beyond that. This document comprises a narrative of the daily activities, copies of the daily mud and lithologic reports, time breakdowns of rig activities, inventories of lost circulation materials, temperature logs of the cored hole, and a strip chart mud log. 2 figs.

Finger, J.T.; Jacobson, R.D.

1990-12-01T23:59:59.000Z

179

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

2003-07-01T23:59:59.000Z

180

Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment  

DOE Green Energy (OSTI)

The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

Dosch, M.W.; Hodgson, S.F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

USE OF SLIMHOLE DRILLING TO REDUCE WELL COSTS 30-50%: ARNIM PROSPECT  

SciTech Connect

This report highlights the drilling of two shallow oil wells in Fayette County, Texas. The operator of these two wells was Stanton Mineral Development, Inc. The aim of this project was to successfully complete the two (2) wells, emphasizing tight oversight of the technological aspects, neglect of which are the primary causes of failure in this mature producing region as well as unnecessarily expensive wells. Discussions contained here within are not limited to just the execution of the project itself, but a historical and technical analysis which forms a basis for the decisions made both during drilling and completion. Additionally, there is substantial dialogue covering the financial benefits associated with the findings of this project.

WM. Stanton McDonald; Christopher M. Long

2002-06-13T23:59:59.000Z

182

Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

None

2010-01-15T23:59:59.000Z

183

Temperature histories in geothermal wells: survey of rock thermomechanical properties and drilling, production, and injection case studies  

DOE Green Energy (OSTI)

Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data was obtained from the technical literature and direct contacts with industry. Thermal properties include heat capacity, conductivity, and diffusivity. Undisturbed geothermal profiles are also presented. Mechanical properties include Youngs modulus and Poisson ratio. GEOTEMP thermal simulations of drilling, production and injection are reported for two geothermal regions, the hot dry rock area near Los Alamos and the East Mesa field in the Imperial Valley. Actual drilling, production, and injection histories are simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Discussion and interpretation of the results are presented for drilling and well completion design to determine: wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection.

Goodman, M.A.

1981-07-01T23:59:59.000Z

184

Drainhole drilling projects under way  

Science Conference Proceedings (OSTI)

This paper reports that many operators are taking advantage of continued developments in drainhole drilling technology to increase productivity in certain fields. Previously untapped prospects are under renewed scrutiny to determine if drainhole and horizontal drilling can make them more attractive. Producing properties are being reevaluated as well. Drainhole drilling typically involves reentering an existing well and cutting through the casing to drill a relatively short length of horizontal wellbore. Although separating drainhole and horizonal or extended-reach drilling is somewhat of a gray area, one difference is that a drainhole well turns to the horizontal much quicker. The radius of turn to 90/sup 0/ can be as little as 30 to 50 ft. Additionally, the length of horizontal kick in a drainhole well is typically in the 300- to 500-ft range compared to 1000 ft or more in extended-reach drilling. A final separating characteristic is that drainhole drilling can be associated with several horizontal lengths of wellbore coming off a single vertical hole.

Burton, B.

1987-07-01T23:59:59.000Z

185

Productivity and injectivity of horizontal wells. Quarterly report, April 1, 1994--June 30, 1994  

Science Conference Proceedings (OSTI)

In the fifth quarter of this project, progress was made concerning four of the stated objectives of the project. First, extensive sensitivity studies, based on reservoir simulation, have been performed on a field example to assess the effects of wellbore friction, inflow, skin, length, and diameter of the well, etc. on the productivity of a horizontal well. Secondly, the authors have launched a new phase of the project on developing models for scale-up and coarse grid pseudo functions for horizontal wells in heterogeneous reservoirs. The available methods have been applied to an example problem and their performance and limitations have been analyzed. Thirdly, the authors are in the process of developing a new analytical solution for the coning and cresting critical rates for horizontal wells. Finally, experimental data bases will be used to test the authors` newly developed general mechanistic model for two-phase flow.

Fayers, F.J.; Aziz, K.; Hewett, T.A.

1994-09-01T23:59:59.000Z

186

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

DOE Green Energy (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

187

Illinois. The injection well is being drilled into a test area...  

NLE Websites -- All DOE Office Websites (Extended Search)

option for CO 2 storage. This is the first drilling into the Mount Simon Sandstone since oil and gas exploratory drilling was conducted some 15 to 40 years ago. Drilling...

188

Siting and drilling recommendations for a geothermal exploration well, Wendel-Amedee KGRA, Lassen County, California  

DOE Green Energy (OSTI)

All available exploration data relevant to the GeoProducts leasehold in the Wendel-Amedee KGRA are reviewed and interpreted. On the basis of this interpretation, locations and procedures are recommended for drilling geothermal production wells capable of supplying fluid at a temperature of 250/sup 0/F or greater. The following are covered: stratigraphy and geological history, geologic structure, geochemistry, geophysics, temperature-gradient data, and fluid quality. (MHR)

McNitt, J.R.; Wilde, W.R.

1980-12-01T23:59:59.000Z

189

DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION  

SciTech Connect

The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

2002-09-01T23:59:59.000Z

190

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Quarterly report, July 1--September 30, 1997  

Science Conference Proceedings (OSTI)

The overall purpose of the proposed project is to improve secondary recovery performance of a marginal oil field through the use of an appropriate reservoir management plan. The selection of plan will be based on the detailed reservoir description using an integrated approach. The authors expect that 2 to 5% of the original oil in place will be recovered using this method. This should extend the life of the reservoir by at least 10 years. The project is divided into two stages. In Stage 1 of the project, they selected part of the Glenn Pool Field-Self Unit. They conducted cross borehole tomography surveys and formation micro scanner logs through a newly drilled well. By combining the state-of-the-art data with conventional core and log data, they developed a detailed reservoir description based on an integrated approach. After conducting extensive reservoir simulation studies, they evaluated alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal injection well. They observed that selective completion of many wells followed by an increase in the injection rate was the most feasible option to improve the performance of the Self Unit. This management plan is current being implemented and the performance is being monitored. Stage 2 of the project will involve selection of part of the same reservoir (Berryhill Unit-Tract 7), development of reservoir description using only conventional data, simulation of flow performance using developed reservoir description, selection of an appropriate reservoir management plan, and implementation of the plan followed by monitoring of reservoir performance.

Kelkar, M.; Liner, C.; Kerr, D.

1997-12-31T23:59:59.000Z

191

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

Science Conference Proceedings (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

192

Laboratory evaluation of filtercake cleanup techniques and metallic-screens plugging mechanisms in horizontal wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the plugging mechanisms of metallic screens after cleaning up the altercate developed on an unconsolidated core by two exiting drill-in fluids (DIF's). Two simulated drill solids, clay or 75-[]m reservoir sand were added as drill solids to these DIF 's. Poroplus[] metallic screens developed by Purolator Products Company were used to simulate the sand control device. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Drill solids added to the tested DIF's simulate tiny formation particles. The presence of these drill solids was found to affect the particle size distribution as well as the mean size (D[]) of the particles of the bridging and weighting material (BWM) and loss control material (LCM) that make up a fundamental part of the DIF's. BWM solids containing calcium montmorillonite clay showed that the median size of the particles was substantially decreased and the ultrafine material content (particles smaller than 45 []m) was increased. BWM solids containing 75-[]m sand as drill solids showed an increase of the median size of the particles with a decrease in the ultrafine material. After the filtercake clean-up treatment and subsequent backsaw, screen plugging evaluated in terms of regained-flow capacity was much more severe in the presence of the whole altercate (after 3% KCl treatments) than in the presence of the degraded filtercake (after HCI acid treatments). On the basis of the previous observations, it can be concluded that when SCC filtercakes were backflowed, the smaller the particle size of the altercate, the higher the minimum dislodging pressure (MDP) and screen plugging, and consequently the lower the regained-flow capacity. Coarse particle size of the filtercakes tended to result in minimum MDP, leading to higher regained-flow capacity and lower plugging of the screen. In contrast, these effects in SS filtercakes were masked by the presence of a polymer, xanthin gum, in the filtercake. The polymers act as glue on the sized particles forming a strong, tough, and rigid filtercake. Therefore, these filtercakes required high pressure to be backfired, decreasing the regained-flow capacity highly and causing severe plugging of the screens. Also, the results indicated that the hydrochloric acid treatment was more effective in removing the filtercakes than the 3% KCI treatment. Also, it was demonstrated that the use of HCI is much more effective in removing the filtercake formed by SS than in removing the one formed by SCC.

Garcia Orrego, Gloria Stella

1999-01-01T23:59:59.000Z

193

Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated December 7, 2011  

E-Print Network (OSTI)

://www.state.nj.us/drbc/ Hydrologic conditions #12; Policies & regulations Natural gas related water withdrawal information associated with the industry The Future of Natural Gas (2011) MIT http://web.mit.edu/mitei/research/studies/natural-gas-2011.shtml An analysis of the role of natural gas in our energy future under a variety of possible

Manning, Sturt

194

A Parametric Study on the Benefits of Drilling Multilateral and Horizontal Wells in  

E-Print Network (OSTI)

production from natural fractures... Gas desorption from coal surface... Molecular diffusion through the coal into the cleat system. - Also known as sorption time, and an important parameter for time-to peak-gas. - May vary characteristics. - A significant amount of gas is stored in the coal rock, rather than the pore space. - CBM

Mohaghegh, Shahab

195

Evaluating water-based drill-in fluids for horizontal completions. Part 1: Results of eight extensive lab tests are presented for use when assessing and selecting these special fluids  

SciTech Connect

The use of horizontal wells to obtain more cost-effective production from unconsolidated sandstones has become very popular. Since these wells employ open hole completions, success often depends on the fluid system used during drilling and completion. A lab study of three drill-in fluid systems was performed to determine the advantages and disadvantages of each. Intent of the study was not to recommend one fluid over another, but to make available the data necessary for picking the optimum fluid for a particular application. Parameters evaluated and discussed in Part 1 include rheology, lubricity, size distribution of bridging particles, API fluid loss, high-temperature fluid loss, filter cake characteristics, SEM analysis of filter cake and static breaker tests. Part 2 will describe return permeability tests. All were evaluated with 9, 10.5 and 14 ppg muds.

Ali, S.A. [Chevron U.S.A. Production Co., New Orleans, LA (United States); Dearing, H.L. [Chevron U.S.A. Production Co., Houston, TX (United States)

1996-10-01T23:59:59.000Z

196

Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas  

Science Conference Proceedings (OSTI)

Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

Saibal Bhattacharya

2005-08-31T23:59:59.000Z

197

Status Report A Review of Slimhole Drilling  

DOE Green Energy (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

198

INEL/Snake River plain geothermal drilling and testing plan - INEL - 1 well  

DOE Green Energy (OSTI)

A plan for drilling a 7500 ft exploratory hole is described. This hole would be drilled at the Idaho National Engineering Laboratory, so that it could be immediately used by one of the government facilties. The plan details the hole design, describes the drilling program, proposes a testing program, and estimates costs. (MHR)

Miller, L.G.; Prestwich, S.M.; Griffith, J.L.

1978-12-01T23:59:59.000Z

199

Modeling and Optimization of Matrix Acidizing in Horizontal Wells in Carbonate Reservoirs  

E-Print Network (OSTI)

In this study, the optimum conditions for wormhole propagation in horizontal well carbonate acidizing was investigated numerically using a horizontal well acidizing simulator. The factors that affect the optimum conditions are rock mineralogy, acid concentration, temperature and acid flux in the formation. The work concentrated on the investigation of the acid flux. Analytical equations for injection rate schedule for different wormhole models. In carbonate acidizing, the existence of the optimum injection rate for wormhole propagation has been confirmed by many researchers for highly reactive acid/rock systems in linear core-flood experiments. There is, however, no reliable technique to translate the laboratory results to the field applications. It has also been observed that for radial flow regime in field acidizing treatments, there is no single value of acid injection rate for the optimum wormhole propagation. In addition, the optimum conditions are more difficult to achieve in matrix acidizing long horizontal wells. Therefore, the most efficient acid stimulation is only achieved with continuously increasing acid injection rates to always maintain the wormhole generation at the tip of the wormhole at its optimum conditions. Examples of acid treatments with the increasing rate schedules were compared to those of the single optimum injection rate and the maximum allowable rate. The comparison study showed that the increasing rate treatments had the longest wormhole penetration and, therefore, the least negative skin factor for the same amount of acid injected into the formations. A parametric study was conducted for the parameters that have the most significant effects on the wormhole propagation conditions such as injected acid volume, horizontal well length, acid concentration, and reservoir heterogeneity. The results showed that the optimum injection rate per unit length increases with increasing injected acid volume. And it was constant for scenarios with different lateral lengths for a given system of rock/ acid and injected volume. The study also indicated that for higher acid concentration the optimum injection rate was lower. It does exist for heterogeneous permeability formations. Field treatment data for horizontal wells in Middle East carbonate reservoirs were also analyzed for the validation of the numerical acidizing simulator.

Tran, Hau

2013-05-01T23:59:59.000Z

200

Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14  

DOE Green Energy (OSTI)

Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 4.1 {micro}gal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

Kasameyer, P. W.; Hearst, J. R.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14  

DOE Green Energy (OSTI)

Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 0.0040 mgal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

Kasameyer, P. W.; Hearst, J. R.

1988-01-01T23:59:59.000Z

202

Borehole Gravity Measurements In The Salton Sea Scientific Drilling Program Well State 2-14  

Science Conference Proceedings (OSTI)

Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity were measured at the Salton Sea Scientific Drilling Program well State 2-14. The borehole gravimetric densities matched the well logs, but the surface gradient was found to be 0.0040 mgal/m higher than expected. When the borehole observations are corrected for the observed free air gradient above ground, they produce densities which are nearly uniformly higher than log densities by about 0.07 gm/cm{sup 3}. These measurements require densities in the depth range .5 to 3 km, for a radius of a few kilometers around State 2-14 to be as dense as those found in State 2-14. Combining the borehole gravity and calculated vertical gravity gradients on the surface, we find that this densified zone covers much of a broad thermal anomaly to the northeast of the Salton Sea Geothermal Field.

Kasameyer, P. W.; Hearst, J. R.

1987-01-01T23:59:59.000Z

203

Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology  

Science Conference Proceedings (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal

2006-09-30T23:59:59.000Z

204

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

Science Conference Proceedings (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

2007-07-31T23:59:59.000Z

205

Interpretation of well log data from four drill holes at Roosevelt Hot Springs KGRA  

DOE Green Energy (OSTI)

Well logs from four drill holes, Utah State Geothermal Wells 14-2, 52-21 and 72-16 and Geothermal Power Corporation's thermal gradient hole GPC-15 have been digitized, plotted and studied. This study had three objectives: (1) to present the well log data in a convenient format for easy study, (2) to determine the nature of the geothermal reservoir rock and fluid properties, and (3) to make some inference on fluid entry locations in the boreholes and their effect on heat flow. The temperature logs and gradients computed from these logs have been used to examine heat flow in the vicinity of the four drill holes. Assumed and calculated thermal conductivities have been used in the analyses, 4 mcal/cm /sup 0/C sec for the alluvium and 7 mcal/cm /sup 0/C sec for the crystalline rocks. The data indicate that 14-2 and 72-16 reside in a dominantly convective heat flow environment, whereas GPC-15 and 52-21 reside in a dominantly conductive heat flow environment. The convective regions are believed to be fracture controlled and only portions of each hole reside totally in a convective region; in each case it is the upper bedrock portion of the hole. In every case the alluvium or upper portion of the alluvium acts as a thermal blanket over the system. Maximum heat flow among the holes, 40 ..mu.. cal/cm/sup 2/ sec, occurs in the vicinity of 72-16 and the lowest heat flow, 4 ..mu.. cal/cm/sup 2/ sec, in the vicinity of GPC-15. (MHR)

Glenn, W.E.; Hulen, J.B.

1979-12-01T23:59:59.000Z

206

Horizontal completions challenge for industry  

SciTech Connect

As the technology to drill horizontal wells continues to evolve, the problem of efficiently and cost-effectively completing such wells grows. The economics of applying horizontal technology in high-productivity reservoirs demands both increased production and lower development costs. Such high productivity reservoirs are typical of the Gulf of Mexico, North Sea, South China basin, and other areas. Lowering development costs is achieved by drilling fewer wells and in the offshore environment by reducing the number of platforms and other well structures. Specifically addressed in this article are the problems of achieving high efficiency, long lasting completions while controlling costs in unconsolidated and poorly consolidated sandstone reservoirs.

