National Library of Energy BETA

Sample records for horizontal irradiance ghi

  1. Identification of periods of clear sky irradiance in time series of GHI measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reno, Matthew J.; Hansen, Clifford W.

    2016-01-18

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less

  2. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decompositionmore » models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.« less

  3. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  4. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  5. Kenya Hourly DNI, GHI and Diffuse Solar Data - Datasets - OpenEI...

    Open Energy Info (EERE)

    Kenya Hourly DNI, GHI and Diffuse Solar Data Abstract Each data file is a set of hourly values of solar radiation (DNI, GHI and diffuse) and meteorological elements for a 1-year...

  6. Production of high Resoulution Irradiance Data for Central America...

    Open Energy Info (EERE)

    irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua. Much of our initial effort focused on building up...

  7. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    SciTech Connect (OSTI)

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurements taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)

  8. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    SciTech Connect (OSTI)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf; Schmid, Beat; Vogelmann, A. M.; Wood, John

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no moving parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5 of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earths surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.

  9. File:NREL-bhutan-10kmsolar-ghi.pdf | Open Energy Information

    Open Energy Info (EERE)

    search File File history File usage Bhutan - Annual Global Horizontal Solar Radiation Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  10. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Energy GHI Global horizontal irradiance ISIS Integrated Surface Irradiance Study MIDC ... resolution. 13 ABQ, Albuquerque, NM (ISIS) 35.04 106.62 Measured data at 3-minute ...

  11. SAND2014-4277C © Copyright 2013, First Solar, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    277C © Copyright 2013, First Solar, Inc. 2 © Copyright 2013, First Solar, Inc. Summary * This is a preview of work of forthcoming publications (PVSC 40 oral presentation and paper, Sandia technical report) * Estimating plane of array (POA) irradiance often requires a sequence of models: - Decomposition: GHI to direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) - Transposition: GHI, DNI and DHI to total irradiance in POA * Many choices are available for each step - E.g.,

  12. ARM - Measurement - Horizontal wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  13. Horizontal Plate Plate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unknown Title: Horizontal Plate Plate GeospatialDataPresentationForm: vector digital data OnlineLinkage:

  14. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  15. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  16. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J. (Lynchburg, VA)

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  17. Results of the Second Diffuse Horizontal Irradiance IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurement that is multiplied by the cosine of the solar zenith angle to get the direct component normal to the plane of incidence. This is arguably the best calibration...

  18. Sub-Hour Solar Data for Power System Modeling From Static Spatial Variability Analysis: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Ibanez, E.; Brinkman, G.; Lew, D.

    2012-12-01

    High penetration renewable integration studies need high quality solar power data with spatial-temporal correlations that are representative of a real system. This paper will summarize the research relating sequential point-source sub-hour global horizontal irradiance (GHI) values to static, spatially distributed GHI values. This research led to the development of an algorithm for generating coherent sub-hour datasets that span distances ranging from 10 km to 4,000 km. The algorithm, in brief, generates synthetic GHI values at an interval of one-minute, for a specific location, using SUNY/Clean Power Research, satellite-derived, hourly irradiance values for the nearest grid cell to that location and grid cells within 40 km.

  19. Industry survey for horizontal wells. Final report

    SciTech Connect (OSTI)

    Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  20. Solar Radiometric Data Quality Assessment of SIRS, SKYRAD and GNDRAD Measurements (Poster)

    SciTech Connect (OSTI)

    Habte, A.; Stoffel, T.; Reda, I.; Wilcox, S.; Kutchenreiter, M.; Gotseff, P.; Anderberg, M.

    2014-03-01

    Solar radiation is the driving force for the earth's weather and climate. Understanding the elements of this dynamic energy balance requires accurate measurements of broadband solar irradiance. Since the mid-1990's the ARM Program has deployed pyrheliometers and pyranometers for the measurement of direct normal irradiance (DNI), global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI), and upwelling shortwave (US) radiation at permanent and mobile field research sites. This poster summarizes the basis for assessing the broadband solar radiation data available from the SIRS, SKYRAD, and GNDRAD measurement systems and provides examples of data inspections.

  1. Horizontal Pretreatment Reactor System (Poster), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diff erent pretreatment chemistry residence time combinations are possible using these multiple horizontal-tube reactors * Each tube is indirectly and directly steam heated to...

  2. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect (OSTI)

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  3. ARM - Measurement - Longwave narrowband upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    narrowband upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband upwelling irradiance The total radiant energy, in a narrow band of wavelengths longer than approximately 4 {mu}m, passing through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  4. ARM - Measurement - Shortwave narrowband diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse downwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is

  5. ARM - Measurement - Shortwave narrowband diffuse upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband diffuse upwelling irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is

  6. ARM - Measurement - Shortwave narrowband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct downwelling irradiance The direct unscattered radiant energy from the Sun, in a narrow band of wavelengths shorter than approximately 4 {mu}m, passing through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for

  7. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  8. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  9. ARM - Measurement - Shortwave spectral diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral diffuse downwelling irradiance The rate at which spectrally resolved radiant energy at wavelengths shorter than approximately 4 {mu}m, that has been scattered in the atmosphere at least once, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above

  10. Consorcio Horizonte Asja | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Consorcio Horizonte Asja Place: Brazil Product: Brazil-based joint venture between two subsidiaries of Asja.biz developing a 4.5MW biogas plant....

  11. Shear horizontal surface acoustic wave microsensor for Class...

    Office of Scientific and Technical Information (OSTI)

    Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Citation Details In-Document Search Title: Shear horizontal surface acoustic wave...

  12. Successful horizontal completions require an integrated approach

    SciTech Connect (OSTI)

    Richard, B.; Smejkal, K.; Penberthy, W. Jr.

    1997-01-01

    While a perfect well completion may not exist, depleting a hydrocarbon resource at a sustained high rate--without a workover--is the ultimate goal. Unfortunately, many horizontal well completions fail to achieve this due to wellbore damage or loss of reservoir pressure. These conditions manifest themselves in reduced production rates, extended well life and reduced profitability. Standard completion techniques are not always compatible with each other for site specific well applications. The combination of two incompatible technologies or slight changes in a completion procedure may negatively impact productivity. Hence, the most successful horizontal completion results are obtained using a compatible integrated system approach--an approach that carefully combines the best completion tools and processes to deliver an undamaged well completed at the lowest possible cost. After studying the compatibilities of various drill-in fluids, screens, filter cakes and gravel packs, recommended procedures are presented for successfully completing horizontal wells.

  13. File:NREL-africa-glo.pdf | Open Energy Information

    Open Energy Info (EERE)

    Description Africa - Annual Global Horizontal Solar Radiation (PDF) Sources National Renewable Energy Laboratory Authors Donna Heimiller Related Technologies Solar, Solar-GHI,...

  14. File:SWERA-247.pdf | Open Energy Information

    Open Energy Info (EERE)

    navigation, search File File history File usage Solar: monthly global horizontal (GHI) GIS data at 40km resolution for Bangladesh from NREL Size of this preview: 776 600...

  15. File:SWERA-277.pdf | Open Energy Information

    Open Energy Info (EERE)

    horizontal (GHI) map at 40km resolution for Southern Mexico (Oaxaca, Veracruz, and Chiapas) from NREL Size of this preview: 776 600 pixels. Full resolution (1,650 ...

  16. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  17. Horizontal subsea trees allow frequent deepwater workovers

    SciTech Connect (OSTI)

    Krenek, M.; Hall, G.; Sheng, W.Z.

    1995-05-01

    Horizontal subsea wellheads have found application in the Liuhua oil field in the South China Sea. These trees allow installation and retrieval of downhole equipment through the tree without having to disturb the tree or its external connections to flow lines, service lines, or control umbilicals. This access to the well is important because the Liuhua wells will be produced with electrical submersible pumps (ESPs), which may have relatively short intervals between maintenance, leading to frequent well work. The wells will be completed subsea in about 300 m of water. The large bore, horizontal trees allow all downhole equipment to be pulled without removal of the subsea tree. This wellhead configuration also provides well control and vertical access to downhole equipment through a conventional marine drilling riser and subsea blowout preventer (BOP), eliminating the need for costly specialized completion risers. Another benefit of the horizontal tree is its extremely compact profile with a low number of valves for well control. Valve size and spacing are decoupled from the size and bore spacing of the tubing hanger. The tree`s low profile geometry reduces costs of manufacturing the tree and framework and optimize load transfer to the wellhead.

  18. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Pareg, Walter F. (Palos Park, IL)

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  19. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1995-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  20. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Praeg, W.F.

    1995-01-31

    An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

  1. Planning and well evaluations improve horizontal drilling results

    SciTech Connect (OSTI)

    Hovda, S. )

    1994-10-31

    A systematic approach, including better planning and performance evaluation, improved the horizontal drilling efficiency of a multiwell program in the Oseberg field in the North Sea. The horizontal drilling program in the Oseberg field is one of the most comprehensive horizontal drilling programs in the North Sea. The present horizontal drilling program consists of 14 oil producers from the C platform and 18 from the B platform. Total horizontal displacement varies from around 1,500 m to 5,540 m. The lengths of the horizontal section vary from 600 m to 1,500 m. The paper discusses will planning, directional drilling, drilling problems with coal seams and orientation, true vertical depth control, horizontal liner cement, spacer system, cement slurries, job execution, and results.

  2. Passive magnetic bearing for a horizontal shaft

    DOE Patents [OSTI]

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  3. Genome-wide experimental determination of barriers to horizontal gene

    Office of Scientific and Technical Information (OSTI)

    transfer (Journal Article) | SciTech Connect Genome-wide experimental determination of barriers to horizontal gene transfer Citation Details In-Document Search Title: Genome-wide experimental determination of barriers to horizontal gene transfer Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we

  4. MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine ...

    Open Energy Info (EERE)

    Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden...

  5. Zero Discharge Water Management for Horizontal Shale Gas Well...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  6. MHK ISDB/Instruments/TRDI Workhorse Horizontal ADCP | Open Energy...

    Open Energy Info (EERE)

    Horizontal ADCP < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help Under...

  7. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  8. Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling

    SciTech Connect (OSTI)

    Deshpande, A.; Flemings, P.B. ); Huang, J. )

    1996-01-01

    A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

  9. Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling

    SciTech Connect (OSTI)

    Deshpande, A.; Flemings, P.B.; Huang, J.

    1996-12-31

    A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T & N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

  10. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  11. Steerable vertical to horizontal energy transducer for mobile robots

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  12. Surface Radiation from GOES: A Physical Approach; Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Wilcox, S.

    2012-09-01

    Models to compute Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) have been in development over the last 3 decades. These models can be classified as empirical or physical, based on the approach. Empirical models relate ground based observations with satellite measurements and use these relations to compute surface radiation. Physical models consider the radiation received from the earth at the satellite and create retrievals to estimate surface radiation. While empirical methods have been traditionally used for computing surface radiation for the solar energy industry the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from NOAA that computes GHI using the visible and infrared channel measurements from the GOES satellites. GSIP uses a two-stage scheme that first retrieves cloud properties and uses those properties in a radiative transfer model to calculate surface radiation. NREL, University of Wisconsin and NOAA have recently collaborated to adapt GSIP to create a 4 km GHI and DNI product every 30 minutes. This paper presents an outline of the methodology and a comprehensive validation using high quality ground based solar data from the National Oceanic and Atmospheric Administration (NOAA) Surface Radiation (SURFRAD) (http://www.srrb.noaa.gov/surfrad/sitepage.html) and Integrated Surface Insolation Study (ISIS) http://www.srrb.noaa.gov/isis/isissites.html), the Solar Radiation Research Laboratory (SRRL) at National Renewable Energy Laboratory (NREL), and Sun Spot One (SS1) stations.

  13. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect (OSTI)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  14. A Model For The Transient Temperature Effects Of Horizontal Fluid...

    Open Energy Info (EERE)

    Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For The...

  15. Pinellas Site Uses Horizontal Wells for Enhanced Bioremediation |

    Energy Savers [EERE]

    Department of Energy Pinellas Site Uses Horizontal Wells for Enhanced Bioremediation Pinellas Site Uses Horizontal Wells for Enhanced Bioremediation January 14, 2016 - 5:44pm Addthis What does this project do? Goal 1. Protect Human Health and the Environment IMG_5034.jpg Directional drilling rig at the STAR Center. Operations to develop and manufacture components at the former Pinellas Plant in Florida during the nation's Cold War-era nuclear weapons program, released solvents to subsurface

  16. Optimal measurement of surface shortwave irradiance using current instrumentation -- the ARM experience

    SciTech Connect (OSTI)

    Michalsky, J.; Rubes, M.; Stoffel, T.; Wesley, M.; Splitt, M.; DeLuisi, J.

    1997-03-01

    Shortwave (solar) measurements of surface irradiance for clear sky conditions disagree with a number of different models. Betts used the European Center for Medium-range Forecasts (ECMWF) shortwave model to calculate surface irradiance that were 5-10 percent higher than measurements. Wild used a different formulation of the ECMWF shortwave model, but found that the model overpredicted clear-sky shortwave and average of 3 percent. Ding and Wang used data from the Atmospheric Radiation Measurement (ARM) program and found that the GENESIS GCM shortwave model, likewise, overpredicted clear-sky irradiance by about 4 percent. To help resolve the measurement dilemma, reference instruments were deployed in April 1996 at the Southern Great Plains ARM site central facility very near the shortwave measurements. The rest of the paper describes the experiment undertaken to ascertain total horizontal shortwave irradiance at the surface, including a separation of the direct normal and diffuse horizontal components. Results and a discussion of same concludes the paper.

  17. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  18. Automated Tracing of Horizontal Neuron Processes During Retinal Development

    SciTech Connect (OSTI)

    Kerekes, Ryan A [ORNL; Martins, Rodrigo [St. Jude Children's Research Hospital; Dyer, Michael A [ORNL; Gleason, Shaun Scott [ORNL; Karakaya, Mahmut [ORNL; Davis, Denise [St. Jude Children's Research Hospital

    2011-01-01

    In the developing mammalian retina, horizontal neurons undergo a dramatic reorganization oftheir processes shortly after they migrate to their appropriate laminar position. This is an importantprocess because it is now understood that the apical processes are important for establishing theregular mosaic of horizontal cells in the retina and proper reorganization during lamination isrequired for synaptogenesis with photoreceptors and bipolar neurons. However, this process isdifficult to study because the analysis of horizontal neuron anatomy is labor intensive and time-consuming. In this paper, we present a computational method for automatically tracing the three-dimensional (3-D) dendritic structure of horizontal retinal neurons in two-photon laser scanningmicroscope (TPLSM) imagery. Our method is based on 3-D skeletonization and is thus able topreserve the complex structure of the dendritic arbor of these cells. We demonstrate theeffectiveness of our approach by comparing our tracing results against two sets of semi-automatedtraces over a set of 10 horizontal neurons ranging in age from P1 to P5. We observe an averageagreement level of 81% between our automated trace and the manual traces. This automatedmethod will serve as an important starting point for further refinement and optimization.

  19. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect (OSTI)

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  20. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  1. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  2. A semiparametric spatio-temporal model for solar irradiance data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.

    2016-03-01

    Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less

  3. Comminuting irradiated ferritic steel

    DOE Patents [OSTI]

    Bauer, Roger E. (Kennewick, WA); Straalsund, Jerry L. (Kennewick, WA); Chin, Bryan A. (Auburn, AL)

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  4. Irradiation Creep in Graphite

    SciTech Connect (OSTI)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  5. Horizontal-well pilot waterflood tests shallow, abandoned field

    SciTech Connect (OSTI)

    McAlpine, J.L. ); Joshi, S.D. )

    1991-08-05

    This paper reports on the suitability of using horizontal wells in a waterflood of shallow, partially depleted sands which will be tested in the Jennings field in Oklahoma. The vertical wells drilled in the Jennings field intersect several well-known formations such as Red Fork, Misner, and Bartlesville sand. Most of these formations have been produced over a number of years, and presently no wells are producing in the field. In the 1940s, 1950s, and 1960s, wells were drilled on 10-acre spacing, and the last well was plugged in 1961. The field was produced only on primary production and produced approximately 1 million bbl of oil. Because the field was not waterflooded, a large potential exists to produce from the field using secondary methods. To improve the economics for the secondary process, a combination of horizontal and vertical wells was considered.

  6. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  7. Horizontal film balance having wide range and high sensitivity

    DOE Patents [OSTI]

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  8. Horizontal film balance having wide range and high sensitivity

    DOE Patents [OSTI]

    Abraham, Bernard M. (Oak Park, IL); Miyano, Kenjiro (Downers Grove, IL); Ketterson, John B. (Evanston, IL)

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  9. Horizontal film balance having wide range and high sensitivity

    DOE Patents [OSTI]

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  10. File:SWERA-202.pdf | Open Energy Information

    Open Energy Info (EERE)

    File File history File usage Solar: monthly and annual average global horizontal (GHI) GIS data at 40km resolution for Sri Lanka from NREL Size of this preview: 776 600...

  11. File:SWERA-253.pdf | Open Energy Information

    Open Energy Info (EERE)

    File File history File usage Solar: monthly and annual average global horizontal (GHI) GIS data at 40km resolution for Nepal from NREL Size of this preview: 776 600 pixels....

  12. File:SWERA-159.pdf | Open Energy Information

    Open Energy Info (EERE)

    File usage Solar: monthly average global horizontal (GHI) map at 40km resolution for Cuba from NREL Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  13. File:SWERA-214.pdf | Open Energy Information

    Open Energy Info (EERE)

    usage Solar: annual average global horizontal (GHI) GIS data at 10km resolution for Cuba from SUNY Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  14. File:SWERA-212.pdf | Open Energy Information

    Open Energy Info (EERE)

    Solar: monthly global horizontal (GHI) GIS data at 10km resolution for Central America from NREL Size of this preview: 776 600 pixels. Full resolution (1,650 1,275...

  15. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  16. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony (Albuquerque, NM)

    1995-01-01

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  17. Productivity improvement by frontier horizontal drilling in Italy

    SciTech Connect (OSTI)

    Schenato, A.

    1995-12-31

    Italian domestic activity on horizontal wells has been specially addressed to carbonate reservoir and specifically targeted to re-entry in existing wells. The speech will focus on the specific experience matured in frontier applications in Italy, from 1989 with the short radius drain holes in Sicily, throughout world record deep water short radius in the southern part of Adriatic sea and depth world record medium radius in a HP/HT reservoir in the Po Valley. Production results will be reported as well as the achieved technological aspects.

  18. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  19. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  20. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  1. IDENTIFYING BLUE HORIZONTAL BRANCH STARS USING THE z FILTER

    SciTech Connect (OSTI)

    Vickers, John J.; Grebel, Eva K.; Huxor, Avon P.

    2012-04-15

    In this paper we present a new method for selecting blue horizontal branch (BHB) candidates based on color-color photometry. We make use of the Sloan Digital Sky Survey z band as a surface gravity indicator and show its value for selecting BHB stars from quasars, white dwarfs, and main-sequence A-type stars. Using the g, r, i, and z bands, we demonstrate that extraction accuracies on a par with more traditional u, g, and r photometric selection methods may be achieved. We also show that the completeness necessary to probe major Galactic structure may be maintained. Our new method allows us to efficiently select BHB stars from photometric sky surveys that do not include a u-band filter such as the Panoramic Survey Telescope and Rapid Response System.

  2. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOE Patents [OSTI]

    Malba, Vincent (Livermore, CA); Bernhardt, Anthony F. (Berkeley, CA)

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  3. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    SciTech Connect (OSTI)

    Janjai, Serm

    2010-09-15

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derived global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)

  4. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene

    Office of Scientific and Technical Information (OSTI)

    Transfer (Journal Article) | SciTech Connect Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer Citation Details In-Document Search Title: Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the

  5. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.

  6. Lifting surface performance analysis for horizontal axis wind turbines

    SciTech Connect (OSTI)

    Kocurek, D.

    1987-06-01

    This report describes how numerical lifting-surface theory is applied to the calculation of a horizontal-axis wind turbine's aerodynamic characteristics and performance. The report also describes how such an application is implemented as a computer program. The method evolved from rotary-wing and helicopter applications and features a detailed, prescribed wake. The wake model extends from a hovering-rotor experimental generalization to include the effect of the windmill brake state on the radial and axial displacement rates of the trailing vortex system. Performance calculations are made by coupling the lifting-surface circulation solution to a blade-element analysis that incorporates two-dimensional airfoil characteristics as functions of angle of attack and Reynolds number. Several analytical stall models are also provided to extend the airfoil characteristics beyond the limits of available data. Although this work focuses on the steady-performance problem, the method includes ways to investigate the effects of wind-shear profile, tower shadow, and off-axis shaft alignment. Correlating the method to measured wind-turbine performance, and comparing it to blade-element momentum theory calculations, validate and highlight the extreme sensitivity of predictions to the quality of early post-stall airfoil behavior.

  7. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  8. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  9. Horizontally scaling dChache SRM with the Terracotta platform

    SciTech Connect (OSTI)

    Perelmutov, T.; Crawford, M.; Moibenko, A.; Oleynik, G.; /Fermilab

    2011-01-01

    The dCache disk caching file system has been chosen by a majority of LHC experiments Tier 1 centers for their data storage needs. It is also deployed at many Tier 2 centers. The Storage Resource Manager (SRM) is a standardized grid storage interface and a single point of remote entry into dCache, and hence is a critical component. SRM must scale to increasing transaction rates and remain resilient against changing usage patterns. The initial implementation of the SRM service in dCache suffered from an inability to support clustered deployment, and its performance was limited by the hardware of a single node. Using the Terracotta platform, we added the ability to horizontally scale the dCache SRM service to run on multiple nodes in a cluster configuration, coupled with network load balancing. This gives site administrators the ability to increase the performance and reliability of SRM service to face the ever-increasing requirements of LHC data handling. In this paper we will describe the previous limitations of the architecture SRM server and how the Terracotta platform allowed us to readily convert single node service into a highly scalable clustered application.

  10. Satellite-Based Solar Resource Data Sets for India 2002-2012

    SciTech Connect (OSTI)

    Sengupta, M.; Perez, R.; Gueymard, C.; Anderberg, M.; Gotseff, P.

    2014-02-01

    A new 10-km hourly solar resource product was created for India. This product was created using satellite radiances from the Meteosat series of satellites. The product contains global horizontal irradiances (GHI) and direct normal irradiances (DNI) for the period from 2002 to 2011. An additional solar resource data set covering the period from January 2012 to June 2012 was created solely for validation because this period overlaps ground measurements that were made available from the Indian Ministry of New and Renewable Energy's (MNRE's) National Institute for Solar Energy for five stations that are part of MNRE's solar resource network. These measurements were quality checked using the SERI QC software and used to validate the satellite product. A comparison of the satellite product to the ground measurements for the five stations shows good agreement. This report also presents a comparison of the new version of solar resource data to the previous version, which covered the period from 2002 to 2008.

  11. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  12. New design of a guidelineless horizontal tree for deepwater ESP wells

    SciTech Connect (OSTI)

    Olijnik, L.A.; Vigesa, S.; Paula, M.T.R.; Figueiredo, M.W. de; Rutherford, H.W.

    1996-12-31

    This paper presents the new design of a horizontal tree for deepwater installation, as a key piece of equipment for application of a Electrical Submersible Pump in Subsea Wells. The production from subsea wells equipped with ESPs is a reality since October/94 with the first installation in Campos Basin. The horizontal tree adds simplicity to workover operations expected to be two to three times more frequency when compared to natural flow or gas lifted wells. The design and fabrication of the deepwater horizontal tree is a result of a Technological Cooperation Agreement. The design incorporates new solutions, mainly in diverless guidelineless connection of power cables and flowlines using the vertical connection system. The guidelineless horizontal subsea tree is fully prepared to be integrated on the new manifolds being designed for the Brazilian deepwater oilfields. The applications of the horizontal trees in subsea ESP wells reduce intervention cost, increasing economical attractiveness and scenarios for the applications of this new boosting technology.

  13. Coiled tubing workover saves horizontal well in Lake Maracaibo

    SciTech Connect (OSTI)

    Lizak, K.; Patterson, J.; Suarez, D.; Salas, J.

    1996-12-31

    A slotted liner horizontal completion became stuck while being run. Inflatable packers were to be used to isolate the productive interval from a water-bearing, unconsolidated sand in the curved section of this well. While personnel were deciding how to cement the well, the liner was left in the hole with the inflatable packers unset, and the production tubing was run. Coiled tubing was used to log the well, isolate the productive interval, and remove damage to restore well productivity. Personnel considered all possible options, and a thorough decision-making process guided the workover. Because of severe lost-circulation problems, extensive ``what if`` scenarios were made and updated daily for the engineers on location. Service company and oil company personnel worked together to guarantee the job designs were practical and did not exceed the limits of the equipment on location. Computer simulations of all operations were run to allow corrective action to be taken if unusual circumstances arose. All fluids were thoroughly laboratory tested and witnessed by oil company personnel to ensure job success. Problems on the job included lost circulation, locating the exact positions of the packers and water zone, ensuring correct cement placement, removing mud and workover fluids without damaging the squeeze, and bad weather on Lake Maracaibo. Advantages and disadvantages of all the solutions that were considered are included to assist anyone in a similar situation. Post-job oil production has stabilized at 900 BOPD with no water or sand production. Careful job planning and the versatility of coiled tubing saved this well and proved economical with an estimated payout of 33 days, assuming a price of $12 per barrel of oil.

  14. Shear horizontal surface acoustic wave microsensor for Class A viral and

    Office of Scientific and Technical Information (OSTI)

    bacterial detection. (Technical Report) | SciTech Connect Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Citation Details In-Document Search Title: Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection

  15. Updated flux information for neutron scattering and irradiation facilities at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.; Sengupta, S.; Greenwood, L.R.; Farrell, K.

    1997-08-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. While most reactors attempt to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9, used for neutron scattering and capture reactions, supporting physics, chemistry and biology experiments. All horizontal beam tubes were built tangential to the direction of the emerging neutrons, except for the H-2 beam tube, which looks directly at the core and has been used for neutron cross section measurements utilizing fast neutrons and for the TRISTAN fission product studies. In recent years, there have been some beam modifications and new instrumentation introduced at the HFBR. A high resolution neutron powder diffractometer instrument is now operating with a resolution of 5 {times} 10{sup {minus}4} at horizontal beam line H-1. To study scattering from liquid surfaces, a neutron reflection spectrometer was introduced on the CNF beam line at H-9. In the past year, a fourth beam line has been added to the CNF line at H-9. The existing beam plug at the H-6 beam line has recently been removed and a new plug, which will feature super mirrored surfaces, is now being installed. Last year, the vertical beam thimble, V-13, a fixed port filled with thirty year old samples used for HFBR material surveillance studies was replaced by a new thimble and charging station at the core edge creating an irradiation facility to substitute for the original V-13. A neutron dosimetry program has begun to measure and calculate the energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  16. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    SciTech Connect (OSTI)

    Zhao, L.; Inoue, M.; Komino, T.; Kim, J.-H.; Ribierre, J. C. E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research , Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency , ERATO, Adachi Molecular Exciton Engineering Project, c and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4?-bis(N-carbazolyl)-1,1?-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  17. Analysis and synthesis of the variability of irradiance and PV power time series with the wavelet transform

    SciTech Connect (OSTI)

    Perpinan, O.; Lorenzo, E.

    2011-01-15

    The irradiance fluctuations and the subsequent variability of the power output of a PV system are analysed with some mathematical tools based on the wavelet transform. It can be shown that the irradiance and power time series are nonstationary process whose behaviour resembles that of a long memory process. Besides, the long memory spectral exponent {alpha} is a useful indicator of the fluctuation level of a irradiance time series. On the other side, a time series of global irradiance on the horizontal plane can be simulated by means of the wavestrapping technique on the clearness index and the fluctuation behaviour of this simulated time series correctly resembles the original series. Moreover, a time series of global irradiance on the inclined plane can be simulated with the wavestrapping procedure applied over a signal previously detrended by a partial reconstruction with a wavelet multiresolution analysis, and, once again, the fluctuation behaviour of this simulated time series is correct. This procedure is a suitable tool for the simulation of irradiance incident over a group of distant PV plants. Finally, a wavelet variance analysis and the long memory spectral exponent show that a PV plant behaves as a low-pass filter. (author)

  18. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOE Patents [OSTI]

    Summers, David A. (Rolla, MO); Barker, Clark R. (Rolla, MO); Keith, H. Dean (Rolla, MO)

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  19. Tritium Related Material Research -Irradiation Effect on Isotropic...