Zaleski, T.E. Jr.; Spatz, E.

1988-05-02T23:59:59.000Z

207

Did Devonian shale wells drilled during the 1980`s and early 1990`s in West Virginia measure up to expectations?  

Science Conference Proceedings (OSTI)

In the mid-1980`s, a model of future Devonian shale drilling and production was prepared for the Gas Research Institute (GRI). In late 1995, the West Virginia Geological and Economic Survey (WVGES) was contracted by GRI to evaluate actual drilling and production in the 1980`s and early 1990`s and compare these data to the predictions made in the existing model. Drilling activity data were compiled for the years 1979-1993 for all wells drilled, and for all Devonian shale wells drilled. Monthly and annual production data were summarized for both categories. The Devonian shale wells were subdivided into two subsets: (1) the western black shales trend and (2) the eastern black and gray shales and siltstones trend, according to the play definitions used in the {open_quotes}Atlas of Major Appalachian Gas Reservoirs{close_quotes}. Devonian shale wells were subdivided into vintages by completion year. Finally, each Devonian shale well was assigned to a 30 minute geographic grid or {open_quotes}cell{close_quotes} and production data were compiled and compared between cells. Analysis of the data led to the following conclusions: fewer shale wells were being drilled in the early 1990s, but these wells had better recoveries than the wells drilled in the 1980s. Some grid cells showed higher recoveries for the black and gray shales and siltstones play than in cells with black shale reservoirs alone. These higher recoveries perhaps can be attributed to the common practice of completing and producing shallower zones (i.e. Mississippian sandstones) in addition to the Devonian shales.

Hohn, M.E.; McDowell, R.R.; Matchen, D.L. [West Virginia Geological and Economic Survey, Morgantown, WV (United States); Woods, T.J. [Gas Research Inst., Washington, DC (United States)

1996-09-01T23:59:59.000Z

208

An innovative drilling system  

Science Conference Proceedings (OSTI)

The principal project objectives were the following: To demonstrate the capability of the Ultrashort Radius Radial System to drill and complete multiple horizontal radials in a heavy oil formation which had a production history of thermal operations. To study the effects that horizontal radials have on steam placement at specific elevations and on reducing gravity override. To demonstrate that horizontal radials could be utilized for cyclic production, i.e. for purposes of oil production as well as for steam injection. Each of these objectives was successfully achieved in the project. Early production results indicate that radials positively influenced cyclic performance. This report documents those results. 15 refs., 29 figs., 1 tab.

Nees, J.; Dickinson, E.; Dickinson, W.; Dykstra, H.

1991-05-01T23:59:59.000Z

209

StarWars Laser Technology Applied to Drilling and Completing Gas Wells  

NLE Websites -- All DOE Office Websites (Extended Search)

u' m .,. . Society of Petroleum Engineers u I SPE 49259 StarWars Laser Technology Applied to Drilling and Completing Gas Wells R.M. Graves, SPE, Colorado School of Mines; and D.G. O'Brien, PE, SPE, Solutions Engineering Copyr@ht 1998, Scdety of Petroleum Engineers, Inc. This paper was prapared for presentation at the 1998 SPE Annual Technicar Conference and Exhibition bald in New Orteans, Lcuisiana, 27-30 September 1998, This paper waa selected for presentation by en SPE Program Commiftee folrowing review of information contained in an abstract submitted by the author(a). Contents of the paper, as prasented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The materiar, as presented, does not necessarily reflect any position of the .%ciety of Petroleum Engineers, its officers, or members. Papers prasented at SPE meetings

210

Project Rio Blanco reentry drilling and testing of RB-E-01 well. Final report  

SciTech Connect

Reentry by the RB-E-01 hole was made through the 7-in. emplacement casing. Details of the drilling operations and test results are presented. (TFD)

1975-10-01T23:59:59.000Z

211

Horizontal Wells to Enhance Production in the Bottle Rock Field - Final Report - 09/30/2000 - 02/01/2001  

DOE Green Energy (OSTI)

This report describes the work that was done to prepare the Phase II proposal for an enhanced geothermal system based on the use of horizontal well to increase production of reservoir fluids from geothermal wells.

Cohen, J. H.

2001-02-26T23:59:59.000Z

212

Mixed Integer Model Predictive Control of Multiple Shale Gas Wells.  

E-Print Network (OSTI)

?? Horizontal wells with multistage hydraulic fracturing are today the most important drilling technology for shale gas extraction. Considered unprofitable before, the production has now… (more)

Nordsveen, Espen T

2012-01-01T23:59:59.000Z

213

Aquitard control of stream-aquifer interaction and flow to a horizontal well in coastal aquifers  

E-Print Network (OSTI)

This dissertation is composed of three parts of major contributions: In Chapter II, we developed a new conceptual model and derived a new semi-analytical model for flow to a horizontal well beneath a water reservoir. Instead of treating the leakage from aquitard as a source term inside the aquifer which is called Hantush�s assumption (1964), we linked flows in aquitard and aquifer by the idea of continuity of flux and drawdown. The result in this chapter is compared with that of Zhan and Park in 2003 which Hantush�s assumption is adopted at various hydraulic and well configurations. It shows that Hantush�s assumption becomes inaccurate in regions where vertical velocity components are significant. In Chapter III, we deal with the interaction of an aquifer with two parallel surface water bodies such as two streams or canals. In this chapter, new closed-form analytical and semi-analytical solutions are acquired for the pumping induced dynamic interaction between two streams and ground water for two different cases. In the first case, the sediment layers separating the streams from the aquifer ground water do not exist. In the second case, the two low permeable layers are considered. The effect of aquitard and water right competition is addressed in this chapter. This model can be used for interpreting and deriving hydrologic parameters of aquitard and aquifer when pumping occurs between two channels. It can also be used to predict stream depletion which is essential for water management and ecology conservation. In Chapter IV, we investigated the three dimensional upconing due to a finite-length of horizontal well and its critical conditions. The results are compared with those of vertical wells. The critical condition which includes the critical rise and the critical time at a certain pumping rate depends on the well length, the initial interface location, the well location, and the pumping rate. Our results show that horizontal well might be a better tool for coastal groundwater resources development. In real field applications, installing long wells as shallow as possible is always desirable for sustaining long periods of pumping with significant rates.

Sun, Dongmin

2005-12-01T23:59:59.000Z

214

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

215

IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY  

Science Conference Proceedings (OSTI)

The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes, the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis; Roderic Stanley

2005-03-01T23:59:59.000Z

216

Integrating surface systems with downhole data improves underbalanced drilling  

Science Conference Proceedings (OSTI)

An integrated approach of using special downhole sensors and transmission capabilities in conjunction with a surface drilling optimization system has improved the management and understanding of the underbalanced drilling environment within a closed loop system. Improving the underbalanced drilling operation and obtaining quality data in real time can help eliminate damage to the formation and increase ultimate production. Recent advances in drilling technology have made it possible to drill horizontal wells underbalanced more safely and effectively. This technology has greatly reduced the potential for skin damage to the bore hole. Experience from western Canadian underbalanced horizontal drilling clearly demonstrates that a well bore`s initial productive potential is very accurately predicted from its productive behavior during drilling operations.

Comeau, L. [Sperry-Sun Drilling Services, Calgary, Alberta (Canada)

1997-03-03T23:59:59.000Z

217

Further tests of new method for zone isolation in horizontal wells  

E-Print Network (OSTI)

This research is the continuation of Phase II of a joint industry project, whose main objective is to investigate the feasibility of sealing off water and gas producing zones in a horizontal well. During Phase I of the project laboratory experiments were conducted using PVC pipes up to 2-in. diameter and 3-ft. long in order to investigate the viability of using three commercial gels for use as wellborn plugs. The encouraging results from these earlier experiments led to testing the method in a full-scale 60-ft. long by 6-in. diameter wellborn model. The results obtained were again encouraging, but we needed to confirm them by repeating the experiment with some modifications. The two main objectives of this research are: (i) to investigate the effectiveness of K-MAX as a chemical wellborn plug and PERMSEAL as a formation gel in a horizontal well, and (ii) to measure the holding pressure of K-MAX. For the first research objective, the existing 60-ft. long apparatus was modified to include heater pipes inside the 12-in. PVC oboes to allow hot water circulation to achieve a temperature of about 120 F? during curing of PERMSEAL. The results showed that K-MAX performed satisfactorily as a chemical wellborn plug, being displaced with no slumping. The PERMSEAL was displaced radially around the wellborn, penetrating and consolidating the sand and making it apparently impermeable. The holding pressure apparatus consisted of two lengths of 5 []-in. casing (5-ft. long and 10-ft. long), open at one end and closed at the other. K-MAX gel was introduced into the pipe at the open end. Upon curing, the closed end was connected to a HPLC pump to inject water against the K-MAX plug. The holding pressures obtained were low (less than 1 psi). Somewhat higher holding pressures may be expected in the field because of the actual wellborn roughness; and with surface rams being closed during injection in the field, the formation would preferentially be injected into the problem zone. Given the encouraging results to date, it is recommended to field test the new zone isolation method.

Gomez Gomez, Julian Alberto

1999-01-01T23:59:59.000Z

218

Underbalanced drilling guidelines improve safety, efficiency  

Science Conference Proceedings (OSTI)

In underbalanced drilling, the primary means of well control, the hydrostatic head of the drilling fluid, is lost either unavoidably because of hole problems (such as abnormally high pressure or lost circulation) or intentionally because of economics or to prevent formation damage. Because of complications with underbalanced drilling, however, several rigs have been destroyed by fire. Operational guidelines are being developed in close cooperation with industry. The final guidelines will be consistent with the existing standards of well control practices in Alberta, yet applicable for underbalanced drilling operations world-wide. Until formal guidelines are completed in Alberta, operators interested in underbalanced drilling should work closely with the Energy Resources Conservation Board in preparing site-specific programs. Although underbalanced drilling is often associated with horizontal wells, the majority of underbalanced drilling operations in Alberta are conducted on vertical wells. The paper describes underbalanced drilling, blowout prevention, surface BOP equipment (stripper, annular pack off, rotating head, rotating BOP, coiled tubing), subsurface BOP, drilling fluids, nitrified drilling fluids, surface equipment, well-site supervision, well control equipment, and the surface handling of fluids.

Eresman, D. (Energy Resources Conservation Board, Calgary, Alberta (Canada))

1994-02-28T23:59:59.000Z

219

Mexican-American cooperative program at the Cerro Prieto geothermal field: recent results of the well-drilling program at Cerro Prieto  

DOE Green Energy (OSTI)

The results of the 1980 and 1981 well drilling activities at the Cerro Prieto geothermal field are summarized. Details are given on the new series of deeper wells completed in the western (older) part of the field (Cerro Prieto I), and on the development and step-out wells drilled in the eastern part of the field (Cerro Prieto II and III). Production characteristics of on-line and standby wells are discussed. Recent changes in well completion procedures are also described.

Dominguez A, B.; Lippmann, M.J.; Bermejo M.; F.

1981-12-01T23:59:59.000Z

220

Reverse trade mission on the drilling and completion of geothermal wells  

DOE Green Energy (OSTI)

This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

Not Available

1989-09-09T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analytical and Numerical Solutions for the Case of a Horizontal Well with a Radial Power-Law Permeability Distribution--Comparison to the Multi-Fracture Horizontal Case  

E-Print Network (OSTI)

In this work, I present the development of analytical solutions in the Laplace domain for a fully-penetrating, horizontal well producing at a constant flow rate or constant wellbore pressure in the center of a composite, cylindrical reservoir system with an impermeable outer boundary. The composite reservoir consists of two regions. The cylindrical region closest to the wellbore is stimulated, and the permeability within this region follows a power-law function of the radial distance from the wellbore. The unstimulated outer region has homogeneous reservoir properties. The current norm for successful stimulation of low permeability reservoir rocks is multi-stage hydraulic fracturing. The process of hydraulic fracturing creates thin, high permeability fractures that propagate deep into the reservoir, increasing the area of the rock matrix that is exposed to this low-resistance flow pathway. The large surface area of the high conductivity fracture is what makes hydraulic fracturing so successful. Unfortunately, hydraulic fracturing is often encumbered by problems such as high capital costs and a need for large volumes of water. Therefore, I investigate a new stimulation concept based upon the alteration of the permeability of a large volume around the producing well assembly from its original regime to that following a power-law function. I evaluate the effectiveness of the new concept by comparing it to conventional multi-stage hydraulic fracturing. The results of this investigation show that the power-law permeability reservoir (PPR) has a performance advantage over the multi-fractured horizontal treatment (MFH) only when the fracture conductivity and fracture half-length are small. Most importantly, the results demonstrate that the PPR can provide respectable flow rates and recovery factors, thus making it a viable stimulation concept for ultra-low permeability reservoirs, especially under conditions that may not be conducive to a conventional MHF treatment.

Broussard, Ryan Sawyer

2013-05-01T23:59:59.000Z

222

Energy week `96: Conference papers. Book 3: Drilling and production economics  

Science Conference Proceedings (OSTI)

The papers of Section 1, Drilling Technology, relate to advanced materials for downhole tools, underbalanced drilling, horizontal drilling technology/new trajectory control device, horizontal drilling HP/HT well control, advances in drill bits, slim-hole drill bits and tubulars, novel/scientific drilling, and coiled tubing/slim-hole drilling/short radius. The topics of Section 2, Ocean Engineering, include marine pollution and diving equipment. Section 3, Petroleum Production Technology, relate to what`s new in regulations and standards in petroleum production. Papers in Section 4, Offshore and Arctic Operations, cover offshore platforms, floating production systems, offshore pipelines, offshore construction and installation, offshore facilities, and environmental and safety issues. Most papers have been processed separately for inclusion on the data base.

NONE

1996-09-01T23:59:59.000Z

223

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

224

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network (OSTI)

- matically increasing natural-gas extraction. In aquifers overlying the Marcellus and Utica shale formations of drinking water associated with shale- gas extraction. In active gas-extraction areas (one or more gas wells methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry

225

Formation damage in underbalanced drilling operations  

E-Print Network (OSTI)

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation is exposed to a series of fluids and operations that can reduce its productive capacity. Any process that causes a loss in the productivity of an oil-, gas-, or water-saturated formation has a damaging effect on the reservoir. These damage mechanisms predominantly fall into three major classifications: mechanical, chemical, and biological. Underbalanced drilling operations involve drilling a portion of the wellbore at fluid pressures less than that of the target formation. This technology has been used to prevent or minimize problems associated with invasive formation damage, which often greatly reduces the productivity of oil and gas reservoirs, mainly in openhole horizontal-well applications. Underbalanced drilling is not a solution for all formation-damage problems. Damage caused by poorly designed and/or executed underbalanced drilling programs can equal or exceed that which may occur with a well-designed conventional overbalanced drilling program. Four techniques are currently available to achieve underbalanced conditions while drilling. These include using lightweight drilling fluids, injecting gas down the drillpipe, injecting gas into a parasite string, and using foam. This study provides an analysis of a number of potential damage mechanisms present when drilling underbalanced. It describes each one and its influence on the productivity of a well. Additionally it presents a general description of the different techniques that can be applied to carry out successful, cost-effective UBD operations, and discusses how these techniques may be used to reduce or eliminate formation damage.

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

226

Simulation studies of a horizontal well producing from a thin oil-rim reservoir in the SSB1 field, Malaysia  

E-Print Network (OSTI)

Three-dimensional simulation studies have been carried out to investigate the performance of a horizontal well producing from a thin oil-rim reservoir, X3/X4 in the SSBI field, Malaysia. A heterogeneous model was used which honored the reservoir heterogeneity as deduced from logs. Simulation results indicate that gas and water cresting are inevitable even at low oil production rate of 100 STB/D because of the thin oil column of only 45 feet. Continued production under the current gas/oil ratio limit of 1500 SCF/STB results in an oil recovery at 15 years production of 6% OOIP, compared to 7% OOIP if the gas/oil ratio limit is increased to 10,000 SCF/STB, with negligible oil resaturation losses into the gascap. Simulation results indicate that oil recovery from the X3/X4 reservoir would be increased if wells are produced at gas/oil ratios higher than 1500 SCF/STB, and the horizontal wells are completed at, or as near as possible to, the oil-water contact.

Abdul Hakim, Hazlan

1995-01-01T23:59:59.000Z

227

Experimental study of zone isolation in horizontal wells using a new straddle-chemical-wellbore-plug system  

E-Print Network (OSTI)

This research constitutes part of phase II of a joint industry project aimed at investigating the feasibility of sealing off water and gas producing zones in a horizontal well. This research is a follow-up from an earlier joint industry project (phase 1) to study the use of chemical wellbore plugs for zone isolation.' The earlier experiments were conducted using PVC pipes up to 2-in. diameter and 3-ft. length. The encouraging results from these earlier experiments led to testing the method in a full-scale 60-ft. long by 6-in. diameter wellbore model. The new method consists of four sequential stages: (i)Setting a chemical wellbore plug in the horizontal section just upstream of the problem zone. (ii)Setting a second chemical wellbore plug in the horizontal section downstream of the problem zone. (iii)Spotting and squeezing a low viscosity formation gel between the straddle wellbore plug system into the problem zone. (iv)Washing out excess formation gel and wellbore plug to clean the borehole prior to production. The . job would be carried out using coiled tubing and only one round trip would i be necessary. The objective of this research is to investigate the feasibility of the new straddle-chemical-wellbore-plug system using a full-scale horizontal wellbore model subjected to a reservoir temperature of 120 OF. Two chemicals, namely K-MAX and PERMSEAL were used, and in the experimental run, a 40-ft. long chemical wellbore plug (K-MAX) was set, followed by injection of formation gel (PERMSEAL) into a 20-ft. zone. From symmetry, the system represented an actual straddle chemical plug pair, each up to 40-ft. length and a 40-ft. zone into which formation gel is injected. Based on results from the first run, the new straddle-chemical wellbore-plug system appears to be a viable method. The chemical plug sealed the pre-perforated liner/sand-screen annulus completely off, and the formation gel had penetrated the sand, making it very consolidated and impermeable. These initial results indicate great promises for the new straddle-chemical-wellbore-plug system. Further experimental runs are however required to fully test and optimize the new zone isolation technique.

Lilledal, Lars Ove

1998-01-01T23:59:59.000Z

228

Performance analysis of compositional and modified black-oil models for rich gas condensate reservoirs with vertical and horizontal wells  

E-Print Network (OSTI)

It has been known that volatile oil and gas condensate reservoirs cannot be modeled accurately with conventional black-oil models. One variation to the black-oil approach is the modified black-oil (MBO) model that allows the use of a simple, and less expensive computational algorithm than a fully compositional model that can result in significant timesaving in full field studies. The MBO model was tested against the fully compositional model and performances of both models were compared using various production and injection scenarios for a rich gas condensate reservoir. The software used to perform the compositional and MBO runs were Eclipse 300 and Eclipse 100 versions 2002A. The effects of black-oil PVT table generation methods, uniform composition and compositional gradient with depth, initialization methods, location of the completions, production and injection rates, kv/kh ratios on the performance of the MBO model were investigated. Vertical wells and horizontal wells with different drain hole lengths were used. Contrary to the common belief that oil-gas ratio versus depth initialization gives better representation of original fluids in place, initializations with saturation pressure versus depth gave closer original fluids in place considering the true initial fluids in place are given by the fully compositional model initialized with compositional gradient. Compared to the compositional model, results showed that initially there was a discrepancy in saturation pressures with depth in the MBO model whether it was initialized with solution gas-oil ratio (GOR) and oil-gas ratio (OGR) or dew point pressure versus depth tables. In the MBO model this discrepancy resulted in earlier condensation and lower oil production rates than compositional model at the beginning of the simulation. Unrealistic vaporization in the MBO model was encountered in both natural depletion and cycling cases. Oil saturation profiles illustrated the differences in condensate saturation distribution for the near wellbore area and the entire reservoir even though the production performance of the models was in good agreement. The MBO model representation of compositional phenomena for a gas condensate reservoir proved to be successful in the following cases: full pressure maintenance, reduced vertical communication, vertical well with upper completions, and producer set as a horizontal well.

Izgec, Bulent

2003-12-01T23:59:59.000Z

229

Managed Pressure Drilling Candidate Selection  

E-Print Network (OSTI)

Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve several drilling problems, including non-productive time and/or drilling flat time issues. These techniques, now sub-classifications of Managed Pressure Drilling, are referred to as 'Variations' and 'Methods' of Managed Pressure Drilling. Although using Managed Pressure Drilling for drilling wells has several benefits, not all wells that seem a potential candidate for Managed Pressure Drilling, need Managed Pressure Drilling. The drilling industry has numerous simulators and software models to perform drilling hydraulics calculations and simulations. Most of them are designed for conventional well hydraulics, while some can perform Underbalanced Drilling calculations, and a select few can perform Managed Pressure Drilling calculations. Most of the few available Managed Pressure Drilling models are modified Underbalanced Drilling versions that fit Managed Pressure Drilling needs. However, none of them focus on Managed Pressure Drilling and its candidate selection alone. An 'Managed Pressure Drilling Candidate Selection Model and software' that can act as a preliminary screen to determine the utility of Managed Pressure Drilling for potential candidate wells are developed as a part of this research dissertation. The model and a flow diagram identify the key steps in candidate selection. The software performs the basic hydraulic calculations and provides useful results in the form of tables, plots and graphs that would help in making better engineering decisions. An additional Managed Pressure Drilling worldwide wells database with basic information on a few Managed Pressure Drilling projects has also been compiled that can act as a basic guide on the Managed Pressure Drilling variation and project frequencies and aid in Managed Pressure Drilling candidate selection.

Nauduri, Anantha S.

2009-05-01T23:59:59.000Z

230

Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)  

DOE Green Energy (OSTI)

The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

None

1981-09-01T23:59:59.000Z

231

Study of Flow Regimes in Multiply-Fractured Horizontal Wells in Tight Gas and Shale Gas Reservoir Systems  

E-Print Network (OSTI)

Various analytical, semi-analytical, and empirical models have been proposed to characterize rate and pressure behavior as a function of time in tight/shale gas systems featuring a horizontal well with multiple hydraulic fractures. Despite a small number of analytical models and published numerical studies there is currently little consensus regarding the large-scale flow behavior over time in such systems. The purpose of this work is to construct a fit-for-purpose numerical simulator which will account for a variety of production features pertinent to these systems, and to use this model to study the effects of various parameters on flow behavior. Specific features examined in this work include hydraulically fractured horizontal wells, multiple porosity and permeability fields, desorption, and micro-scale flow effects. The theoretical basis of the model is described in Chapter I, along with a validation of the model. We employ the numerical simulator to examine various tight gas and shale gas systems and to illustrate and define the various flow regimes which progressively occur over time. We visualize the flow regimes using both specialized plots of rate and pressure functions, as well as high-resolution maps of pressure distributions. The results of this study are described in Chapter II. We use pressure maps to illustrate the initial linear flow into the hydraulic fractures in a tight gas system, transitioning to compound formation linear flow, and then into elliptical flow. We show that flow behavior is dominated by the fracture configuration due to the extremely low permeability of shale. We also explore the possible effect of microscale flow effects on gas effective permeability and subsequent gas species fractionation. We examine the interaction of sorptive diffusion and Knudsen diffusion. We show that microscale porous media can result in a compositional shift in produced gas concentration without the presence of adsorbed gas. The development and implementation of the micro-flow model is documented in Chapter III. This work expands our understanding of flow behavior in tight gas and shale gas systems, where such an understanding may ultimately be used to estimate reservoir properties and reserves in these types of reservoirs.

Freeman, Craig M.

2010-05-01T23:59:59.000Z

232

PAO lubricant inhibits bit balling, speeds drilling  

Science Conference Proceedings (OSTI)

For drilling operations, a new polyalphaolefin (PAO) lubricant improves penetration rates by reducing bit balling tendencies in water-based mud. The additive also reduces drillstring drag. This enables the effective transmission of weight to the bit and thereby increases drilling efficiency in such applications as directional and horizontal drilling. The paper describes drilling advances, bit balling, laboratory testing, and test analysis.

Mensa-Wilmot, G. [GeoDiamond, Houston, TX (United States); Garrett, R.L. [Garrett Fluid Technology, The Woodlands, TX (United States); Stokes, R.S. [Coastal Superior Solutions Inc., Lafayette, LA (United States)

1997-04-21T23:59:59.000Z

233

Geopressured-geothermal drilling and testing plan. General Crude Oil--Dept. of Energy Pleasant Bayou No. 1 well, Brazoria County, Texas  

DOE Green Energy (OSTI)

As a result of geopressured resource assessment studies in the Gulf Coast region, the Brazoria fairway, located in Brazoria County, Texas was determined to be an optimum area for additional studies. A plan is presented for drilling, completion, and testing of one geopressured-geothermal well and two disposal wells in Brazoria County, Texas. The objectives of the well drilling and testing program are to determine the following parameters: reservoir permeability, porosity, thickness, rock material properties, depth, temperature, and pressure; reservoir fluid content, specific gravity, resistivity, viscosity, and hydrocarbons in solution; reservoir fluid production rates, pressure, temperature, production decline, and pressure decline; geopressured well and surface equipment design requirements for high-volume production and possible sand production; specific equipment design for surface operations, hydrocarbons distribution, and effluent disposal; and possibilities of reservoir compaction and/or surface subsidence. (JGB)

Not Available

1978-05-01T23:59:59.000Z

234

Navigation drilling technology progresses  

SciTech Connect

This article reports that navigation drilling - an approach that combines advanced drill bit, downhole motor, measurement-while-drilling, and well planning technology into an integrated, steerable drilling system - has reduced drilling time for operating companies worldwide. A major operating advantage of navigation drilling is the ability to drill both straight and directional intervals with a single assembly. In conventional directional drilling, a bent sub and downhole motor (or a bent housing motor) are used to initiate kick-offs and make course corrections. The bent sub is made-up above the motor, tilting the motor's axis 1 to 3 degrees compared to the axis of the drill string. The assembly toolface can be aligned in the desired direction with a single-shot, a steering tool or an MWD system.

Bayne, R.

1986-11-01T23:59:59.000Z

235

Pioneering work, economic factors provide insights into Russian drilling technology  

Science Conference Proceedings (OSTI)

In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

Gaddy, D.E.

1998-07-06T23:59:59.000Z

236

Geothermal test-well drilling program for the Village of Jemez Springs, New Mexico. Final technical report, January 1, 1979-June 30, 1981  

DOE Green Energy (OSTI)

The geothermal resources located during test drilling at Jemez Springs, New Mexico are described and the feasibility of utilizing this low-temperature resource for a space heating demonstration project at the Town Hall and Fire Department Building is discussed. A test well was drilled to a depth of 824 feet that penetrated water-producing zones at 80 feet with a water temperature of approximately 150 to 155/sup 0/F and at 500 feet with waters of approximately 120 to 125/sup 0/F. After a number of repairs to the Jemez Springs Well Number 1, the project was ended having completed a well capable of producing a flow of approximately 20 gpm at 150 to 155/sup 0/F. A follow-up demonstration heating project is planned.

Armenta, E.; Icerman, L.; Starkey, A.H.

1981-09-01T23:59:59.000Z

237

Shale gas in the southern central area of New York State. Volume III. Experience of drilling five shale-gas wells in New York State  

SciTech Connect

Five shale-gas wells have been located and drilled in the South-Central areas of New York State as part of this program. The program was undertaken by Arlington Exploration Company (AEC) during 1981 and 1982. The wells were drilled on educational properties in an attempt to demonstrate the economic prospect of natural gas for institutional and small commercial consumers to develop their own source of energy. All five wells were completed in the Marcellus section of the Devonian shale. Each of the five wells was connected to an appropriate heat load for the purpose of production testing. The project supports the theory that a well drilled anywhere in South-Central New York and completed in the Marcellus Shale using modern fracturing techniques (i.e. nitrogen foam) is likely to produce some gas. Important factors not yet predictable are the decline rate of Marcellus production and the volume of recoverable reserves. Depths to the Marcellus Shale generally increase from north (i.e. Houghton College) to south (i.e. Portville Central School).

Not Available

1983-03-01T23:59:59.000Z

238

Underbalanced drilling: Praises and perils  

Science Conference Proceedings (OSTI)

Underbalanced drilling (UBD) has been used with increasing frequency to minimize problems associated with invasive formation damage, which often greatly reduce the productivity of oil and gas reservoirs, particularly in openhole horizontal well applications. UBD, when properly designed and executed, minimizes or eliminates problems associated with the invasion of particulate matter into the formation as well as a multitude of other problems such as adverse clay reactions, phase trapping, precipitation, and emulsification, which can be caused by the invasion of incompatible mud filtrates in an overbalanced condition. In many UBD operations, additional benefits are seen because of a reduction in drilling time, greater rates of penetration, increased bit life, a rapid indication of productive reservoir zones, and the potential for dynamic flow testing while drilling. Potential downsides and damage mechanisms associated with UBD will be discussed. These include the following: (1) Increased cost and safety concerns; (2) Difficulty in maintaining a continuously underbalanced condition; (3) Spontaneous inhibition and countercurrent inhibition effects; (4) Glazing, mashing, and mechanically induced wellbore damage; (5) Macroporosity gravity-induced invasion; (6) Difficulty of application in zones of extreme pressure and permeability; and (7) Political/career risk associated with championing a new and potentially risky technology. The authors discuss reservoir parameters required to design an effective underbalanced or overbalanced drilling program, laboratory screening procedures to ascertain the effectiveness of UBD in a specific application and review the types of reservoirs that often present good applications for UBD technology.

Bennion, D.B.; Thomas, F.B.; Bietz, R.F.; Bennion, D.W. [Hycal Energy Research Labs., Ltd., Calgary, Alberta (Canada)

1998-12-01T23:59:59.000Z

239

Technology summary of the in situ bioremediation demonstration (methane biostimulation) via horizontal wells at the Savannah River Site Integrated Demonstration Project  

Science Conference Proceedings (OSTI)

The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.

Hazen, T.C.; Looney, B.B.; Fliermans, C.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Lombard, K.H. [Bechtel Savannah River, Inc., Aiken, SC (United States); Enzien, M.V. [Argonne National Lab., IL (United States); Dougherty, J.M. [US Environmental Protection Agency, Irving, TX (United States); Wear, J. [Catawba State Coll., Salisbury, NC (United States)

1994-06-01T23:59:59.000Z

240

Rotating preventers; Technology for better well control  

Science Conference Proceedings (OSTI)

This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs.

Tangedahl, M.J.; Stone, C.R. (Signa Engineering Corp. (United States))

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual report, January 1, 1997--December 31, 1997  

Science Conference Proceedings (OSTI)

This annual report describes the progress during the fifth year of the project on ``Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance``. This project is funded under the Department of Energy`s Class 1 program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially dominated deltaic geological environments. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data the authors integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, they intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The production from the Self Unit (location of Stage 1) has sustained an increase of 30 bbls/day over more than two years. The authors have collected available core, log and production data from Section 16 in the Berryhill Glenn Unit and have finished the geological description. Based on the geological description and the associated petrophysical properties, they have identified the areas for the most potential. These areas include Tracts 7 and 9. By conducting a detailed flow simulation on both these tracts, and evaluating the economic performance of various alternatives, they have made recommendations for both these tracts. At present, the authors are in the process of implementing the proposed reservoir management strategy in Tract 9.

Kelkar, M.; Kerr, D.

1998-05-01T23:59:59.000Z

242

The Effect of Well Trajectory on Production Performance of Tight Gas Wells  

E-Print Network (OSTI)

Horizontal wells are a very important element in oil and gas industry due to their distinguished advantages. Horizontal wells are not technically horizontal. This is because of the structural nature of reservoir formations and drilling procedures. In response to the reservoir rock’s strength, the horizontal well deviates upward and downward while being drilled forming an undulating path instead of a horizontal. In this study, horizontal wells with an undulating trajectory within a gas reservoir have been studied. The aim of this research is to investigate the effect of the trajectory angle on pressure drop in horizontal wells. In addition, the contribution of water flow to pressure drop is a part of this research. Generally, water comes from different sources like an aquifer or a water flood job. In low permeability horizontal wells, hydraulic fracturing introduces water to gas wells. Water distribution is an important issue in gas wells production. In order to achieve the goal of this study, a model has been developed to simulate different situations for a horizontal well with an undulating trajectory in gas reservoirs. This study is a step forward to understand well performance in low permeability gas reservoirs.