    Office of Environmental Management (EM)

    Related Material Research -Irradiation Effect on Isotropic Graphite Utilizing Heavy Ion-Irradiation- Tritium Related Material Research -Irradiation Effect on Isotropic Graphite...

  20. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (HFIR). Irradiation of the capsules was conducted for post-irradiation examination (PIE) metallography. PDF icon Neutron Irradiation of Hydrided Cladding Material in HFIR...

  1. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael (El Sobrante, CA)

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  2. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  3. Hurricanes in an Aquaplanet World: Implications of the Impacts of External Forcing and Model Horizontal Resolution

    SciTech Connect (OSTI)

    Li, Fuyu; Collins, William D.; Wehner, Michael F.; Leung, Lai-Yung R.

    2013-06-02

    High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, and mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.

  4. Low-drag electrical-contact arrangement for maintaining continuity between horizontally movable members

    DOE Patents [OSTI]

    Brown, R.J.; Gerth, H.L.; Robinson, S.C.

    1981-01-23

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  5. Low-drag electrical contact arrangement for maintaining continuity between horizontally movable members

    DOE Patents [OSTI]

    Brown, R. Jack (Clinton, TN); Gerth, Howard L. (Knoxville, TN); Robinson, Samuel C. (Clinton, TN)

    1982-01-01

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  6. Statistical criteria for characterizing irradiance time series.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2010-10-01

    We propose and examine several statistical criteria for characterizing time series of solar irradiance. Time series of irradiance are used in analyses that seek to quantify the performance of photovoltaic (PV) power systems over time. Time series of irradiance are either measured or are simulated using models. Simulations of irradiance are often calibrated to or generated from statistics for observed irradiance and simulations are validated by comparing the simulation output to the observed irradiance. Criteria used in this comparison should derive from the context of the analyses in which the simulated irradiance is to be used. We examine three statistics that characterize time series and their use as criteria for comparing time series. We demonstrate these statistics using observed irradiance data recorded in August 2007 in Las Vegas, Nevada, and in June 2009 in Albuquerque, New Mexico.

  7. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect (OSTI)

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric transducer and two magnetostrictive transducers have demonstrated reliable operation under irradiation. The irradiation is ongoing.

  8. RERTR-13 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; M. A. Lillo; G. S. Chang; D. M. Wachs; G. A. Roth; N. E. Woolstenhulme

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  9. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    SciTech Connect (OSTI)

    Kelkar, Mohan; Liner, Chris; Kerr, Dennis

    1999-10-15

    This final report describes the progress during the six year of the project on ''Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance.'' This report is funded under the Department of Energy's (DOE's) Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially-dominated deltaic deposits. The project involves using an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The project was divided into two budget periods. In the first budget period, many modern technologies were used to develop a detailed reservoir management plan; whereas, in the second budget period, conventional data was used to develop a reservoir management plan. The idea was to determine the cost effectiveness of various technologies in improving the performance of mature oil fields.

  10. High horizontal movements in longwall gate roads controlled by cable support systems

    SciTech Connect (OSTI)

    Dolinar, D.R.; Tadolini, S.C.; Blackwell, D.V.

    1996-12-01

    Controlling coal mine roofs subjected to high-horizontal stress conditions has always been difficult and uncertain. Traditional supports such as wooden cribs and posts, concrete donut cribs, and standing supports collapse and fail when the roof and floor move horizontally as mining progresses. The former U.S. Bureau of Mines (USBM) (currently the U.S. Department of Energy (DOE)), in cooperation with Western Fuels-Utah, Incorporated, conducted research to provide an alternative for traditional secondary support systems in a 3-entry gate road system subjected to high horizontal movements. The support system used in several other coal mine operations, consisted of internal high-strength galvanized resin-grouted cable supports. The system virtually eliminates the necessity for external crib, timber, or concrete supports. The support system consisted of 2.4 m (8 ft) full-column resin grouted bolts and 4.8 m (16 ft) long cable supports installed in conjunction with wire mesh and {open_quotes}Monster-Mats.{close_quotes} Cable loading and roof deformations were monitored to evaluate the behavior of the immediate and main roofs during first and second panel extractions. Additionally, cable trusses were installed on the longwall headgate to protect the coal conveyance system from roof and pillar falls created by the formation of cutters and gutters. The test results indicated that the designed support system successfully maintained the roof during the extraction of two longwall panels and dramatically reduced the cost of secondary support. This paper describes the theory of high-horizontal roof movements, the advantages of vertical cable supports and cable trusses, and presents the roof and cable measurements made to assess the support performance during longwall retreat mining.

  11. Some Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction It's a well-known fact that the contribution atmospheric aerosol makes in the total extinction of radiation in calculations and models of radiation must be considered; the quantitative measure of this contribution is the aerosol optical thickness of the atmosphere. The

  12. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOE Patents [OSTI]

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  13. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  14. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  15. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  16. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  17. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Bakersfield, CA)

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  18. Irradiation preservation of seafood: Literature review

    SciTech Connect (OSTI)

    Molton, P.M.

    1987-10-01

    The application of gamma-irradiation for extending the shelf life of seafood has been of interest for many years. This report reviews a number of studies on seafood irradiation conducted over the past several years. Topics covered include seafood irradiation techniques and dosages, species applicability and differences, the effects of packaging on seafood preservation, and changes in organoleptic acceptability as a result of irradiation. Particular attention is given to radiation effects (likely and unlikely) of concern to the public. These include the potential for generation of toxic chemical products, botulinum toxin production, and other health concerns. No scientifically defensible evidence of any kind was found for any harmful effect of irradiation of seafoods at the doses being considered (less than 300 krad), and all indications are that irradiation is an acceptable and needed additional tool for seafood preservation. 49 refs., 14 figs., 14 tabs.

  19. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Office of Environmental Management (EM)

    Fuels Examination Laboratory - April 2015 April 2015 Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle...

  20. A New Solar Irradiance Reference Spectrum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Solar Irradiance Reference Spectrum Pilewskie, Peter University of Colorado Fontenla, Juan LASP University of Colorado Harder, Jerry LASP University of Colorado Category:...

  1. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    SciTech Connect (OSTI)

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  2. Horizontal slim-hole drilling with coiled tubing; An operator's experience

    SciTech Connect (OSTI)

    Ramos, A.B. Jr.; Faahel, R.A.; Chaffin, M.G.; Pulis, K.H. )

    1992-10-01

    What is believed to be the first horizontal well drilled with directionally controlled coiled tubing recently was completed in the Austin Chalk formation. an existing well was sidetracked out of 4 1/2-in. casing with a conventional whipstock. an average build rate of 15[degrees]/100 ft was achieved in the curve, and a 1,458-ft vertical section was drilled with 2-in. coiled tubing, downhole mud motors, wireline steering tools, a mechanical downhole orienting tool, and 3 7/8-in. bits. This paper discusses the orienting and directional tools and techniques developed during this operation. It also describes improvements made for the second well.

  3. AGR-1 Post Irradiation Examination Final Report

    SciTech Connect (OSTI)

    Demkowicz, Paul Andrew

    2015-08-01

    The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building on the as-fabricated fuel characterization and irradiation data. In addition to the extensive volume of results generated, the work also resulted in a number of novel analysis techniques and lessons learned that are being applied to the examination of fuel from subsequent TRISO fuel irradiations. This report provides a summary of the results obtained as part of the AGR-1 PIE campaign over its approximately 5-year duration.

  4. RERTR-7 Irradiation Summary Report

    SciTech Connect (OSTI)

    D. M. Perez; M. A. Lillo; G. S. Chang; G. A. Roth; N. E. Woolstenhulme; D. M. Wachs

    2011-12-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-7A, was designed to test several modified fuel designs to target fission densities representative of a peak low enriched uranium (LEU) burnup in excess of 90% U-235 at peak experiment power sufficient to generate a peak surface heat flux of approximately 300 W/cm2. The RERTR-7B experiment was designed as a high power test of 'second generation' dispersion fuels at peak experiment power sufficient to generate a surface heat flux on the order of 230 W/cm2.1 The following report summarizes the life of the RERTR-7A and RERTR-7B experiments through end of irradiation, including as-run neutronic analyses, thermal analyses and hydraulic testing results.

  5. SU-E-T-376: 3-D Commissioning for An Image-Guided Small Animal Micro- Irradiation Platform

    SciTech Connect (OSTI)

    Qian, X; Wuu, C; Admovics, J

    2014-06-01

    Purpose: A 3-D radiochromic plastic dosimeter has been used to cross-test the isocentricity of a high resolution image-guided small animal microirradiation platform. In this platform, the mouse stage rotating for cone beam CT imaging is perpendicular to the gantry rotation for sub-millimeter radiation delivery. A 3-D dosimeter can be used to verify both imaging and irradiation coordinates. Methods: A 3-D dosimeter and optical CT scanner were used in this study. In the platform, both mouse stage and gantry can rotate 360 with rotation axis perpendicular to each other. Isocentricity and coincidence of mouse stage and gantry rotations were evaluated using star patterns. A 3-D dosimeter was placed on mouse stage with center at platform isocenter approximately. For CBCT isocentricity, with gantry moved to 90, the mouse stage rotated horizontally while the x-ray was delivered to the dosimeter at certain angles. For irradiation isocentricity, the gantry rotated 360 to deliver beams to the dosimeter at certain angles for star patterns. The uncertainties and agreement of both CBCT and irradiation isocenters can be determined from the star patterns. Both procedures were repeated 3 times using 3 dosimeters to determine short-term reproducibility. Finally, dosimeters were scanned using optical CT scanner to obtain the results. Results: The gantry isocentricity is 0.9 0.1 mm and mouse stage rotation isocentricity is about 0.91 0.11 mm. Agreement between the measured isocenters of irradiation and imaging coordinates was determined. The short-term reproducibility test yielded 0.5 0.1 mm between the imaging isocenter and the irradiation isocenter, with a maximum displacement of 0.7 0.1 mm. Conclusion: The 3-D dosimeter can be very useful in precise verification of targeting for a small animal irradiation research. In addition, a single 3-D dosimeter can provide information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  6. Report on full-scale horizontal cable tray fire tests, FY 1988

    SciTech Connect (OSTI)

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results.

  7. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  8. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    SciTech Connect (OSTI)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  9. Methods for Post Irradiation Examination of Tritium Producing...

    Office of Environmental Management (EM)

    Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods...

  10. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong...

  11. Post Irradiation Examination of Stainless Steel Cladding from...

    Office of Environmental Management (EM)

    Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation Experiment Post Irradiation Examination of Stainless Steel Cladding from In-Reactor Permeation...

  12. APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN...

    Office of Scientific and Technical Information (OSTI)

    APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN MATERIALS Citation Details In-Document Search Title: APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN ...

  13. Working with SRNL - Our Facilities- Gamma Irradiation Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for irradiating solid and liquid samples, allowing a wide range of tests to determine the effects of radiation on materials. Typically, the Gamma Irradiation Facility is used to...

  14. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, October 1 - December 31, 1996

    SciTech Connect (OSTI)

    Wood, J.R.

    1997-01-01

    The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was successful. It has produced over 37,000 bbls of oil as of December 31, 1996 at sustained rate of {approximately}100 bbls/day. At a nominal wellhead price of $20/bbl, this well has made about $750,000 and is still going strong. Two additional horizontal wells have just been completed and are on test. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.

  15. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    SciTech Connect (OSTI)

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2} lower than that measured by the two pyrgeometers that are traceable to WISG, with a standard deviation of {+-}0.7 W m{sup -2}. These results suggest that the ACP design might be used for addressing the need to improve the international reference for broadband outdoor longwave irradiance measurements.

  16. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect (OSTI)

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  17. Gamma-ray irradiated polymer optical waveguides

    SciTech Connect (OSTI)

    Lai, C.-C.; Wei, T.-Y.; Chang, C.-Y.; Wang, W.-S.; Wei, Y.-Y.

    2008-01-14

    Optical waveguides fabricated by gamma-ray irradiation on polymer through a gold mask are presented. The gamma-ray induced index change is found almost linearly dependent on the dose of the irradiation. And the measured propagation losses are low enough for practical application. Due to the high penetrability of gamma ray, uniform refractive index change in depth can be easily achieved. Moreover, due to large-area printing, the uniformity of waveguide made by gamma-ray irradiation is much better than that by e-beam direct writing.

  18. ARM - Measurement - Shortwave broadband diffuse downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffuse downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband diffuse downwelling irradiance All of the solar radiation, across the wavelength range of 0.4 and 4 {mu}m, coming directly from the sky except for solar radiation coming directly from the sun and the circumsolar irradiance within approximately three degrees of the sun. Categories Radiometric Instruments

  19. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  20. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  1. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOE Patents [OSTI]

    Ciszek, T.F.

    1984-09-12

    Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

  2. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  3. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect (OSTI)

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  4. Method for forming an in situ oil shale retort with horizontal free faces

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO); Fernandes, Robert J. (Bakersfield, CA)

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  5. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  6. Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy

    SciTech Connect (OSTI)

    Huang Guojie; Xie Shuisheng; Cheng Lei; Cheng Zhenkang [State Key Laboratory for Fabrication and Processing of Nonferrous Metals, Beijing General Research Institute for Non-ferrous Metals, China, 100088 (China)

    2007-05-17

    Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K{approx}1463K, the casting speed is between 7.2m/h{approx}10.8m/h and the speed of cooling water is between 3.6m/s{approx}4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments.

  7. Sand transport and deposition in horizontal multiphase trunklines of subsea satellite developments

    SciTech Connect (OSTI)

    Oudeman, P. )

    1993-11-01

    Gravel packing is unattractive as a way to protect against the effects of sand production in subsea wells because it involves additional completion costs, loss of productivity, and difficulties in subsequent recompletion/well servicing operations. On the other hand, omitting gravel packs means that subsea developments must be designed and operated so that they can tolerate sand production. An experimental study was carried out on sand transport and deposition in multiphase flow in modeled subsea flowlines to address the problem and sand collection in horizontal trunklines, which could lead to reduced line throughput, pigging problems, enhanced pipe-bottom erosion, or even blockage. This study led to the definition of a new model for sand transport in multiphase flow, which was used to establish the risk of sand deposition in trunklines connecting a subsea development to nearby production platform.

  8. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect (OSTI)

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  9. Sandia National Laboratories: Research: Facilities: Gamma Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    second. The neutron irradiation system consisting of the AmBe source and a large polyethylene chamber provides neutron dose rates from 10-6 radsecond to 10-5 radsecond....

  10. Gamma irradiation effects in W films

    SciTech Connect (OSTI)

    Claro, Luiz H.; Santos, Ingrid A.; Silva, Cassia F.

    2013-05-06

    Using the van Der Pauw methodology, the surface resistivity of irradiated tungsten films deposited on Silicon substrate was measured. The films were exposed to {gamma} radiation using a isotopic {sup 60}Co source in three irradiation stages attaining 40.35 kGy in total dose. The obtained results for superficial resistivity display a time annealing features and their values are proportional to the total dose.

  11. Neutron Irradiation Resistance of RAFM Steels

    SciTech Connect (OSTI)

    Gaganidze, Ermile; Dafferner, Bernhard; Aktaa, Jarir

    2008-07-01

    The neutron irradiation resistance of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 and international reference steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) have been investigated after irradiation in the Petten High Flux Reactor up to 16.3 dpa at different irradiation temperatures (250-450 deg. C). The embrittlement behavior and hardening are investigated by instrumented Charpy-V tests with sub-size specimens. Neutron irradiation-induced embrittlement and hardening of EUROFER97 was studied under different heat treatment conditions. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement vs. hardening behavior of RAFM steels within a proper model in terms of the parameter C={delta}DBTT/{delta}{sigma} indicates hardening-dominated embrittlement at irradiation temperatures below 350 deg. C with 0.17 {<=} C {<=} 0.53 deg. C/MPa. Scattering of C at irradiation temperatures above 400 deg. C indicates non hardening embrittlement. A role of He in a process of embrittlement is investigated in EUROFER97 based steels, that are doped with different contents of natural B and the separated {sup 10}B-isotope (0.008-0.112 wt.%). Testing on small scale fracture mechanical specimens for determination of quasi-static fracture toughness will be also presented in a view of future irradiation campaigns. (authors)

  12. ARM - Measurement - Longwave broadband downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband downwelling irradiance The total diffuse and direct radiant energy, at wavelengths longer than approximately 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file

  13. ARM - Measurement - Longwave broadband net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband net irradiance The difference between upwelling and downwelling broadband longwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  14. ARM - Measurement - Longwave broadband upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave broadband upwelling irradiance The rate at which radiant energy, at a wavelength longer than approximately 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  15. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  16. ARM - Measurement - Shortwave broadband direct downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct downwelling irradiance Radiant energy, across the wavelength range of 0.4 and 4 {mu}m, that is transferred directly from the sun to the receiver. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf)

  17. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the

  18. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  19. ARM - Measurement - Shortwave spectral direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral direct normal irradiance The narrow spectral range of measurements coming directly from the sun whose wavelength falls within the solar range of 0.4 and 4 {mu}m. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  20. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1997-01-01

    An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.

  1. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOE Patents [OSTI]

    Praeg, W.F.

    1997-02-11

    An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

  2. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    DOE Patents [OSTI]

    Praeg, Walter F. (Palos Park, IL)

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  3. Measurement of Diameter Changes during Irradiation Testing

    SciTech Connect (OSTI)

    Davis, K. L.; Knudson, D. L.; Crepeau, J. C.; Solstad, S.

    2015-03-01

    New materials are being considered for fuel, cladding, and structures in advanced and existing nuclear reactors. Such materials can experience significant dimensional and physical changes during irradiation. Currently in the US, such changes are measured by repeatedly irradiating a specimen for a specified period of time and then removing it from the reactor for evaluation. The time and labor to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and handling may disturb the phenomena of interest. In-pile detection of changes in geometry is sorely needed to understand real-time behavior during irradiation testing of fuels and materials in high flux US Material and Test Reactors (MTRs). This paper presents development results of an advanced Linear Variable Differential Transformer-based test rig capable of detecting real-time changes in diameter of fuel rods or material samples during irradiation in US MTRs. This test rig is being developed at the Idaho National Laboratory and will provide experimenters with a unique capability to measure diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.

  4. Review of recent irradiation-creep results

    SciTech Connect (OSTI)

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references.

  5. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    1998-04-01

    This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.

  6. DOUBLE HORIZONTAL BRANCHES IN NGC 6440 AND NGC 6569 UNVEILED BY THE VVV SURVEY

    SciTech Connect (OSTI)

    Mauro, Francesco; Bidin, Christian Moni; Cohen, Roger; Geisler, Doug; Chene, Andre-Nicolas; Villanova, Sandro; Minniti, Dante; Catelan, Marcio

    2012-12-20

    We report the discovery of a peculiar horizontal branch (HB) in NGC 6440 and NGC 6569, two massive and metal-rich Galactic globular clusters (GGCs) located in the Galactic bulge, within 4 kpc from the Galactic center. In both clusters, two distinct clumps are detected at the level of the cluster HB, separated by only {approx}0.1 mag in the K{sub s} band. They were detected with IR photometric data collected with the 'VISTA Variables in the Via Lactea' Survey, and confirmed in independent IR catalogs available in the literature and Hubble Space Telescope optical photometry. Our analysis demonstrates that these clumps are real cluster features, not a product of field contamination or interstellar reddening. The observed split HBs could be a signature of two stellar sub-populations with different chemical composition and/or age, as recently found in Terzan 5, but it cannot be excluded that they are caused by evolutionary effects, in particular for NGC 6440. This interpretation, however, requires an anomalously high helium content (Y > 0.30). Our discovery suggests that such a peculiar HB morphology could be a common feature of massive, metal-rich bulge GGCs.

  7. Aerodynamic analysis of a 10 kW horizontal-axis windmill

    SciTech Connect (OSTI)

    Figard, R.L.

    1980-01-01

    An aerodynamic study of the performance and the flowfield in the vicinity of the rotor of a three bladed 10 kW, horizontal-axis windmill is presented. The windmill has a 6.38 m (20.92 ft) diameter rotor and is rated at 10 kW in a 13.41 m/s (44.0 fps) wind. Three basic approaches are utilized. First, field measurements of the performance and the axial velocity and turbulence behind the rotor were conducted. Second, wind tunnel tests of a 1:5 scale model were performed. Third, theoretical analyses of the windmill were made. This included performance predictions with a computerized, modified blade element (vortex theory) analysis and the development and utilization of a numerical procedure employing the full Navier-Stokes equations in axi-symmetric form to examine the wake development in detail. In that effort the rotor is modeled by an actuator disk in a uniform flow, a simple turbulence transport model based on an integrated TKE equation is applied, and the equations of motion are taken in terms of the stream function, one vorticity component, and the peripheral velocity. The results of each of the three approaches shows agreement within 10 to 15% with the other two approaches.

  8. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect (OSTI)

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  9. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect (OSTI)

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  10. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    SciTech Connect (OSTI)

    Valcarce, A. A. R.; De Medeiros, J. R.; Catelan, M.; Alonso-Garca, J.; Corts, C.

    2014-02-20

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ?Y ? 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  11. Analysis of a Lifting Fixture to Hold a Steel Mandrel Horizontally from one End Support

    SciTech Connect (OSTI)

    Cease, H.; /Fermilab

    1999-04-07

    A lifting fixture (drawing number 3823.113-MD-372382) that lifts large steel mandrels from one end through the mandrel's end support web is described. The mandrels are used as a mold to form carbon fiber cylinders. The mandrels are held from one end to allow the carbon cylinder to be pulled horizontally off the mandrel. Only mandrels as described in drawing numbers 3823.113-MD-358992 and 3823.1 13-MD-358994 are lifted by the fixture. The largest mandrel is 41 inches in diameter, 120 inches long, and weighs approximately 3,000 lbs. A detailed procedure for removing the carbon cylinder from the steel mandrel is given in the Appendix. The fixture is to be supported only using Fermilab Forklift 10207 or equivalent. The forklift has a nameplate capacity of 12,000 lbs 24 inches from the mast at an elevation of 130 inches from the floor. The forklift forks must be removed from the truck prior to using the fixture. The forklift is to be used to support the mandrels only during the lifting operation and is not to be used to transport the mandrels. Stresses at the lifting fixture are shear stresses on the support brackets due to the overall weight of the mandrel and moment loads due to the cantilever style suppOrt. The moment on the forklift due to the overhanging weight of the mandrel is calculated. Stresses in the mandrel due to the method of support are also described.

  12. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  13. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect (OSTI)

    Song, P.; Vasyli?nas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvn waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  14. METALLICITY AND KINEMATIC DISTRIBUTIONS OF RED HORIZONTAL-BRANCH STARS FROM THE SDSS SURVEY

    SciTech Connect (OSTI)

    Chen, Y. Q.; Zhao, G.; Zhao, J. K.; Xue, X. X.; Schuster, W. J. E-mail: schuster@astrosen.unam.m

    2010-08-15

    On the basis of a recently derived color-metallicity relation and stellar parameters from the Sloan Digital Sky Survey Data Release 7 spectroscopic survey, a large sample of red horizontal-branch (RHB) candidates have been selected to serve as standard candles. The metallicity and kinematic distributions of these stars indicate that they mainly originate from the thick-disk and the halo populations. The typical thick disk is characterized by the first group peaking at [Fe/H] {approx} -0.6, V{sub rot} {approx} 170 km s{sup -1} with a vertical scale height around |Z| {approx} 1.2 kpc, while stars with [Fe/H] < -0.9 are dominated by the halo population. Two sub-populations of the halo are suggested by the RHB stars peaking at [Fe/H] {approx} -1.3: one component with V{sub rot} > 0 km s{sup -1} (Halo I) shows a sign of metallicity gradient in the [Fe/H] versus |Z| diagram, while the other with V{sub rot} < 0 km s{sup -1} (Halo II) does not. The Halo I mainly clumps at the inner halo with R < 10 kpc and the Halo II comes both from the inner halo with R < 10 kpc and the outer halo with R > 10 kpc based on the star distribution in the R versus |Z| diagram.

  15. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  16. Horizontal-flow anaerobic immobilized sludge (HAIS) reactor for paper industry wastewater treatment

    SciTech Connect (OSTI)

    Foresti, E.; Cabral, A.K.A.; Zaiat, M.; Del Nery, V.

    1996-11-01

    Immobilized cell reactors are known to permit the continuous operation without biomass washout and also for increasing the time available for cells` catalytic function in a reaction or in a series of reactions. Several cell immobilization supports have been used in different reactors for anaerobic wastewater treatment, such as: agar gel, acrylamide, porous ceramic, and polyurethane foam besides the self-immobilized biomass from UASB reactors. However, the results are not conclusive as to the advantages of these different reactors with different supports as compared to other anaerobic reactor configurations. This paper describes a new anaerobic attached growth reactor configuration, herein referred as horizontal-flow anaerobic immobilized sludge (HAIS) reactor and presents the results of its performance test treating kraft paper industry wastewater. The reactor configuration was conceived aiming to increase the ratio useful volume/total volume by lowering the volume for gas separation. The HAIS reactor conception would permit also to incorporate the reactor hydrodynamic characteristics in its design criteria if the flow pattern could be approximated as plug-flow.

  17. Comparison of optically measured and radar-derived horizontal neutral winds. Master's thesis

    SciTech Connect (OSTI)

    Christie, M.S.

    1990-01-01

    Nighttime thermospheric winds for Sondrestrom, Greenland from 11 nights between 1983 and 1988, have been compared to learn about the O(+)-O collision cross section and the high-latitude atomic oxygen density. The horizontal winds in the magnetic meridian were derived indirectly from incoherent-scatter radar (ISR) measurements on ion velocities antiparallel to the magnetic field and directly from Fabry-Perot interferometer (FPI) measurements of Doppler shifts of the (6300-A) emission of atomic oxygen. In deriving the radar winds, the O(+)-O collision cross section, was scaled by a factor of f what was varied from 0.5 to 5.1. On the basis of several arguments the altitude of the 6300-A emission was assumed to be 230 km. The best agreement between the ISR and FPI winds was obtained when f was increased substantially, to between 1.7 and 3.4. If the average peak emission altitude were higher, these factors would be larger; if it were lower, they would be somewhat smaller. However, if the average altitude were substantially lower it would have been more difficult to have obtained agreement between the two techniques.

  18. Fission gas retention in irradiated metallic fuel

    SciTech Connect (OSTI)

    Fenske, G.R.; Gruber, E.E.; Kramer, J.M.

    1987-01-01

    Theoretical calculations and experimental measurements of the quantity of retained fission gas in irradiated metallic fuel (U-5Fs) are presented. The calculations utilize the Booth method to model the steady-state release of gases from fuel grains and a simplified grain-boundary gas model to predict the gas release from intergranular regions. The quantity of gas retained in as-irradiated fuel was determined by collecting the gases released from short segments of EBR-II driver fuel that were melted in a gas-tight furnace. Comparison of the calculations to the measurements shows quantitative agreement with both the magnitude and the axial variation of the retained gas content.

  19. Separation of sodium-22 from irradiated targets

    DOE Patents [OSTI]

    Taylor, Wayne A. (Los Alamos, NM); Jamriska, David (Los Alamos, NM)

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  20. ARM - Measurement - Shortwave broadband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    direct normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband direct normal irradiance The rate at which radiant energy in broad bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric

  1. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  2. ARM - Measurement - Shortwave narrowband direct normal irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    normal irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband direct normal irradiance The rate at which radiant energy in narrow bands of wavelengths shorter than approximately 4{mu}m, that comes directly from the Sun without being scattered or absorbed in the atmosphere, passes through a unit area perpendicular to the direction from the Sun. Categories Radiometric Instruments

  3. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  4. Understanding the Irradiation Behavior of Zirconium Carbide

    SciTech Connect (OSTI)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC- based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response (ZrC) by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.

  5. System to acquire and monitor operating machinery positions for horizontal coke oven batteries

    SciTech Connect (OSTI)

    Bierbaum, D.; Teschner, W.