Aldousari, Mohammad

2011-12-01T23:59:59.000Z

243

Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well  

DOE Green Energy (OSTI)

The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

Rodgers, R.W. (ed.)

1982-06-01T23:59:59.000Z

244

Challenges of deep drilling  

SciTech Connect

Deep drilling poses major problems when high temperatures, high pressures, and acid gases are encountered. A combination of these items usually requires extensive planning, exotic materials, long drilling times, and heavy expenditures. Only 2 wells have been drilled below 30,000 ft in the US, the deeper a 31,441-ft hole in 1974. The deepest well in the world is reported to be in the Soviet Union, recently drilled below 34,895 ft, with a target depth of 15,000 m (49,212 ft). A review of current deep drilling technology and its capabilities is given.

Chadwick, C.E.

1981-07-01T23:59:59.000Z

245

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

246

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

247

Turnkey drilling  

SciTech Connect

The recent surge in the popularity of turnkey drilling has produced a number of questions about turnkey operations from both operators and contractors. The International Association of Drilling Contractors (IADC) has no approved turnkey contract (although several of the member districts have printed one), leaving the parties participating in a turnkey well unsure of their responsibilities and obligations. Additionally, operators are finding liens filed against turnkey wells they thought were paid for. The term turnkey itself is often misunderstood and applied to a variety of guaranteed well commitments. Some turnkeys require the contractor to provide everything from location preparation to final production pipe or plugs. Others allow contingencies for stuck pipe, lost circulation, kicks and bad storms.

Pierce, D.

1986-11-01T23:59:59.000Z

248

Development and testing of underbalanced drilling products. Topical report, September 1994--September 1995  

Science Conference Proceedings (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses the development and testing of two products designed to advance the application of underbalanced drilling techniques. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment. The program predicts pressure and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test well measurements, and field data. This model does not handle air or mist drilling where the foam quality is above 0.97. An incompressible drilling fluid was developed that utilizes lightweight solid additives (hollow glass spheres) to reduce the density of the mud to less than that of water. This fluid is designed for underbalanced drilling situations where compressible lightweight fluids are inadequate. In addition to development of these new products, an analysis was performed to determine the market potential of lightweight fluids, and a forecast of underbalanced drilling in the USA over the next decade was developed. This analysis indicated that up to 12,000 wells per year (i.e., 30 percent of all wells) will be drilled underbalanced in the USA within the next ten years.

Medley, G.H., Jr; Maurer, W.C.; Liu, G.; Garkasi, A.Y.

1995-09-01T23:59:59.000Z

249

HydroPulse Drilling  

Science Conference Proceedings (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

250

NETL: News Release - Carbon Fiber Drill Pipe Performs Flawlessly in First  

NLE Websites -- All DOE Office Websites (Extended Search)

January 9, 2003 January 9, 2003 Carbon Fiber Drill Pipe Performs Flawlessly in First Field Test Private Company to Use DOE-Sponsored Technology To Help Restore Domestic Production from Older Oil Wells TULSA COUNTY, OK - A new lightweight, flexible drill pipe engineered from space-age composites rather than steel has passed an important field test in a U.S. Department of Energy project and is now being readied for its first commercial use. - Photo - Composite Drill Pipe Being Bent - The advanced composite drill pipe could enable drillers in the future to bore sharply-curved "short radius" horizontal wells without creating fatigue stress on the drill pipe. The Energy Department's National Energy Technology Laboratory announced that the drill pipe, made from carbon fiber resins by Advanced Composite

251

300-Area VOC Program Slug Test Characterization Results for Selected Test/Depth Intervals Conducted During the Drilling of Well 399-3-21  

SciTech Connect

This report presents brief test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within well 399-3-21 as part of the 300-Area volatile organic compound characterization program. The test intervals were characterized as the borehole was advanced to its final drill depth (45.7 m) and before its completion as a monitor-well facility. The primary objective of the slug tests was to provide information pertaining to the vertical distribution of hydraulic conductivity with depth at this location and to select the final screen-depth interval for the monitor well. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor-well strategies within this area.

Spane, Frank A.

2007-07-19T23:59:59.000Z

252

Shale gas in the southern central area of New York State: Part II. Experience of locating and drilling four shale-gas wells in New York State  

Science Conference Proceedings (OSTI)

Four shale-gas wells have been located and drilled in the south-central area of New York State as part of this project. The four wells that were drilled are: the Rathbone well, in Steuben County, was located on the north side of a graben, in an old shale-gas field; it penetrated the Rhinestreet, Geneseo and Marcellus shales. Artificial stimulation was performed in the Rhinestreet, without marked success, and in the Marcellus; the latter formation has a calculated open flow of 110 Mcf/day and appears capable of initial production of 100 Mcf/day against a back-pressure of 500 psi. The Dansville well, in Livingston County, tested the Geneseo and Marcellus shales at shallower depth. Artificial stimulation was performed in the Marcellus. The calculated open flow is 95 Mcf/day, and the well appears capable of initial production of 70 Mcf/day against a back-pressure of 300 psi. The Erwin and N. Corning wells, both near Corning in Steuben County, were designed to test the possibility of collecting gas from a fractured conduit layer connecting to other fracture systems in the Rhinestreet shale. The N. Corning well failed; the expected conduit was found to be only slightly fractured. The Erwin well encountered a good initial show of gas at the conduit, but the gas flow was not maintained; even after artificial stimulation the production is only 10 Mcf/day. The present conclusion is that the most likely source of shale gas in south-central New York is the Marcellus shale formation. Important factors not yet established are the decline rate of Marcellus production and the potential of the Geneseo after stimulation.

Not Available

1981-04-01T23:59:59.000Z

253

Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II  

Science Conference Proceedings (OSTI)

The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

2002-11-18T23:59:59.000Z

254

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

255

Drilling in the Rockies  

Science Conference Proceedings (OSTI)

Despite rugged drilling conditions and high drilling costs, rig employment and drilling operations in the Rocky Mountain region of the Overthrust Belt have increased significantly since 1979. Rate of rig employment, well depths, and number of operating companies and contractors in the area are reported. By October 1980, more than 500 active rigs were working in the region, 30% more than were working during the entirety of 1979. (3 photos)

Peacock, D.

1980-12-01T23:59:59.000Z

256

Properly designed underbalanced drilling fluids can limit formation damage  

Science Conference Proceedings (OSTI)

Drilling fluids for underbalanced operations require careful design and testing to ensure they do not damage sensitive formations. In addition to hole cleaning and lubrication functions, these fluids may be needed as kill fluids during emergencies. PanCanadian Petroleum Ltd. used a systematic approach in developing and field testing a nondamaging drilling fluid. It was for use in underbalanced operations in the Glauconitic sandstone in the Westerose gas field in Alberta. A lab study was initiated to develop and test a non-damaging water-based drilling fluid for the horizontal well pilot project. The need to develop an inexpensive, nondamaging drilling fluid was previously identified during underbalanced drilling operations in the Weyburn field in southeastern Saskatchewan. A non-damaging fluid is required for hole cleaning, for lubrication of the mud motor, and for use as a kill fluid during emergencies. In addition, a nondamaging fluid is required when drilling with a conventional rig because pressure surges during connections and trips may result in the well being exposed to short periods of near balanced or overbalanced conditions. Without the protection of a filter cake, the drilling fluid will leak off into the formation, causing damage. The amount of damage is related to the rate of leak off and depth of invasion, which are directly proportional to the permeability to the fluid.

Churcher, P.L.; Yurkiw, F.J. [PanCanadian Petroleum Ltd., Calgary, Alberta (Canada); Bietz, R.F.; Bennion, D.B. [Hycal Energy Research Ltd., Calgary, Alberta (Canada)

1996-04-29T23:59:59.000Z

257

The Method of Distributed Volumetric Sources for Forecasting the Transient and Pseudo-steady State Productivity of Multiple Transverse Fractures Intersected by a Horizontal Well  

E-Print Network (OSTI)

This work of well performance modeling is focused on solving problems of transient and pseudo-steady state fluid flow in a rectilinear closed boundaries reservoir. This model has been applied to predict and to optimize gas production from a horizontal well intercepted by multiple transverse fractures in a bounded reservoir, and it also provides well-testing solutions. The well performance model is designed to provide enhanced efficiency with the same reliability for pressure transient analysis, and well performance prediction, especially in complex well fracture configuration. The principle is to simplify the calculation of the pressure response to an instantaneous withdraw, which happens in other fractures, within a shorter computational time. This pressure response is substituted with the interaction between the two whole fractures. This method is validated through comparison to results of rigorous Distributed Volumetric Sources (DVS) method in simple symmetric fracture configuration, and to results of field production data for complex well/fracture configuration of a tight gas reservoir. The results show a good agreement in both ways. This model indicates the capability to handle the situations, such as: various well drainages, asymmetry of the fracture wings, and curved horizontal well. The advantage of this well performance model is to provide faster processing - reducing the computational time as the number of fractures increase. Also, this approach is able to be applied as an optimization and screening tool to obtain the best fracture configurations for reservoir development of economically marginal fields, in terms of the number and dimensions of fractures per well, also with external economic and operational constraints.

Fan, Diangeng

2010-12-01T23:59:59.000Z

258

Microhole Drilling Tractor Technology Development  

SciTech Connect

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

259

Advanced drilling systems study  

DOE Green Energy (OSTI)

This work was initiated as part of the National Advanced Drilling and Excavation Technologies (NADET) Program. It is being performed through joint finding from the Department of Energy Geothermal Division and the Natural Gas Technology Branch, Morgantown Energy Technology Center. Interest in advanced drilling systems is high. The Geothermal Division of the Department of Energy has initiated a multi-year effort in the development of advanced drilling systems; the National Research Council completed a study of drilling and excavation technologies last year; and the MIT Energy Laboratory recently submitted a proposal for a national initiative in advanced drilling and excavation research. The primary reasons for this interest are financial. Worldwide expenditures on oil and gas drilling approach $75 billion per year. Also, drilling and well completion account for 25% to 50% of the cost of producing electricity from geothermal energy. There is incentive to search for methods to reduce the cost of drilling. Work on ideas to improve or replace rotary drilling technology dates back at least to the 1930`s. There was a significant amount of work in this area in the 1960`s and 1970`s; and there has been some continued effort through the 1980`s. Undoubtedly there are concepts for advanced drilling systems that have yet to be studied; however, it is almost certain that new efforts to initiate work on advanced drilling systems will build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems provide the basis for the current study of advanced drilling.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-03-01T23:59:59.000Z

260

Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana  

DOE Green Energy (OSTI)

The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

Not Available

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Drill report  

SciTech Connect

North Slope drilling activity is described. As of November 14, 1984, four rigs were actively drilling in the Kuparuk River field with another two doing workovers. Only one rig was drilling in the Prudhoe Bay field, with another doing workovers and one on standby.

Not Available

1984-12-01T23:59:59.000Z

262

Chemical damage due to drilling operations  

DOE Green Energy (OSTI)

The drilling of geothermal wells can result in near wellbore damage of both the injection wells and production wells if proper precautions are not taken. Very little specific information on the chemical causes for drilling damage that can directly be applied to the drilling of a geothermal well in a given situation is available in the literature. As part of the present work, the sparse literature references related to the chemical aspects of drilling damage are reviewed. The various sources of chemically induced drilling damages that are related to drilling operations are summarized. Various means of minimizing these chemical damages during and after the drilling of a geothermal well are suggested also.

Vetter, O.J.; Kandarpa, V.

1982-07-14T23:59:59.000Z

263

Computers aid drilling planning  

Science Conference Proceedings (OSTI)

This article reports that computers are rapidly becoming an indispensable tool for the drilling engineer both in town and at the wellsite. Two factors have contributed to the sudden increase in their use. The first is the need to cut drilling costs. Engineers have been forced to take a more critical look at plans and past experience. The second is the falling price (and increased portability) of hardware and software. Several major operators have demonstrated that careful planning of drilling operations based on local knowledge and data from offset wells can reduce the drilling learning curve substantially. Computers make it possible to retrieve and process offset well data rapidly and efficiently. They also offer powerful mathematical models which describe complicated aspects of drilling.

Burgess, T.

1986-11-01T23:59:59.000Z

264

Advanced drilling systems  

DOE Green Energy (OSTI)

Drilling is ubiquitous in oil, gas, geothermal, minerals, water well, and mining industries. Drilling and well completion account for 25% to 50% of the cost of producing power from geothermal energy. Reduced drilling costs will reduce the cost of electricity produced from geothermal resources. Undoubtedly, there are concepts for advanced drilling systems that have yet to be studied. However, the breadth and depth of previous efforts in this area almost guarantee that any new efforts will at least initially build on an idea or a variation of an idea that has already been investigated. Therefore, a review of previous efforts, coupled with a characterization of viable advanced drilling systems and the current state of technology as it applies to those systems, provide the basis for this study.

Pierce, K.G.; Finger, J.T. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, San Diego, CA (United States)

1995-12-31T23:59:59.000Z

265

Recovery of bypassed oil in the Dundee formation using horizontal drains  

Science Conference Proceedings (OSTI)

The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. `The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. Additional project work comprises characterization of 30 Dundee fields in Michigan to aid in determining appropriate candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. Technical progress is presented for the following tasks: project management; reservoir characterization; data measurement and analysis; database management; geochemical and basin modeling; and technology transfer.

Wood, J.R.

1996-04-30T23:59:59.000Z

266

Advanced Mud System for Microhole Coiled Tubing Drilling  

Science Conference Proceedings (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

267

Advanced drilling systems study.  

Science Conference Proceedings (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

268

Managed pressure drilling techniques and tools  

E-Print Network (OSTI)

The economics of drilling offshore wells is important as we drill more wells in deeper water. Drilling-related problems, including stuck pipe, lost circulation, and excessive mud cost, show the need for better drilling technology. If we can solve these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures in the wellbore to prevent these drillingrelated problems. This paper traces the history of MPD, showing how different techniques can reduce drilling problems. MPD improves the economics of drilling wells by reducing drilling problems. Further economic studies are necessary to determine exactly how much cost savings MPD can provide in certain situation. Furter research is also necessary on the various MPD techniques to increase their effectiveness.

Martin, Matthew Daniel

2003-05-01T23:59:59.000Z

269

INVITATIONAL WELL-TESTING SYMPOSIUM PROCEEDINGS  

E-Print Network (OSTI)

to the well bore by drilling fluid, or by turbulent flowdrilled into. Although the drilling fluid normally providesthe hole filled with drilling fluid of appropriate density

Authors, Various

2011-01-01T23:59:59.000Z

270

What's new in well control  

Science Conference Proceedings (OSTI)

Drillers know that the most important tools used in well control are preparation and knowledge. That fact is reinforced by government agency requirements for certification of responsible people on the rig, particularly in sensitive public areas like offshore waters. And existing problems like shallow gas blowouts and kick control in conventional wells have been complicated by industry's move to horizontal wells and underbalanced drilling. The International Association of Drilling Contractors (IADC) in the US and Europe is devoting a major effort to well control technology. It sponsored a comprehensive conference in Houston in November 1993, plus a well control trainer's Roundtable meeting in Houston in March. The IADC Well Control Conference for Europe is scheduled for June 8--10, 1994, in Stavanger, Norway, with an important 22-paper program. In this article, World Oil has selected several presentations from the two US IADC conferences noted above. These selections are noted by the authors as being of wide and current interest to the industry, they include: (1) horizontal well considerations, (2) a proposed new well killing method, (3) underbalanced drilling, (4) a new onsite simulator, and (5) IADC's school accreditation program. Summaries shown here cover only major topics. Original papers should be consulted for important details.

Snyder, R.E.

1994-06-01T23:59:59.000Z

271

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, July 1, 1996--September 30, 1996  

Science Conference Proceedings (OSTI)

The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 Trillion barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.

Wood, J.R.

1996-10-31T23:59:59.000Z

272

Geothermal drill pipe corrosion test plan  

DOE Green Energy (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

273

Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W10-33 and 299-W11-48  

SciTech Connect

Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).

Newcomer, Darrell R.