    1980-02-26

    In a horizontal coke oven battery with at least one coke receiving device movable along one longitudinal side of the battery and at least one coke driving device movable along an opposite longitudinal side of the battery, an apparatus is disclosed for determining the relative position of the coke receiving device with respect to the coke driving device and for activating the coke driving device when its position corresponds with that of the coke receiving device. A first wheel is mounted on the coke receiving device for rotation with the movement of the coke receiving device, a first angle encoder is connected to the first wheel for producing a first signal corresponding to the location of the first wheel and the position of the coke receiving device along the coke oven, and an input storage in the form of a magnetic disc is connected to the first angle encoder for recording and storing the signal. A second wheel is mounted on the coke driving device for rotation with the movement of the coke driving device and a second angle encoder is connected thereto for producing a second signal which corresponds to the rotation of the second wheel and the position of the coke driving device along the coke oven. A comparator is connected to the second signal encoder for receiving the second signal and a data link is provided between the comparator and the input storage of the coke receiving device so that the first signal from the coke receiving device can be impressed on the comparator. An activator is connected to the comparator for activating the coke driving device when the first signal corresponds to the second signal indicating a corresponding positional relationship between the coke receiving device and the coke driving device.

  6. Mixed convection transport from an isolated heat source module on a horizontal plate

    SciTech Connect (OSTI)

    Kang, B.H.; Jaluria, Y.; Tewari, S.S. )

    1990-08-01

    An experimental study of the mixed convective heat transfer from an isolated source of finite thickness, located on a horizontal surface in an externally induced forced flow, has been carried out. This problem is of particular interest in the cooling of electronic components and also in the thermal transport associated with various manufacturing systems, such as ovens and furnaces. The temperature distribution in the flow as well as the surface temperature variation are studied in detail. The dependence of the heat transfer rate on the mixed convection parameter and on the thickness of the heated element or source, particularly in the vicinity of the source, is investigated. The results obtained indicate that the heat transfer rate and fluid flow characteristics vary strongly with the mixed convection variables. The transition from a natural convection dominated flow to a forced convection dominated flow is studied experimentally and the basic characteristics of the two regimes determined. This transition has a strong influence on the temperature of the surface and on the heat transfer rate. As expected, the forced convection dominated flow is seen to be significantly more effective in the cooling of a heat dissipating component than a natural convection dominated flow. The location of the maximum temperature on the module surface, which corresponds to the minimum local heat transfer coefficient, is determined and discussed in terms of the underlying physical mechanisms. The results obtained are also compared with these for an element of negligible thickness and the effect of a significant module thickness on the transport is determined. Several other important aspects of fundamental and applied interest are studied in this investigation.

  7. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  8. Strain engineering in graphene by laser irradiation

    SciTech Connect (OSTI)

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W.; Luo, Z.; Shen, Z. X.

    2015-02-09

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  9. Continuous wave laser irradiation of explosives

    SciTech Connect (OSTI)

    McGrane, Shawn D.; Moore, David S.

    2010-12-01

    Quantitative measurements of the levels of continuous wave (CW) laser light that can be safely applied to bare explosives during contact operations were obtained at 532 nm, 785 nm, and 1550 nm wavelengths. A thermal camera was used to record the temperature of explosive pressed pellets and single crystals while they were irradiated using a measured laser power and laser spot size. A visible light image of the sample surface was obtained before and after the laser irradiation. Laser irradiation thresholds were obtained for the onset of any visible change to the explosive sample and for the onset of any visible chemical reaction. Deflagration to detonation transitions were not observed using any of these CW laser wavelengths on single crystals or pressed pellets in the unconfined geometry tested. Except for the photochemistry of DAAF, TATB and PBX 9502, all reactions appeared to be thermal using a 532 nm wavelength laser. For a 1550 nm wavelength laser, no photochemistry was evident, but the laser power thresholds for thermal damage in some of the materials were significantly lower than for the 532 nm laser wavelength. No reactions were observed in any of the studied explosives using the available 300 mW laser at 785 nm wavelength. Tables of laser irradiance damage and reaction thresholds are presented for pressed pellets of PBX9501, PBX9502, Composition B, HMX, TATB, RDX, DAAF, PETN, and TNT and single crystals of RDX, HMX, and PETN for each of the laser wavelengths.

  10. Irradiation Embritlement in Alloy HT-9

    SciTech Connect (OSTI)

    Serrano De Caro, Magdalena

    2012-08-27

    HT-9 steel is a candidate structural and cladding material for high temperature lead-bismuth cooled fast reactors. In typical advanced fast reactor designs fuel elements will be irradiated for an extended period of time, reaching up to 5-7 years. Significant displacement damage accumulation in the steel is expected (> 200 dpa) when exposed to dpa-rates of 20-30 dpa{sub Fe}/y and high fast flux (E > 0.1 MeV) {approx}4 x 10{sup 15} n/cm{sup 2}s. Core temperatures could reach 400-560 C, with coolant temperatures at the inlet as low as 250 C, depending on the reactor design. Mechanical behavior in the presence of an intense fast flux and high dose is a concern. In particular, low temperature operation could be limited by irradiation embrittlement. Creep and corrosion effects in liquid metal coolants could set a limit to the upper operating temperature. In this report, we focus on the low temperature operating window limit and describe HT-9 embrittlement experimental findings reported in the literature that could provide supporting information to facilitate the consideration of a Code Case on irradiation effects for this class of steels in fast reactor environments. HT-9 has an extensive database available on irradiation performance, which makes it the best choice as a possible near-term candidate for clad, and ducts in future fast reactors. Still, as it is shown in this report, embrittlement data for very low irradiation temperatures (< 200 C) and very high radiation exposure (> 150 dpa) is scarce. Experimental findings indicate a saturation of DBTT shifts as a function of dose, which could allow for long lifetime cladding operation. However, a strong increase in DBTT shift with decreasing irradiation temperature could compromise operation at low service temperatures. Development of a deep understanding of the physics involved in the radiation damage mechanisms, together with multiscale computer simulation models of irradiation embrittlement will provide the basis to derive trendlines and quantitative engineering predictions.

  11. Measurement of thermal conductivity in proton irradiated silicon (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Measurement of thermal conductivity in proton irradiated silicon Citation Details In-Document Search Title: Measurement of thermal conductivity in proton irradiated silicon We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques

  12. Low Dose Irradiation Facility | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Dose Irradiation Facility (LoDIF) The LoDIF is a unique facility designed to evaluate the impact of chronic, low-level radiation exposure on aquatic organisms. The facility is an array of 40 outdoor mesocosms equipped with cesium-137 irradiation sources or unexposed controls. Irradiation sources provide three biologically relevant levels of exposure: 2, 20, and 200 mGy/d mean exposure. Mesocosms are arranged into eight blocks, with five mesocosms per block (three levels of irradiation and

  13. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, April 1994--June 1995

    SciTech Connect (OSTI)

    Wood, J.

    1995-08-01

    Crystal Field in Montcalm County, MI, was selected as a field trial site for this project. Analysis of production data for Crystal Field suggests that an additional 200,000 bbls of oil can be produced using one strategically located horizontal well. Total addition production from the Crystal Field could be as much as 6--8 MMBO. Application of the technology developed in this project to other Dundee fields in the area has the potential to increase Dundee production in Michigan by 35%, adding 80--100 MMBO to ultimate recovery. This project will demonstrate through a field trial that horizontal wells can be substantially increase oil production in older reservoirs that are at or near their economic limit. To maximize the potential of the horizontal well and to ensure that a comprehensive evaluation can be made, extensive reservoir characterization will be performed. In addition to the proposed field trial at Crystal Field, 29 additional Dundee fields in a seven-county area have been selected for study in the reservoir characterization portion of this project.

  14. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    SciTech Connect (OSTI)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  15. Sensitivity of ultrasonic nonlinearity to irradiated, annealed, and re-irradiated microstructure changes in RPV steels

    SciTech Connect (OSTI)

    Matlack, Katie; Kim, J-Y.; Wall, J.J.; Jacobs, L.J.; Sokolov, Mikhail A

    2014-05-01

    The planned life extension of nuclear reactors throughout the US and abroad will cause reactor vessel and internals materials to be exposed to more neutron irradiation than was originally intended. A nondestructive evaluation (NDE) method to monitor radiation damage would enable safe and cost-effective continued operation of nuclear reactors. Radiation damage in reactor pressure vessel (RPV) steels causes microstructural changes that leave the material in an embrittled state. Nonlinear ultrasound is an NDE technique quantified by the measurable acoustic nonlinearity parameter, which is sensitive to microstructural changes in metallic materials such as dislocations, precipitates and their combinations. Recent research has demonstrated the sensitivity of the acoustic nonlinearity parameter to increasing neutron fluence in representative RPV steels. The current work considers nonlinear ultrasonic experiments conducted on similar RPV steel samples that had a combination of irradiation, annealing, re-irradiation, and/or re-annealing to a total neutron fluence of 0.5 5 1019 n/cm2 (E > 1 MeV) at an irradiation temperature of 290 C. The acoustic nonlinearity parameter generally increased with increasing neutron fluence, and consistently decreased from the irradiated to the annealed state over different levels of neutron fluence. Results of the measured acoustic nonlinearity parameter are compared with those from previous measurements on other RPV steel samples. This comprehensive set of results illustrates the dependence of the measured acoustic nonlinearity parameter on neutron fluence, material composition, irradiation temperature and annealing.

  16. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect (OSTI)

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some are unknown, a sensitivity analysis must be carried out to provide lower and upper bounds of the material behaviour. Finally, the model can be used as a basis to formulate a macroscopic material model for concrete subject to irradiation, which later can be used in structural analyses to estimate the structural impact of irradiation on nuclear power plants.

  17. Forward and reverse characteristics of irradiated MOSFETs

    SciTech Connect (OSTI)

    Paccagnella, A.; Ceschia, M.; Verzellesi, G.; Dalla Betta, G.F.; Soncini, G.; Bellutti, P.; Fuochi, P.G.

    1996-06-01

    pMOSFETs biased with V{sub gs} < V{sub gd} during Co{sup 60} {gamma} irradiation have shown substantial differences between the forward and reverse subthreshold characteristics, induced by a non-uniform charge distribution in the gate oxide. Correspondingly, modest differences have been observed in the over-threshold I-V characteristics. After irradiation, the forward subthreshold curves can shift at higher or lower gate voltages than the reverse ones. The former behavior has been observed in long-channel devices, in agreement with the classical MOS theory and numerical simulations. The latter result has been obtained in short-channel devices, and it has been correlated to a parasitic punch-through conduction mechanism.

  18. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  19. Nanodot formation induced by femtosecond laser irradiation

    SciTech Connect (OSTI)

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, C. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Rittman, D. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Phillips, J. D. [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, B. [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10100?nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  20. Comparison of Diffuse Shortwave Irradiance Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffuse Shortwave Irradiance Measurements J. J. Michalsky and J. Schlemmer Atmospheric Sciences Research Center State University of New York Albany, New York B. C. Bush, S. Leitner, D. Marsden, and F. P. J. Valero Scripps Institution of Oceanography University of California, San Diego La Jolla, California R. Dolce and A. Los Kipp & Zonen, Inc. Bohemia, New York and Delft The Netherlands E. G. Dutton Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration

  1. Irradiation Environment of the Materials Test Station

    SciTech Connect (OSTI)

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  2. Dartmouth Stellar Evolution Database and the ACS Survey of Galactic Globular Clusters II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dotter, A; Chaboyer, B; Jevremovic, D; Kostov, V; Baron, E; Ferguson, J; Sarajedini, A; Anderson, J

    Web tools are also available at the home page (http://stellar.dartmouth.edu/~models/index.html). These tools allow users to create isochrones and convert them to luminosity functions or create synthetic horizontal branch models.

  3. The spectral irradiance traceability chain at PTB

    SciTech Connect (OSTI)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by international intercomparisons among NMIs. Ultimately, the spectral irradiance can be realized with expanded measurement uncertainties of far less than 1 % over a wide spectral range. Thus, for customers with high demands on low measurement uncertainties, it is possible to calibrate their working standards directly against the blackbody-radiator, taking into account the higher necessary effort. In special cases it is possible to calibrate the customer's spectroradiometric facilities directly in front of the blackbody-radiator. In the context of the European Metrology Research Project Traceability for surface spectral solar ultraviolet radiation, the traceability chain will be improved and adapted.

  4. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect (OSTI)

    Saibal Bhattacharya

    2005-08-31

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

  5. Evaluation of Neutron Irradiated Silicon Carbide and Silicon Carbide Composites

    SciTech Connect (OSTI)

    Newsome G, Snead L, Hinoki T, Katoh Y, Peters D

    2007-03-26

    The effects of fast neutron irradiation on SiC and SiC composites have been studied. The materials used were chemical vapor deposition (CVD) SiC and SiC/SiC composites reinforced with either Hi-Nicalon{trademark} Type-S, Hi-Nicalon{trademark} or Sylramic{trademark} fibers fabricated by chemical vapor infiltration. Statistically significant numbers of flexural samples were irradiated up to 4.6 x 10{sup 25} n/m{sup 2} (E>0.1 MeV) at 300, 500 and 800 C in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Dimensions and weights of the flexural bars were measured before and after the neutron irradiation. Mechanical properties were evaluated by four point flexural testing. Volume increase was seen for all bend bars following neutron irradiation. Magnitude of swelling depended on irradiation temperature and material, while it was nearly independent of irradiation fluence over the fluence range studied. Flexural strength of CVD SiC increased following irradiation depending on irradiation temperature. Over the temperature range studied, no significant degradation in mechanical properties was seen for composites fabricated with Hi-Nicalon{trademark} Type-S, while composites reinforced with Hi-Nicalon{trademark} or Sylramic fibers showed significant degradation. The effects of irradiation on the Weibull failure statistics are also presented suggesting a reduction in the Weibull modulus upon irradiation. The cause of this potential reduction is not known.

  6. Preliminary analysis of the audible noise of constant-speed, horizontal-axis wind-turbine generators

    SciTech Connect (OSTI)

    Keast, D. N.; Potter, R. C.

    1980-07-01

    An analytical procedure has been developed for calculating certain aerodynamic sound levels produced by large, horizontal-axis wind-turbine generators (WTG's) such as the DOE/NASA Mods-0, -0A, -1, and -2. This preliminary procedure is based upon very limited field data from the Mod-0. It postulates a noise component due to the (constant) rotation of the blades of the WTG, plus a wake-noise component that increases with the square of the power produced by the WTG. Mechanical sound from machinery, and low-frequency impulsive sounds produced by blade interaction with the wake of the support tower are not considered.

  7. Graphitization of polymer surfaces by scanning ion irradiation

    SciTech Connect (OSTI)

    Koval, Yuri [Department of Physics, Universitt Erlangen-Nrnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2014-10-20

    Graphitization of polymer surfaces was performed by low-energy Ar{sup +} and He{sup +} ion irradiation. A method of scanning irradiation was implemented. It was found that by scanning ion irradiation, a significantly higher electrical conductivity in the graphitized layers can be achieved in comparison with a conventional broad-beam irradiation. The enhancement of the conductance becomes more pronounced for narrower and better collimated ion beams. In order to analyze these results in more detail, the temperature dependence of conductance of the irradiated samples was investigated. The results of measurements are discussed in terms of weak localization corrections to conductance in disordered metals. The observed effects can be explained by enlargement of graphitic patches, which was achieved with the scanning ion irradiation method.

  8. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    SciTech Connect (OSTI)

    Chouhan, Shailendra S.; DeKamp, Jon; Burkhart, E. E,; Bierwagen, J.; Song, H.; Zeller, Albert F.; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Michael J.; Sun, Qiuli

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3 to allow SHMS to reach angles as low as 5.5. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  9. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAAs High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  10. Methods for Post Irradiation Examination of Tritium Producing Burnable

    Office of Environmental Management (EM)

    Absorber Rods | Department of Energy for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods Presentation from the 32nd Tritium Focus Group Meeting held in Germantown, Maryland on April 23-25, 2013. PDF icon Methods for Post Irradiation Examination of Tritium Producing Burnable Absorber Rods More Documents & Publications Design and Fabrication of In-Reactor Experiment to Measure

  11. Lanai high-density irradiance sensor network for characterizing solar

    Office of Scientific and Technical Information (OSTI)

    resource variability of MW-scale PV system. (Conference) | SciTech Connect Conference: Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system. Citation Details In-Document Search Title: Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system. Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance

  12. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Irradiation Effects on Human Cortical Bone Fracture Behavior Print Wednesday, 28 July 2010 00:00 Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or

  13. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory EFRC Research Teams Irradiation Extremes and Mechanical Extremes are the two thrusts of CMIME. Currently, each thrust has two research teams. The Irradiation Extremes Thrust teams focus on metals and oxides. The Mechanical Extremes Thrust teams focus on severe plastic deformation (SPD) and deformation at high strain rates. CMIME org chart (pdf) IRRADIATION EXTREMES THRUST Amit Misra Amit Misra, LANL Fellow CMIME Director, Thrust Leader MECHANICAL EXTREMES THRUST beyerlein

  14. Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Examination Laboratory - April 2015 | Department of Energy Assessments, Oak Ridge National Laboratory Irradiated Fuels Examination Laboratory - April 2015 Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels Examination Laboratory - April 2015 April 2015 Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science The Office of Nuclear Safety and

  15. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    SciTech Connect (OSTI)

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  16. An Instrument Design Concept for Measuring Solar Diffuse Irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Instrument Design Concept for Measuring Solar Diffuse Irradiance Rutledge, Charles NASA Langley Research Center Schuster, Greg NASA Langley Research Center Category: Instruments...

  17. Emulation of reactor irradiation damage using ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  18. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  19. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic...

  20. Molecular Weight Distributions of Irradiated Siloxane-Based Elastomers...

    Office of Scientific and Technical Information (OSTI)

    Molecular Weight Distributions of Irradiated Siloxane-Based Elastomers: A Complementary Study by Statistical Modeling and Multiple Quantum Nuclear Magnetic Resonance. Citation...

  1. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging andor tomography, is a popular method of investigating...

  2. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

    2014-10-01

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

  3. PRODUCING SATELLITE-DERIVED IRRADIANCES IN COMPLEX ARID TERRAIN

    Open Energy Info (EERE)

    the corrected monthly maps (see Fig. 3). 4. DISCUSSION We have presented a robust, straightforward two-step approach to correct irradiance estimated from weather satellites'...

  4. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity ...

  5. Irradiation Programs and Test Plans to Assess High-Fluence Irradiation Assisted Stress Corrosion Cracking Susceptibility.

    SciTech Connect (OSTI)

    Teysseyre, Sebastien

    2015-03-01

    . Irradiation assisted stress corrosion cracking (IASCC) is a known issue in current reactors. In a 60 year lifetime, reactor core internals may experience fluence levels up to 15 dpa for boiling water reactors (BWR) and 100+ dpa for pressurized water reactors (PWR). To support a safe operation of our fleet of reactors and maintain their economic viability it is important to be able to predict any evolution of material behaviors as reactors age and therefore fluence accumulated by reactor core component increases. For PWR reactors, the difficulty to predict high fluence behavior comes from the fact that there is not a consensus of the mechanism of IASCC and that little data is available. It is however possible to use the current state of knowledge on the evolution of irradiated microstructure and on the processes that influences IASCC to emit hypotheses. This report identifies several potential changes in microstructure and proposes to identify their potential impact of IASCC. The susceptibility of a component to high fluence IASCC is considered to not only depends on the intrinsic IASCC susceptibility of the component due to radiation effects on the material but to also be related to the evolution of the loading history of the material and interaction with the environment as total fluence increases. Single variation type experiments are proposed to be performed with materials that are representative of PWR condition and with materials irradiated in other conditions. To address the lack of IASCC propagation and initiation data generated with material irradiated in PWR condition, it is proposed to investigate the effect of spectrum and flux rate on the evolution of microstructure. A long term irradiation, aimed to generate a well-controlled irradiation history on a set on selected materials is also proposed for consideration. For BWR, the study of available data permitted to identify an area of concern for long term performance of component. The efficiency of hydrogen water chemistry mitigation technology may decrease as fluence increases for high-stress intensity factors. This report describes a program plan to determine the efficiency of hydrogen water chemistry as a function of the stress intensity factor applied and fluence. The use of existing, available, materials and the generation of additional materials via irradiation in a research reactor are considered.

  6. Optimisation of buildings' solar irradiation availability

    SciTech Connect (OSTI)

    Kaempf, Jerome Henri; Montavon, Marylene; Bunyesc, Josep; Robinson, Darren; Bolliger, Raffaele

    2010-04-15

    In order to improve the sustainability of new and existing urban settlements it is desirable to maximise the utilisation of the solar energy incident on the building envelope, whether by passive or active means. To this end we have coupled a multi-objective optimisation algorithm with the backwards ray tracing program RADIANCE which itself uses a cumulative sky model for the computation of incident irradiation (W h/m{sup 2}) in a single simulation. The parameters to optimise are geometric (the height of buildings up to their facade and the height and orientation of roofs), but with the constraint of maintaining an overall built volume, and the objective function is heating season solar irradiation offset by envelope heat losses. This methodology has been applied to a range of urban typologies and produces readily interpretable results. The focus of this work is on the design of new urban forms but the method could equally be applied to examine the relative efficiency of existing urban settlements, by comparison of existing forms with the calculated optima derived from relevant specifications of the building envelope. (author)

  7. Hafnium radioisotope recovery from irradiated tantalum

    DOE Patents [OSTI]

    Taylor, Wayne A. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  8. LWRS ATR Irradiation Testing Readiness Status

    SciTech Connect (OSTI)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

  9. Final Report on MEGAPIE Target Irradiation and Post-Irradiation Examination

    SciTech Connect (OSTI)

    Yong, Dai

    2015-06-30

    Megawatt pilot experiment (MEGAPIE) was successfully performed in 2006. One of the important goals of MEGAPIE is to understand the behaviour of structural materials of the target components exposed to high fluxes of high-energy protons and spallation neutrons in flowing LBE (liquid lead-bismuth eutectic) environment by conducting post-irradiation examination (PIE). The PIE includes four major parts: non-destructive test, radiochemical analysis of production and distribution of radionuclides produced by spallation reaction in LBE, analysis of LBE corrosion effects on structural materials, T91 and SS 316L steels, and mechanical testing of the T91 and SS 316L steels irradiated in the lower part of the target. The non-destructive test (NDT) including visual inspection and ultrasonic measurement was performed in the proton beam window area of the T91 calotte of the LBE container, the most intensively irradiated part of the MEGAPIE target. The visual inspection showed no visible failure and the ultrasonic measurement demonstrated no detectable change in thickness in the beam window area. Gamma mapping was also performed in the proton beam window area of the AlMg3 safety-container. The gamma mapping results were used to evaluate the accumulated proton fluence distribution profile, the input data for determining irradiation parameters. Radiochemical analysis of radionuclides produced by spallation reaction in LBE is to improve the understanding of the production and distribution of radionuclides in the target. The results demonstrate that the radionuclides of noble metals, 207Bi, 194Hg/Au are rather homogeneously distributed within the target, while radionuclides of electropositive elements are found to be deposited on the steel-LBE interface. The corrosion effect of LBE on the structural components under intensive irradiation was investigated by metallography. The results show that no evident corrosion damages. However, unexpected deep cracks were found in the EBW (electron beam weld) of the LBE container in the intensive irradiation zone of the target, which should be formed during irradiation. In the SS 316L steel of the flow guide tube, inclusions or precipitates enriched with O, Si, S, Ca, Ti and Mn were observed. Many of them are very long, up to a few mm, and located on grain boundaries along the extrusion direction of the tube. The degradation of the mechanical properties of the T91 and SS 316L steels has been investigated by conducting tensile tests on the specimens extracted from the T91 and SS 316L components in the intensive irradiation region. The results obtained from the proton beam window of the T91 calotte exhibit a good ductility of T91 steel after irradiation at 6-7 dpa (displacement per atom) in contact with flowing LBE.

  10. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-01-16

    Work associated with Budget Period 1 of the East Binger (Marchand) Unit project is nearing completion. A major aspect of this project is accurate modeling of the performance of horizontal wells. Well EBU 37-3H, the first horizontal well drilled in the unit, was drilled in the second quarter of 2001. After much difficulty establishing economic production from the well, the well was hydraulically fractured in November 2001. Post-treatment production has been very encouraging and is significantly better than a vertical well drilled in a similar setting. International Reservoir Technologies, Inc. has completed the final history match of the pilot area reservoir simulation model, including tuning to the performance of the horizontal well. The model's predicted reservoir pressure gradient between injection and production wells accurately matches observed data from the field, a significant improvement from prior model predictions. The model's predicted gas injection profiles now also more accurately match field data. Work has begun toward evaluating the optimum development scenario with the pilot model. Initially, four scenarios will be evaluated--two involving all horizontal infill wells, one involving all vertical infill wells, and one involving a combination of vertical and horizontal infill wells. The model cases for these scenarios have been defined, and construction of them is underway.

  11. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    SciTech Connect (OSTI)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25, 1, and 2 is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.

  12. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  13. Contribution to the Study of Ferrite Nanobeads: Synthesis, Characterization and Investigation of Horizontal Low Gradient Magnetophoresis Behaviour

    SciTech Connect (OSTI)

    Benelmekki, Maria; Caparros, Cristina; Goncalves, Renao; Lanceros-Mendez, Senenxu; Montras, Anna; Martinez, Lluis Miquel

    2010-12-02

    In this work we investigate the possibilities of the use of Horizontal Low Gradient Magnetic Field (HLGMF)(<100 T/m) for filtration, control and separation of the synthesized magnetic particles, considering, the characteristics of the suspension, the size and the type of nanoparticles (NPs) and focusing on the process scale up. Reversible aggregation is considered in the different steps of magnetic nanobeads synthesis. For these purpose, we synthesized Fe{sub 2}O{sub 3}-silica core-shell nanobeads by co-precipitation, monodispersion and silica coating. SQUID, TEM, XRD, and Zeta potential techniques were used to characterize the synthesized nanobeads. An extensive magnetophoresis study was performed at different magnetophoretic conditions. Different reversible aggregation times were observed at different HLGMF, at each step of the synthesis route: Several orders of magnitude differences where observed when comparing citric acid (CA) suspension with silicon coated beads. Reversible aggregation times are correlated with the properties of the NPs at different steps of synthesis.

  14. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  15. Direct-bandgap electroluminescence from a horizontal Ge p-i-n ridge waveguide on Si(001) substrate

    SciTech Connect (OSTI)

    Liu, Zhi; Li, Yaming; He, Chao; Li, Chuanbo; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen Wang, Qiming

    2014-05-12

    Horizontal injection Ge p-i-n ridge waveguide light emitting diodes (LEDs) were fabricated on n{sup ?}-Si(001) substrates by ultrahigh vacuum chemical vapor deposition. The direct-bandgap electroluminescence (EL) of Ge waveguide LEDs under a continuous/pulse electrical pump was studied. The heating effect from a continuous electrical pump was found to significantly enhance the emission of devices. The top surface EL intensity of the Ge waveguide LEDs significantly depended on the position. Most direct-bandgap radiative recombination of Ge p-i-n waveguide LEDs occurred near the N{sup +} region of the junction. This interesting phenomenon could be explained by the carrier distribution in the junction and the pseudo-direct bandgap of Ge.

  16. Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University

    SciTech Connect (OSTI)

    Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T. [Accelerators and Cryogenic Systems (ACS), 86 rue de Paris, 91400 Orsay (France); Hermansson, L.; Kern, R. Santiago; Ruber, R. [Uppsala University, Department of Physics and Astronomy, 75120 Uppsala (Sweden)

    2014-01-29

    Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-? elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

  17. Feasibility study of air-breathing turbo-engines for horizontal take-off and landing space plane

    SciTech Connect (OSTI)

    Minoda, M.; Sakata, K.; Tamaki, T.; Saitoh, T.; Yasuda, A.

    1989-01-01

    Various concepts of air-breathing engines (ABEs) that could be used for a horizontal take-off and landing SSTO vehicle are investigated. The performances (with respect to thrust and the specific fuel consumption) of turboengines based on various technologies, including a turbojet with and without afterburner (TJ), turboramjet, and air-turbo-ram jet engines are compared. The mission capabilities of these ABEs for SSTO and TSTO vehicles is examined in terms of the ratio of the effective remaining weight (i.e., the weight on the orbit) to the take-off gross weight, using two-dimensional flight analysis. It was found that the dry TJ with the turbine inlet temperature 2000 C is one of the most promising candidates for the propulsion system of the SSTO vehicle, because of its small weight and high specific impulse. 6 refs.

  18. Validation of the National Solar Radiation Database (NSRDB) (2005-2012): Preprint

    SciTech Connect (OSTI)

    Sengupta, Manajit; Weekley, Andrew; Habte, Aron; Lopez, Anthony; Molling, Christine

    2015-09-15

    Publicly accessible, high-quality, long-term, satellite-based solar resource data is foundational and critical to solar technologies to quantify system output predictions and deploy solar energy technologies in grid-tied systems. Solar radiation models have been in development for more than three decades. For many years, the National Renewable Energy Laboratory (NREL) developed and/or updated such models through the National Solar Radiation Data Base (NSRDB). There are two widely used approaches to derive solar resource data from models: (a) an empirical approach that relates ground-based observations to satellite measurements and (b) a physics-based approach that considers the radiation received at the satellite and creates retrievals to estimate clouds and surface radiation. Although empirical methods have been traditionally used for computing surface radiation, the advent of faster computing has made operational physical models viable. The Global Solar Insolation Project (GSIP) is an operational physical model from the National Oceanic and Atmospheric Administration (NOAA) that computes global horizontal irradiance (GHI) using the visible and infrared channel measurements from the Geostationary Operational Environmental Satellites (GOES) system. GSIP uses a two-stage scheme that first retrieves cloud properties and then uses those properties in the Satellite Algorithm for Surface Radiation Budget (SASRAB) model to calculate surface radiation. NREL, the University of Wisconsin, and NOAA have recently collaborated to adapt GSIP to create a high temporal and spatial resolution data set. The product initially generates the cloud properties using the AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) algorithms [3], whereas the GHI is calculated using SASRAB. Then NREL implements accurate and high-resolution input parameters such as aerosol optical depth (AOD) and precipitable water vapor (PWV) to compute direct normal irradiance (DNI) using the DISC model. The AOD and PWV, temperature, and pressure data are also combined with the MMAC model to simulate solar radiation under clear-sky conditions. The current NSRDB update is based on a 4-km x 4-km resolution at a 30-minute time interval, which has a higher temporal and spatial resolution. This paper demonstrates the evaluation of the data set using ground-measured data and detailed evaluation statistics. The result of the comparison shows a good correlation to the NSRDB data set. Further, an outline of the new version of the NSRDB and future plans for enhancement and improvement are provided.

  19. Fowler-Nordheim characteristics of electron irradiated MOS capacitors

    SciTech Connect (OSTI)

    Candelori, A.; Paccagnella, A.; Cammarata, M.; Ghidini, G.; Fuochi, P.G.

    1998-12-01

    MOS capacitors with 8 nm thick oxides have been irradiated by an 8 MeV LINAC electron beam. C-V and I-V measurements have shown a positive trapped charge, higher for irradiation performed under negative gate bias, as a consequence of preferential charge recombination at the cathodic interface. No saturation of the positive trapped charge is measured up to 20 Mrad(Si). Neutral defects induced by irradiation have been studied, by performing positive and negative Fowler-Nordheim injection. The distribution of neutral defects is similar to that of trapped holes, indicating a correlation between trapped holes and neutral defects. Electrical stresses performed after irradiation have shown that the accumulation kinetics of oxide defects is similar in both unirradiated and irradiated devices.

  20. Identifying irradiated flours by photo-stimulated luminescence technique

    SciTech Connect (OSTI)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  1. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect (OSTI)

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  2. Breakdown properties of irradiated MOS capacitors

    SciTech Connect (OSTI)

    Paccagnella, A.; Candelori, A.; Milani, A.; Formigoni, E.; Ghidini, G.; Drera, D.; Pellizzer, F.; Fuochi, P.G.; Lavale, M.

    1996-12-01

    The authors have studied the effects of ionizing and non-ionizing radiation on the breakdown properties of different types of MOS capacitors, with thick (200 nm) and thin (down to 8 nm) oxides. In general, no large variations of the average breakdown field, time-to-breakdown at constant voltage, or charge-to-breakdown at constant voltage, or charge-to-breakdown values have been observed after high dose irradiation (20 Mrad(Si) 9 MeV electrons on thin and thick oxides, 17(Si) Mrad Co{sup 60} gamma and 10{sup 14} neutrons/cm{sup 2} only on thick oxides). However, some modifications of the cumulative failure distributions have been observed in few of the oxides tested.

  3. Instrumentation to Enhance Advanced Test Reactor Irradiations

    SciTech Connect (OSTI)

    J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

    2009-09-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

  4. Recovery of niobium from irradiated targets

    DOE Patents [OSTI]

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1994-01-01

    A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.

  5. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    SciTech Connect (OSTI)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 C twice at the ion fluence of 510? m? to reach a total ion fluence of 110? m? in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Final thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 m depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 m depth for 0.025 dpa and 35 m depth for 0.025 dpa) at 500 C case even in the relatively low ion fluence of 10? m?.

  6. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect (OSTI)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  7. Concurrent in situ ion irradiation transmission electron microscope

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  8. Ion irradiation tolerance of graphene as studied by atomistic simulations

    SciTech Connect (OSTI)

    Ahlgren, E. H.; Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A. V.

    2012-06-04

    As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irradiation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.

  9. Indoor and Outdoor Spectroradiometer Intercomparison for Spectral Irradiance Measurement

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, R.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-05-01

    This report details the global spectral irradiance intercomparison using spectroradiometers that was organized by the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. The intercomparison was performed both indoors and outdoors on September 17, 2013. Five laboratories participated in the intercomparison using 10 spectroradiometers, and a coordinated measurement setup and a common platform were employed to compare spectral irradiances under both indoor and outdoor conditions. The intercomparison aimed to understand the performance of the different spectroradiometers and to share knowledge in making spectral irradiance measurements. This intercomparison was the first of its kind in the United States.

  10. Solar spectral irradiance changes during cycle 24 (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Solar spectral irradiance changes during cycle 24 Citation Details In-Document Search Title: Solar spectral irradiance changes during cycle 24 We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2%

  11. Early Damage Mechanisms in Nuclear Grade Graphite under Irradiation

    SciTech Connect (OSTI)

    Eapen, Dr. Jacob [North Carolina State University] [North Carolina State University; Krishna, Dr Ram [North Carolina State University] [North Carolina State University; Burchell, Timothy D [ORNL] [ORNL; Murty, Prof K.L. [North Carolina State University] [North Carolina State University

    2014-01-01

    Using Raman and X-ray photoelectron spectroscopy,we delineate the bond and defect structures in nuclear block graphite (NBG-18) under neutron and ion irradiation. The strengthening of the defect (D) peak in the Raman spectra under irradiation is attributed to an increase in the topological, sp2-hybridized defects. Using transmission electron microscopy, we provide evidence for prismatic dislocations as well as a number of basal dislocations dissociating into Shockley partials. The non-vanishing D peak in the Raman spectra, together with a generous number of dislocations, even at low irradiation doses, indicates a dislocation-mediated amorphization process in graphite.

  12. Measurement of thermal conductivity in proton irradiated silicon

    SciTech Connect (OSTI)

    Marat Khafizov; Clarissa Yablinsky; Todd Allen; David Hurley

    2014-04-01

    We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques that require application of a metal film, we perform our measurement on uncoated samples. This provides greater sensitivity to the change in conductivity of the thin damaged layer. Using sample temperature as a parameter provides a means to deduce the primary defect structures that limit thermal transport. We find that under high temperature irradiation the degradation of thermal conductivity is caused primarily by extended defects.

  13. AGC-2 Irradiation Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence C. Hull

    2012-07-01

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The second Advanced Graphite Creep (AGC) experiment (AGC-2) began with Advanced Test Reactor (ATR) Cycle 149A on April 12, 2011, and ended with ATR Cycle 151B on May 5, 2012. The purpose of this report is to qualify AGC-2 irradiation monitoring data following INL Management and Control Procedure 2691, Data Qualification. Data that are Qualified meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Data that do not meet the requirements are Failed. Some data may not quite meet the requirements, but may still provide some useable information. These data are labeled as Trend. No Trend data were identified for the AGC-2 experiment. All thermocouples functioned throughout the AGC-2 experiment. There was one instance where spurious signals or instrument power interruption resulted in a recorded temperature value being well outside physical reality. This value was identified and labeled as Failed data. All other temperature data are Qualified. All helium and argon gas flow data are within expected ranges. Total gas flow was approximately 50 sccm through the capsule. Helium gas flow was briefly increased to 100 sccm during reactor shutdown. All gas flow data are Qualified. At the start of the experiment, moisture in the outflow gas line increased to 200 ppmv then declined to less than 10 ppmv over a period of 5 days. This increase in moisture coincides with the initial heating of the experiment and drying of the system. Moisture slightly exceeded 10 ppmv three other times during the experiment. While these moisture values exceed the 10 ppmv threshold value, the reported measurements are considered accurate and to reflect moisture conditions in the capsule. All moisture data are Qualified. Graphite creep specimens are subjected to one of three loads, 393 lbf, 491 lbf, or 589 lbf. Loads were consistently within 5% of the specified values throughout the experiment. Stack displacement increased consistently throughout the experiment with total displacement ranging from 1 to 1.5 inches. No anomalous values were identified. During reactor outages, a set of pneumatic rams are used to raise the stacks of graphite creep specimens to ensure the specimens have not become stuck within the test train. This stack raising was performed after all cycles when the capsule was in the reactor. All stacks were raised successfully after each cycle. The load and displacement data are Qualified

  14. Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results for the 10- and 15-min averaging periods. For these cases, correlation coefficients exceeded 0.9. As a part of the analysis, Eulerian integral time scales ({tau}) were estimated for the four high-wind nights. Time series of {tau} through each night indicated erratic behavior consistent with the nonstationarity. Histograms of {tau} showed a mode at 4-5 s, but frequent occurrences of larger {tau} values, mostly between 10 and 100 s.

  15. Recovery of germanium-68 from irradiated targets

    DOE Patents [OSTI]

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  16. Irradiation Assisted Grain Boundary Segregation in Steels

    SciTech Connect (OSTI)

    Lu, Zheng; Faulkner, Roy G.

    2008-07-01

    The understanding of radiation-induced grain boundary segregation (RIS) has considerably improved over the past decade. New models have been introduced and much effort has been devoted to obtaining comprehensive information on segregation from the literature. Analytical techniques have also improved so that chemical analysis of layers 1 nm thick is almost routine. This invited paper will review the major methods used currently for RIS prediction: namely, Rate Theory, Inverse Kirkendall, and Solute Drag approaches. A summary is made of the available data on phosphorus RIS in reactor pressure vessel (RPV) steels. This will be discussed in the light of the predictions of the various models in an effort to show which models are the most reliable and easy to use for forecasting P segregation behaviour in steels. A consequence of RIS in RPV steels is a radiation induced shift in the ductile to brittle transition temperature (DBTT). It will be shown how it is possible to relate radiation-induced P segregation levels to DBTT shift. Examples of this exercise will be given for RPV steels and for ferritic steels being considered for first wall fusion applications. Cr RIS in high alloy stainless steels and associated irradiation-assisted stress corrosion cracking (IASCC) will be briefly discussed. (authors)

  17. Small-scale irradiated fuel electrorefining

    SciTech Connect (OSTI)

    Benedict, R.W.; Krsul, J.R.; Mariani, R.D.; Park, K.; Teske, G.M.

    1993-09-01

    In support of the metallic fuel cycle development for the Integral Fast Reactor (IFR), a small scale electrorefiner was built and operated in the Hot Fuel Examination Facility (HFEF) at Argonne National Laboratory-West. The initial purpose of this apparatus was to test the single segment dissolution of irradiated metallic fuel via either direct dissolution in cadmium or anodic dissolution. These tests showed that 99.95% of the uranium and 99.99% of the plutonium was dissolved and separated from the fuel cladding material. The fate of various fission products was also measured. After the dissolution experiments, the apparatus was upgraded to stady fission product behavior during uranium electrotransport. Preliminary decontamination factors were estimated for different fission products under different processing conditions. Later modifications have added the following capabilities: Dissolution of multiple fuel segments simultaneously, electrotransport to a solid cathode or liquid cathode and actinide recovery with a chemical reduction crucible. These capabilities have been tested with unirradiated uranium-zirconium fuel and will support the Fuel Cycle Demonstration program.

  18. Irradiation effect on deuterium behaviour in low-dose HFIR neutron-irradiated tungsten

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shimada, Masashi; Cao, G.; Otsuka, T.; Hara, M.; Kobayashi, M.; Oya, Y.; Hatano, Y.

    2014-12-01

    Tungsten samples were irradiated by neutrons in the High Flux Isotope Reactor, Oak Ridge National Laboratory at reactor coolant temperatures of 50-70°C to low displacement damage of 0.025 and 0.3 dpa under the framework of the US-Japan TITAN program (2007-2013). After cooling down, the HFIR neutron-irradiated tungsten samples were exposed to deuterium plasmas in the Tritium Plasma Experiment, Idaho National Laboratory at 100, 200 and 500 °C twice at the ion fluence of 5×10²⁵ m⁻² to reach a total ion fluence of 1×10²⁶ m⁻² in order to investigate the near surface deuterium retention and saturation via nuclear reaction analysis. Finalmore » thermal desorption spectroscopy was performed to elucidate irradiation effect on total deuterium retention. Nuclear reaction analysis results showed that the maximum near surface (<5 µm depth) deuterium concentration increased from 0.5 at % D/W in 0.025 dpa samples to 0.8 at. % D/W in 0.3 dpa samples. The large discrepancy between the total retention via thermal desorption spectroscopy and the near surface retention via nuclear reaction analysis indicated the deuterium was migrated and trapped in bulk (at least 50 µm depth for 0.025 dpa and 35 µm depth for 0.025 dpa) at 500 °C case even in the relatively low ion fluence of 10²⁶ m⁻².« less

  19. Carbon Characterization Laboratory Readiness to Receive Irradiated Graphite Samples

    SciTech Connect (OSTI)

    Karen A. Moore

    2011-05-01

    The Carbon Characterization Laboratory (CCL) is located in Labs C19 and C20 of the Idaho National Laboratory Research Center. The CCL was established under the Next Generation Nuclear Plant Project to support graphite and ceramic composite research and development activities. The research conducted in this laboratory will support the Advanced Graphite Creep experiments—a major series of material irradiation experiments within the Next Generation Nuclear Plant Graphite program. The CCL is designed to characterize and test low activated irradiated materials such as high purity graphite, carbon-carbon composites, silicon-carbide composite, and ceramic materials. The laboratory is fully capable of characterizing material properties for both irradiated and nonirradiated materials. Major infrastructural modifications were undertaken to support this new radiological facility at Idaho National Laboratory. Facility modifications are complete, equipment has been installed, radiological controls and operating procedures have been established and work management documents have been created to place the CCL in readiness to receive irradiated graphite samples.

  20. CASL - Effect of Grain Boundaries on Irradiation Growth of Zirconium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacancy loops on the basal planes. In 2011, the ORNL-based team established a reaction-diffusion model for prediction of irradiation growth at an atomistic level, accounting for...

  1. Irradiation facilities at the Los Alamos Meson Physics Facility

    SciTech Connect (OSTI)

    Sandberg, V.

    1990-01-01

    The irradiation facilities for testing SSC components and detector systems are described. Very high intensity proton, neutron, and pion fluxes are available with beam kinetic energies of up to 800 MeV. 4 refs., 12 figs., 2 tabs.

  2. Enhanced structural stability of nanoporous zirconia under irradiation of He

    SciTech Connect (OSTI)

    Yang, Tengfei; Huang, Xuejun; Wang, Chenxu; Zhang, Yanwen; Xue, Jianming; Yan, Sha; Wang, Yuguang

    2012-01-01

    This work reports a greatly enhanced tolerance for He irradiation-induced swelling in nanocrystalline zirconia film with interconnected nanoporous structure (hereinafter referred as to NC-C). Compared to bulk yttria-stabilized zirconia (YSZ) and another nanocrystalline zirconia film only with discrete nano voids (hereinafter referred as to NC-V), the NC-C film reveals good tolerance for irradiation of high-fluence He. No appreciable surface blistering can be found even at the highest fluence of 6 1017 cm2 in NCC film. From TEM analysis of as-irradiated samples, the enhanced tolerance for volume swelling in NCC film is attributed to the enhanced diffusion mechanism of deposited He via widely distributed nano channels. Furthermore, the growth of grain size is quite small for both nanocrystalline zirconia films after irradiation, which is ascribed to the decreasing of area of grain boundary due to loose structure and low energy of primary knock-on atoms for He ions.

  3. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  4. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect (OSTI)

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  5. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  6. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  7. Limitation of parallel flow in double diffusive convection: Two- and three-dimensional transitions in a horizontal porous domain

    SciTech Connect (OSTI)

    Mimouni, N.; Chikh, S.; Rahli, O.; Bennacer, R.

    2014-07-15

    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out in the present work. The Boussinesq approximation is made in the formulation of the problem, and Neumann boundary conditions for temperature and concentration are adopted, respectively, on vertical and horizontal walls of the cavity. The used numerical method is based on the control volume approach, with the third order quadratic upstream interpolation scheme in approximating the advection terms. A semi implicit method algorithm is used to handle the velocity-pressure coupling. To avoid the excessively high computer time inherent to the solution of 3D natural convection problems, full approximation storage with full multigrid method is used to solve the problem. A wide range of the controlling parameters (Rayleigh-Darcy number Ra, lateral aspect ratio Ay, Lewis number Le, and the buoyancy ration N) is investigated. We clearly show that increasing the depth of the cavity (i.e., the lateral aspect ratio) has an important effect on the flow patterns. The 2D perfect parallel flows obtained for small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complex flow pattern and the usually considered 2D parallel flow model cannot be applied.

  8. Stratification of particulate and VOC pollutants in horizontal-flow-paint spray booths. Report for September 1988-October 1989

    SciTech Connect (OSTI)

    Darvin, C.H.

    1990-01-01

    The paper discusses stratification of particulate and volatile organic compound (VOC) pollutants in horizontal flow paint spray booths, as part of a joint U.S. Air Force/EPA research and development program on emissions from paint spray booths. The test program discussed in the paper was designed to characterize the pollutants both within and exiting a typical back-draw booth for which emissions control strategies are being developed. The results of one series of tests indicate that the pollutants, both particulate and VOC, fall to the lower level of the booth or stratify at the level at which they were generated. This might be expected since the densities of typical pollutants found in spray booths are greater than air. The results showed, however, that the concentration of pollutants in the lower level prior to exiting the booth was significantly greater than expected. Data indicated that, for the 16 ft (4.9 m) high booth tested, the concentration at the exit of the booth below the 8 ft (2.4 m) level was 5-25 times greater than the concentration above that level. The importance of these findings is that it might be possible to partition a booth's air flow into two zones, one lean and the other concentrated. The concentrated zone could be directed to a proportionally smaller VOC control system of significantly less capital and operating cost.

  9. Carbon dioxide laser irradiation of bacterial targets in vitro

    SciTech Connect (OSTI)

    Byrne, P.O.; Sisson, P.R.; Oliver, P.D.; Ingham, H.R.

    1987-05-01

    Agar targets seeded with Escherichia coli and Staphylococcus aureus in roll tubes simulating the vaginal vault were irradiated with a CO/sub 2/ laser at various power densities and durations. Viable bacteria were detected in the plume emissions in all instances. Staphylococcus aureus was found to be more resistant to the thermal effects of lasing than E. coli. This suggests that CO/sub 2/ irradiation of cervical lesions could disseminate viable particles which may be a hazard for patients and operators.

  10. Molecular Weight Distributions of Irradiated Siloxane-Based Elastomers: A

    Office of Scientific and Technical Information (OSTI)

    Complementary Study by Statistical Modeling and Multiple Quantum Nuclear Magnetic Resonance. (Journal Article) | SciTech Connect Molecular Weight Distributions of Irradiated Siloxane-Based Elastomers: A Complementary Study by Statistical Modeling and Multiple Quantum Nuclear Magnetic Resonance. Citation Details In-Document Search Title: Molecular Weight Distributions of Irradiated Siloxane-Based Elastomers: A Complementary Study by Statistical Modeling and Multiple Quantum Nuclear Magnetic

  11. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT

    Office of Scientific and Technical Information (OSTI)

    EXTRACTION (Conference) | SciTech Connect PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION Citation Details In-Document Search Title: PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION The United States Department of Energy proposes to re-establish a domestic capability for producing plutonium-238 (238Pu) to fuel radioisotope power systems primarily in support of future space missions. A conceptual design report is currently

  12. PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT

    Office of Scientific and Technical Information (OSTI)

    EXTRACTION (Conference) | SciTech Connect PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION Citation Details In-Document Search Title: PLUTONIUM-238 RECOVERY FROM IRRADIATED NEPTUNIUM TARGETS USING SOLVENT EXTRACTION × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  13. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  14. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  15. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  16. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  17. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  18. Irradiation Effects on Human Cortical Bone Fracture Behavior

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Irradiation Effects on Human Cortical Bone Fracture Behavior Print Human bone is strong but still fallible. To better predict fracturing in bone, researchers need a mechanistic framework to understand the changes taking place on different size scales within bone, as well as the role of sustained irradiation damage. Combining in situ mechanical testing with synchrotron x-ray diffraction imaging and/or tomography, is a popular method of investigating micrometer deformation and fracture behavior in

  19. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    SciTech Connect (OSTI)

    Kaur, Sukhnandan Singh, Surinder Singh, Lakhwant; Lochab, S. P.

    2014-04-24

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 {sup 0}C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  20. Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Solar Power Plant Efficiency: Low Cost Solar Irradiance Sensor University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU3117D (Irradiance Sensor) Marketing Summary.pdf (149 KB) Technology Marketing Summary A University of Colorado research group led

  1. Stress/Strain Response of Irradiated Metallic Materials via Spherical

    Office of Scientific and Technical Information (OSTI)

    Nanoindentation (Conference) | SciTech Connect Conference: Stress/Strain Response of Irradiated Metallic Materials via Spherical Nanoindentation Citation Details In-Document Search Title: Stress/Strain Response of Irradiated Metallic Materials via Spherical Nanoindentation Authors: Pathak, Siddhartha [1] ; Mara, Nathan Allan [1] ; Kalidindi, Surya [2] ; Wang, Yongqiang [1] ; Doerner, Russ [3] ; Nelson, Andrew Thomas [1] + Show Author Affiliations Los Alamos National Laboratory Georgia Tech

  2. Ion irradiation testing of Improved Accident Tolerant Cladding Materials

    SciTech Connect (OSTI)

    Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tesmer, Joseph R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    This report summarizes the results of ion irradiations conducted on two FeCrAl alloys (named as ORNL A&B) for improving the accident tolerance of LWR nuclear fuel cladding. After irradiation with 1.5 MeV protons to ~0.5 to ~1 dpa and 300C nanoindentations were performed on the cross-sections along the ion range. An increase in hardness was observed in both alloys. Microstructural analysis shows radiation induced defects.

  3. Initiate test loop irradiations of ALSEP process solvent

    SciTech Connect (OSTI)

    Peterman, Dean R.; Olson, Lonnie G.; McDowell, Rocklan G.

    2014-09-01

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  4. Heavy-ion irradiation induced diamond formation in carbonaceous materials.

    SciTech Connect (OSTI)

    Daulton, T. L.

    1999-01-08

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond.

  5. Influence of irradiation upon few-layered graphene using electron-beams and gamma-rays

    SciTech Connect (OSTI)

    Wang, Yuqing; Feng, Yi, E-mail: fyhfut@163.com; Mo, Fei; Qian, Gang; Chen, Yangming; Yu, Dongbo; Wang, Yang; Zhang, Xuebin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2014-07-14

    Few-layered graphene (FLG) is irradiated by electron beams and gamma rays. After 100?keV electron irradiation, the edges of FLG start bending, shrinking, and finally generate gaps and carbon onions due to sputtering and knock-on damage mechanism. When the electron beam energy is increased further to 200?keV, FLG suffers rapid and catastrophic destruction. Unlike electron irradiation, Compton effect is the dominant damage mechanism in gamma irradiation. The irradiation results indicate the crystallinity of FLG decreases first, then restores as increasing irradiation doses, additionally, the ratio (O/C) of FLG surface and the relative content of oxygen groups increases after irradiation.

  6. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    SciTech Connect (OSTI)

    Petrie, Christian M.; McDuffee, Joel Lee; Katoh, Yutai; Terrani, Kurt A.

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  7. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Soppet, W. K.; Dietz Rago, Nancy L.; Shack, W. J.

    2008-09-01

    This work is an ongoing effort at Argonne National Laboratory on the mechanistic study of irradiation-assisted stress corrosion cracking (IASCC) in the core internals of light water reactors.

  8. The effects of tungsten's pre-irradiation surface condition on helium-irradiated morphology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Garrison, Lauren M.; Kulcinski, Gerald L.

    2015-07-17

    Erosion is a concern associated with the use of tungsten as a plasma-facing component in fusion reactors. To compare the damage progression, polycrystalline tungsten (PCW) and (110) single crystal tungsten (SCW) samples were prepared with (1) a mechanical polish (MP) with roughness values in the range of 0.018–0.020 μm and (2) an MP and electropolish (MPEP) resulting in roughness values of 0.010–0.020 μm for PCW and 0.003–0.005 μm for SCW samples. Samples were irradiated with 30 keV He+ at 1173 K to fluences between 3 × 1021 and 6 × 1022 He/m2. The morphologies that developed after low-fluence bombardment weremore » different for each type of sample—MP SCW, MPEP SCW, MP PCW, and MPEP PCW. At the highest fluence, the SCW MPEP sample lost significantly more mass and developed a different morphology than the MP SCW sample. The PCW samples developed a similar morphology and had similar mass loss at the highest fluence. Surface preparation can have a significant effect on post-irradiation morphology that should be considered for the design of future fusion reactors such as ITER and DEMO.« less

  9. Solar spectral irradiance changes during cycle 24

    SciTech Connect (OSTI)

    Marchenko, S. V.; DeLand, M. T.

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ?0.6% 0.2% around 265 nm. These changes gradually diminish to 0.15% 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at ? ? 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  10. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-30

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production, pressure, and gas analysis data that was not included in the Topical Report provided at the end of Budget Period 1. The analysis and interpretation of these data are provided in the many technical reports submitted throughout this project.

  11. EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)

    SciTech Connect (OSTI)

    Clark, E.

    2013-09-13

    Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retained their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10 ?C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.

  12. AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT

    SciTech Connect (OSTI)

    Blaise, Collin

    2014-07-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.471025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.531025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987C in Capsule 6 to 1296C in Capsule 2 for UCO, and from 996 to 1062C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 210-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

  13. Light ion irradiation for unfavorable soft tissue sarcoma

    SciTech Connect (OSTI)

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.

  14. Irradiation-induced phase transformations in zirconium alloys

    SciTech Connect (OSTI)

    Howe, L.M.; Phillips, D.; Motta, A.T.; Okamoto, P.R.

    1994-02-01

    {sup 40}Ar and {sup 209}Bi ion irradiations of Zr{sub 3}Fe were performed at 35--725 K using 15-1500 keV ions. Results are presented on role of deposited-energy density on nature of the damaged regions in individual cascades produced by ion bombardment of Zr{sub 3}Fe. Comparison is also made between irradiation-induced amorphization of Zr{sub 3}Fe during electron irradiation and under ion bombardments. Dependence of damage production on incident electron energy in Zr{sub 3}Fe was also determined. Preliminary results are also discussed for amorphization of ZrFe{sub 2}, Zr(Cr,Fe){sub 2} and ZrCr{sub 2} by electron irradiation. Results of a recent investigation on amorphization of Zr(Cr,Fe){sub 2} and Zr{sub 2}(Ni,Fe) precipitates in Zircaloy-4 are discussed in context of previous experimental results of neutron and electron irradiations and likely amorphization mechanisms are proposed.

  15. Irradiation-induced composition patterns in binary solid solutions

    SciTech Connect (OSTI)

    Dubey, Santosh; El-Azab, Anter [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)] [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47906 (United States)

    2013-09-28

    A theoretical/computational model for the irradiation-driven compositional instabilities in binary solid solutions has been developed. The model is suitable for investigating the behavior of structural alloys and metallic nuclear fuels in a reactor environment as well as the response of alloy thin films to ion beam irradiation. The model is based on a set of reaction-diffusion equations for the dynamics of vacancies, interstitials, and lattice atoms under irradiation. The dynamics of these species includes the stochastic generation of defects by collision cascades as well as the defect reactions and diffusion. The atomic fluxes in this model are derived based on the transitions of lattice defects. The set of reaction-diffusion equations are stiff, hence a stiffly stable method, also known as the Gear method, has been used to numerically approximate the equations. For the Cu-Au alloy in the solid solution regime, the model results demonstrate the formation of compositional patterns under high-temperature particle irradiation, with Fourier space properties (Fourier spectrum, average wavelength, and wavevector) depending on the cascade damage characteristics, average composition, and irradiation temperature.