2007-09-30T23:59:59.000Z

274

Selection of drilling fluids for minimizing coalbed damage. Final report, December 1981-February 1983. [Effect on permeability of coal bed near the well  

Science Conference Proceedings (OSTI)

The following conclusions have been drawn from work performed in this project: (1) both of the fluids tested (a KC1/CaCl2 brine and drilling mud filtrate) caused a loss in permeability when flowed through coal; (2) the damage mechanism for brine is undetermined, but the major part of the damage from mud filtrate appears to be related to particulate matter plugging flow channels; (3) a decrease in net confining pressure, caused by drilling overbalanced, can increase the risk of formation damage; and (4) an increase in net confining pressure, caused by drilling underbalanced, can also lead to permeability losses. The three potential formation damage mechanisms have been particulate plugging, clay swelling and/or migration, and relative permeability effects. Laboratory investigations have added a fourth - pressure effects.

Rose, R.E.; Foh, S.E.; Hayden, C.G.; Randolph, P.L.

1983-11-01T23:59:59.000Z

275

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, January 1--March 31, 1996  

SciTech Connect

A site for horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan. Additional project work comprises characterization of 30 other Dundee fields in Michigan to aid in determining appropriate candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling.

Wood, J.R.

1996-04-30T23:59:59.000Z

276

Continental drilling  

DOE Green Energy (OSTI)

The Workshop on Continental Drilling was convened to prepare a report for submission to the US Geodynamics Committee with respect to the contribution that could be made by land drilling to resolve major problems of geodynamics and consider the mechanisms by which the responsibility for scientific planning, establishment of priorities, administration, and budgeting for a land-drilling program within the framework of the aims of the Geodynamics Project would best be established. A new and extensive program to study the continental crust is outlined in this report. The Workshop focused on the following topics: processes in the continental crust (mechanism of faulting and earthquakes, hydrothermal systems and active magma chambers); state and structure of the continental crust (heat flow and thermal structure of the crust; state of ambient stress in the North American plate; extent, regional structure, and evolution of crystalline continental crust); short hole investigations; present state and needs of drilling technology; drill hole experimentation and instrumentation; suggestions for organization and operation of drilling project; and suggested level of effort and funding. Four recommendations are set down. 8 figures, 5 tables. (RWR)

Shoemaker, E.M. (ed.)

1975-01-01T23:59:59.000Z

277

Newberry Exploratory Slimhole: Drilling And Testing  

E-Print Network (OSTI)

During July-November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5360' exploratory slimhole (3.895" diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia's program to evaluate slimholes as a geothermal exploration tool. During and after drilling we performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well's data set includes: over 4000' of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for ...

John Finger Ronald; Ronald D. Jacobson; Charles E. Hickox

1997-01-01T23:59:59.000Z

278

Drilling and general petroleum engineering  

Science Conference Proceedings (OSTI)

Forty-nine papers are included in the Drilling and General Petroleum Engineering Volume of the SPE Annual Conference and Exhibition proceedings. The conference was held in New Orleans, Louisiana, September 25-28, 1994. The papers cover such topics as: extended reach well drilling, development of marginal satellite fields, slim hole drilling, pressure loss predictions, models for cuttings transport, ester-based drilling fluid systems, borehole stability, cementing, operations, bit failures, roller core bits, well tracking techniques, nitrogen drilling systems, plug failures, drill bit and drillstring dynamics, slim hole vibrations, reserve estimates, enhanced recovery methods, waste disposal, and engineering salary trends. A separate abstract and indexing was prepared for each paper for inclusion in the Energy Science and Technology Database.

Not Available

1994-01-01T23:59:59.000Z

279

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The small business has...

280

An integrated approach to characterize reservoir connectivity to improve waterflood infill drilling recovery  

E-Print Network (OSTI)

Infill drilling can significantly improve reservoir interwell connectivity in heterogeneous reservoirs, thereby enhances the waterflood recovery. This study defines and investigates the Hydraulic Interwell Connectivity (HIC) concept to characterize and estimate the reservoir connectivity, quantitatively. This approach is an integrated study of reservoir characterization, geostatistics, production performance and reservoir engineering. In this study HIC is quantitatively defined as the ratio of observed fluid flow rate to a maximum possible (ideal) flow rate between any combination of any two wells in the producing unit. The spatial distribution of HIC can be determined for different layers or total net pay of the reservoir. Geostatistics is used to evaluate the horizontal and vertical variation of HIC in the reservoir. The spatial variation of HIC can be used to describe the degree of communication between injectors and producers. This spatial distribution of HIC can also serve as a guide for selecting infill well locations. A West Texas producing unit, JL Johnson "AB", with average reservoir permeability of 0.90 md, is used as an example to illustrate the application of this approach. The waterflood infill drilling recovery is improved by incorporating the HIC in simulation study. It is a practical approach which facilitates and eases the implementation of targeted infill drilling. This approach makes targeted infill drilling more economical over pattern infill drilling by eliminating the drilling of poor injectors and producers. It is found to be a useful concept and procedure to design, implement and optimize infill drilling programs.

Malik, Zaheer Ahmad

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual progress report, January 1, 1996--December 31, 1996  

SciTech Connect

This annual report describes the progress during the fourth year of the project on {open_quotes}Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance{close_quotes}. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data we integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, we intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The production from the Self Unit (location of Stage 1) has sustained an increase of 30 bbls/day over a year with an additional increase anticipated with further implementation. We have collected available core, log and production data from Section 16 in the Berryhill Glenn Unit and have finished the geological description. Based on the geological description and the associated petrophysical properties, we have developed a new indexing procedure for identifying the areas with the most potential. We are also investigating an adjoining tract formerly operated by Chevron where successful miceller-polymer flood was conducted. This will help us in evaluating the reasons for the success of the flood. Armed with this information, we will conduct a detailed geostatistical and flow simulation study and recommend the best reservoir management plan to improve the recovery of the field.

Kelkar, M.; Liner, C.; Kerr, D.

1997-01-01T23:59:59.000Z

282

High speed drilling research advances  

Science Conference Proceedings (OSTI)

This article reports that the Amoco Production Company's Tulsa Research Center is developing a High Speed Drilling System (HSDS) to improve drilling economics for both exploration and development wells. The system is targeted for areas where historically the drilling rate is less than 25 ft/hr over a large section of hole. Designed as a five-year development program, work began on the system in late 1984. A major service company is participating in the project. The objective of the HSDS project is to improve drilling efficiency by developing improvements in the basic mechanical drilling system. The HSDS approach to improved drilling economics is via the traditional routes of increasing penetration rate (ROP) and bit life, increasing hole stability and reducing trouble time.

Warren, T.M.; Canson, B.E.

1987-03-01T23:59:59.000Z

283

Drilling technology/GDO  

DOE Green Energy (OSTI)

The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

Kelsey, J.R.

1985-01-01T23:59:59.000Z

284

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, 4th quarter, FY 1994  

SciTech Connect

Well data, including drillers` logs, wireline logs, and seismic data, from the Crystal and other Dundee hydrocarbon fields in the Michigan basin, have been acquired. Digitized logs of 342 wells that currently produce or have produced from the Dundee Formation in the seven-county study area have been purchased from Maness Petroleum Company. Multiple logs exist for each well, and include gamma ray, caliper, lithodensity, neutron porosity, various types of resistivity, and some sonic logs. Twenty to thirty cores of the Dundee Formation from throughout the state of Michigan are currently available. Cuttings samples are also available from 60 to 100 Michigan wells. The storage locations of many of these core and cuttings samples have been identified, but sampling has not yet begun. A well has been designed and permitted and will soon be drilled. This well will have both a horizontal and a vertical leg. The vertical leg well will be cored through the producing interval of the Dundee Formation and the cores will be analyzed for porosity, permeability, and fluid saturations. A full set of well logs will be run, including gamma ray, porosity, resistivity, and geochemistry logs. This data will be incorporated into the existing database for the project area and used to calibrate the MWD (Measurement While Drilling) logs which will be run during the drilling of the horizontal leg. The horizontal leg will be drilled as a sidetrack from the vertical test well. If commercial amounts of hydrocarbons are encountered, the horizontal well will be placed on production. Drilling is expected to commence in late 1994 or early 1995, after completion of an environmental survey.

Wood, J.R.

1994-10-01T23:59:59.000Z

285

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, October 1 - December 31, 1996  

Science Conference Proceedings (OSTI)

The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was successful. It has produced over 37,000 bbls of oil as of December 31, 1996 at sustained rate of {approximately}100 bbls/day. At a nominal wellhead price of $20/bbl, this well has made about $750,000 and is still going strong. Two additional horizontal wells have just been completed and are on test. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.

Wood, J.R.

1997-01-01T23:59:59.000Z

286

Underbalanced drilling in remedial operations  

Science Conference Proceedings (OSTI)

Operators are finding additional applications for underbalanced drilling (UBD) technology that deliver benefits besides faster, more trouble-free drilling and improved well productivity. Underbalanced workovers, completions and re-drills are being performed with impressive results. This article will describe some of the jobs and applications, and detail the special surface equipment being used to make this a success. This is the fifth in a series of articles on UBD technology and its rapid development in this field. The paper discusses deep gas wells in the Texas Panhandle, gas and condensate wells near Mobile, Alabama, and the Austin Chalk wells in Texas and Louisiana.

Cuthbertson, R.L.; Vozniak, J.

1997-06-01T23:59:59.000Z

287

Near-Term Developments in Geothermal Drilling  

DOE Green Energy (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

288

Critique of Drilling Research  

SciTech Connect

For a number of years the Department of Energy has been funding research to reduce the cost of drilling geothermal wells. Generally that research has been effective and helped to make geothermal energy economically attractive to developers. With the increased competition for the electrical market, geothermal energy needs every advantage it can acquire to allow it to continue as a viable force in the marketplace. In drilling related research, there is essentially continuous dialogue between industry and the national laboratories. Therefore, the projects presented in the Program Review are focused on subjects that were previously recommended or approved by industry.

Hamblin, Jerry

1992-03-24T23:59:59.000Z

289

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

290

Drilling optimization using drilling simulator software  

E-Print Network (OSTI)

Drilling operations management will face hurdles to reduce costs and increase performance, and to do this with less experience and organizational drilling capacity. A technology called Drilling Simulators Software has shown an extraordinary potential to improve the drilling performance and reduce risk and cost. Different approaches have been made to develop drilling-simulator software. The Virtual Experience Simulator, geological drilling logs, and reconstructed lithology are some of the most successful. The drilling simulations can run multiple scenarios quickly and then update plans with new data to improve the results. Its storage capacity for retaining field drilling experience and knowledge add value to the program. This research shows the results of using drilling simulator software called Drilling Optimization Simulator (DROPS®) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted restructures, large dips, and hard and abrasive rocks. The drilling performance in this section has a strong impact in the profitability of the field. A number of simulations using geological drilling logs and the concept of the learning curve defined the optimum drilling parameters for the block. The result shows that DROPS® has the capability to simulate the drilling performance of the area with reasonable accuracy. Thus, it is possible to predict the drilling performance using different bits and the learning-curve concept to obtain optimum drilling parameters. All of these allow a comprehensive and effective cost and drilling optimization.

Salas Safe, Jose Gregorio

2003-05-01T23:59:59.000Z

291

Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W11-43, 299-W15-50, and 299-W18-16  

SciTech Connect

The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OU ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.

Spane, Frank A.; Newcomer, Darrell R.

2010-06-21T23:59:59.000Z

292

Parcperdue geopressure-geothermal project. Study a geopressured reservoir by drilling and producing a well in a limited geopressured water sand. Final technical report, September 28, 1979-December 31, 1983  

DOE Green Energy (OSTI)

The behavior of geopressured reservoirs was investigated by drilling and producing a well in small, well defined, geopressured reservoir; and performing detailed pressure transient analysis together with geological, geophysical, chemical, and physical studies. The Dow-DOE L. R. Sweezy No. 1 well was drilled to a depth of 13,600 feet in Parcperdue field, just south of Lafayette, Louisiana, and began production in April, 1982. The production zone was a poorly consolidated sandstone which constantly produced sand into the well stream, causing damage to equipment and causing other problems. The amount of sand production was kept manageable by limiting the flow rate to below 10,000 barrels per day. Reservoir properties of size, thickness, depth, temperature, pressure, salinity, porosity, and permeability were close to predicted values. The reservoir brine was undersaturated with respect to gas, containing approximately 20 standard cubic feet of gas per barrel of brine. Shale dewatering either did not occur or was insignificant as a drive mechanism. Production terminated when the gravel-pack completion failed and the production well totally sanded in, February, 1983. Total production up to the sanding incident was 1.94 million barrels brine and 31.5 million standard cubic feet gas.

Hamilton, J.R.; Stanley, J.G. (eds.) [eds.

1984-01-15T23:59:59.000Z

293

Underbalanced drilling solves difficult drilling problems and enhances production  

Science Conference Proceedings (OSTI)

An alternate approach to drilling, completing and working over new and existing wells has dramatically improved the efficiency of these operations. This method is called underbalanced drilling (UBD). Improvements in both the equipment and technique during the past 5 years have made this process economical and necessary to solve many difficult drilling problems. Additionally, by reducing drilling or workover damage, dramatic improvements in oil and gas production rates and ultimate reserves are realized, resulting in extra profits for today`s operators. This article will detail the advantages of UBD and give specific examples of its applications, A series of related articles will follow, including: new UBD equipment, land and off-shore case histories, coiled tubing drilling, underbalanced workovers, software technology and subsea applications to examine the reality and future of this technology.

Cuthbertson, R.L.; Vozniak, J.

1997-02-01T23:59:59.000Z

294

Innovative techniques cut costs in wetlands drilling  

Science Conference Proceedings (OSTI)

This paper reports on an approach to drilling oil and gas wells in sensitive wetlands areas contributed to a savings of over $1.2 million on a three-well, $3 million drilling project in south Louisiana. ARCO Oil and Gas Co. drilled a three-well project in the Bayou Sale field with a truck-mounted workover rig and a modified solids-control system. This smaller equipment eliminated the need to build a large location in the marsh. Traditional drilling techniques require a large drillsite to accommodate all the equipment of a modern drilling complex. However, recently imposed environmental regulations substantially limit, and in some cases prohibit, the use of these conventional techniques for drilling wells in wetlands areas. Based on the potentially huge economic and operational impact on the drilling industry because of these stricter regulations, alternatives to these traditional practices are essential.

Navarro, A.R. (ARCO Oil and Gas Co., Lafayette, LA (US))

1991-10-14T23:59:59.000Z

295

Foam drilling simulator  

E-Print Network (OSTI)

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties of foam change along the wellbore. Foam physical and thermal properties are strongly affected by pressure and temperature. Many problems associated with field applications still exist, and a precise characterization of the rheological properties of these complex systems needs to be performed. The accurate determination of the foam properties in circulating wells helps to achieve better estimation of foam rheology and pressure. A computer code is developed to process the data and closely simulate the pressure during drilling a well. The model also offers a detailed discussion of many aspects of foam drilling operations and enables the user to generate many comparative graphs and tables. The effects of some important parameters such as: back-pressure, rate of penetration, cuttings concentration, cuttings size, and formation water influx on pressure, injection rate, and velocity are presented in tabular and graphical form. A discretized heat transfer model is formulated with an energy balance on a control volume in the flowing fluid. The finite difference model (FDM) is used to write the governing heat transfer equations in discretized form. A detailed discussion on the determination of heat transfer coefficients and the solution approach is presented. Additional research is required to analyze the foam heat transfer coefficient and thermal conductivity.