  16. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    SciTech Connect (OSTI)

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  17. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-06-30

    The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

  18. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-03-26

    The objective of this project is two-fold. It will demonstrate use of nitrogen as a widely available, cost-effective and environmentally superior injectant for miscible floods. It will also demonstrate the effectiveness of horizontal wellbores in reducing gas breakthrough and cycling. It is expected that the demonstration will lead to implementation of nitrogen injection projects in areas without readily available carbon dioxide sources. Technology transfer will occur throughout the project.

  19. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  20. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.; Algieri, C.

    2011-03-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  1. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR -- EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-08-24

    Budget Period 2 of the East Binger Unit (''EBU'') DOE Project has been. Recent activities included additional data gathering and project monitoring, plus initiation of work on an SPE paper on the modeling efforts of the project. Early production performance suggests horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost. It will take more time to evaluate the impact of the horizontal wells on sweep and ultimate recovery, but it is unlikely that an improvement in recovery will be sufficient to make the overall economic value of horizontal wells greater than the economic value of vertical wells. Monitoring of overall performance of the pilot area continues. Overall response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Efforts to further disseminate knowledge gained through this project, by means of technical paper presentations to industry groups, are underway. Project monitoring and technology transfer will be focus areas of Budget Period 3.

  2. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-01-31

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.

  3. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-05-18

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen to about 40%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  4. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir -- East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-03-23

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 50% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen back to about 42%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  5. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  6. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  7. The materials test station: a fast spectrum irradiation facility

    SciTech Connect (OSTI)

    Pitcher, Eric J.

    2007-07-01

    The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the fuel irradiation region exhibits a neutron spectrum similar to that seen in a fast reactor, with a peak neutron flux of 1.6 x 10{sup 15} n.cm{sup -2}.s{sup -1}. Site preparation and construction are estimated to take four years, with a cost range of $60 M to $90 M. (author)

  8. AGR-1 Irradiation Test Final As-Run Report

    SciTech Connect (OSTI)

    Blaise P. Collin

    2012-06-01

    This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 ?1025 n/m2 (E >0.18 MeV). Well say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

  9. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    SciTech Connect (OSTI)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  10. Apparatus for irradiating a continuously flowing stream of fluid

    DOE Patents [OSTI]

    Speir, Leslie G. (Espanola, NM); Adams, Edwin L. (Jemez Springs, NM)

    1984-01-01

    An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  11. Neutron and gamma irradiation damage to organic materials.

    SciTech Connect (OSTI)

    White, Gregory Von, II; Bernstein, Robert

    2012-04-01

    This document discusses open literature reports which investigate the damage effects of neutron and gamma irradiation on polymers and/or epoxies - damage refers to reduced physical chemical, and electrical properties. Based on the literature, correlations are made for an SNL developed epoxy (Epon 828-1031/DDS) with an expected total fast-neutron fluence of {approx}10{sup 12} n/cm{sup 2} and a {gamma} dosage of {approx}500 Gy received over {approx}30 years at < 200 C. In short, there are no gamma and neutron irradiation concerns for Epon 828-1031/DDS. To enhance the fidelity of our hypotheses, in regards to radiation damage, we propose future work consisting of simultaneous thermal/irradiation (neutron and gamma) experiments that will help elucidate any damage concerns at these specified environmental conditions.

  12. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  13. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    SciTech Connect (OSTI)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  14. Irradiated Microsphere Gamma Analyzer for Examination of Particle Fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; Various

    2014-06-01

    Fabrication of the first series of fuel compacts for the current US tristructural isotropic (TRISO) coated particle fuel development and qualification effort was completed at Oak Ridge National Laboratory (ORNL) in 2006. In November of 2009, after almost 3 years and 620 effective full power days of irradiation in the Advanced Test Reactor at Idaho National Laboratory (INL), the first Advanced Gas Reactor irradiation test (AGR-1) was concluded. Compacts were irradiated at a calculated timeaveraged, volume-averaged temperature of 9551136C to a burnup ranging from 11.219.5% fissions per initial metal atom and a total fast fluence of 2.24.31025 n/m2 [1]. No indication of fission product release from TRISO coating failure was observed during the irradiation test, based on real-time monitoring of gaseous fission products. Post-irradiation examination (PIE) and hightemperature safety testing of the compacts has been in progress at both ORNL and INL since 2010, and have revealed small releases of a limited subset of fission products (such as silver, cesium, and europium). Past experience has shown that some elements can be released from TRISO particles when a defect forms in the SiC layer, even when one or more pyrocarbon layers remain intact and retain the gaseous fission products. Some volatile elements can also be released by diffusion through an intact SiC layer during safety testing if temperatures are high enough and the duration is long enough. In order to understand and quantify the release of certain radioactive fission products, it is sometimes necessary to individually examine each of the more than 4000 coated particles in a given compact. The Advanced Irradiated Microsphere Gamma Analyzer (Advanced- IMGA) was designed to perform this task in a remote hot cell environment. This paper describes the Advanced- IMGA equipment and examination process and gives results for a typical full compact evaluation.

  15. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  16. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect (OSTI)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  17. Effects of self-irradiation in plutonium alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  18. Computation of glint, glare, and solar irradiance distribution

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei; Khalsa, Siri Sahib Singh

    2015-08-11

    Described herein are technologies pertaining to computing the solar irradiance distribution on a surface of a receiver in a concentrating solar power system or glint/glare emitted from a reflective entity. At least one camera captures images of the Sun and the entity of interest, wherein the images have pluralities of pixels having respective pluralities of intensity values. Based upon the intensity values of the pixels in the respective images, the solar irradiance distribution on the surface of the entity or glint/glare corresponding to the entity is computed.

  19. Properties of solar gravity mode signals in total irradiance observations

    SciTech Connect (OSTI)

    Kroll, R.J.; Chen, J.; Hill, H.A.

    1988-01-01

    Further evidence has been found that a significant fraction of the gravity mode power density in the total irradiance observations appears in sidebands of classified eigenfrequencies. These sidebands whose amplitudes vary from year to year are interpreted as harmonics of the rotational frequencies of the nonuniform solar surface. These findings are for non axisymmetric modes and corroborate the findings of Kroll, Hill and Chen for axisymmetric modes. It is demonstrated the the generation of the sidebands lifts the usual restriction on the parity of the eigenfunctions for modes detectable in total irradiance observations. 14 refs.

  20. Distinct photoresponse in graphene induced by laser irradiation

    SciTech Connect (OSTI)

    Wang, Wen Hui; Nan, Hai Yan; Liu, Qi; Ni, Zhen Hua; Liang, Zheng; Yu, Zhi Hao; Liu, Feng Yuan; Wang, Xin Ran; Hu, Wei Da; Zhang, Wei

    2015-01-12

    The graphene-based photodetector with tunable p-p{sup +}-p junctions was fabricated through a simple laser irradiation process. Distinct photoresponse was observed at the graphene (G)-laser irradiated graphene (LIG) junction by scanning photocurrent measurements, and its magnitude can be modulated as a result of a positive correlation between the photocurrent and doping concentration in LIG region. Detailed investigation suggests that the photo-thermoelectric effect, instead of the photovoltaic effect, dominates the photocurrent generation at the G-LIG junctions. Such a simple and low-cost technique offers an alternative way for the fabrication of graphene-based optoelectronic devices.

  1. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  2. Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97

    SciTech Connect (OSTI)

    1997-03-30

    This Class 11 field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a rate of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two subsequent wells, the Frost 5-3 and the Happy Holidays 6-3, have not been as successful. Both are currently producing 10 BOPD with 90% water cut. Efforts are underway to determine why these wells are performing so poorly and to see if the situation can be remedied. The reasons for these poor performances of the new wells are not clear at this time. It is possible that the wells entered the Dundee too low and missed pay higher in the section. When the TOW 1-3 was drilled, a vertical probe well was also drilled and cored. That probe well penetrated the pay zone and helped guide the horizontal well. The important lesson may be that vertical probe wells are a crucial step in producing these old fields and should not be eliminated simply to save what amounts to a small incremental cost. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Additional project work involved the characterization of 28 other Dundee fields in Michigan to aid in determining appropriate additional candidates for development through horizontal drilling. Further quantification of reservoir parameters such as importance of fracturing, fracture density, and irregularity of the dolomitized surface at the top of the reservoir will help in designing the optimal strategy for horizontal drilling. The project was a cooperative venture involving the US Department of Energy, Michigan Technological University (MTU), Western Michigan University (WMU), and Terra Energy (now Cronus Development Co.) in Traverse City, MI.

  3. Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions...

    Office of Scientific and Technical Information (OSTI)

    Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions Citation Details In-Document Search Title: Amorphization of nanocrystalline 3C-SiC irradiated with Si+ ions ...

  4. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser irradiation of foams...

  5. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  6. Fission gas retention and axial expansion of irradiated metallic fuel

    SciTech Connect (OSTI)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.; Johanson, E.W.

    1986-05-01

    Out-of-reactor experiments utilizing direct electrical heating and infrared heating techniques were performed on irradiated metallic fuel. The results indicate accelerated expansion can occur during thermal transients and that the accelerated expansion is driven by retained fission gases. The results also demonstrate gas retention and, hence, expansion behavior is a function of axial position within the pin.

  7. Researchers Devise New Stress Test for Irradiated Materials

    Broader source: Energy.gov [DOE]

    How do you tell if materials are stressed-out? Conventional stress tests for irradiated materials require a significant amount of material, but a new nano-size technique can test the strength of materials using an infinitesimal amount. Learn more.

  8. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR IRRADIATED EXPERIMENTS

    SciTech Connect (OSTI)

    Donna Post Guillen

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.

  9. Irradiation performance of AGR-1 high temperature reactor fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; John D. Hunn; Robert N. Morris; Charles A. Baldwin; Philip L. Winston; Jason M. Harp; Scott A. Ploger; Tyler Gerczak; Isabella J. van Rooyen; Fred C. Montgomery; Chinthaka M. Silva

    2014-10-01

    The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO-coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.5% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuelincluding the extent of fission product release and the evolution of kernel and coating microstructureswas evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocrabon and compact matrix. The capsule-average fractional release from the compacts was 110 4 to 510 4 for 154Eu and 810 7 to 310 5 for 90Sr. The average 134Cs release from compacts was <310 6 when all particles maintained intact SiC. An estimated four particles out of 2.98105 experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs release in two capsules to approximately 10 5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.

  10. Irradiation and annealing of p-type silicon carbide

    SciTech Connect (OSTI)

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P. [A.F. Ioffe Physical-Technical Institute, St. Petersburg, 194021 (Russian Federation); Kozlovski, Vitaly V. [St. Petersburg State Polytechnic University, St. Petersburg, 195251 (Russian Federation)

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ? 1.5 10{sup 18} cm{sup ?3} occurs at an irradiation dose of ?1.1 10{sup 16} cm{sup ?2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ?1000C. The conductivity is almost completely restored at T ? 1200C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  11. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    SciTech Connect (OSTI)

    Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

    2012-10-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

  12. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR-EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-02-24

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is progressing and nearing completion. Two of three planned horizontal wells have been drilled and completed. The third horizontal well will be replaced by two vertical wells, both of which will be drilled in early 2004. Based on costs and performances of all new wells, it is believed that, in the setting of the East Binger Unit, the benefits of horizontal wells do not justify the additional cost. In addition to the drilling of new wells, the project also includes conversions of producing wells to injection service. Four wells have now been converted, and injection in the pilot area has doubled. A fifth planned conversion has been removed from the project. Overall response to the various projects continues to be very favorable. Gas injection into the pilot area has increased from 4.0 MMscf/d prior to development to 8.0 MMscf/d in November, while gas production has decreased from 4.1 MMscf/d to 3.0 MMscf/d. The nitrogen content of produced gas has dropped from 58% to 45%. This has reduced the nitrogen recycle within the pilot area from 60% to under 20%. Meanwhile, pilot area oil production has increased, from 300 bpd prior to development to over 425 bpd in November 2003. This is down from 600 bopd in September because EBU 63-2H has begun to level off and other wells were temporarily down. This incremental rate will increase with the addition of the two vertical wells.

  13. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Franco, Manuel,

    2014-08-01

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the source was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.

  14. AGR 3/4 Irradiation Test Final As Run Report

    SciTech Connect (OSTI)

    Collin, Blaise P.

    2015-06-01

    Several fuel and material irradiation experiments have been planned for the Idaho National Laboratory Advanced Reactor Technologies Technology Development Office Advanced Gas Reactor Fuel Development and Qualification Program (referred to as the INL ART TDO/AGR fuel program hereafter), which supports the development and qualification of tristructural-isotropic (TRISO) coated particle fuel for use in HTGRs. The goals of these experiments are to provide irradiation performance data to support fuel process development, qualify fuel for normal operating conditions, support development and validation of fuel performance and fission product transport models and codes, and provide irradiated fuel and materials for post irradiation examination and safety testing (INL 05/2015). AGR-3/4 combined the third and fourth in this series of planned experiments to test TRISO coated low enriched uranium (LEU) oxycarbide fuel. This combined experiment was intended to support the refinement of fission product transport models and to assess the effects of sweep gas impurities on fuel performance and fission product transport by irradiating designed-to-fail fuel particles and by measuring subsequent fission metal transport in fuel-compact matrix material and fuel-element graphite. The AGR 3/4 fuel test was successful in irradiating the fuel compacts to the burnup and fast fluence target ranges, considering the experiment was terminated short of its initial 400 EFPD target (Collin 2015). Out of the 48 AGR-3/4 compacts, 42 achieved the specified burnup of at least 6% fissions per initial heavy-metal atom (FIMA). Three capsules had a maximum fuel compact average burnup < 10% FIMA, one more than originally specified, and the maximum fuel compact average burnup was <19% FIMA for the remaining capsules, as specified. Fast neutron fluence fell in the expected range of 1.0 to 5.51025 n/m2 (E >0.18 MeV) for all compacts. In addition, the AGR-3/4 experiment was globally successful in keeping the temperature in the twelve capsules relatively flat in a range of temperatures suitable for the measurement of fission product diffusion in compact matrix and structural graphite materials.

  15. Irradiation of Metallic and Oxide Fuels for Actinide Transmutation in the ATR

    SciTech Connect (OSTI)

    MacLean, Heather J.; Hayes, Steven L.

    2007-07-01

    Metallic fuels containing minor actinides and rare earth additions have been fabricated and are prepared for irradiation in the ATR, scheduled to begin during the summer of 2007. Oxide fuels containing minor actinides are being fabricated and will be ready for irradiation in ATR, scheduled to begin during the summer of 2008. Fabrication and irradiation of these fuels will provide detailed studies of actinide transmutation in support of the Global Nuclear Energy Partnership. These fuel irradiations include new fuel compositions that have never before been tested. Results from these tests will provide fundamental data on fuel irradiation performance and will advance the state of knowledge for transmutation fuels. (authors)

  16. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    SciTech Connect (OSTI)

    Ahmad Alsabbagh; Apu Sarkar; Brandon Miller; Jatuporn Burns; Leah Squires; Douglas Porter; James I. Cole; K. L. Murty

    2014-10-01

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) has been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.24 dpa. Atom probe tomography revealed manganese, silicon-enriched clusters in both ECAP and CG steel after neutron irradiation. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation. However, no significant change was observed in UFG steel revealing better radiation tolerance.

  17. Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

    2012-10-01

    The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

  18. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  19. Characteristics of irradiation creep in the first wall of a fusion reactor

    SciTech Connect (OSTI)

    Coghlan, W.A.; Mansur, L.K.

    1981-01-01

    A number of significant differences in the irradiation environment of a fusion reactor are expected with respect to the fission reactor irradiation environment. These differences are expected to affect the characteristics of irradiation creep in the fusion reactor. Special conditions of importance are identified as the (1) large number of defects produced per pka, (2) high helium production rate, (3) cyclic operation, (4) unique stress histories, and (5) low temperature operations. Existing experimental data from the fission reactor environment is analyzed to shed light on irradiation creep under fusion conditions. Theoretical considerations are used to deduce additional characteristics of irradiation creep in the fusion reactor environment for which no experimental data are available.

  20. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    SciTech Connect (OSTI)

    Grosse, Nicole; Fontana, Andrea O. [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Hug, Eugen B.; Lomax, Antony; Coray, Adolf [Center for Proton Therapy, Paul Scherrer Institute, Villigen (Switzerland); Augsburger, Marc [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland); Paganetti, Harald [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Sartori, Alessandro A. [Institute of Molecular Cancer Research, University of Zurich, Zurich (Switzerland); Pruschy, Martin, E-mail: martin.pruschy@usz.ch [Laboratory for Molecular Radiobiology, University Hospital Zurich, Zurich (Switzerland)

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual ?H2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  1. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2005-09-15

    A significant work program was implemented from 2002 to 2004 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, though limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, and has increased 70% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area is now only about 32%, far below the 72% recycle prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Four vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Additional vertical well drilling is planned due to the success of wells drilled to date.

  2. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-05-30

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Significant advances with the reservoir simulation model have led to changes in the program. One planned horizontal well location, EBU 44-3H, has been eliminated from the program, and another, EBU 45-3H, has been deferred, and may be replaced by a vertical well or completely eliminated at a future date. A new horizontal well location, EBU 63-2H, has been added. EBU 74G-2, the one new injection well planned for the project, was completed and brought on production. It will be produced for a period of time before converting it to injection. Performance is exceeding expectations. Work also continued on projects aimed at increasing injection in the pilot area. EBU 65-1 was converted to injection service. The project to add compression and increase injection capacity at the nitrogen management facility is nearing completion. Additional producer-to-injector conversions will follow.

  3. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  4. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    SciTech Connect (OSTI)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-03

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  5. He ion irradiation damage to Al/Nb multilayers

    SciTech Connect (OSTI)

    Misra, Amit; Li, Nan; Martin, M S; Anderoglu, Osman; Shao, L; Wang, H; Zhang, X

    2009-01-01

    We investigated the evolution of microstructure and mechanical properties of sputter-deposited Al/Nb multilayers with individual layer thickness, h, of 1-200 nm, subjected to helium ion irradiations: 100 keV He{sup +} ions with a dose of 6 x 10{sup 16}/cm{sup 2}. Helium bubbles, 1-2 nm in diameter, were observed. When h is greater than 25 nm, hardnesses of irradiated multilayers barely change, whereas radiation hardening is more significant at smaller h. Transmission electron microscopy and scanning transmission electron microscopy studies reveal the formation of a thin layer of Nb{sub 3}Al intermetallic along the Al/Nb interface as a consequence of radiation induced intermixing. The dependence of radiation hardening on h is interpreted by using a composite model considering the formation of the hard Nb{sub 3}Al intermetallic layer.

  6. Production of sodium-22 from proton irradiated aluminum

    DOE Patents [OSTI]

    Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  7. Conceptual Design Report for the Irradiated Materials Characterization Laboratory (IMCL)

    SciTech Connect (OSTI)

    Stephanie Austad

    2010-06-01

    This document describes the design at a conceptual level for the Irradiated Materials Characterization Laboratory (IMCL) to be located at the Materials and Fuels Complex (MFC) at the Idaho National Laboratory (INL). The IMCL is an 11,000-ft2, Hazard Category-2 nuclear facility that is designed for use as a state of the-art nuclear facility for the purpose of hands-on and remote handling, characterization, and examination of irradiated and nonirradiated nuclear material samples. The IMCL will accommodate a series of future, modular, and reconfigurable instrument enclosures or caves. To provide a bounding design basis envelope for the facility-provided space and infrastructure, an instrument enclosure or cave configuration was developed and is described in some detail. However, the future instrument enclosures may be modular, integral with the instrument, or reconfigurable to enable various characterization environments to be configured as changes in demand occur. They are not provided as part of the facility.

  8. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  9. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern for the project as it limited CO{sub 2} injectivity. To reduce voidage balance, and reservoir pressure, a disposal well was therefore drilled. Several injection surveys indicated the CO{sub 2} injection wells had severe conformance issues. After close monitoring of the project to the end of 1999, it was evident the project would not recover the anticipated tertiary reserves. The main reasons for under-performance were poor in zone CO{sub 2} injection into the upper San Andres layers, poorer offtake rates from newly drilled replacement wells and a higher than required reservoir pressure. After discussion internally within Phillips, externally with the Department of Energy (DOE) and SCU partners, a redevelopment of South Cowden was agreed upon to commence in year 2000. The redevelopment essentially abandoned the original development for Budget Phase II in favor of a revised approach. This involved conformance techniques to resolve out of zone CO{sub 2} injection and use of horizontal wells to improve in zone injectivity and productivity. A phased approach was used to ensure short radius lateral drilling could be implemented effectively at South Cowden. This involved monitoring drilling operations and then production response to determine if larger investments during the second phase were justified. Redevelopment Phase 1 was completed in May 2000. It was deemed a success in regard to finding suitable/cost-effective technology for drilling horizontal laterals and finding a technique that could sustain long-term productivity from the upper layers of the San Andres reservoir. Four existing vertical producing wells were isolated from their existing completions and sidetracked with horizontal laterals into the upper layers of the San Andres. Overall average offtake rates for the four wells increased by a factor of 12 during the first four months after completion of Phase 1. Phase 2 of the redevelopment focused on current CO{sub 2} vertical injection wells. Techniques were applied to resolve near well conformance concerns and then either single or dual laterals were dril

  10. Ceramographic Examinations of Irradiated AGR-1 Fuel Compacts

    SciTech Connect (OSTI)

    Paul Demkowicz; Scott Ploger; John Hunn; Jay S. Kehn

    2012-09-01

    The AGR 1 experiment involved irradiating 72 cylindrical fuel compacts containing tri-structural isotropic (TRISO)-coated particles to a peak burnup of 19.5% fissions per initial metal atom with no in-pile failures observed out of almost 300,000 particles. Six irradiated AGR 1 fuel compacts were selected for microscopy that span a range of irradiation conditions (temperature, burnup, and fast fluence). These six compacts also included all four TRISO coating variations irradiated in the AGR experiment. The six compacts were cross-sectioned both transversely and longitudinally, mounted, ground, and polished after development of careful techniques for preserving particle structures against preparation damage. From 36 to 79 particles within each cross section were exposed near enough to midplane for optical microscopy of kernel, buffer, and coating behavior. The microstructural analysis focused on kernel swelling and porosity, buffer densification and fracture, debonding between the buffer and inner pyrolytic carbon (IPyC) layers, and fractures in the IPyC and SiC layers. Three basic particle morphologies were established according to the extent of bonding between the buffer and IPyC layers: complete debonding along the interface (Type A), no debonding along the interface (Type B), and partial debonding (Type AB). These basic morphologies were subdivided according to whether the buffer stayed intact or fractured. The resulting six characteristic morphologies were used to classify particles within each cross section, but no spatial patterns were clearly observed in any of the cross-sectional morphology maps. Although positions of particle types appeared random within compacts, examining a total of 931 classified particles allowed other relationships among morphological types to be established.

  11. Discrepancies in Shortwave Diffuse Measured and Modeled Irradiances in Antarctica

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discrepancies in Shortwave Diffuse Measured and Modeled Irradiances in Antarctica A. Payton, P. Ricchiazzi, and C. Gautier University of California Santa Barbara, California D. Lubin Scripps Scripps Institution of Oceanography La Jolla, California Introduction Measurements of clear-sky shortwave (SW) radiation at the surface show discrepancies between measurements and model simulations, but only for certain measurements across time and space. Most of the observations entail broadband

  12. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Nastasi image of George Gray Contact Information Professor, University of Nebraska-Lincoln Email: Mike Nastasi Phone: 402-472-3852 Bio Education Ph.D., Materials Science and Engineering, Cornell University, 1986 M.S., Materials Science and Engineering, Cornell University, 1983 B.S., Materials Science and Engineering, Cornell University, 1981 Research and Professional Experience Director, Center for Materials at Irradiation and Mechanical Extremes, 2009-present Nano

  13. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Traditional structural materials degrade and fail under intense irradiation, but certain nanocomposites contain high volume fractions of "super sink" interfaces that allow these materials to self-heal.Understanding how radiation damage is trapped and removed at such interfaces will help in designing a new class of radiation-tolerant materials that would make future nuclear reactors maximally safe, sustainable, and efficient. This (movie/figure) shows the

  14. Featured Projects: Center for Materials at Irradiation and Mechanical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extremes: Los Alamos Lab About CMIME The Center for Materials at Irradiation and Mechanical Extremes (CMIME) is a Department of Energy (DOE) Energy Frontier Research Center (EFRC) designed to understand, at the atomic scale, the behavior of materials subject to extreme radiation doses and mechanical stress in order to synthesize new materials that can tolerate such conditions. It is a collaborative effort led by Los Alamos National Laboratory (LANL) that includes the Massachusetts Institute

  15. Improved Method to Measure Glare and Reflected Solar Irradiance - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Early Stage R&D Early Stage R&D Find More Like This Return to Search Improved Method to Measure Glare and Reflected Solar Irradiance Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (767 KB) Solar glare from aerial view Solar glare from aerial view Typical solar glare Typical solar glare

  16. Updated FY12 Ceramic Fuels Irradiation Test Plan

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-05-24

    The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

  17. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Others Participants Summer School Contacts Project Office Director Amit Misra (505) 667-9860 Co-Director Irene J. Beyerlein (505) 665-2231 Administrator Linda Chavez (505) 665-2266 cmime@lanl.gov Resources About CMIME Documents Employment Opportunities News & Highlights | Archive Related EFRC News Upcoming Events | Archive CMIME Featured Projects image for movie Irradiation Extremes Thrust The movie shows our molecular dynamics simulation of a collision cascade near

  18. Method for improving performance of irradiated structural materials

    DOE Patents [OSTI]

    Megusar, Janez (Belmont, MA); Harling, Otto K. (Hingham, MA); Grant, Nicholas J. (Winchester, MA)

    1989-01-01

    Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

  19. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect (OSTI)

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the NO2 radical.

  20. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect (OSTI)

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  1. Calibrating Pyrgeometers Outdoors Independent from the Reference Value of the Atmospheric Longwave Irradiance

    SciTech Connect (OSTI)

    Reda, I.; Hickey, J. R.; Grobner, J.; Andreas, A.; Stoffel, T.

    2006-08-01

    In this article, we describe a method for the calibration of thermopile pyrgeometers in the absence of a reference for measurement of atmospheric longwave irradiance. This is referred to as the incoming longwave irradiance in this article. The method is based on an indoor calibration using a low-temperature blackbody source to obtain the calibration coefficients that determine the pyrgeometer's radiation characteristics. From these coefficients the outgoing irradiance of the pyrgeometer can be calculated. The pyrgeometer is then installed outdoors on an aluminum plate that is connected to a circulating temperature bath. By adjusting the temperature bath to the approximate value of the effective sky temperature, the pyrgeometer's body temperature is lowered changing the pyrgeometer's thermopile output. If the incoming longwave irradiance is stable, the slope of the outgoing irradiance versus the pyrgeometer's thermopile output is the outdoor net irradiance responsivity (RSnet), independent of the absolute value of the atmospheric longwave irradiance. The indoor calibration coefficients and the outdoor RSnet are then used in the pyrgeometer equation to calculate the incoming longwave irradiance. To evaluate this method, the calculated irradiance using the derived coefficients was compared to the irradiance measured using a pyrgeometer with direct traceability to the World Infrared Standard Group (WISG). This is maintained at the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland. Based on results from four pyrgeometers calibrations, this method suggests measurement agreement with the WISG to within +/- 3 W/m2 for all sky conditions.

  2. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect (OSTI)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  3. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  4. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  5. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  6. Irradiation of commercial, high-Tc superconducting tape for potential fusion applications: electromagnetic transport properties

    SciTech Connect (OSTI)

    Aytug, Tolga [ORNL; Gapud, Albert A. [University of South Alabama, Mobile; List III, Frederick Alyious [ORNL; Leonard, Keith J [ORNL; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Zhang, Yanwen [ORNL; Greenwood, N T [University of South Alabama, Mobile; Alexander, J A [University of South Alabama, Mobile; Khan, A [University of South Alabama, Mobile

    2015-01-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  7. UNDERSTANDING TRENDS ASSOCIATED WITH CLOUDS IN IRRADIATED EXOPLANETS

    SciTech Connect (OSTI)

    Heng, Kevin; Demory, Brice-Olivier E-mail: demory@mit.edu

    2013-11-10

    Unlike previously explored relationships between the properties of hot Jovian atmospheres, the geometric albedo and the incident stellar flux do not exhibit a clear correlation, as revealed by our re-analysis of Q0-Q14 Kepler data. If the albedo is primarily associated with the presence of clouds in these irradiated atmospheres, a holistic modeling approach needs to relate the following properties: the strength of stellar irradiation (and hence the strength and depth of atmospheric circulation), the geometric albedo (which controls both the fraction of starlight absorbed and the pressure level at which it is predominantly absorbed), and the properties of the embedded cloud particles (which determine the albedo). The anticipated diversity in cloud properties renders any correlation between the geometric albedo and the stellar flux weak and characterized by considerable scatter. In the limit of vertically uniform populations of scatterers and absorbers, we use an analytical model and scaling relations to relate the temperature-pressure profile of an irradiated atmosphere and the photon deposition layer and to estimate whether a cloud particle will be lofted by atmospheric circulation. We derive an analytical formula for computing the albedo spectrum in terms of the cloud properties, which we compare to the measured albedo spectrum of HD 189733b by Evans et al. Furthermore, we show that whether an optical phase curve is flat or sinusoidal depends on whether the particles are small or large as defined by the Knudsen number. This may be an explanation for why Kepler-7b exhibits evidence for the longitudinal variation in abundance of condensates, while Kepler-12b shows no evidence for the presence of condensates despite the incident stellar flux being similar for both exoplanets. We include an 'observer's cookbook' for deciphering various scenarios associated with the optical phase curve, the peak offset of the infrared phase curve, and the geometric albedo.

  8. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.

  9. Portable instrument for inspecting irradiated nuclear fuel assemblies

    DOE Patents [OSTI]

    Nicholson, Nicholas (Los Alamos, NM); Dowdy, Edward J. (Los Alamos, NM); Holt, David M. (Los Alamos, NM); Stump, Jr., Charles J. (Santa Fe, NM)

    1985-01-01

    A portable instrument for measuring induced Cerenkov radiation associated with irradiated nuclear fuel assemblies in a water-filled storage pond is disclosed. The instrument includes a photomultiplier tube and an image intensifier which are operable in parallel and simultaneously by means of a field lens assembly and an associated beam splitter. The image intensifier permits an operator to aim and focus the apparatus on a submerged fuel assembly. Once the instrument is aimed and focused, an illumination reading can be obtained with the photomultiplier tube. The instrument includes a lens cap with a carbon-14/phosphor light source for calibrating the apparatus in the field.

  10. Effect of gamma irradiation on electrical properties of Cu nanowires

    SciTech Connect (OSTI)

    Rana, Pallavi Gehlawat, Devender Chauhan, R. P.

    2014-04-24

    Metallic nanowires are of great interest due to their unique electrical, optical, chemical and magnetic properties. Characterization and explanations of electronic properties of nanowires are extremely important due to their potential applications in the field of nanoelectronics and optoelectronics. In the present study, we synthesized the copper nanowires of different diameters (80nm, 100nm and 200nm) and exposed them with gamma rays of 100 KGy and 150 KGy doses. The I-V characteristics of different diameter of Cu nanowires before and after the irradiation were recorded.

  11. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect (OSTI)

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  12. Phase-field simulations of gas density within bubbles under irradiation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Phase-field simulations of gas density within bubbles under irradiation Citation Details In-Document Search Title: Phase-field simulations of gas density within bubbles under irradiation Phase-field simulations are used to study the evolution of gas density within irradiation-induced bubbles. In our simulations, the dpa rate, gas production rate, and defect diffusivities are systematically varied to understand their effect on bubble nucleation rates,

  13. Temperature dependence of fracture toughness in HT9 steel neutron-irradiated up to 145 dpa

    SciTech Connect (OSTI)

    Baek, Jong-Hyuk; Byun, Thak Sang; Maloy, S; Toloczko, M

    2014-01-01

    The temperature dependence of fracture toughness in HT9 steel irradiated to high doses was investigated using miniature three-point bend (TPB) fracture specimens. These specimens were from the ACO-3 fuel duct wall of the Fast Flux Test Facility (FFTF), in which irradiation doses were in the range of 3.2 144.8 dpa and irradiation temperatures in the range of 380.4 502.6 oC. A miniature specimen reuse technique has been established for this investigation: the specimens used were the tested halves of miniature Charpy impact specimens (~13 3 4 mm) with diamond-saw cut in the middle. The fatigue precracking for specimens and fracture resistance (J-R) tests were carried out in a MTS servo-hydraulic testing machine with a vacuum furnace following the standard procedure described in the ASTM Standard E 1820-09. For each of five irradiated and one archive conditions, 7 to 9 J-R tests were performed at selected temperatures ranging from 22 C to 600 C. The fracture toughness of the irradiated HT9 steel was strongly dependent on irradiation temperatures rather than irradiation dose. When the irradiation temperature was below about 430 C, the fracture toughness of irradiated HT9 increased with test temperature, reached an upper shelf of 180 200 MPa m at 350 450 C and then decreased with test temperature. When the irradiation temperature 430 C, the fracture toughness was nearly unchanged until about 450 C and decreased with test temperature in higher temperature range. Similar test temperature dependence was observed for the archive material although the highest toughness values are lower after irradiation. Ductile stable crack growth occurred except for a few cases where both the irradiation temperature and test temperature are relatively low.

  14. APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN MATERIALS

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN MATERIALS Citation Details In-Document Search Title: APPLICATION OF PHASE-FIELD MODELING TO IRRADIATION EFFECTS IN MATERIALS This paper summarizes the recent advances in phase-field modeling in the field of radiation materials science. Conventional phase-field equations are first presented for the thermodynamic and kinetic description of irradiation-induced defects. Results of homogeneous and

  15. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  16. Investigation of The Synergistic Influence of Irradiation Temperature and Atomic Displacement Rate on the Microstructural Evolution of Ion-Irradiated Model Austenitic Alloy Fe-15Cr-16Ni

    SciTech Connect (OSTI)

    Okita, Taira; Iwai, Takeo; Sekimura, Naoto; Garner, Francis A.

    2002-03-31

    A comprehensive experimental investigation of microstructural evolution has been conducted on Fe-15Cr-16Ni irradiated with 4.0 MeV nickel ions in the High Fluence Irradiation Facility of the University of Tokyo. Irradiations proceeded to dose levels ranging from ~0.2 to ~26 dpa at temperatures of 300, 400 and 500 degrees C at displacement rates of 1 x 10^-4, 4 x 10^-4 and 1 x 10^-3 dpa/sec. This experiment is one of two companion experiments directed toward the study of the dependence of void swelling on displacement rate. The other experiment proceeded at seven different but lower dpa rates in FFTF-MOTA at ~400 degrees C. In both experiments the swelling was found at every irradiation condition studied to monotonically increase with decreases in dpa rate. The microstructural evolution under ion irradiation was found to be very sensitive to the displacement rate at all three temperatures. The earliest and most sensitive component of microstructure to both temperature and especially displacement rate was found to be the Frank loops. The second most sensitive component was found to be the void microstructure, which co-evolves with the loop and dislocation microstructure. These data support the prediction that void swelling will probably be higher in lower-flux fusion devices and PWRs at a given irradiation temperature when compared to irradiations conducted at higher dpa rates in fast reactors.

  17. Hydrolysis of late-washed, irradiated tetraphenylborate slurry simulants I: Phenylboric acid hydrolysis kinetics

    SciTech Connect (OSTI)

    Marek, J.C.

    2000-02-10

    The attached report details the kinetics of phenylboric acid reaction at 90 degrees C during precipitate hydrolysis processing of late-washed, irradiated tetraphenylborate slurry simulants.

  18. Bright x-ray sources from laser irradiation of foams with high...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CONCENTRATION RATIO; ELECTRON TEMPERATURE; FOAMS; IRRADIATION; LASER ...

  19. Effects of helium content of microstructural development in Type 316 stainless steel under neutron irradiation

    SciTech Connect (OSTI)

    Maziasz, P.J.

    1985-11-01

    This work investigated the sensitivity of microstructural evolution, particularly precipitate development, to increased helium content during thermal aging and during neutron irradiation. Helium (110 at. ppM) was cold preinjected into solution annealed (SA) DO-heat type 316 stainess steel (316) via cyclotron irradiation. These specimens were then exposed side by side with uninjected samples. Continuous helium generation was increased considerably relative to EBR-II irradiation by irradiation in HFIR. Data were obtained from quantitative analytical electron microscopy (AEM) in thin foils and on extraction replicas. 480 refs., 86 figs., 19 tabs.

  20. Conduction mechanisms in ion-irradiated InGaAs layers

    SciTech Connect (OSTI)

    Joulaud, L.; Mangeney, J.; Chimot, N.; Crozat, P.; Fishman, G.; Bourgoin, J.C.

    2005-03-15

    The electrical and optical properties of H{sup +}- and Au{sup +}-irradiated InGaAs layers were studied using Hall-effect, van der Pauw, and relaxation-time measurements. Comparing the different results allows us to obtain information on the nature of the defects created by these two irradiations. Proton irradiation introduces donor-acceptor paired defects. Gold-ion irradiation creates neutral defect clusters and ionized point defects. The carrier mobilities in all of the irradiated materials are degraded, decreasing with increasing irradiation dose. A scattering model taking into account the paired defects is developed and the mobility evolution calculated from this model agrees with the experimental data of both annealed and unannealed samples. The photocurrent spectra reveal a metallic conduction in the band gap in the case of light-ion irradiation, while such type of conduction does not appear for heavy-ion irradiation. This metallic conduction is a consequence of band tailing induced by shallow defects and vanishes when the material is annealed at 400 deg. C. The proton irradiation-induced defects appear to be related to the EL-2-like defects.

  1. Microstructure evolution in Xe-irradiated UO2 at room temperature

    SciTech Connect (OSTI)

    L.F. He; J. Pakarinen; M.A. Kirk; J. Gan; A.T. Nelson; X.-M. Bai; A. El-Azab; T.R. Allen

    2014-07-01

    In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 keV Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation.

  2. Swift heavy ion irradiation of Pt nanocrystals: I. shape transformation and dissolution

    SciTech Connect (OSTI)

    Giulian, R.; Araujo, L.L.; Kluth, P.; Sprouster, D.J.; Schnohr, C.S.; Byrne, A.P.; Ridgway, M.C. (ANU)

    2014-09-24

    We report on the effects of swift heavy ion irradiation of embedded Pt nanocrystals (NCs), which change from spheres to prolate spheroids to rods upon irradiation. Using a broad range of ion irradiation energies and NC mean sizes we demonstrate that the elongation and dissolution processes are energy and size dependent, attaining comparable levels of shape transformation and dissolution upon a given energy density deposited in the matrix. The NC shape transformation remains operative despite discontinuous ion tracks in the matrix and exhibits a constant threshold size for elongation. In contrast, for ion irradiations in which the ion tracks are continuous, the threshold size for elongation is clearly energy dependent.

  3. Low-energy D{sup +} and H{sup +} ion irradiation effects on highly oriented pyrolytic graphite

    SciTech Connect (OSTI)

    Kue Park, Jun; Won Lee, Kyu; Hee Han, Jun; Jung Kweon, Jin; Kim, Dowan; Eui Lee, Cheol [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Physics and Institute for Nano Science, Korea University, Seoul 136-713 (Korea, Republic of); Lim, Sun-Taek; Kim, Gon-Ho [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)] [Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Noh, S. J.; Kim, H. S. [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of)] [Department of Applied Physics, Dankook University, Yongin 448-701 (Korea, Republic of)

    2013-12-07

    We have investigated the low-energy (100 eV) D{sup +} and H{sup +} ion irradiation effects on the structural and chemical properties of highly oriented pyrolytic graphite (HOPG). Structural disorder due to the ion irradiation was identified by the Raman spectroscopy, the D{sup +} irradiation giving rise to greater structural disorder than the H{sup +} irradiation. Only sp{sup 2} bonding was identified in the X-ray photoemission spectroscopy of the D{sup +}-irradiated HOPG, indicating no change in the surface chemical structure. The H{sup +} irradiation, on the other hand, gave rise to sp{sup 3} bonding and ???{sup *} transition, the sp{sup 3} bonding increasing with increasing irradiation dose. It is thus shown that the chemical properties of the HOPG surface may be sensitively modified by the low-energy H{sup +} ion irradiation, but not by the low-energy D{sup +} ion irradiation.

  4. Neutron-Irradiated Samples as Test Materials for MPEX

    SciTech Connect (OSTI)

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.

  5. Method for monitoring irradiated fuel using Cerenkov radiation

    DOE Patents [OSTI]

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  6. Neutron-Irradiated Samples as Test Materials for MPEX

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ellis, Ronald James; Rapp, Juergen

    2015-10-09

    Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by fast neutron irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. This paper presents assessments of the calculated induced radioactivity and resulting radiation dose rates of a variety of potential fusion reactor plasma-facing materials (such as tungsten). The scientific code packages MCNP and SCALE were used to simulate irradiation of themore » samples in HFIR including the generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. A challenge of the MPEX project is to minimize the radioactive inventory in the preparation of the samples and the sample dose rates for inclusion in the MPEX facility.« less

  7. Kr Ion Irradiation Study of the Depleted-Uranium Alloys

    SciTech Connect (OSTI)

    J. Gan; D. Keiser; B. Miller; M. Kirk; J. Rest; T. Allen; D. Wachs

    2010-12-01

    Fuel development for the Reduced Enrichment Research and Test Reactor program is tasked with the development of new low-enriched uranium nuclear fuels that can be employed to replace existing highly enriched uranium fuels currently used in some research reactors throughout the world. For dispersion-type fuels, radiation stability of the fuel/cladding interaction product has a strong impact on fuel performance. Three depleted uranium alloys are cast for the radiation stability studies of the fuel/cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Si, Al)3, (U, Mo)(Si, Al)3, UMo2Al20, U6Mo4Al43, and UAl4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200C to ion doses up to 2.5 1015 ions/cm2 (~ 10 dpa) with an Kr ion flux of 1012 ions/cm2-sec (~ 4.0 10-3 dpa/sec). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.

  8. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  9. Janus Experiments: Data from Mouse Irradiation Experiments 1972 - 1989

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Janus Experiments, carried out at Argonne National Laboratory from 1972 to 1989 and supported by grants from the US Department of Energy, investigated the effects of neutron and gamma radiation on mouse tissues primarily from B6CF1 mice. 49,000 mice were irradiated: Death records were recorded for 42,000 mice; gross pathologies were recorded for 39,000 mice; and paraffin embedded tissues were preserved for most mice. Mouse record details type and source of radiation [gamma, neutrons]; dose and dose rate [including life span irradiation]; type and presence/absence of radioprotector treatment; tissue/animal morphology and pathology. Protracted low dose rate treatments, short term higher dose rate treatments, variable dose rates with a same total dose, etc. in some cases in conjunction with radioprotectors, were administered. Normal tissues, tumors, metastases were preserved. Standard tissues saved were : lung, liver, spleen, kidney, heart, any with gross lesions (including mammary glands, Harderian gland with eye, adrenal gland, gut, ovaries or testes, brain and pituitary, bone). Data are searchable and specimens can be obtained by request.

  10. Status of the NGNP fuel experiment AGR-2 irradiated in the advanced test reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti

    2014-05-01

    The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also undergo on-line fission product monitoring to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and sup

  11. Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

  12. Direct normal irradiance related definitions and applications: The circumsolar issue

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blanc, P.; Espinar, B.; Geuder, N.; Gueymard, C.; Meyer, R.; Pitz-Paal, R.; Reinhardt, B.; Renne, D.; Segupta, M.; Wald, L.; et al

    2014-10-21

    The direct irradiance received on a plane normal to the sun, called direct normal irradiance (DNI), is of particular relevance to concentrated solar technologies, including concentrating solar thermal plants and concentrated photovoltaic systems. Following various standards from the International Organization for Standardization (ISO), the DNI definition is related to the irradiance from a small solid angle of the sky, centered on the position of the sun. Half-angle apertures of pyrheliometers measuring DNI have varied over time, up to ≈10°. The current recommendation of the World Meteorological Organization (WMO) for this half-angle is 2.5°. Solar concentrating collectors have an angular acceptancemore » function that can be significantly narrower, especially for technologies with high concentration ratios. The disagreement between the various interpretations of DNI, from the theoretical definition used in atmospheric physics and radiative transfer modeling to practical definitions corresponding to specific measurements or conversion technologies is significant, especially in the presence of cirrus clouds or large concentration of aerosols. Under such sky conditions, the circumsolar radiation—i.e. the diffuse radiation coming from the vicinity of the sun—contributes significantly to the DNI ground measurement, although some concentrating collectors cannot utilize the bulk of it. These issues have been identified in the EU-funded projects MACC-II (Monitoring Atmospheric Composition and Climate-Interim Implementation) and SFERA (Solar Facilities for the European Research Area), and have been discussed within a panel of international experts in the framework of the Solar Heating and Cooling (SHC) program of the International Energy Agency’s (IEA’s) Task 46 “Solar Resource Assessment and Forecasting”. In accordance with these discussions, the terms of reference related to DNI are specified here. The important role of circumsolar radiation is evidenced, and its potential contribution is evaluated for typical atmospheric conditions. Thus, thorough analysis of performance of concentrating solar systems, it is recommended that, in addition to the conventional DNI related to 2.5° half-angle of today’s pyrheliometers, solar resource data sets also report the sunshape, the circumsolar contribution or the circumsolar ratio (CSR).« less

  13. Response of nanostructured ferritic alloys to high-dose heavy ion irradiation

    SciTech Connect (OSTI)

    Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

    2014-02-01

    A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

  14. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect (OSTI)

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  15. The Next Generation Nuclear Plant Graphite Creep Experiment Irradiation in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2010-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energys lead laboratory for nuclear energy development. The ATR is one of the worlds premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will have differing compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The first experiment was inserted in the ATR in August 2009 and started its irradiation in September 2009. It is anticipated to complete its irradiation in early calendar 2011. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and the irradiation experience to date.

  16. The discrepancies in multistep damage evolution of yttria-stabilized zirconia irradiated with different ions

    SciTech Connect (OSTI)

    Yang, Tengfei; Taylor, Caitlin A.; Kong, Shuyan; Wang, Chenxu; Zhang, Yanwen; Huang, Xuejun; Xue, Jianming; Yan, Sha; Wang, Yugang

    2013-01-01

    This paper reports a comprehensive investigation of structural damage in yttria-stabilized zirconia irradiated with different ions over a wide fluence range. A similar multistep damage accumulation exists for the irradiations of different ions, but the critical doses for occurrence of second damage step, characterized by a faster increase in damage fraction, and the maximum elastic strain at the first damage step are varied and depend on ion mass. For irradiations of heavier ions, the second damage step occurs at a higher dose with a lower critical elastic strain. Furthermore, larger extended defects were observed in the irradiations of heavy ions at the second damage step. Associated with other experiment results and multistep damage accumulation model, the distinct discrepancies in the damage buildup under irradiations of different ions were interpreted by the effects of electronic excitation, energy of primary knock-on atom and chemistry contributions of deposited ions.

  17. Response of 9Cr-ODS Steel to Proton Irradiation at 400 C

    SciTech Connect (OSTI)

    Jianchao He; Farong Wan; Kumar Sridharan; Todd R. Allen; A. Certain; Y. Q. Wu

    2014-09-01

    The stability of YTiO nanoclusters, dislocation structure, and grain boundary segregation in 9Cr-ODS steels has been investigated following proton irradiation at 400 C with damage levels up to 3.7 dpa. A slight coarsening and a decrease in number density of nanoclusters were observed as a result of irradiation. The composition of nanoclusters was also observed to change with a slight increase of Y and Cr concentration in the nanoclusters following irradiation. Size, density, and composition of the nanoclusters were investigated as a function of nanocluster size, specifically classified to three groups. In addition to the changes in nanoclusters, dislocation loops were observed after irradiation. Finally, radiation-induced enrichment of Cr and depletion of W were observed at grain boundaries after irradiation.

  18. Irradiation-induced reduction of microcracking in zirconolite

    SciTech Connect (OSTI)

    Clinard, F.W. Jr.; Tucker, D.S.; Hurley, G.F.; Kise, C.D.; Rankin, J.

    1984-01-01

    /sup 238/Pu-substituted zirconolite (CaPuTi/sub 2/O/sub 7/) was stored near ambient temperature for 231 days, equivalent to an alpha decay dose of 3.1x10/sup 25/ ..cap alpha../m/sup 3/ or 3x10/sup 5/ years of storage time for SYNROC ceramic nuclear waste. Periodic indentation testing showed that hardness was decreased by alpha decay-induced conversion to the metamict state, while fracture toughness and resistance to cracking were increased, apparently as a consequence of the formation of a heterogeneous microstructure. These results imply improved stability of this nuclear waste phase as a result of self-irradiation damage. 21 references, 4 figures.

  19. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect (OSTI)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  20. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 × 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure maymore » be investigated.« less

  1. Crystallographic changes in lead zirconate titanate due to neutron irradiation

    SciTech Connect (OSTI)

    Henriques, Alexandra; Graham, Joseph T.; Landsberger, Sheldon; Ihlefeld, Jon F.; Brennecka, Geoff L.; Brown, Donald W.; Forrester, Jennifer S.; Jones, Jacob L.

    2014-11-17

    Piezoelectric and ferroelectric materials are useful as the active element in non-destructive monitoring devices for high-radiation areas. Here, crystallographic structural refinement (i.e., the Rietveld method) is used to quantify the type and extent of structural changes in PbZr0.5Ti0.5O3 after exposure to a 1 MeV equivalent neutron fluence of 1.7 1015 neutrons/cm2. The results show a measurable decrease in the occupancy of Pb and O due to irradiation, with O vacancies in the tetragonal phase being created preferentially on one of the two O sites. The results demonstrate a method by which the effects of radiation on crystallographic structure may be investigated.

  2. Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation

    SciTech Connect (OSTI)

    Dai, Lei; Chi, Quan; Zhao, Yanxi; Liu, Hanfan; Zhou, Zhongqiang; Li, Jinlin; Huang, Tao

    2014-01-01

    Graphical abstract: Under microwave irradiation, novel octapod Pt nanocrystals were synthesized by reducing H{sub 2}PtCl{sub 6} in TEG with PVP as a stabilizer. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center. The use of KI was crucial to the formation of novel Pt octapods. Novel Octapod Platinum Nanocrystals. - Highlights: A novel octapod Pt nanocrystals different from the common octapod were obtained. The use of KI was crucial to the formation of the novel Pt octapods. Microwave was readily employed in controlled synthesis of the novel Pt octapods. - Abstract: Microwave was employed in the shape-controlled synthesis of Pt nanoparticles. Novel octapod Pt nanocrystals enclosed with (1 1 1) facets were readily synthesized with H{sub 2}PtCl{sub 6} as a precursor, tetraethylene glycol (TEG) as both a solvent and a reducing agent, polyvinylpyrrolidone (PVP) as a stabilizer in the presence of an appropriate amount of KI under microwave irradiation for 140 s. The as-prepared Pt nanocrystals displayed a unique octapod nanostructure with five little mastoids in each concave center and exhibited higher electrocatalytic activity than commercial Pt black in the electro-oxidations of methanol and formic acid. The results demonstrated that the use of KI was crucial to the formation of Pt octapods. KI determined the formation of the novel octapod Pt nanocrystals by tuning up the reduction kinetics and adsorbing on the surfaces of growing Pt nanoparticles. The optimum molar ratio of H{sub 2}PtCl{sub 6}/KI/PVP was 1/30/45.

  3. AGC-3 Experiment Irradiation Monitoring Data Qualification Final Report

    SciTech Connect (OSTI)

    Laurence Hull

    2014-10-01

    The Graphite Technology Development Program will run a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The third experiment, Advanced Graphite Creep 3 (AGC 3), began with Advanced Test Reactor (ATR) Cycle 152B on November 27, 2012, and ended with ATR Cycle 155B on April 23, 2014. This report documents qualification of AGC 3 experiment irradiation monitoring data for use by the Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Program for research and development activities required to design and license the first VHTR nuclear plant. Qualified data meet the requirements for data collection and use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements. Trend data may not meet the requirements, but may still provide some useable information. All thermocouples (TCs) functioned throughout the AGC 3 experiment. There was one interval between December 18, 2012, and December 20, 2012, where 10 NULL values were reported for various TCs. These NULL values were deleted from the Nuclear Data Management and Analysis System database. All temperature data are Qualified for use by the VHTR TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the VHTR TDO Program. Total gas flow was approximately 50 sccm through the AGC 3 experiment capsule. Helium gas flow was briefly increased to 100 sccm during ATR shutdowns. At the start of the AGC 3 experiment, moisture in the outflow gas line was stuck at a constant value of 335.6174 ppmv for the first cycle (Cycle 152B). When the AGC 3 experiment capsule was reinstalled in ATR for Cycle 154B, a new moisture filter was installed. Moisture data from Cycle 152B are Failed. All moisture data from the final three cycles (Cycles 154B, 155A, and 155B) are Qualified for use by the VHTR TDO Program.

  4. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect (OSTI)

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  5. Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in BWR Environments

    SciTech Connect (OSTI)

    Chen, Y.; Chopra, O. K.; Gruber, Eugene E.; Shack, William J.

    2010-06-01

    The internal components of light water reactors are exposed to high-energy neutron irradiation and high-temperature reactor coolant. The exposure to neutron irradiation increases the susceptibility of austenitic stainless steels (SSs) to stress corrosion cracking (SCC) because of the elevated corrosion potential of the reactor coolant and the introduction of new embrittlement mechanisms through radiation damage. Various nonsensitized SSs and nickel alloys have been found to be prone to intergranular cracking after extended neutron exposure. Such cracks have been seen in a number of internal components in boiling water reactors (BWRs). The elevated susceptibility to SCC in irradiated materials, commonly referred to as irradiation-assisted stress corrosion cracking (IASCC), is a complex phenomenon that involves simultaneous actions of irradiation, stress, and corrosion. In recent years, as nuclear power plants have aged and irradiation dose increased, IASCC has become an increasingly important issue. Post-irradiation crack growth rate and fracture toughness tests have been performed to provide data and technical support for the NRC to address various issues related to aging degradation of reactor-core internal structures and components. This report summarizes the results of the last group of tests on compact tension specimens from the Halden-II irradiation. The IASCC susceptibility of austenitic SSs and heat-affected-zone (HAZ) materials sectioned from submerged arc and shielded metal arc welds was evaluated by conducting crack growth rate and fracture toughness tests in a simulated BWR environment. The fracture and cracking behavior of HAZ materials, thermally sensitized SSs and grain-boundary engineered SSs was investigated at several doses (?3 dpa). These latest results were combined with previous results from Halden-I and II irradiations to analyze the effects of neutron dose, water chemistry, alloy compositions, and welding and processing conditions on IASCC. The effect of neutron irradiation on the fracture toughness of austenitic SSs was also evaluated at dose levels relevant to BWR internals.

  6. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    SciTech Connect (OSTI)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.; Lee, Yong Woo

    2012-04-01

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  7. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  8. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-03

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is complete. Two additional vertical infill wells were drilled, completed, and brought on production during the reporting period. These were the last two of five wells to be drilled in the pilot area. Additional drilling is planned for Budget Period 3. Overall response to the various projects continues to be very favorable. Nitrogen injection into the pilot area had doubled prior to unrelated nitrogen supply problems, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Meanwhile, pilot area oil production has increased from 300 bpd prior to development to an average of 435 bpd for January through March 2004. March production was the highest at 542 bpd due to the addition of the two new vertical wells. Production performances of the new wells continue to support the current opinion that horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost.

  9. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-12-22

    A significant work program has been implemented in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work includes the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has increased to 23% in recent months, but this is still far below the 58% recycle prior to initiation of the project. Two additional wells--EBU 65-2 and EBU 67-2--were brought on line during this reporting period. EBU 65-2 was successfully sidetracked after encountering thin pay on the edge of the reservoir, and is awaiting conversion to nitrogen injection service. The early performance of EBU 67-2 has been as predicted.