Paknejad, Amir Saman

2005-12-01T23:59:59.000Z

296

Development of advanced drilling, completion, and stimulation systems for minimum formation damage and improved efficiency: A program overview  

SciTech Connect

The Department of Energy`s (DOE) Natural Gas Resource and Extraction Program consists of industry/government co-sponsored research, development, and demonstration (RD&D) projects, which focus on gas recovery from both conventional and nonconventional resources. The Drilling, Completion, and Stimulation (DCS) Project focuses on advanced, non-damaging technology systems and equipment for improving gas recovery from conventional and nonconventional reservoirs. As operators move from development of current day economically attractive gas-field development to the lower permeability geologic regions of domestic onshore plays, increasing the emphasis on minimum formation damage DCS will permit economic development of gas reserves. The objective of the Project is to develop and demonstrate cost-effective, advanced technology to accelerate widespread use and acceptance of minimum formation damage DCS systems. The goal of this product development effort is to reduce costs and improve the overall efficiency of vertical, directional, and horizontally drilled wells in gas formations throughout the US. The current focus of the Project is on the development of underbalanced drilling technology and minimum formation damage stimulation technology concurrently with the appropriate completion hardware to improve the economics of domestic natural gas field development. Ongoing drilling technology projects to be discussed include development of an electromagnetic measurement while drilling system for directional and horizontal drilling in underbalanced drilling applications and the development of a steerable air percussion drilling system for hard formation drilling and improved penetration rates. Ongoing stimulation technology projects to be discussed include introduction of carbon dioxide/sand fracturing technology for minimal formation damage.

Layne, A.W.; Yost, A.B. II

1994-07-01T23:59:59.000Z

297

High-temperature directional drilling turbodrill  

DOE Green Energy (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

298

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT  

Science Conference Proceedings (OSTI)

The first horizontal well ever in the Marchand sandstone has been drilled. Although major difficulties arose with certain aspects of the drilling operation, a horizontal section of approximately 1300 was drilled. The section was left open hole as planned. The shales just above and between the Marchand sands appear to be very water-sensitive, requiring careful drilling practices. These shales were encountered in the middle part of the curve (45{sup o}-60{sup o}), which can be the most difficult part of a directional well to clean. Difficulties with these shales and cleaning this section led to a parted drill string, requiring a sidetrack. There were no major geologic ''surprises'', such as formation tops coming in much shallower or deeper than expected, or unexpected faults. Thin kaolinite beds were encountered in the horizontal section of the well. Previous descriptions of the mineralogy of this formation did not mention any kaolinite. The lateral extent of these beds is unknown. Completion of the well is under way. One additional injection profile was gathered during the quarter. Results are consistent with other recently profiles that show gas within the C Sand is overriding the oil and failing to sweep the deeper parts of the reservoir. International Reservoir Technologies, Inc. has completed the construction of the pilot area reservoir simulation model and the updating of historical production and injection data. They have begun fine-tuning the history match to better match production data and recently acquired pressure and profile data.

Joe Sinner

2001-08-10T23:59:59.000Z

299

Recovery of bypassed oil in the Dundee Formation using horizontal drains. 2nd Quarterly report, April 1, 1994--June 30, 1994  

Science Conference Proceedings (OSTI)

A meeting of project personnel was held in Traverse City, MI, on June 8, 1994 to initiate the DOE contract. The drilling program, which will be the project`s first major undertaking, was discussed in detail. Data from 12 Dundee fields, including Crystal Field, have been entered in a computer database by project staff at WMU. Structure contour maps and isopach maps have been generated for all horizons in these fields using Terrasciences` TerraStation computer program. Arrangements have been made to purchase digitized logs of every well that produces or has produced from the Dundee Formation in the state of Michigan. Twenty to thirty cores of the Dundee Formation from wells throughout the state of Michigan are currently available. Cuttings samples are also available from 60 to 100 Michigan wells. A well in the project area has been designed and permitted and will soon be drilled. The well will have both a horizontal and a vertical leg. The vertical leg well will be cored through the producing interval of the Dundee Formation and the cores analyzed for porosity, permeability, and fluid saturations. A full set of well logs will be run, including gamma ray, porosity, resistivity, and geochemical logs. The horizontal leg will be drilled as a sidetrack from the vertical test well. If commercial amounts of hydrocarbons are encountered, the horizontal well will be placed on production. It is expected that drilling will commence in August, 1994, and will take 10 to 12 days to complete.

Wood, J.R.

1994-07-01T23:59:59.000Z

300

Recovery of bypassed oil in the Dundee formation using horizontal drains. Quarterly progress report, October 1, 1995--December 31, 1995  

Science Conference Proceedings (OSTI)

The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was immensely successful. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced domestically will probably be about 80 to 100 million bbls.

Wood, J.R.

1996-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

302

Underbalanced drilling with air offers many pluses  

Science Conference Proceedings (OSTI)

A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

1995-06-26T23:59:59.000Z

303

RMOTC - Testing - Openhole Logging Well  

NLE Websites -- All DOE Office Websites (Extended Search)

Openhole Logging Well RMOTC Openhole Logging Well RMOTC has drilled a vertical well that is specifically designated for openhole logging tests. It was drilled to 5,450 feet and has...

304

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

305

Drill string enclosure  

DOE Patents (OSTI)

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

306

Infill drilling enhances waterflood recovery  

Science Conference Proceedings (OSTI)

Two sets of west Texas carbonate reservoir and waterflood data were studied to evaluate the impact of infill drilling on waterflood recovery. Results show that infill drilling enhanced the current and projected waterflood recovery from most of the reservoirs. The estimated ultimate and incremental infill-drilling waterflood recovery was correlated with well spacing and other reservoir and process parameters. Results of the correlation indicate that reducing well spacing from 40 to 20 acres (16 to 8 ha) per well would increase the oil recovery by 8 to 9% of the original oil in place (OOIP). Because of the limited data base and regressional nature of the correlation models, the infill-drilling recovery estimate must be used with caution.

Wu, C.H.; Jardon, M. (Texas A and M Univ., College Station, TX (USA)); Laughlin, B.A. (Union Pacific Research Co. (US))

1989-10-01T23:59:59.000Z

307

Specific energy for pulsed laser rock drilling  

Science Conference Proceedings (OSTI)

Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes

Z. Xu; C. B. Reed; G. Konercki; R. A. Parker; B. C. Gahan; S. Batarseh; R. M. Graves; H. Figueroa; N. Skinner

2003-01-01T23:59:59.000Z

308

Driltac (Drilling Time and Cost Evaluation)  

Science Conference Proceedings (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

309

Establishing nuclear facility drill programs  

SciTech Connect

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

310

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents (OSTI)

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

311

Acoustical properties of drill strings  

DOE Green Energy (OSTI)

The recovery of petrochemical and geothermal resources requires extensive drilling of wells to increasingly greater depths. Real-time collection and telemetry of data about the drilling process while it occurs thousands of feet below the surface is an effective way of improving the efficiency of drilling operations. Unfortunately, due to hostile down-hole environments, telemetry of this data is an extremely difficult problem. Currently, commercial systems transmit data to the surface by producing pressure pulses within the portion of the drilling mud enclosed in the hollow steel drill string. Transmission rates are between two and four data bits per second. Any system capable of raising data rates without increasing the complexity of the drilling process will have significant economic impact. One alternative system is based upon acoustical carrier waves generated within the drill string itself. If developed, this method would accommodate data rates up to 100 bits per second. Unfortunately, the drill string is a periodic structure of pipe and threaded tool joints, the transmission characteristics are very complex and exhibit a banded and dispersive structure. Over the past forty years, attempts to field systems based upon this transmission method have resulted in little success. This paper examines this acoustical transmission problem in great detail. The basic principles of acoustic wave propagation in the periodic structure of the drill string are examined through theory, laboratory experiment, and field test. The results indicate the existence of frequency bands which are virtually free of attenuation and suitable for data transmission at high bit rates. 9 refs., 38 figs., 2 tabs.

Drumheller, D.S.

1988-08-01T23:59:59.000Z

312

Optimizing drilling performance using a selected drilling fluid  

DOE Patents (OSTI)

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

313

Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

None

1982-02-01T23:59:59.000Z

314

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997  

SciTech Connect

This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.

NONE

1998-04-01T23:59:59.000Z

315

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

316

From: Development of New Types of Non-Damaging Drill-in and Completion Fluids  

E-Print Network (OSTI)

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid’s behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. This is the final report on a program that has been operating for 7 years, including the last four years under the sponsorship of the U.S. DOE. Accomplishments of Research Program The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a “removable filtercake ” has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed. The program has been an unqualified success. We have accomplished the following: Development of New Laboratory Testing Practices Established standard testing practices Identification of key factors involved in formation damage Established appropriate cleanup practices for removal of formation damage to optimize productivity. DE26-98FT34174.000 Development of New Drilling Fluids Established New Guidelines for horizontal well completion practices Drill in fluid design and maintenance Cleanup fluid design and use Development of new well drill in fluids Low solids polymer carbonate DIFs Polymer free high density DIFs Low Density Drill in fluid design

David B. Burnett Harold Vance

2003-01-01T23:59:59.000Z

317

Horizontal Advanced Tensiometer  

DOE Patents (OSTI)

An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

Hubbell, Joel M.; Sisson, James B.

2004-06-22T23:59:59.000Z

318

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

319

Advanced Drilling through Diagnostics-White-Drilling  

DOE Green Energy (OSTI)

A high-speed data link that would provide dramatically faster communication from downhole instruments to the surface and back again has the potential to revolutionize deep drilling for geothermal resources through Diagnostics-While-Drilling (DWD). Many aspects of the drilling process would significantly improve if downhole and surface data were acquired and processed in real-time at the surface, and used to guide the drilling operation. Such a closed-loop, driller-in-the-loop DWD system, would complete the loop between information and control, and greatly improve the performance of drilling systems. The main focus of this program is to demonstrate the value of real-time data for improving drilling. While high-rate transfer of down-hole data to the surface has been accomplished before, insufficient emphasis has been placed on utilization of the data to tune the drilling process to demonstrate the true merit of the concept. Consequently, there has been a lack of incentive on the part of industry to develop a simple, low-cost, effective high-speed data link. Demonstration of the benefits of DWD based on a high-speed data link will convince the drilling industry and stimulate the flow of private resources into the development of an economical high-speed data link for geothermal drilling applications. Such a downhole communication system would then make possible the development of surface data acquisition and expert systems that would greatly enhance drilling operations. Further, it would foster the development of downhole equipment that could be controlled from the surface to improve hole trajectory and drilling performance. Real-time data that would benefit drilling performance include: bit accelerations for use in controlling bit bounce and improving rock penetration rates and bit life; downhole fluid pressures for use in the management of drilling hydraulics and improved diagnosis of lost circulation and gas kicks; hole trajectory for use in reducing directional drilling costs; and downhole weight-on-bit and drilling torque for diagnosing drill bit performance. In general, any measurement that could shed light on the downhole environment would give us a better understanding of the drilling process and reduce drilling costs.

FINGER,JOHN T.; GLOWKA,DAVID ANTHONY; LIVESAY,BILLY JOE; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.

1999-10-07T23:59:59.000Z

320

Petroleum well costs.  

E-Print Network (OSTI)

??This is the first academic study of well costs and drilling times for Australia?s petroleum producing basins, both onshore and offshore. I analyse a substantial… (more)

Leamon, Gregory Robert

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Drill string enclosure  

DOE Patents (OSTI)

This invention is comprised of a drill string enclosure which consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1992-12-31T23:59:59.000Z

322

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

323

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

Science Conference Proceedings (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

324

Multi-gradient drilling method and system  

DOE Patents (OSTI)

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

325

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

326

Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion  

E-Print Network (OSTI)

The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low/ultra-low permeability formations. This thesis provides a comprehensive numerical simulation study on the "slot drill" completion technique. Using a Voronoi gridding scheme, I created representative grid systems for the slot-drill completion, as well as for the case of a vertical well with a single fracture, the case of a horizontal well with multiple hydraulic fractures, and various combinations of these completions. I also created a rectangular slot configuration, which is a simplified approximation of the actual "slot-drill" geometry, and investigated the ability of this rectangular approximation to model flow from the more complicated (actual) slot-drill configuration(s). To obtain the maximum possible diagnostic and analytical value, I simulated up to 3,000 years of production, allowing the assessment of production up to the point of depletion (or boundary-dominated flow). These scenarios provided insights into all the various flow regimes, as well as provided a quantitative evaluation of all completion schemes considered in the study. The results of my study illustrated that the "slot-drill" completion technique was not, in general, competitive in terms of reservoir performance and recovery compared to the more traditional completion techniques presently in use. Based on my modeling, it appears that the larger surface area to flow that multistage hydraulic fracturing provides is much more significant than the higher conductivity achieved using the slot-drill technique. This work provides quantitative results and diagnostic interpretations of productivity and flow behavior for low and ultra-low permeability formations completed using the slot-drill method. The results of this study can be used to (a) help evaluate the possible application of the "slot-drill" technique from the perspective of performance and recovery, and (b) to establish aggregated economic factors for comparing the slot-drill technique to more conventional completion and stimulation techniques applied to low and ultra-low permeability reservoirs.

Odunowo, Tioluwanimi Oluwagbemiga

2012-05-01T23:59:59.000Z

327

Vale exploratory slimhole: Drilling and testing  

SciTech Connect

During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1996-06-01T23:59:59.000Z

328

Be in the Salton Sea Geothermal System, California (USA): Salton Sea Scientific Drilling Project, California State 2-14 well: Final report  

DOE Green Energy (OSTI)

The Salton Sea Geothermal System lies in the old Colorado River Delta, where sediments have been metamorphosed by hydrothermal processes. Fluids, from well Fee No. 5 and deep hole SSSDP California State 2-14, as well as rocks from the deep hole were studied for /sup 10/Be and /sup 9/Be. In the solid samples /sup 10/Be concentration ranges from 29 to 259 /times/ 10/sup 6/ atom/g and /sup 9/Be from 0.49 to 2.52 ppM. The /sup 10/Be concentration in the geothermal waters ranges from 2 /times/ 10/sup 3/ to 2.9 /times/ 10/sup 6/ atom/g and /sup 9/Be from 0.7 to 16.6 ppB. Compared to the steady-state inventory which represents the quantity of /sup 10/Be expected from rain deposition alone (/approximately/1 /times/ 10/sup 12/ atom/cm/sup 2/), the /sup 10/Be inventory in the deep core is 3 orders of magnitude higher (>1 /times/ 10/sup 15/ atom/cm/sup 2/). This indicates that most /sup 10/Be is inherited and that the sediments hosting the geothermal field down to 3250m are young, less than few million year old. /sup 10/Be and /sup 9/Be Kds decrease from surface to bottom (3333 to 48 and 727 to 393, respectively) expressing the strong leaching effect of the solid material by the geothermal waters. This process is more active at depth where pH is <5.3 and salinity high (approx. =25%). Compared to other natural systems, Salton Sea Geothermal fluids are strongly enriched in /sup 10/Be and /sup 9/Be. Finally, contamination has been observed in the fluids samples and we developed a tool that is helping in detecting which samples are contaminated.

Valette-Silver, N.J.

1988-06-01T23:59:59.000Z

329

EIA Corrects Errors in Its Drilling Activity Estimates Series  

U.S. Energy Information Administration (EIA)

gas and oil wells relative to total wells, improved greatly as early as 1986 as seen in the revised drilling statistics. The prior well data series did

330

Drilling for energy resources  

DOE Green Energy (OSTI)

Drilling is integral to the exploration, development, and production of most energy resources. Oil and natural gas, which are dependent on drilling technology, together account for about 77% of the energy sources consumed in the US. Thus, the limitations of current drilling technology also restrict the rate at which new energy supplies can be found, extracted, and brought to the marketplace. The purpose of the study reported was to examine current drilling technology, suggest areas where additional research and development (R and D) might significantly increase drilling rates and capabilities, and suggest a strategy for improving drilling technology. An overview is provided of the US drilling industry. The drilling equipment and techniques now used for finding and recovering oil, natural gas, coal, shale oil, nuclear fuels, and geothermal energy are described. Although by no means exhaustive, these descriptions provide the background necessary to adequately understand the problems inherent in attempts to increase instantaneous and overall drilling rates.

Not Available

1976-01-01T23:59:59.000Z

331

Increasing Well Productivity in Gas Condensate Wells in Qatar's North Field  

E-Print Network (OSTI)

Condensate blockage negatively impacts large natural gas condensate reservoirs all over the world; examples include Arun Field in Indonesia, Karachaganak Field in Kazakhstan, Cupiagua Field in Colombia,Shtokmanovskoye Field in Russian Barents Sea, and North Field in Qatar. The main focus of this thesis is to evaluate condensate blockage problems in the North Field, Qatar, and then propose solutions to increase well productivity in these gas condensate wells. The first step of the study involved gathering North Field reservoir data from previously published papers. A commercial simulator was then used to carry out numerical reservoir simulation of fluid flow in the North Field. Once an accurate model was obtained, the following three solutions to increasing productivity in the North Field are presented; namely wettability alteration, horizontal wells, and reduced Non Darcy flow. Results of this study show that wettability alteration can increase well productivity in the North Field by adding significant value to a single well. Horizontal wells can successfully increase well productivity in the North Field because they have a smaller pressure drawdown (compared to vertical wells). Horizontal wells delay condensate formation, and increase the well productivity index by reducing condensate blockage in the near wellbore region. Non Darcy flow effects were found to be negligible in multilateral wells due to a decrease in fluid velocity. Therefore, drilling multilateral wells decreases gas velocity around the wellbore, decreases Non Darcy flow effects to a negligible level, and increases well productivity in the North Field.