  10. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect (OSTI)

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (?) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with ? dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  11. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    SciTech Connect (OSTI)

    Gary S. Was; Michael Atzmon; Lumin Wang

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone. A radiation annealing model was developed based on the elimination of dislocation loops by vacancy absorption. Results showed that there were indeed, time-temperature annealing combinations that leave the radiation induced segregation profile largely unaltered while the dislocation microstructure is significantly reduced. Proton irradiation of 304 stainless steel irradiated with 3.2 MeV protons to 1.0 or 2.5 dpa resulted in grain boundary depletion of chromium and enrichment of nickel and a radiation damaged microstructure. Post irradiation annealing at temperatures of 500 ? 600C for times of up to 45 min. removed the dislocation microstructure to a greater degree with increasing temperatures, or times at temperature, while leaving the radiation induced segregation profile relatively unaltered. Constant extension rate tensile (CERT) experiments in 288C water containing 2 ppm O2 and with a conductivity of 0.2 mS/cm and at a strain rate of 3 x 10-7 s-1 showed that the IASCC susceptibility, as measured by the crack length per unit strain, decreased with very short anneals and was almost completely removed by an anneal at 500C for 45 min. This annealing treatment removed about 15% of the dislocation microstructure and the irradiation hardening, but did not affect the grain boundary chromium depletion or nickel segregation, nor did it affect the grain boundary content of other minor impurities. These results indicate that RIS is not the sole controlling feature of IASCC in irradiated stainless steels in normal water chemistry. The isolation of the irradiated microstructure was approached using low temperature irradiation or combinations of low and high temperature irradiations to achieve a stable, irradiated microstructure without RIS. Experiments were successful in achieving a high degree of irradiation hardening without any evidence of RIS of either major or minor elements. The low temperature irradiations to doses up to 0.3 dpa at T<75C were also very successful in producing hardening to levels considerably above that for irradiations conducted under nominal conditions of 1 dpa at 360C. However, the microstructure consisted of an extremely fine dispersion of defect clusters of sizes that are not resolvable by either transmission electron microscopy (TEM) or small angle x-ray scattering (SAXS). The microstructure was not stable at the 288C IASCC test temperature and resulted in rapid reduction of hardening and presumably, annealing of the defect clusters at this temperature as well. Nevertheless, the annealing studies showed that treatments that resulted in significant decreases in the hardening produced small changes in the dislocation microstructure that were confined to the elimination of the finest of loops (~1 nm). These results substantiate the importance of the very fine defect microstructure in the IASCC process. The results of this program provide the first definitive evidence that RIS is not the sole controlling factor in the irradiation assisted stress corrosion cracking of austenitic stain

  12. SU-E-T-492: Implementing a Method for Brain Irradiation in Rats Utilizing a Commercially Available Radiosurgery Irradiator

    SciTech Connect (OSTI)

    Cates, J; Drzymala, R

    2014-06-01

    Purpose: The purpose of the study was to implement a method for accurate rat brain irradiation using the Gamma Knife Perfexion unit. The system needed to be repeatable, efficient, and dosimetrically and spatially accurate. Methods: A platform (“rat holder”) was made such that it is attachable to the Leskell Gamma Knife G Frame. The rat holder utilizes two ear bars contacting bony anatomy and a front tooth bar to secure the rat. The rat holder fits inside of the Leskell localizer box, which utilizes fiducial markers to register with the GammaPlan planning system. This method allows for accurate, repeatable setup.A cylindrical phantom was made so that film can be placed axially in the phantom. We then acquired CT image sets of the rat holder and localizer box with both a rat and the phantom. Three treatment plans were created: a plan on the rat CT dataset, a phantom plan with the same prescription dose as the rat plan, and a phantom plan with the same delivery time as the rat plan. Results: Film analysis from the phantom showed that our setup is spatially accurate and repeatable. It is also dosimetrically accurate, with an difference between predicted and measured dose of 2.9%. Film analysis with prescription dose equal between rat and phantom plans showed a difference of 3.8%, showing that our phantom is a good representation of the rat for dosimetry purposes, allowing for +/- 3mm diameter variation. Film analysis with treatment time equal showed an error of 2.6%, which means we can deliver a prescription dose within 3% accuracy. Conclusion: Our method for irradiation of rat brain has been shown to be repeatable, efficient, and accurate, both dosimetrically and spatially. We can treat a large number of rats efficiently while delivering prescription doses within 3% at millimeter level accuracy.

  13. Photos placed in horizontal position

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File s ystem Lustre Panasas TradiAonal Network F ile S ystem ( NFS), E xtended F ile s ystem ( EXT), e tc. 4 Tri---Lab t ools Parallel F ile T...

  14. Horizontal and Vertical Erosion Flume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A One-of-a-Kind Testing Capability In WIPP Performance Assessment scenarios, an exploration borehole is hypothesized to penetrate the repository sometime in the future. Drilling fluid flowing up the borehole would apply a hydrodynamic shear stress to the material comprising the borehole wall. If the wall material is made up of TRU waste degraded to the point it could be eroded off the wall and carried uphole with the drilling fluid, radionuclides could possibly escape the repository. To address

  15. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

    SciTech Connect (OSTI)

    Ahtee, Ville; Brown, Steven W.; Larason, Thomas C.; Lykke, Keith R.; Ikonen, Erkki; Noorma, Mart

    2007-07-10

    Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.

  16. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  17. Method for Analyzing Passive SiC Thermometry with a Continuous Dilatometer to Determine Irradiation Temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Anne A; Porter, Wallace D; Katoh, Yutai; Snead, Lance Lewis

    2016-01-01

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperaturemoreand removes possible user-introduced error while standardizing the analysis. This method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.less

  18. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  19. Grain Growth and Phase Stability of Nanocrystalline Cubic Zirconia under Ion Irradiation

    SciTech Connect (OSTI)

    Zhang, Yanwen; Jiang, Weilin; Wang, Chongmin; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J

    2010-01-01

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized cubic zirconia (NSZ) are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that the grain growth is not thermally activated and irradiation-induced grain growth is the dominating mechanism. While the cubic structure is retained and no new phases are identified after the high-dose irradiations, oxygen reduction in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. The loss of oxygen suggests a significant increase of oxygen vacancies in nanocrystalline zirconia under ion irradiation. The oxygen deficiency may be essential in stabilizing the cubic phase to larger grain sizes.

  20. Oxide shell reduction and magnetic property changes in core-shell Fe nanoclusters under ion irradiation

    SciTech Connect (OSTI)

    Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Jiang, Weilin [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); McCloy, John S. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164 (United States)

    2014-05-07

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe{sub 3}O{sub 4}/Fe{sub 3}N. These NC films were deposited on Si substrates to thickness of ?0.5 ?m using a NC deposition system. The films were irradiated at room temperature with 5.5?MeV Si{sup 2+} ions to ion fluences of 10{sup 15} and 10{sup 16} ions/cm{sup 2}. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization or growth of Fe{sub 3}N. The film retained its Fe-core and its ferromagnetic properties after irradiation. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe{sub 3}O{sub 4} and FeO?+?Fe{sub 3}N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  1. Method for analyzing passive silicon carbide thermometry with a continuous dilatometer to determine irradiation temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campbell, Anne A.; Porter, Wallace D.; Katoh, Yutai; Snead, Lance Lewis

    2016-01-14

    Silicon carbide is used as a passive post-irradiation temperature monitor because the irradiation defects will anneal out above the irradiation temperature. The irradiation temperature is determined by measuring a property change after isochronal annealing, i.e., lattice spacing, dimensions, electrical resistivity, thermal diffusivity, or bulk density. However, such methods are time-consuming since the steps involved must be performed in a serial manner. This work presents the use of thermal expansion from continuous dilatometry to calculate the SiC irradiation temperature, which is an automated process requiring minimal setup time. Analysis software was written that performs the calculations to obtain the irradiation temperaturemore » and removes possible user-introduced error while standardizing the analysis. In addition, this method has been compared to an electrical resistivity and isochronal annealing investigation, and the results revealed agreement of the calculated temperatures. These results show that dilatometry is a reliable and less time-intensive process for determining irradiation temperature from passive SiC thermometry.« less

  2. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    SciTech Connect (OSTI)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.

  3. EVALUATION OF U10MO FUEL PLATE IRRADIATION BEHAVIOR VIA NUMERICAL AND EXPERIMENTAL BENCHMARKING

    SciTech Connect (OSTI)

    Samuel J. Miller; Hakan Ozaltun

    2012-11-01

    This article analyzes dimensional changes due to irradiation of monolithic plate-type nuclear fuel and compares results with finite element analysis of the plates during fabrication and irradiation. Monolithic fuel plates tested in the Advanced Test Reactor (ATR) at Idaho National Lab (INL) are being used to benchmark proposed fuel performance for several high power research reactors. Post-irradiation metallographic images of plates sectioned at the midpoint were analyzed to determine dimensional changes of the fuel and the cladding response. A constitutive model of the fabrication process and irradiation behavior of the tested plates was developed using the general purpose commercial finite element analysis package, Abaqus. Using calculated burn-up profiles of irradiated plates to model the power distribution and including irradiation behaviors such as swelling and irradiation enhanced creep, model simulations allow analysis of plate parameters that are either impossible or infeasible in an experimental setting. The development and progression of fabrication induced stress concentrations at the plate edges was of primary interest, as these locations have a unique stress profile during irradiation. Additionally, comparison between 2D and 3D models was performed to optimize analysis methodology. In particular, the ability of 2D and 3D models account for out of plane stresses which result in 3-dimensional creep behavior that is a product of these components. Results show that assumptions made in 2D models for the out-of-plane stresses and strains cannot capture the 3-dimensional physics accurately and thus 2D approximations are not computationally accurate. Stress-strain fields are dependent on plate geometry and irradiation conditions, thus, if stress based criteria is used to predict plate behavior (as opposed to material impurities, fine micro-structural defects, or sharp power gradients), unique 3D finite element formulation for each plate is required.

  4. Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

    SciTech Connect (OSTI)

    A. Joseph Palmer; David A. Petti; S. Blaine Grover

    2014-04-01

    The United States Department of Energys Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

  5. Bright x-ray sources from laser irradiation of foams with high

    Office of Scientific and Technical Information (OSTI)

    concentration of Ti (Journal Article) | SciTech Connect Bright x-ray sources from laser irradiation of foams with high concentration of Ti Citation Details In-Document Search Title: Bright x-ray sources from laser irradiation of foams with high concentration of Ti Low-density foams irradiated by a 20 kJ laser at the Omega laser facility (Laboratory for Laser Energetics, Rochester, NY, USA) are shown to convert more than 5% of the laser energy into 4.6 to 6.0 keV x rays. This record

  6. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    SciTech Connect (OSTI)

    Sharma, Anu Sridharbabu, Y. Quamara, J. K.

    2014-10-15

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  7. TH-C-12A-03: Development of Expanded Field Irradiation Technique with

    Office of Scientific and Technical Information (OSTI)

    Gimbaled X-Ray Head (Journal Article) | SciTech Connect TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head Citation Details In-Document Search Title: TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head Purpose: The Vero4DRT has a maximum field size of 150×150 mm{sup 2}. The purposes of this study were to develop an expanded field irradiation technique using a unique gimbaled x-ray head of Vero4DRT and to evaluate

  8. Atomic configuration of irradiation-induced planar defects in 3C-SiC

    SciTech Connect (OSTI)

    Lin, Y. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Ho, C. Y. [Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Hsieh, C. Y.; Chang, M. T.; Lo, S. C. [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Chen, F. R. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Kai, J. J., E-mail: ceer0001@gmail.com [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

    2014-03-24

    The atomic configuration of irradiation-induced planar defects in single crystal 3C-SiC at high irradiation temperatures was shown in this research. A spherical aberration corrected scanning transmission electron microscope provided images of individual silicon and carbon atoms by the annular bright-field (ABF) method. Two types of irradiation-induced planar defects were observed in the ABF images including the extrinsic stacking fault loop with two offset Si-C bilayers and the intrinsic stacking fault loop with one offset Si-C bilayer. The results are in good agreement with images simulated under identical conditions.

  9. Irradiation-induced nano-voids in strained tin precipitates in silicon

    SciTech Connect (OSTI)

    Gaiduk, P. I., E-mail: gaiduk@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark); Department of Physical Electronics and Nanotechnology, Belarusian State University, prosp. Nezavisimosti, 4, 220030 Minsk (Belarus); Lundsgaard Hansen, J., E-mail: johnlh@phys.au.dk; Nylandsted Larsen, A., E-mail: anl@phys.au.dk [Department of Physics and Astronomy/iNANO, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C (Denmark)

    2014-04-14

    We report on self-assembling of spherically shaped voids in nanometer size strained Sn precipitates after irradiation with He{sup +} ions in different conditions. It is found that high-temperature irradiation induces vacancies which are collected by compressively strained Sn precipitates enhancing of out-diffusion of Sn atoms from the precipitates. Nano-voids formation takes place simultaneously with a ?- to ?-phase transformation in the Sn precipitates. Post-irradiation thermal treatment leads to the removal of voids and a backward transformation of the Sn phase to ?-phase. Strain-enhanced separation of point defects along with vacancy assisted Sn out-diffusion and precipitate dissolution are discussed.

  10. Effects of irradiation on the mechanical behavior of twined SiC nanowires

    SciTech Connect (OSTI)

    Jin Enze; Niu Lisha; Lin Enqiang; Duan Zheng [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2013-03-14

    Irradiation is known to bring new features in one-dimensional nano materials. In this study, we used molecular dynamics simulations to investigate the irradiation effects on twined SiC nanowires. Defects tend to accumulate from outside toward inside of the twined SiC nanowires with increasing irradiation dose, leading to a transition from brittle to ductile failure under tensile load. Atomic chains are formed in the ductile failure process. The first-principles calculations show that most of the atomic chains are metallic.

  11. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect (OSTI)

    Liu, W. B.; Chen, L. Q. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zhang, C., E-mail: chizhang@tsinghua.edu.cn; Yang, Z. G. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Ji, Y. Z. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zang, H. [Department of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049 (China); Shen, T. L. [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300500?nm, rather than at the peak damage region (at a depth of ?840?nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  12. System for target irradiation in the Iskra-6 high-power laser facility

    SciTech Connect (OSTI)

    Bondarenko, S V; Garanin, Sergey G; Eroshenko, V A; Kochemasov, G G; L'vov, L V; Mochalov, M R

    1999-03-31

    An analysis is made of various systems for direct irradiation of a target enabling achievement of a high degree of the irradiation uniformity. The required departure from uniformity of target irradiation, {delta}I/I {<=} 1% - 2%, may be attained when the number of laser beams is N {>=} 80, the diameter of the waist is approximately equal to the target diameter, and the intensity profile in the waist is Gaussian or super-Gaussian. Various methods of forming the necessary intensity distribution in a transverse cross section of a beam are considered. (interaction of laser radiation with matter. laser plasma)

  13. Concurrent in situ ion irradiation transmission electron microscope

    SciTech Connect (OSTI)

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.830 keV) during high-energy heavy ion irradiation (0.848 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  14. Prediction and analysis of infra and low-frequency noise of upwind horizontal axis wind turbine using statistical wind speed model

    SciTech Connect (OSTI)

    Lee, Gwang-Se; Cheong, Cheolung

    2014-12-15

    Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.

  15. Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual progress report, January 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1997-01-01

    This annual report describes the progress during the fourth year of the project on {open_quotes}Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance{close_quotes}. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data we integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, we intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The production from the Self Unit (location of Stage 1) has sustained an increase of 30 bbls/day over a year with an additional increase anticipated with further implementation. We have collected available core, log and production data from Section 16 in the Berryhill Glenn Unit and have finished the geological description. Based on the geological description and the associated petrophysical properties, we have developed a new indexing procedure for identifying the areas with the most potential. We are also investigating an adjoining tract formerly operated by Chevron where successful miceller-polymer flood was conducted. This will help us in evaluating the reasons for the success of the flood. Armed with this information, we will conduct a detailed geostatistical and flow simulation study and recommend the best reservoir management plan to improve the recovery of the field.

  16. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect (OSTI)

    Brown N. R.; Brown,N.R.; Baek,J.S; Hanson, A.L.; Cuadra,A.; Cheng,L.Y.; Diamond, D.J.

    2013-03-31

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. . The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). In addition, a summary of the methodology to obtain these results is presented.

  17. Replacement of tritiated water from irradiated fuel storage bay

    SciTech Connect (OSTI)

    Castillo, I.; Boniface, H.; Suppiah, S.; Kennedy, B.; Minichilli, A.; Mitchell, T.

    2015-03-15

    Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface. A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.

  18. RERTR-12 Post-irradiation Examination Summary Report

    SciTech Connect (OSTI)

    Rice, Francine; Williams, Walter; Robinson, Adam; Harp, Jason; Meyer, Mitch; Rabin, Barry

    2015-02-01

    The following report contains the results and conclusions for the post irradiation examinations performed on RERTR-12 Insertion 2 experiment plates. These exams include eddy-current testing to measure oxide growth; neutron radiography for evaluating the condition of the fuel prior to sectioning and determination of fuel relocation and geometry changes; gamma scanning to provide relative measurements for burnup and indication of fuel- and fission-product relocation; profilometry to measure dimensional changes of the fuel plate; analytical chemistry to benchmark the physics burnup calculations; metallography to examine the microstructural changes in the fuel, interlayer and cladding; and microhardness testing to determine the material-property changes of the fuel and cladding. These characterization activities are tailored specifically to define: The mechanical response of fuel meat, cladding, and interlayers, including diffusion barrier integrity Whether geometry is stable and predictable; that changes in channel gap do not compromise ability to cool fuel That fuel performance is known and predictable A limited set of physical properties that are important for the analysis of fuel burnup limits Whether swelling is stable and predictable.

  19. Stress-enhanced swelling of metal during irradiation

    SciTech Connect (OSTI)

    Garner, F.A.; Gilbert, E.R.; Porter, D.L.

    1980-04-01

    Data are available which show that stress plays a major role in the development of radiation-induced void growth in AISI 316 and many other alloys. Earlier experiments came to the opposite conclusion and are shown to have investigated stress levels which inadvertantly cold-worked the material. Stress-affected swelling spans the entire temperature range in fast reactor irradiations and accelerates with increasing irradiatin temperature. It also appears to operate in all alloy starting conditions investigated. Two major microstructural mechanisms appear to be causing the enhancement of swelling, which for tensile stresses is manifested primarily as a decrease in the incubation period. These mechanisms are stress-induced changes in the interstitial capture efficiency of voids and stress-induced changes in the vacancy emission rate of various microstructural components. There also appears to be an enhancement of intermetallic phase formation with applied stress and this is shown to increase swelling by accelerating the microchemical evolution that precedes void growth at high temperature. This latter consideration complicates the extrapolation of these data to compressive stress states.

  20. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect (OSTI)

    Pugmire, David L; Wetteland, Chris J; Duncan, Wanda S; Lakis, Rollin E; Schwartz, Daniel S

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  1. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect (OSTI)

    Brown, N. R.; Brown, N. R.; Baek, J. S; Hanson, A. L.; Cuadra, A.; Cheng, L. Y.; Diamond, D. J.

    2014-04-30

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  2. Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  3. University of Texas Panamerican (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ramos, J.; Andreas, A.

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  4. University of Texas Panamerican (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ramos, J.; Andreas, A.

    2011-09-01

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  5. Oak Ridge National Laboratory (ORNL); Rotating Shadowband Radiometer (RSR); Oak Ridge, Tennessee (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maxey, C.; Andreas, A.

    2007-09-12

    This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

  6. Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Blaine Grover

    2012-10-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

  7. TH-C-12A-03: Development of Expanded Field Irradiation Technique...

    Office of Scientific and Technical Information (OSTI)

    TH-C-12A-03: Development of Expanded Field Irradiation Technique with Gimbaled X-Ray Head Citation Details In-Document Search Title: TH-C-12A-03: Development of Expanded Field ...

  8. Nonlinear increase of X-ray intensities from thin foils irradiated...

    Office of Scientific and Technical Information (OSTI)

    increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser Citation Details In-Document Search Title: Nonlinear increase of X-ray intensities...

  9. EIS-0017: Fusion Materials Irradiation Testing Facility, Hanford Reservation, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts associated with proposed construction and operation of an irradiation test facility, the Deuterium-Lithium High Flux Neutron Source Facility, at the Hanford Reservation.

  10. Neutron Irradiation of Hydrided Cladding Material in HFIR Summary of Initial Activities

    Broader source: Energy.gov [DOE]

    Irradiation is known to have a significant impact on the properties and performance of Zircaloy cladding and structural materials (material degradation processes, e.g., effects of hydriding).  This...

  11. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    SciTech Connect (OSTI)

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements in energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.

  12. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    SciTech Connect (OSTI)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrix composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing

  13. Modeling the irradiance and temperature rependence of photovoltaic modules in PVsyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sauer, Kenneth J.; Roessler, Thomas; Hansen, Clifford W.

    2014-11-10

    In order to reliably simulate the energy yield of photovoltaic (PV) systems, it is necessary to have an accurate model of how the PV modules perform with respect to irradiance and cell temperature. Building on previous work that addresses the irradiance dependence, two approaches to fit the temperature dependence of module power in PVsyst have been developed and are applied here to recent multi-irradiance and -temperature data for a standard Yingli Solar PV module type. The results demonstrate that it is possible to match the measured irradiance and temperature dependence of PV modules in PVsyst. As a result, improvements inmore » energy yield prediction using the optimized models relative to the PVsyst standard model are considered significant for decisions about project financing.« less

  14. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    Broader source: Energy.gov [DOE]

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today’s nuclear power reactor fleet and affects critical structural components within the reactor core. The...

  15. Formation of TiO{sub 2} nanorods by ion irradiation

    SciTech Connect (OSTI)

    Zheng, X. D.; Ren, F., E-mail: fren@whu.edu.cn; Cai, G. X.; Hong, M. Q.; Xiao, X. H.; Wu, W.; Liu, Y. C.; Li, W. Q.; Ying, J. J.; Jiang, C. Z. [School of Physics and Technology, Center for Ion Beam Application and Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China)

    2014-05-14

    Ion beam irradiation is a powerful method to fabricate and tailor the nanostructured surface of materials. Nanorods on the surface of single crystal rutile TiO{sub 2} were formed by N{sup +} ion irradiation. The dependence of nanorod morphology on ion fluence and energy was elaborated. With increasing ion fluence, nanopores grow in one direction perpendicular to the surface and burst finally to form nanorods. The length of nanorods increases with increasing ion energy under same fluence. The development of the nanorod structure is originated from the formation of the nanopores while N{sub 2} bubbles and aggregation of vacancies were responsible for the formation of nanopores and nanorods. Combining C{sup +} ion irradiation and post-irradiation annealing experiments, two qualitative models are proposed to explain the formation mechanism of these nanorods.

  16. PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS...

    Office of Scientific and Technical Information (OSTI)

    METALS PART i: VOID KINETICS Citation Details In-Document Search Title: PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS We present a phase-field model of void ...

  17. PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE...

    Office of Scientific and Technical Information (OSTI)

    METALS: PART II: GAS BUBBLE KINETICS Citation Details In-Document Search Title: PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS We present a phase-field ...

  18. Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure

    SciTech Connect (OSTI)

    Baranwal, R. and Burke, M.G.

    2003-03-03

    Oxide dispersion strengthened (ODS) molybdenum has been characterized using transmission electron microscopy (TEM) to determine the effects of irradiation on material microstructure. This work describes the results-to-date from TEM characterization of unirradiated and irradiated ODS molybdenum. The general microstructure of the unirradiated material consists of fine molybdenum grains (< 5 {micro}m average grain size) with numerous low angle boundaries and isolated dislocation networks. 'Ribbon'-like lanthanum oxides are aligned along the working direction of the product form and are frequently associated with grain boundaries, serving to inhibit grain boundary and dislocation movement. In addition to the 'ribbons', discrete lanthanum oxide particles have also been detected. After irradiation, the material is characterized by the presence of nonuniformly distributed large ({approx} 20 to 100 nm in diameter), multi-faceted voids, while the molybdenum grain size and oxide morphology appear to be unaffected by irradiation.

  19. Status of the Combined Third and Fourth NGNP Fuel Irradiations In the Advanced Test Reactor

    SciTech Connect (OSTI)

    S. Blaine Grover; David A. Petti; Michael E. Davenport

    2013-07-01

    The United States Department of Energys Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are extremely similar. The design of the experiment will be discussed followed by its progress and status to date.

  20. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOE Patents [OSTI]

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  1. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect (OSTI)

    Byun, Thak Sang

    2008-01-01

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  2. PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect METALS PART i: VOID KINETICS Citation Details In-Document Search Title: PHASE-FIELD SIMULATION OF IRRADIATED METALS PART i: VOID KINETICS We present a phase-field model of void formation and evolution in irradiated metals by spatially and temporally evolving vacancy and self-interstitial concentration fields. By incorporating a coupled set of Cahn-Hilliard and Allen-Cahn equations, the model captures the processes of point defect generation and recombination,

  3. PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect METALS: PART II: GAS BUBBLE KINETICS Citation Details In-Document Search Title: PHASE-FIELD SIMULATION OF IRRADIATED METALS: PART II: GAS BUBBLE KINETICS We present a phase-field model for inert gas bubble formation and evolution in irradiated metals. The model evolves vacancy, self-interstitial, and fission gas atoms through a coupled set of Cahn-Hilliard and Allen-Cahn equations, capturing the processes of defect generation, recombination, annihilation

  4. Ultra high vacuum fracture and transfer device for AES analysis of irradiated austenitic stainless steel

    SciTech Connect (OSTI)

    Urie, M.W.; Panayotou, N.F.; Robinson, J.E.

    1980-01-01

    An ultrahigh vacuum fracture and transfer device for analysis of irradiated and non-irradiated SS 316 fuel cladding is described. Mechanical property tests used to study the behavior of cladding during reactor transient over-power conditions are reported. The stress vs temperature curves show minimal differences between unirradiated cladding and unfueled cladding. The fueled cladding fails at a lower temperature. All fueled specimens failed in an intergranular mode. (FS)

  5. The influence of mixed and phase clouds on surface shortwave irradiance during the Arctic spring

    SciTech Connect (OSTI)

    Lubin D.; Vogelmann A.

    2011-10-13

    The influence of mixed-phase stratiform clouds on the surface shortwave irradiance is examined using unique spectral shortwave irradiance measurements made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC), supported by the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. An Analytical Spectral Devices (ASD, Inc.) spectroradiometer measured downwelling spectral irradiance from 350 to 2200 nm in one-minute averages throughout April-May 2008 from the ARM Climate Research Facility's North Slope of Alaska (NSA) site at Barrow. This study examines spectral irradiance measurements made under single-layer, overcast cloud decks having geometric thickness < 3000 m. Cloud optical depth is retrieved from irradiance in the interval 1022-1033 nm. The contrasting surface radiative influences of mixed-phase clouds and liquid-water clouds are discerned using irradiances in the 1.6-{micro}m window. Compared with liquid-water clouds, mixed-phase clouds during the Arctic spring cause a greater reduction of shortwave irradiance at the surface. At fixed conservative-scattering optical depth (constant optical depth for wavelengths {lambda} < 1100 nm), the presence of ice water in cloud reduces the near-IR surface irradiance by an additional several watts-per-meter-squared. This additional reduction, or supplemental ice absorption, is typically {approx}5 W m{sup -2} near solar noon over Barrow, and decreases with increasing solar zenith angle. However, for some cloud decks this additional absorption can be as large as 8-10 W m{sup -2}.

  6. RTNS-II: irradiations at the Rotating Target Neutron Source-II. 1983 annual report

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This is the second annual report summarizing irradiation experiments and operations at RTNS-II. It covers calendar year 1983 and includes reports on all irradiations, non-fusion as well as fusion, and on utilization of Monbusho's transmission electron microscope (TEM) a RTNS-II. Each summary article has been submitted by the investigator and has been altered only to meet the style and format requirements of this report.

  7. Correlation of Clinical and Dosimetric Factors With Adverse Pulmonary Outcomes in Children After Lung Irradiation

    SciTech Connect (OSTI)

    Venkatramani, Rajkumar; Kamath, Sunil; Wong, Kenneth; Malvar, Jemily; Sposto, Richard; Goodarzian, Fariba; Freyer, David R.; Keens, Thomas G.; and others

    2013-08-01

    Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The following pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed dose should be used to perform risk stratification of patients receiving lung irradiation.

  8. FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples

    Office of Environmental Management (EM)

    in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations | Department of Energy Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration Integrity Investigations FY 2013 Summary Report: Post-Irradiation Examination of Zircaloy-4 Samples in Target Capsules and Initiation of Bending Fatigue Testing for Used Nuclear Fuel Vibration

  9. Fish passage through a simulated horizontal bulb turbine pressure regime: A supplement to "Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

    SciTech Connect (OSTI)

    Abernethy, C. S.; Amidan, B. G.; Cada, G. F.

    2003-07-01

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the worst case pressure conditions (Abernethy et al. 2001) and under less severe conditions where pressure changes were minimized (Abernethy et al. 2002). For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low-head dams. The results were compared to results from previous test series. Tests indicated that for most of the cross-sectional area of a horizontal bulb turbine, pressure changes occurring during turbine passage are not harmful to fall chinook salmon and only minimally harmful to bluegill. However, some areas within a horizontal bulb turbine may have extreme pressure conditions that would be harmful to fish. These scenarios were not tested because they represent a small cross-sectional area of the turbine compared to the centerline pressures scenarios used in these tests.