Miller, Nathan

2009-12-01T23:59:59.000Z

332

Reservoir screening criteria for underbalanced drilling  

Science Conference Proceedings (OSTI)

Properly designed and executed underbalanced drilling operations can eliminate or significantly reduce formation damage, mud or drill solids invasion, lost circulation, fluid entrainment and trapping effects, and potential adverse reactions of drilling fluids with the reservoir matrix or in-situ reservoir fluids. The key to selecting appropriate reservoir candidates is achieving a balance of technical, safety and economic factors. Not every reservoir is an ideal candidate for an underbalanced drilling operation and in some cases distinct disadvantages may exist in trying to execute an underbalanced drilling operation in comparison to a simpler more conventional overbalanced application. Extensive field experience has played an important role in determining the following key criteria and design considerations that should be examined when evaluating a well. Screening criteria are also provided to help operators ascertain if a given formation is, in fact, a viable underbalanced drilling candidate.

Bennion, D.B. [Hycal Energy Research Labs. Ltd., Calgary, Alberta (Canada)

1997-02-01T23:59:59.000Z

333

Coiled tubing drilling requires economic and technical analyses  

Science Conference Proceedings (OSTI)

Field experience has proven that coiled tubing drilling is a technical and economic option on some wells; however, coiled tubing drilling is not the solution to every drilling prospect or production-enhancement job. To determine if coiled tubing drilling is viable, the geographic, technical, and economic aspects of each project must be considered in detail. Generally, with some limitations, coiled tubing drilling is feasible primarily when jointed pipe cannot be used effectively. Also, coiled tubing drilling may be more appropriate because of some special well site requirements, such as environmental regulations requiring less surface disturbance. The paper discusses technical considerations which need to be considered, economic feasibility, limitations of well types (new shallow wells, conventional reentry, through-tubing reentry, and underbalanced drilling), and outlook for further growth in the coiled tubing drilling industry.

Gary, S.C. (Schlumberger Dowell, Sugar Land, TX (United States))

1995-02-20T23:59:59.000Z

334

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network (OSTI)

technologies to obtain thermal energy (and other benefits) from a large body of water #12;Microgrid Customer ENERGY : Underground Technologies #12;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant;#12;Microgrid Customer Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water

335

Geothermal Well Technology Program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. An overview of the program is presented. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies encountered when current rotary drilling techniques are used for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.

1978-01-01T23:59:59.000Z

336

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

337

Thermal indicator for wells  

DOE Patents (OSTI)

Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

Gaven, Jr., Joseph V. (Oakton, VA); Bak, Chan S. (Newbury Park, CA)

1983-01-01T23:59:59.000Z

338

Hydromechanical drilling device  

DOE Patents (OSTI)

A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

Summers, David A. (Rolla, MO)

1978-01-01T23:59:59.000Z

339

Application of coiled-tubing-drilling technology on a deep underpressured gas reservoir  

Science Conference Proceedings (OSTI)

The Upper-Mississippian Elkton formation is a dolomitized shallow-water carbonate consisting of dense limestones and porous dolomites. The Elkton was deposited in an open-shelf environment as crinoid grainstones, coral packstones, and lime muds. Deposition of impermeable shales and siltstones of the Lower Cretaceous created the lateral and updip seals. Reservoir thickness can be up to 20 m, with porosities reaching 20% and averaging 10%. The reservoir gas contains approximately 0.5% hydrogen sulfide. Well 11-18 was to be completed in the Harmatten Elkton pool. The pool went on production in 1967 at an initial pressure of 23,500 kPa. At the current pressure of 16,800 kPa, the remaining reserves are underpressured at 6.5 kPa/m, and underbalanced horizontal drilling was selected as the most suitable technique for exploiting remaining reserves. Coiled-tubing (CT) technology was selected to ensure continuous underbalanced conditions and maintain proper well control while drilling. The paper describes the equipment, CT drilling summary, and drilling issues.

NONE

1997-06-01T23:59:59.000Z

340

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents (OSTI)

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Monitoring downhole pressures and flow rates critical for underbalanced drilling  

Science Conference Proceedings (OSTI)

True underbalanced drilling, and not just flow drilling, requires thorough engineering and monitoring of downhole pressures and flow rates to ensure the formations are drilled without formation damage. Underbalanced drilling involves intentionally manipulating the bottom hole circulating pressure so that it is less than static reservoir pressure. This underbalanced pressure condition allows reservoir fluids to enter the well bore while drilling continues, preventing fluid loss and many causes of formation damage. Applied correctly, this technology can address problems of formation damage, lost circulation, and poor penetration rates. Another important benefit of drilling underbalanced is the ability to investigate the reservoir in real time. The paper discusses the reasons for under balanced drilling, creating underbalance, well site engineering, fluids handling, rotating flow divertor injection gas, survey techniques, data acquisition, operations, maintaining under-balance, routine drilling, rate of penetration, misconceptions, and economics.

Butler, S.D.; Rashid, A.U.; Teichrob, R.R. [Flow Drilling Engineering Ltd., Calgary, Alberta (Canada)

1996-09-16T23:59:59.000Z

342

STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS  

SciTech Connect

The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

Stephen Wolhart

2003-06-01T23:59:59.000Z

343

Steamboat Hills exploratory slimhole: Drilling and testing  

DOE Green Energy (OSTI)

During July-September, 1993, Sandia National Laboratories, in cooperation with Far West Capital, drilled a 4000 feet exploratory slimhole (3.9 inch diameter) in the Steamboat Hills geothermal field near Reno, Nevada. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed four series of production and injection tests while taking downhole (pressure-temperature-spinner) and surface (wellhead pressure and temperature, flow rate) data. In addition to these measurements, the well`s data set includes: continuous core (with detailed log); borehole televiewer images of the wellbore`s upper 500 feet; daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; numerous temperature logs; and comparative data from production and injection wells in the same field. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, F.D.; Hickox, C.E.; Eaton, R.R.

1994-10-01T23:59:59.000Z

344

Exploratory Well | Open Energy Information  

Open Energy Info (EERE)

Exploratory Well Exploratory Well Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploratory Well Details Activities (8) Areas (3) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Can provide core or cuttings Stratigraphic/Structural: Identify stratigraphy and structural features within a well Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole -Information about the heat source Dictionary.png Exploratory Well: An exploratory well is drilled for the purpose of identifying the

345

A study on chemical interactions between waste fluid, formation water, and host rock during deep well injection  

E-Print Network (OSTI)

the area. While drilling NDW-1, fluid samples were collectedorigin of the fluid collected while drilling the new well

Spycher, Nicolas; Larkin, Randy

2004-01-01T23:59:59.000Z

346

Development and Testing of Insulated Drill Pipe  

DOE Green Energy (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

347

Foam computer model helps in analysis of underbalanced drilling  

Science Conference Proceedings (OSTI)

A new mechanistic model attempts to overcome many of the problems associated with existing foam flow analyses. The model calculates varying Fanning friction factors, rather than assumed constant factors, along the flow path. Foam generated by mixing gas and liquid for underbalanced drilling has unique rheological characteristics, making it very difficult to accurately predict the pressure profile. A user-friendly personal-computer program was developed to solve the mechanical energy balance equation for compressible foam flow. The program takes into account influxes of gas, liquid, and oil from formations. The pressure profile, foam quality, density, and cuttings transport are predicted by the model. A sensitivity analysis window allows the user to quickly optimize the hydraulics program by selecting the best combination of injection pressure, back pressure, and gas/liquid injection rates. This new model handles inclined and horizontal well bores and provides handy engineering and design tools for underbalanced drilling, well bore cleanout, and other foam operations. The paper describes rheological models, foam flow equations, equations of state, mechanical energy equations, pressure drop across nozzles, influx modeling, program operation, comparison to other models, to lab data, and to field data, and results.

Liu, G.; Medley, G.H. Jr. [Maurer Engineering Inc., Houston, TX (United States)

1996-07-01T23:59:59.000Z

348

Method of deep drilling  

DOE Patents (OSTI)

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

349

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

350

Remote drill bit loader  

DOE Patents (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

351

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

352

Drill Press Speed Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

operating speeds (RPM) Accessory Softwood (Pine) Hardwood (Hard Maple) Acrylic Brass Aluminum Steel Shop Notes Twist drill bits 116" - 316" 14" - 38" 716"- 58" 11...

353

Drilling motor deviation tool  

Science Conference Proceedings (OSTI)

An extension for a down hole drilling motor is described, which adapts the motor for selective configuration for straight hole drilling or directional drilling, selectively. It consists of: an elongated generally tubular body, adapted at a first end to rigidly attach to the lower end of a down hole drilling motor housing, the body having an opening extending along the general centerline of the body; fluid channel means situated in the opening to conduct drilling fluid from the motor fluid output means to a downwardly continuing drill string element; output shaft means situated in the body and extending from a second end of the body, the output shaft adapted at the extended extreme for attachment to a downwardly continuing drill string element; selector valve means situated in the body, operatively associated with drilling fluid channels in the body, responsive to drilling fluid flow to produce a first output signal in response to fluid flow manipulations having a first characteristic and to produce a second output signal in response to fluid flow manipulations having a second characteristic; and driveshaft connector means in the opening, operatively associated with the output shaft of the motor and the output shaft means to connect the two for sympathetic rotation.

Falgout, T.E.; Schoeffler, W.N.

1989-03-14T23:59:59.000Z

354

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells (Redirected from Development Wells) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir

355

Production Wells | Open Energy Information  

Open Energy Info (EERE)

Production Wells Production Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Production Wells Details Activities (13) Areas (13) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Production Wells:

356

Well Deepening | Open Energy Information  

Open Energy Info (EERE)

Well Deepening Well Deepening Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Deepening Details Activities (5) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Drill cuttings are analyzed to determine lithology and mineralogy Stratigraphic/Structural: Fractures, faults, and geologic formations that the well passes through are identified and mapped. Hydrological: Identify aquifers, reservoir boundaries, flow rates, fluid pressure, and chemistry Thermal: Direct temperature measurements from within the reservoir Dictionary.png Well Deepening:

357

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

358

Horizontal drilling boosts Pennsylvania’s natural gas ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; ... Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. Department ...

359

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

Science Conference Proceedings (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

360

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...  

Open Energy Info (EERE)

major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted....

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production...

362

Design and implementation of a CO{sub 2} flood utilizing advanced reservoir characterization and horizontal injection wells in a shallow shelf carbonate approaching waterflood depletion. Annual Report, July 1, 1995--June 30, 1996  

SciTech Connect

The work reported herein covers select tasks remaining in Budget Phase I and many of the tasks of Budget Phase II. The principal Tasks in Budget Phase I included in this report are Reservoir Analysis and Characterization; Advanced Technical Studies; and Technology Transfer, Reporting and Project Management Activities for Budget Phase I. The principle Task in Budget Phase II included in this report is Field Demonstration. Completion of these tasks has enabled an optimum carbon dioxide (CO{sub 2}) flood project to be designed, economically evaluated, and implemented in the field. Field implementation of the project commenced during late 1995, with actual CO{sub 2} injection scheduled for start-up in mid-July, 1996. The current project has focused on reducing initial investment cost by utilizing horizontal injection wells and concentrating the project in the best productivity area of the field. An innovative CO{sub 2} purchase agreement (no take-or-pay provisions, CO{sub 2} purchase price tied to West Texas Intermediate (WTI) crude oil price) and gas recycle agreements (expensing costs as opposed to a large upfront capital investment for compression) were negotiated to further improve the project economics. The Grayburg-San Andres section had previously been divided into multiple zones based on the core study and gamma ray markers that correlate wells within the Unit. Each zone was mapped as continuous across the field. Previous core studies concluded that the reservoir quality in the South Cowden Unit (SCU) is controlled primarily by the distribution of a bioturbated and diagenetically-altered rock type with a distinctive {open_quotes}chaotic{close_quotes} texture. The {open_quotes}chaotic{close_quotes} modifier is derived from the visual effect of pervasive, small-scale intermixing of tan oil-stained reservoir rock with tight gray non-reservoir rock.

Chimahusky, J.S.; Hallenbeck, L.D.; Harpole, K.J.; Dollens, K.B.

1997-05-01T23:59:59.000Z

363

Drill drive mechanism  

DOE Patents (OSTI)

A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

Dressel, Michael O. (Englewood, CO)

1979-01-01T23:59:59.000Z

364

Noble Drilling DRILLING, COMPLETION AND STIMULATION PROGRAM  

E-Print Network (OSTI)

Friendly Drilling Systems" Environmental issues are a significant part of every energy industry endeavor challenges facing the energy industry but also the considerable resources of the University and industry Petroleum and other industry sponsors from the Global Petroleum Research Institute (GPRI) to identify

365

Design and Analysis of a Test Rig for Modeling the Bit/Formation Interface in Petroleum Drilling Applications  

E-Print Network (OSTI)

Equipment failure and well deviations are prevailing contributors to production delays within the petroleum industry. Particular monetary focus is given to the drilling operations of wells to overcome these deficits, in order to extract natural resources as efficiently, and as safely, as possible. The research presented here focuses on minimizing vibrations of the drill string near the bottom-hole assembly (BHA) by identifying the cause of external forcing on the drillstring in vertical and horizontal wells and measuring the effects of various factors on the stability of perturbations on the system. A test rig concept has been developed to accurately measure the interaction forces and torques between the bit, formation and fluids during drilling in order to clearly define a bit/formation interface law (BFIL) for the purpose vibrational analysis. As a secondary function, the rig will be able to measure the potential inputs to a drilling simulation code that can be used to model drillstring vibrations. All notable quantities will be measured including torque on bit (TOB), weight on bit (WOB), lateral impact loads (LIL), formation stiffness, bit specific properties, fluid damping coefficients and rate of penetration (ROP). The conceptual design has been analyzed and refined, in detail, to verify its operational integrity and range of measurement error. The operational envelope of the rig is such that a drill bit of up to 8 ½ inches in diameter can be effectively tested at desired operational parameters (WOB: 0-55,000 lbf, RPM: 60-200) with various rock formations and multiple fluid types. Future use and design possibilities are also discussed to enhance the functionality of the rig and the potential for further research in the area of oil and gas drilling and vibrational modeling.

Wilson, Joshua Kyle

2013-05-01T23:59:59.000Z

366

Definition: Production Wells | Open Energy Information  

Open Energy Info (EERE)

Definition Edit with form History Facebook icon Twitter icon Definition: Production Wells Jump to: navigation, search Dictionary.png Production Wells A well drilled with the...

367

Geothermal gradient drilling, north-central Cascades of Oregon, 1979  

DOE Green Energy (OSTI)

A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

Youngquist, W.

1980-01-01T23:59:59.000Z

368

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

369

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

370

Challenges of deep drilling. Part 2  

SciTech Connect

This installment delineates current deep drilling technology limitations and discusses needed advances for the future. Problem areas are identified as material and seal problems in wellhead equipment, new fluid carriers for well stimulation, quality control/inspection/testing for equipment and performance flaws, arctic environment conditions, and experienced personnel. The main factors of operating environment that challenge advanced deep drilling are identified as temperature extremes, pressure extremes, acid gases, and deep-water presence.

Chadwick, C.E.

1981-08-01T23:59:59.000Z

371

Development and testing of underbalanced drilling products  

Science Conference Proceedings (OSTI)

The first objective of this project is to develop a user-friendly, PC, foam drilling computer model, FOAM, which will accurately predict frictional pressure drops, cuttings lifting velocity, foam quality, and other drilling variables. The model will allow operating and service companies to accurately predict pressures and flow rates required at the surface and downhole to efficiently drill oil and gas wells with foam systems. The second objective of this project is to develop a lightweight drilling fluid that utilizes hollow glass spheres to reduce the density of the fluid and allow drilling underbalanced in low-pressure reservoirs. Since the resulting fluid will be incompressible, hydraulics calculations are greatly simplified, and expensive air compressors and booster pumps are eliminated. This lightweight fluid will also eliminate corrosion and downhole fire problems encountered with aerated fluids. Many tight-gas reservoirs in the US are attractive targets for underbalanced drilling because they are located in hard-rock country where tight, low-permeability formations compound the effect of formation damage encountered with conventional drilling fluids.

Maurer, W.; Medley, G. Jr.

1995-07-01T23:59:59.000Z

372

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Explanatory notes Drilling Productivity Report The Drilling Productivity Report uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells do that. Monthly additions from one average rig Monthly additions from one average rig represent EIA's estimate of an average rig's

373

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

374

Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97  

SciTech Connect

This Class 11 field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a rate of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two subsequent wells, the Frost 5-3 and the Happy Holidays 6-3, have not been as successful. Both are currently producing 10 BOPD with 90% water cut. Efforts are underway to determine why these wells are performing so poorly and to see if the situation can be remedied. The reasons for these poor performances of the new wells are not clear at this time. It is possible that the wells entered the Dundee too low and missed pay higher in the section. When the TOW 1-3 was drilled, a vertical probe well was also drilled and cored. That probe well penetrated the pay zone and helped guide the horizontal well. The important lesson may be that vertical probe wells are a crucial step in producing these old fields and should not be eliminated simply to save what amounts to a small incremental cost. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Additional project work involved the characterization of 28 other Dundee fields in Michigan to aid in determining appropriate additional candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. The project was a cooperative venture involving the US Department of Energy, Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.) in Traverse City, MI.

NONE

1997-03-30T23:59:59.000Z

375

Horizontal natural gas storage caverns and methods for producing same  

DOE Patents (OSTI)

The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

Russo, Anthony (Albuquerque, NM)

1995-01-01T23:59:59.000Z

376

Test report for core drilling ignitability testing  

DOE Green Energy (OSTI)

Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

Witwer, K.S.

1996-08-08T23:59:59.000Z

377

Underbalanced drilling benefits now available offshore  

Science Conference Proceedings (OSTI)

Offshore underbalanced drilling (UBD) is a reality. Applications in older, partially depleted fields and new fields are being considered. However, low productivity reservoirs and fields with sub normal pressures causing drilling problems are currently the main targets for offshore UBD. With proper planning and the correct technique, both jointed pipe and coiled tubing UBD drilling operations have been carried out offshore with success. The main concerns for offshore UBD have been altered drilling practices and surface production system operation. These issues have been examined and equipment has been designed and tested to address them. Environmental, safety and health issues are paramount and have been studied carefully. Detailed well planning, engineering, and flow modeling have proven critical for successful offshore UBD operations. Examples are given from oil and gas fields.

Vozniak, J.P.; Cuthbertson, B.; Nessa, D.O.

1997-05-01T23:59:59.000Z

378

Field results document underbalanced drilling success  

Science Conference Proceedings (OSTI)

Many different techniques are used to maintain underbalanced conditions at the toolface. Whether the operator is trying to avoid drilling problems or prevent formation damage, the key to a safe, successful operation is a reliable method of sealing around the tubulars at the surface for continuous well control. Globally, underbalanced drilling (UBD) is emerging as an important technology to improve production and solve drilling problems with success in many applications with different reservoirs. Improvements in initial flow rates using UBD are being supported by longer term production. UBD techniques and processes are improving through experience and implementation. UBD is becoming a more economical means to optimize reservoir management than conventional overbalanced operations. UBD operations are proving to be safer than conventional overbalanced drilling.

Vozniak, J.; Cuthbertson, R.L.

1997-04-01T23:59:59.000Z

379

Thermal spallation drilling  

DOE Green Energy (OSTI)

Thermal spallation drilling is an underdeveloped process with great potential for reducing the costs of drilling holes and mining shafts and tunnels in most very hard rocks. Industry has used this process to drill blast holes for emplacing explosives and to quarry granite. Some theoretical work has been performed, and many signs point to a great future for this process. The Los Alamos National Laboratory has studied the theory of the spallation process and is conducting experiments to prove out the system and to adapt it for use with a conventional rotary rig. This report describes work that has been accomplished at the Laboratory on the development of thermal spallation drilling and some work that is projected for the future on the system. 3 references, 3 figures.

Williams, R.E.

1985-01-01T23:59:59.000Z

380

Drill pipe protector development  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), formed in the early 1980s by the geothermal industry and the U.S. Department of Energy (DOE) Geothermal Division, sponsors specific development projects to advance the technologies used in geothermal exploration, drilling, and production phases. Individual GDO member companies can choose to participate in specific projects that are most beneficial to their industry segment. Sandia National Laboratories is the technical interface and contracting office for the DOE in these projects. Typical projects sponsored in the past have included a high temperature borehole televiewer, drill bits, muds/polymers, rotary head seals, and this project for drill pipe protectors. This report documents the development work of Regal International for high temperature geothermal pipe protectors.

Thomerson, C.; Kenne, R. [Regal International Corp., Corsicanna, TX (United States); Wemple, R.P. [Sandia National Lab., Albuquerque, NM (United States)] [ed.] [and others

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal wells drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Subsurface drill string  

DOE Patents (OSTI)

A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

2008-10-07T23:59:59.000Z

382

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry ...  

U.S. Energy Information Administration (EIA)

U.S. Footage Drilled for Crude Oil, Natural Gas, and Dry Exploratory and Developmental Wells (Thousand Feet)

383

Update on slimhole drilling  

DOE Green Energy (OSTI)

Sandia National Laboratories manages the US Department of Energy program for slimhole drilling. The principal objective of this program is to expand proven geothermal reserves through increased exploration made possible by lower-cost slimhole drilling. For this to be a valid exploration method, however, it is necessary to demonstrate that slimholes yield enough data to evaluate a geothermal reservoir, and that is the focus of Sandia`s current research.

Finger, J.T.

1996-01-01T23:59:59.000Z

384

Drilling costs drop 7% in 1985  

SciTech Connect

Drilling costs dropped about 7% last year. This decline cancels a slight increase in 1984. Total costs to drill now run about 59% of the 1981 highs. Comparable figures for the previous 2 years are 63 and 61%. Deeper wells showed the biggest drops. Shallow well costs fell about 6%. Energy Information Administration (EIA) indexes drilling costs on a 1976 base year. Costs for shallow wells (5,000 ft or less) show an index about 138. Deeper wells have an index around 149. Cost declines were the greatest in West and North Texas and the Rockies, of 11%. The Northeast and Western areas showed greater than average declines, 9% or so. The High Plains, New Mexico, and Midcontinent areas recorded near the average 7% decline. Costs in South Louisiana, the Southeast, and Ark-La-Tex 2%. West Central Texas costs were off only 1%. The Southeast was essentially unchanged. Indexes by area show generally that drilling costs have declined since 1983. The summary here comes from EIA's ''Indexes and Estimates of Domestic Well Drilling Costs 1984 and 1985''. That report covers oil, gas, and dry hole costs, cost components, and overall costs.

Anderson, T.; Funk, V.

1986-03-24T23:59:59.000Z

385

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

386

Method for controlling directional drilling in response to horns detected by electromagnetic energy propagation resistivity measurements  

Science Conference Proceedings (OSTI)

For use in conjunction with an earth borehole drilling apparatus that includes: a drilling rig; a drill string operating from said drilling rig for drilling an earth borehole, said drill string including a bottom hole arrangement comprising a drill bit, a downhole resistivity measuring subsystem for measuring downhole formation resistivity near said bit by propagating electromagnetic energy into earth formations near said bit, receiving electromagnetic energy that has propagated through the formations and producing measurement signals that depend on the received signals; a method is described for directing the drilling of a well bore with respect to a geological bed boundary in said earth formations, comprising the steps of: producing from said measurement signals a recording of downhole formation resistivity as a function of borehole depth, determining the presence of a horn in said resistivity recording; and implementing a change in the drilling direction of said drill bit in response to said determination of the presence of a horn.

Luling, M.

1993-08-31T23:59:59.000Z

387

Economic analysis of shale gas wells in the United States  

E-Print Network (OSTI)

Natural gas produced from shale formations has increased dramatically in the past decade and has altered the oil and gas industry greatly. The use of horizontal drilling and hydraulic fracturing has enabled the production ...

Hammond, Christopher D. (Christopher Daniel)

2013-01-01T23:59:59.000Z

388

Review of the Drilling R and D Program at Sandia  

DOE Green Energy (OSTI)

Drilling projects conducted for the Division of Geothermal Energy (DGE) and the Office of Energy Research (OER), both of the Department of Energy (DOE), are described. The DGE Well Technology Program includes drilling, well completion, and high temperature logging instrumentation R and D for geothermal applications. Accomplishments to date include successful laboratory testing of the continuous chain drill and development of temperature, pressure, and flow sondes capable of operation at 275/sup 0/C. Efforts are also under way to develop high-temperature, high-performance bits, high-temperature drilling fluids, and high-temperature downhole motors. Bearings, seals, and lubricants for use in high-temperature bits and motors are also being developed and tested. Recent results are presented. An OER drilling experiment into a lava lake at Kilauea Iki, Hawaii, is being conducted. Materials and techniques for drilling into an active magma/hydrothermal system are in a preliminary phase of study.

Stoller, H.M.

1978-01-01T23:59:59.000Z

389

Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report  

Science Conference Proceedings (OSTI)

The objective of this project is to consider the enhanced recovery of petroleum from the Dundee Formation using horizontal wells. This report contains summaries of the following tasks: project management; reservoir characterization; database management; drilling; and technology transfer. Some of the highlights are: well and log data sets and production data sets for all 30 fields are now complete and are stored in the TerraSciences` database at WMU; tops have been picked on all formations in all wells; well location and formation tops data sets are also now complete; The GeoGraphix Exploration System (GES) software package was acquired this quarter and installed on a PC in the Subsurface Laboratory at MTU.

Wood, J.R.

1995-07-17T23:59:59.000Z

390

Underbalanced drilling in the Piceance basin. Final report, June 1997  

Science Conference Proceedings (OSTI)

Underbalanced drilling technology is established and fairly well understood in some areas in the U.S. such as Appalachia. The primary objective of this cooperative project in the Piceance Basin was to use underbalanced drilling technologies to reduce rates of penetration such that significant cost reductions could occur. Fluids evaluated included air/mist, stiff foams and aerated muds. Underbalanced drilling was successful particularly in the surface hole; however, heaving shales in the Wasatch section were problematic.

Lewis, C.A.; Graham, R.L.

1997-06-01T23:59:59.000Z

391

Observation Wells | Open Energy Information  

Open Energy Info (EERE)

Observation Wells Observation Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Observation Wells Details Activities (7) Areas (7) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Development Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Total dissolved solids, fluid pressure, flow rates, and flow direction Thermal: Monitors temperature of circulating fluids Dictionary.png Observation Wells: An observation well is used to monitor important hydrologic parameters in a geothermal system that can indicate performance, longevity, and transient processes. Other definitions:Wikipedia Reegle

392

Heavy crude and tar sands: Hydrocarbons for the 21st century. Volume 2, Reservoir behavior, drilling and production  

SciTech Connect

Volume 2 is devoted to heavy oil reservoir behavior, production, and the drilling and completion of wells to meet the special needs of these fascinating but difficult oils and bitumens. The volume begins with four papers describing approaches to the recovery of heavy oil and to two fields subject to different recovery mechanisms. Although most heavy oil fields are produced with the assistance of steam stimulation, which commenced in Venezuela, or steam flood, many other methods for the improvement of recovery are potentially applicable. The seven reports on pilot projects examine mostly the results of studies on the dominant thermal recovery methods - steam stimulation, steam flood, and in situ combustion. The behavior of reservoirs under development through use of horizontal wells is the subject of three reports, of vertical wells, nine papers. Much is still to be teamed concerning the relative advantages of these two distinctive methods of reservoir development. The 18 reports on drilling and production are of great importance to the science and engineering of heavy oil because of the problems heavy oil causes after it is induced to flow to the well bore. Artificial lifting of the oil has traditionally centered on the use of sucker rods, but other methods, such as chamber or cavity-pump lift may prove to be efficacious. Horizontal well drilling is a logical approach to maximizing the amount of reservoir exposed to the well bore but this entails special problems in bore-hole clean-up. Heavy oils, too, pose special, frequently very difficult gravel packing problems. Sand production with heavy oil has always posed both economic and technological difficulties and major effort is devoted to overcoming them, as evidenced by the reports in this section. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

Meyer, R.F. [ed.] [Geological Survey, Washington, DC (United States)

1991-12-31T23:59:59.000Z

393

Advanced Seismic While Drilling System  

SciTech Connect

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

394

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

395

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

396

Mechanical drill string jar  

SciTech Connect

An improved mechanical drill string jar is described that allows uninhibited telescoping movement to the normal drilling condition. The drill string jar consists of: (a) an elongated, generally cylindrical, body usable as a drill string element; (b) axial motion resistance means situated in the annular opening; (c) bias means operatively associated with at least one element of the splined pair to rotate the pair out of alignment when the splined pair is rotationally disengaged; (d) opposed cooperating surfaces on at least two of the spline teeth situated such that forced axial relative motion of the splined pair will produce opposed radial forces on the teeth; (e) means intrinsic to at least one element of the splined pair to permit resisted radial displacement of the spline teeth when forced axial relative motion occurs, to permit one element to move axially through the other; (f) cam surfaces on at least one of the teeth situated to force rotational alignment of the splined pair when telescoping movement is from a jarring condition toward the normal drilling condition; (g) relative rotation resistance means situated in the annular opening, structurally engaged with the pair of telescoping members such that relative rotation therebetween will be resisted; (h) striker and anvil means situated in the annular opening, operatively associated with the telescoping pair of elements, such that axial relative movement therebetween will be solidly stopped at the axial extreme condition; (i) a flow-through fluid channel means extending between the means to attach to the continuing drill string; and (j) seal means situated in the annular opening, operatively associated with the telescoping pair of members, to provide fluid tightness therebetween.

Buck, D.A.

1987-08-25T23:59:59.000Z

397

Deepwater drilling riser system  

Science Conference Proceedings (OSTI)

The principal focus of this paper is to discuss and summarize, from the manufacturer's perspective, the primary milestones in the development of the marine riser system used to drill in record water depths off the U.S. east coast. This riser system is unique in that it used advanced designs, material technology, and quality control to enable safe operation in water depths beyond the capability of conventional drilling riser systems. Experience and research have led to design improvements that are now being incorporated in new riser systems that have the potential of expanding the frontiers to increasingly deeper water.

Chastain, T.; Stone, D.

1986-08-01T23:59:59.000Z

398

Compendium of regulatory requirements governing underground injection of drilling waste.  

Science Conference Proceedings (OSTI)

Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

Puder, M. G.; Bryson, B.; Veil, J. A.

2002-11-08T23:59:59.000Z

399

Snubdrilling a new well in Venezuela  

Science Conference Proceedings (OSTI)

A new well was successfully drilled using a snubbing jack. The drill bit was rotated using a rotary table, downhole motors and combination of the two. Expected high-pressure zones prompted this use of ``snubdrilling.`` The primary objective was to drill a vertical well through underlying sands and gain information about formation pressures. This data would aid in the drilling of a relief well using a conventional drilling rig. The secondary objective was to relieve pressure by putting this new well on production. In addition to special high-pressure drilling jobs, there are other drilling applications where snubbing jacks are a feasible alternative to conventional rotary drilling rigs or coiled tubing units. Slimhole, underbalanced and flow drilling, and sidetracking of existing wells are excellent applications for snubdrilling. Advantages of snubdrilling vs. coiled tubing drilling, include ability to rotate drillstrings, use high-torque downhole motors, pump at high rates and pressures, apply significant overpull in case of stuck pipe, and run casing and liners without rigging down. Shortcomings of drilling with snubbing jacks compared to coiled tubing are the need to stop circulation while making new connections and inability to run continuous cable inside workstrings.

Aasen, J.

1995-12-01T23:59:59.000Z

400

Combination drilling and skiving tool  

DOE Patents (OSTI)

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z