  10. In situ HVEM studies of phase transformation in Zr alloys and compounds under irradiation

    SciTech Connect (OSTI)

    Motta, A.T.; Faldowski, J.A.; Howe, L.M.; Okamoto, P.R.

    1996-01-01

    The High Voltage Electron Microscope (HVEM)/Tandem facility at Argonne National Laboratory has been used to conduct detailed studies of the phase stability and microstructural evolution in zirconium alloys and compounds under ion and electron irradiation. Detailed kinetic studies of the crystalline-to-amorphous transformation of the intermetallic compounds Zr{sub 3}(Fe{sub 1-x}Ni{sub x}), Zr(Fe{sub 1-x},Cr{sub x}){sub 2}, Zr{sub 3}Fe, and Zr{sub 1.5} Nb{sub 1.5} Fe, both as second phase precipitates and in bulk form, have been performed using the in-situ capabilities of the Argonne facility, under a variety of irradiation conditions (temperature, dose rate). Results include a verification of a dose rate effect on amorphization and the influence of material variables (stoichiometry x, presence of stacking faults, crystal structure) on the critical temperature and on the critical dose for amorphization. Studies were also conducted of the microstructural evolution under irradiation of specially tailored binary and ternary model alloys. The stability of the {omega}-phase in Zr-20%Nb under electron and Ar ion irradiation was investigated as well as the {beta}-phase precipitation in Zr-2.5%Nb under Ar ion irradiation. The ensemble of these results is discussed in terms of theoretical models of amorphization and of irradiation-altered solubility.

  11. Synthesis and magnetic characterization of magnetite obtained by monowavelength visible light irradiation

    SciTech Connect (OSTI)

    Lin, Yulong [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China) [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China); Wei, Yu, E-mail: weiyu@mail.hebtu.edu.cn [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China)] [College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016 (China); Sun, Yuhan, E-mail: yhsun@sxicc.ac.cn [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China)] [Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001 (China); Wang, Jing [School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China)] [School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017 (China)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Magnetite was synthesized under monowavelength LED irradiation at room temperature. Black-Right-Pointing-Pointer Different wavelength irradiations led to distinctive characteristics of magnetite. Black-Right-Pointing-Pointer Particle sizes of magnetite were controlled by different irradiation wavelengths. Black-Right-Pointing-Pointer Wavelength affects the magnetic characteristics of magnetite. -- Abstract: Magnetite (Fe{sub 3}O{sub 4}) nanoparticles were controllably synthesized by aerial oxidation Fe{sup II}EDTA solution under different monowavelength light-emitting diode (LED) lamps irradiation at room temperature. The results of the X-ray diffraction (XRD) spectra show the formation of magnetite nanoparticle further confirmed by Fourier transform infrared spectroscope (FTIR) and the difference in crystallinity of as-prepared samples. Fe{sub 3}O{sub 4} particles are nearly spherical in shape based on transmission electron microscopy (TEM). Average crystallite sizes of magnetite can be controlled by different irradiation light wavelengths from XRD and TEM: 50.1, 41.2, and 20.3 nm for red, green, and blue light irradiation, respectively. The magnetic properties of Fe{sub 3}O{sub 4} samples were investigated. Saturation magnetization values of magnetic nanoparticles were 70.1 (sample M-625), 65.3 (sample M-525), and 58.2 (sample M-460) emu/g, respectively.

  12. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  13. Facility for spectral irradiance and radiance responsivity calibrations using uniform sources

    SciTech Connect (OSTI)

    Brown, Steven W.; Eppeldauer, George P.; Lykke, Keith R

    2006-11-10

    Detectors have historically been calibrated for spectral power responsivity at the National Institute of Standards and Technology by using a lamp-monochromator system to tune the wavelength of the excitation source. Silicon detectors can be calibrated in the visible spectral region with combined standard uncertainties at the 0.1% level. However,uncertainties increase dramatically when measuring an instrument's spectral irradiance or radiance responsivity. We describe what we believe to be a new laser-based facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) that was developed to calibrate instruments directly in irradiance or radiance mode with uncertainties approaching or exceeding those available for spectral power responsivity calibrations. In SIRCUS, the emission from high-power, tunable lasers is introduced into an integrating sphere using optical fibers, producing uniform, quasi-Lambertian, high-radiant-flux sources. Reference standard irradiance detectors, calibrated directly against national primary standards for spectral power responsivity and aperture area measurement,are used to determine the irradiance at a reference plane. Knowing the measurement geometry, the source radiance can be readily determined as well. The radiometric properties of the SIRCUS source coupled with state-of-the-art transfer standard radiometers whose responsivities are directly traceable to primary national radiometric scales result in typical combined standard uncertainties in irradiance and radiance responsivity calibrations of less than 0.1%. The details of the facility and its effect on primary national radiometric scales are discussed.

  14. Radiation Tolerance of Neutron-Irradiated Model Fe-Cr-Al Alloys

    SciTech Connect (OSTI)

    Field, Kevin G; Hu, Xunxiang; Littrell, Ken; Yamamoto, Yukinori; Snead, Lance Lewis

    2015-01-01

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition. Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. A structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich precipitates at sufficiently high chromium contents after irradiation.

  15. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect (OSTI)

    Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.

    2010-11-10

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.

  16. Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography

    SciTech Connect (OSTI)

    Espiau de Lamaestre, R.; Bea, H.; Bernas, H.; Belloni, J.; Marignier, J. L.

    2007-11-15

    The synthesis of Ag nanoclusters in soda lime silicate glasses and silica was studied by optical absorption and electron spin resonance experiments under both low (gamma ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution--notably via their interaction with defects--are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: Irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolved noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which, in turn, leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence but also--and primarily--on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag{sup +} to Ag{sup 0}) as compared to gamma photon irradiation.

  17. Gamma irradiation effect on the chemical composition and the antioxidant activity of Ipomoea batatas L

    SciTech Connect (OSTI)

    Tahir, D., E-mail: dtahir@fmipa.unhas.ac.id; Halide, H., E-mail: dtahir@fmipa.unhas.ac.id; Kurniawan, D. [Department of Physics, Hasanuddin University, Makassar 90245 (Indonesia); Wahab, A. W. [Department of Chemistry, Hasanuddin University, Makassar 90245 (Indonesia)

    2014-09-25

    The chemical composition and antioxidant activity of Ipomoea batatas L. (sweet potato) were studied by x-ray fluorescence (XRF) spectroscopy, Fourier transform infrared spectroscopy, and by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging capacity. The irradiation treatment was performed by using Cs-137 as a gamma sources in experimental equipment. Treatment by irradiation emerges as a possible conservation technique that has been tested successfully in several food products. The amount of chemical composition was changed and resulting new chemical for absorbed dose 40 mSv. Interestingly, it was found that gamma irradiation significantly increased the antioxidant activity, as measured by DPPH radical scavenging capacity. The antioxidant activity of Ipomoea batatas L. extract was dramatically increased in the non-irradiated sample to the sample irradiated at 40 mSv. These results indicate that gamma irradiation of Ipomoea batatas L. extract can enhance its antioxidant activity through the formation of a new chemical compound. Based on these results, increased antioxidant activity of Ipomoea batatas L. extracts by gamma rays can be applied to various industries, especially cosmetics, foodstuffs, and pharmaceuticals.

  18. Oxide Shell Reduction and Magnetic Property Changes in Core-Shell Fe Nanoclusters under Ion Irradiation

    SciTech Connect (OSTI)

    Sundararajan, Jennifer A.; Kaur, Maninder; Jiang, Weilin; McCloy, John S.; Qiang, You

    2014-02-12

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe3O4/FeO. These NC films were were deposited on Si substrates to thickness of ~0.5 micrometers using a NC deposition system. The films were irradiated at room temperature with 5.5 MeV Si2+ ions to ion fluences of 1015 and 1016 ions/cm2. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization of Fe3N. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe3O4 and FeO+Fe3N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  19. Lung Irradiation Increases Mortality After Influenza A Virus Challenge Occurring Late After Exposure

    SciTech Connect (OSTI)

    Manning, Casey M.; Johnston, Carl J.; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York ; Reed, Christina K.; Lawrence, B. Paige; Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York ; Williams, Jacqueline P.; Finkelstein, Jacob N.

    2013-05-01

    Purpose: To address whether irradiation-induced changes in the lung environment alter responses to a viral challenge delivered late after exposure but before the appearance of late lung radiation injury. Methods and Materials: C57BL/6J mice received either lung alone or combined lung and whole-body irradiation (0-15 Gy). At 10 weeks after irradiation, animals were infected with 120 HAU influenza virus strain A/HKx31. Innate and adaptive immune cell recruitment was determined using flow cytometry. Cytokine and chemokine production and protein leakage into the lung after infection were assessed. Results: Prior irradiation led to a dose-dependent failure to regain body weight after infection and exacerbated mortality, but it did not affect virus-specific immune responses or virus clearance. Surviving irradiated animals displayed a persistent increase in total protein in bronchoalveolar lavage fluid and edema. Conclusions: Lung irradiation increased susceptibility to death after infection with influenza virus and impaired the ability to complete recovery. This altered response does not seem to be due to a radiation effect on the immune response, but it may possibly be an effect on epithelial repair.

  20. Axillary lymph node dose with tangential breast irradiation

    SciTech Connect (OSTI)

    Reed, Daniel R. . E-mail: drreed@u.washington.edu; Lindsley, Skyler Karen; Mann, Gary N.; Austin-Seymour, Mary; Korssjoen, Tammy; Anderson, Benjamin O.; Moe, Roger

    2005-02-01

    Purpose: The advent of sentinel lymph node mapping and biopsy in the staging of breast cancer has resulted in a significant decrease in the extent of axillary nodal surgery. As the extent of axillary surgery decreases, the radiation dose and distribution within the axilla becomes increasingly important for current therapy planning and future analysis of results. This analysis examined the radiation dose distribution delivered to the anatomically defined axillary level I and II lymph node volume and surgically placed axillary clips with conventional tangential breast fields and CT-based three-dimensional (3D) planning. Methods and materials: Fifty consecutive patients with early-stage breast cancer undergoing breast conservation therapy were evaluated. All patients underwent 3D CT-based planning with conventional breast tangential fields designed to encompass the entire breast parenchyma. Using CT-based 3D planning, the dose distribution of the standard tangential breast irradiation fields was examined in relationship to the axillary level I and II lymph node volumes. Axillary level I and II lymph node anatomic volumes were defined by CT and surgical clips placed during complete level I-II lymph node dissection. Axillary level I-II lymph node volume doses were examined on the basis of the prescribed breast radiation dose and 3D dose distribution. Results: All defined breast volumes received {>=}95% of the prescribed dose. By contrast, the 95% isodose line encompassed only an average of 55% (range, 23-87%) of the axillary level I-II lymph node anatomic volume. No patient had complete coverage of the axillary level I-II lymph node region by the 95% isodose line. The mean anatomic axillary level I-II volume was 146.3 cm{sup 3} (range, 83.1-313.0 cm{sup 3}). The mean anatomic axillary level I-II volume encompassed by the 95% isodose line was 84.9 cm{sup 3} (range, 25.1-219.0 cm{sup 3}). The mean 95% isodose coverage of the surgical clip volume was 80%, and the median value was 81% (range, 58-98%). The mean volume deficit between the axillary level I-II volume and the surgical clip volume was 41.7 cm{sup 3} (median, 30.0 cc). Conclusion: In this study, standard tangential breast radiation fields failed to deliver a therapeutic dose adequately to the axillary level I-II lymph node anatomic volume. No patient received complete coverage of the axillary level I-II lymph node volume. Surgically placed axillary clips also failed to delineate the level I-II axilla adequately. Definitive irradiation of the level I and II axillary lymph node region requires significant modification of standard tangential fields, best accomplished with 3D treatment planning, with specific targeting of anatomically defined axillary lymph node volumes as described, in addition to the breast parenchymal volumes.

  1. Separation of Plutonium from Irradiated Fuels and Targets

    SciTech Connect (OSTI)

    Gray, Leonard W.; Holliday, Kiel S.; Murray, Alice; Thompson, Major; Thorp, Donald T.; Yarbro, Stephen; Venetz, Theodore J.

    2015-09-30

    The production of electricity by nuclear fission is, at present, nearly 366- gigawatt electric (GWe), generated from 438 operating nuclear reactors. Unlike fossil fuel ash, with limited residual available energy content and negligible heat content, the spent nuclear fuel from power production reactors contains moderate amounts of transuranium (TRU) actinides and fission products in addition to the still slightly enriched uranium. Originally nuclear technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel for military purposes. Military plutonium separations had essentially ceased by the mid-1990s. Reprocessing, however, can serve multiple purposes and the relative importance has changed over time. In the 1960’s the vision of the introduction of plutonium-fueled fast-neutron breeder reactors drove the civilian separation of plutonium. More recently, reprocessing has been regarded as a means to facilitate the disposal of high-level nuclear waste and thus requires development of radically different technical approaches. In the last decade or so, principal reason for reprocessing has shifted to spent power reactor fuel being reprocessed 1) so that unused uranium and plutonium being recycled reduce the volume, gaining some 25% to 30% more energy from the original uranium in the process and thus contributing to energy security and 2) reduce the volume and radioactivity of the waste by recovering all long-lived actinides and fission products followed by recycling them in fast reactors where they are transmuted to short-lived fission products; this reduces the volume to about 20%, reduces the long term radioactivity level in the high-level waste, and complicates the possibility of the plutonium being diverted from civil use – thereby increasing the proliferation resistance of the fuel cycle.

  2. High Dose Neutron Irradiation Performance of Dielectric Mirrors

    SciTech Connect (OSTI)

    Nimishakavi, Anantha Phani Kiran Kumar; Leonard, Keith J; Jellison Jr, Gerald Earle; Snead, Lance Lewis

    2015-01-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. The ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  3. Irradiation and Bevacizumab in High-Grade Glioma Retreatment Settings

    SciTech Connect (OSTI)

    Niyazi, Maximilian; Ganswindt, Ute; Schwarz, Silke Birgit [Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich (Germany); Kreth, Friedrich-Wilhelm; Tonn, Joerg-Christian [Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich (Germany); Geisler, Julia; Fougere, Christian la [Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, Munich (Germany); Ertl, Lorenz; Linn, Jennifer [Department of Neuroradiology, Ludwig-Maximilians-University Munich, Munich (Germany); Siefert, Axel [Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich (Germany); Belka, Claus, E-mail: claus.belka@med.uni-muenchen.de [Department of Radiation Oncology, Ludwig-Maximilians-University Munich, Munich (Germany)

    2012-01-01

    Purpose: Reirradiation is a treatment option for recurrent high-grade glioma with proven but limited effectiveness. Therapies directed against vascular endothelial growth factor have been shown to exert certain efficacy in combination with chemotherapy and have been safely tested in combination with radiotherapy in a small cohort of patients. To study the feasibility of reirradiation combined with bevacizumab treatment, the toxicity and treatment outcomes of this approach were analyzed retrospectively. Patients and Methods: After previous treatment with standard radiotherapy (with or without temozolomide) patients with recurrent malignant glioma received bevacizumab (10 mg/kg intravenous) on Day 1 and Day 15 during radiotherapy. Maintenance therapy was selected based on individual considerations, and mainly bevacizumab-containing regimens were chosen. Patients received 36 Gy in 18 fractions. Results: The data of the medical charts of the 30 patients were analyzed retrospectively. All were irradiated in a single institution and received either bevacizumab (n = 20), no additional substance (n = 7), or temozolomide (n = 3). Reirradiation was tolerated well, regardless of the added drug. In 1 patient treated with bevacizumab, a wound dehiscence occurred. Overall survival was significantly better in patients receiving bevacizumab (p = 0.03, log-rank test). In a multivariate proportional hazards Cox model, bevacizumab, Karnovsky performance status, and World Health Organization grade at relapse turned out to be the most important predictors for overall survival. Conclusion: Reirradiation with bevacizumab is a feasible and effective treatment for patients with recurrent high-grade gliomas. A randomized trial is warranted to finally answer the question whether bevacizumab adds substantial benefit to a radiotherapeutic retreatment setting.

  4. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    SciTech Connect (OSTI)

    Moritake, Takashi; Proton Medical Research Center, University of Tsukuba, Tsukuba ; Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi; Imai, Takashi

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early hemorrhagic pneumonitis after C-ion irradiation.

  5. Fish Passage Through a Simulated Horizontal Bulb Turbine Pressure Regime: A Supplement to"Laboratory Studies of the Effects of Pressure and Dissolved Gas Supersaturation on Turbine-Passed Fish"

    SciTech Connect (OSTI)

    Abernethy, Cary S. ); Amidan, Brett G. ); Cada, G F.

    2003-07-31

    Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Migratory and resident fish in the Columbia River Basin are exposed to stresses associated with hydroelectric power production, including pressure changes during turbine passage. The responses of fall chinook salmon and bluegill sunfish to rapid pressure change was investigated at the Pacific Northwest National Laboratory. Previous test series evaluated the effects of passage through a vertical Kaplan turbine under the"worst case" pressure conditions and under less severe conditions where pressure changes were minimized. For this series of tests, pressure changes were modified to simulate passage through a horizontal bulb turbine, commonly installed at low head dams. The results were compared to results from previous test series. Both fish species were acclimated for 16-22 hours at either surface (101 kPa; 1 atm) or 30 ft (191 kPa; 1.9 atm) of pressure in a hyperbaric chamber before exposure to a pressure scenario simulating passage through a horizontal bulb turbine. The simulation was as follows: gradual pressure increase to about 2 atm of pressure, followed by a sudden (0.4 second) decrease in pressure to either 0.7 or 0.95 atm, followed by gradual return to 1 atm (surface water pressure). Following the exposure, fish were held at surface pressure for a 48-hour post exposure observation period. No fall chinook salmon died during or after exposure to the horizontal bulb turbine passage pressures, and no injuries were observed during the 48-hour post exposure observation period. As with the previous test series, it cannot be determined whether fall chinook salmon acclimated to the greater water pressure during the pretest holding period. For bluegill sunfish exposed to the horizontal bulb turbine turbine-passage pressures, only one fish died and injuries were less severe and less common than for bluegills subjected to either the"worst case" pressure or modified Kaplan turbine pressure conditions in previous tests. Injury rates for bluegills were higher at 0.7 atm nadir than for the 0.95 atm nadir. However, injuries were limited to minor internal hemorrhaging. Bluegills did not suffer swim bladder rupture in any tested scenarios. Tests indicated that for most of the cross-sectional area of a horizontal bulb turbine, pressure changes occurring during turbine passage are not harmful to fall chinook salmon and only minimally harmful to bluegill. However, some areas within a horizontal bulb turbine may have extreme pressure conditions that would be harmful to fish. These scenarios were not tested because they represent a small cross-sectional area of the turbine compared to the centerline pressures scenarios used in these tests.

  6. INFLUENCE OF SPECIMEN SIZE/TYPE ON THE FRACTURE TOUGHNESS OF FIVE IRRADIATED RPV MATERIALS

    SciTech Connect (OSTI)

    Sokolov, Mikhail A; Lucon, Enrico

    2015-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program had previously irradiated five reactor pressure vessel (RPV) steels/welds at fast neutron fluxes of about 4 to 8 1011 n/cm2/s (>1 MeV) to fluences from 0.5 to 3.4 1019 n/cm2 and at 288 C. The unirradiated fracture toughness tests were performed by Oak Ridge National Laboratory with 12.7-mm and 25.4-mm thick (0.5T and 1T) compact specimens, while the HSSI Program provided tensile and 5 10-mm three-point bend specimens to SCK CEN for irradiation in the in-pile section of the Belgian Reactor BR2 at fluxes >1013 n/cm2/s and subsequent testing by SCK CEN. The BR2 irradiations were conducted at about 2 and 4 1013 n/cm2/s with irradiation temperature between 295 C and 300 C (water temperature), and to fluences between 6 and10 1019 n/cm2. The irradiation-induced shifts of the Master Curve reference temperatures, T0, for most of the materials deviated from the embrittlement correlations much more than expected, motivating the testing of 5 10-mm three-point bend specimens of all five materials in the unirradiated condition to eliminate specimen size and geometry as a variable. Tests of the unirradiated small bend specimens resulted in Master Curve reference temperatures, T0, 25 C to 53 C lower than those from the larger compact specimens, meaning that the irradiation-induced reference temperature shifts, T0, were larger than the initial measurements, resulting in much improved agreement between the measured and predicted fracture toughness shifts.

  7. Impact of total ionizing dose irradiation on electrical property of ferroelectric-gate field-effect transistor

    SciTech Connect (OSTI)

    Yan, S. A.; Tang, M. H. Xiao, Y. G.; Zhang, W. L.; Ding, H.; Chen, J. W.; Zhou, Y. C.; Xiong, Y.; Li, Z.; Zhao, W.; Guo, H. X.

    2014-05-28

    P-type channel metal-ferroelectric-insulator-silicon field-effect transistors (FETs) with a 300?nm thick SrBi{sub 2}Ta{sub 2}O{sub 9} ferroelectric film and a 10?nm thick HfTaO layer on silicon substrate were fabricated and characterized. The prepared FeFETs were then subjected to {sup 60}Co gamma irradiation in steps of three dose levels. Irradiation-induced degradation on electrical characteristics of the fabricated FeFETs was observed after 1 week annealing at room temperature. The possible irradiation-induced degradation mechanisms were discussed and simulated. All the irradiation experiment results indicated that the stability and reliability of the fabricated FeFETs for nonvolatile memory applications will become uncontrollable under strong irradiation dose and/or long irradiation time.

  8. Effects of storage on irradiated red blood cells: An in-vitro and in-vivo study. Master's thesis

    SciTech Connect (OSTI)

    Knoll, S.E.

    1991-08-01

    Irradiation of red blood cell units has recently become a topic of special concern as the result of increasing reports of graft versus host disease in immunocompetent blood transfusion recipients. This study was designed to evaluate the potassium elevations observed in stored irradiated red blood cells and to evaluate the in vivo survival of stored irradiated red blood cells using a dog model. In the in vitro study ten units of human CPDA-1 packed red blood cells were made into paired aliquots; one aliquot of each pair was irradiated with 3000 rads of gamma radiation and the potassium content measured at points throughout 35 days of storage. A significant increase in potassium levels in the irradiated aliquots was observed from the first day after irradiation and continued through the entire storage period.

  9. AGR-2 irradiation test final as-run report, Rev. 1

    SciTech Connect (OSTI)

    Collin, Blaise

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.471025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.531025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987C in Capsule 6 to 1296C in Capsule 2 for UCO, and from 996 to 1062C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 210-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

  10. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.471025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.531025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987C in Capsule 6 to 1296C in Capsule 2 for UCO, and from 996 to 1062C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 210-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

  11. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    SciTech Connect (OSTI)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-10

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  12. Microstructure and Mechanical Properties of n-irradiated Fe-Cr Model Alloys

    SciTech Connect (OSTI)

    Matijasevic, Milena; Al Mazouzi, Abderrahim

    2008-07-01

    High chromium ( 9-12 wt %) ferritic/martensitic steels are candidate structural materials for future fusion reactors and other advanced systems such as accelerator driven systems (ADS). Their use for these applications requires a careful assessment of their mechanical stability under high energy neutron irradiation and in aggressive environments. In particular, the Cr concentration has been shown to be a key parameter to be optimized in order to guarantee the best corrosion and swelling resistance, together with the least embrittlement. In this work, the characterization of the neutron irradiated Fe-Cr model alloys with different Cr % with respect to microstructure and mechanical tests will be presented. The behavior of Fe-Cr alloys have been studied using tensile tests at different temperature range ( from -160 deg. C to 300 deg. C). Irradiation-induced microstructure changes have been studied by TEM for two different irradiation doses at 300 deg. C. The density and the size distribution of the defects induced have been determined. The tensile test results indicate that Cr content affects the hardening behavior of Fe-Cr binary alloys. Hardening mechanisms are discussed in terms of Orowan type of approach by correlating TEM data to the measured irradiation hardening. (authors)

  13. Interpretation of solar irradiance monitor measurements through analysis of 3D MHD simulations

    SciTech Connect (OSTI)

    Criscuoli, S.; Uitenbroek, H.

    2014-06-20

    Measurements from the Spectral Irradiance Monitor (SIM) on board the Solar Radiation and Climate Experiment mission indicate that solar spectral irradiance at visible and IR wavelengths varies in counter phase with the solar activity cycle. The sign of these variations is not reproduced by most of the irradiance reconstruction techniques based on variations of surface magnetism employed so far, and it is not yet clear whether SIM calibration procedures need to be improved or if instead new physical mechanisms must be invoked to explain such variations. We employ three-dimensional magnetohydrodynamic simulations of the solar photosphere to investigate the dependence of solar radiance in SIM visible and IR spectral ranges on variations of the filling factor of surface magnetic fields. We find that the contribution of magnetic features to solar radiance is strongly dependent on the location on the disk of the features, which are negative close to disk center and positive toward the limb. If features are homogeneously distributed over a region around the equator (activity belt), then their contribution to irradiance is positive with respect to the contribution of HD snapshots, but decreases with the increase of their magnetic flux for average magnetic flux larger than 50 G in at least two of the visible and IR spectral bands monitored by SIM. Under the assumption that the 50 G snapshots are representative of quiet-Sun regions, we thus find that the Spectral Irradiance can be in counter-phase with the solar magnetic activity cycle.

  14. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    SciTech Connect (OSTI)

    Chowdhury, S. Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-12-01

    The present study compares structural and optical modifications of bare and silica (SiO{sub 2}) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni{sup 12+} ion beam with fluences 10{sup 12} to 10{sup 13} ions/cm{sup 2}. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.

  15. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect (OSTI)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  16. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    SciTech Connect (OSTI)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3 were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.

  17. Status of the Norwegian thorium light water reactor (LWR) fuel development and irradiation test program

    SciTech Connect (OSTI)

    Drera, S.S.; Bjork, K.I.; Kelly, J.F.; Asphjell, O. [Thor Energy AS: Sommerrogaten 13-15, Oslo, NO255 (Norway)

    2013-07-01

    Thorium based fuels offer several benefits compared to uranium based fuels and should thus be an attractive alternative to conventional fuel types. In order for thorium based fuel to be licensed for use in current LWRs, material properties must be well known for fresh as well as irradiated fuel, and accurate prediction of fuel behavior must be possible to make for both normal operation and transient scenarios. Important parameters are known for fresh material but the behaviour of the fuel under irradiation is unknown particularly for low Th content. The irradiation campaign aims to widen the experience base to irradiated (Th,Pu)O{sub 2} fuel and (Th,U)O{sub 2} with low Th content and to confirm existing data for fresh fuel. The assumptions with respect to improved in-core fuel performance are confirmed by our preliminary irradiation test results, and our fuel manufacture trials so far indicate that both (Th,U)O{sub 2} and (Th,Pu)O{sub 2} fuels can be fabricated with existing technologies, which are possible to upscale to commercial volumes.

  18. Determination of the displacement energy of O, Si and Zr under electron beam irradiation

    SciTech Connect (OSTI)

    Edmondson, Philip D; Weber, William J; Namavar, Fereydoon; Zhang, Yanwen

    2012-01-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to {approx}1.5 x 10{sup 22} e m{sup -2} has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron-solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be {approx}400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  19. Determination of the Displacement Energies of O, Si and Zr Under Electron Beam Irradiation

    SciTech Connect (OSTI)

    Edmondson, P. D.; Weber, William J.; Namavar, Fereydoon; Zhang, Yanwen

    2012-03-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to ~1.5 x 10e m has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electronsolid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be ~400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  20. Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions

    SciTech Connect (OSTI)

    Jiang, Weilin; Kovarik, Libor; Zhu, Zihua; Varga, Tamas; Engelhard, Mark H.; Bowden, Mark E.; Nenoff, Tina M.; Garino, Terry

    2014-08-07

    Radionuclide 137Cs is one of the major fission products that dominate heat generation in spent fuels over the first 300 hundred years. A durable waste form for 137Cs that decays to 137Ba is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi2O6 is selected as a model waste form to study the decay-induced structural effects. While Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi2O6, they are found in Cs0.9Ba0.1AlSi2O6 and identified as monoclinic Ba2Si3O8. Pollucite is susceptible to electron irradiation induced amorphization. The threshold density of the electronic energy deposition for amorphization is determined to be ~235 keV/nm3. Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite is observed during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report.