Powered by Deep Web Technologies
Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Flat plate solar oven  

Science Conference Proceedings (OSTI)

The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

Parikh, M.

1981-01-01T23:59:59.000Z

2

Certification and verification for calmac flat plate solar collector  

DOE Green Energy (OSTI)

This document contains information used in the certification and verification of the Calmac Flat Plate Collector. Contained are such items as test procedures and results, information on materials used, Installation, Operation, and Maintenance Manuals, and other information pertaining to the verification and certification.

Not Available

1978-01-27T23:59:59.000Z

3

Flat-Plate Photovoltaic Performance Testing at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

The flat-plate photovoltaic (PV) performance testing project at the Solar Technology Acceleration Center (SolarTAC) is a multi-year, data-driven effort to provide unbiased field testing of a variety of commercial-scale solar PV systems under different environmental and seasonal conditions. Its core aim is to assess and characterize the operation of both well-established as well as less mature PV module technologies to ultimately inform future PV product investment decisions by electric utilities and ...

2013-10-30T23:59:59.000Z

4

Flat Plate PV Module Eligibility Listing Procedure Updated 6/28/12 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV  

E-Print Network (OSTI)

the solar incentive programs for California, and flat plate PV modules1 must be listed on the SB1 compliant programs for investor owned utility (IOU) territories, the California Solar Initiative (CSI) and the New module list to be eligible for incentives in California. Senate Bill 1 encompasses two staterun

5

Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector  

E-Print Network (OSTI)

The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

Hasan, Atiya

2007-01-01T23:59:59.000Z

6

A SOLAR STILL AUGMENTED WITH A FLAT-PLATE COLLECTOR AND A REFLECTOR  

E-Print Network (OSTI)

A SOLAR STILL AUGMENTED WITH A FLAT-PLATE COLLECTOR AND A REFLECTOR A. Saleh A. Badran Mechanical ­ Jordan Amman ­ Jordan e-mail: asaleh@philadelphia.edu.jo e-mail: badran@ju.edu.jo ABSTRACT A solar distillation system was built and tested to study the effect of increasing the solar radiation incident

7

Flat-plate solar collector handbook: a survey of principles, technical data and evaluation results  

DOE Green Energy (OSTI)

This report begins with a discussion of flat plate solar collector principles. Evaluation data are presented for thirteen manufacturers of medium temperature collectors that have met the criteria: (a) intention by the manufacturer that the equipment be used only for heating and cooling buildings and for domestic hot water heating and (b) evaluation of the collector by NASA using a solar simulator as a basis for collector selection and performance prediction. (WDM)

Newkirk, H. W.

1976-03-29T23:59:59.000Z

8

Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems  

DOE Green Energy (OSTI)

A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

None

1983-11-15T23:59:59.000Z

9

Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems  

SciTech Connect

Three liquid-based solar heating systems employing different types of solar collectors were tested side by side near Chicago, Illinois for one year. The three different types of collectors were: a flat plate collector with a black-chrome coated absorber plate and one low-iron glass cover; an evacuated-tube compound parabolic concentrator (CPC) with a concentration ratio of 1.1, oriented with tubes and troughs along a north-south axis; and an evacuated-tube CPC collector with a concentration ratio of 1.3 and one low-iron glass cover, with tubes and troughs oriented along an east-west axis. Results indicate that the flat plate collector system was the most efficient during warm weather, but the CPC systems were more efficient during cold weather, but the CPC systems were more efficient during cold weather, and the CPC systems operated under conditions too adverse for the flat plate collector. The computer simulation model ANSIM was validated by means of the side-by-side tests. The model uses analytical solutions to the storage energy balance. ANSIM is compared with the general simulation TRNSYS. (LEW)

McGarity, A.E.; Allen, J.W.; Schertz, W.W.

1983-10-01T23:59:59.000Z

10

Methods for reducing heat losses from flat plate solar collectors: Phase II. Final report, February 1, 1976--August 31, 1977  

DOE Green Energy (OSTI)

Improvements to flat plate solar collectors for heating and cooling of buildings were investigated through two parallel studies. The first study, which deals with the free convective heat loss from V-corrugated absorber plate to a plane glass cover, has shown that, for the same average spacing, the free convective heat loss is greater for a V-corrugated absorber plate than for a plane absorber plate. However, provided the average spacing is large enough, the amount of increase is slight. The second study, which deals with the free convective heat loss in a honeycomb solar collector in which the honeycomb consists of a set of horizontal partitions, or slits, has shown that provided the solar collector is tilted to near vertical, such a honeycomb gives equivalent or superior free convective loss suppression than does a square-celled honeycomb having the same amount of material. Correlation equations for the free convective heat loss are given for both studies.

Hollands, K.G.T.; Raithby, G.D.; Unny, T.E.

1978-03-01T23:59:59.000Z

11

Performance of residential solar heating and cooling system with flat-plate and evacuated tubular collectors: CSU Solar House I  

DOE Green Energy (OSTI)

Measurements in Solar House I at Colorado State University have provided comparison data on space heating, water heating, and cooling by systems in which flat-plate collectors and evacuated tube collectors were used. Data were procured on 47 days during operation of the flat-plate collector and on 112 days when the house was heated or cooled by the evacuated tube collector system. It was concluded that the system comprising an evacuated tubular collector, lithium bromide absorption water chiller, and associated equipment is highly effective in providing space heating and cooling to a small building, that it can supply up to twice the space heating and several times the cooling obtainable from an equal occupied area of good quality flat-plate collectors, and that a greater fraction of the domestic hot water can be obtained by supplying its heat from main storage. The cost-effectiveness of the system, in comparison with one employing a good flat-plate collector, can be determined when commercial pricing data are made available. A summary of monthly and annual energy use for space heating, domestic hot water (DHW) heating, and space cooling is presented. The collector performance is presented. The first two months of data were obtained with the system employing flat-plate collectors, whereas heating and cooling during the following nine months were supplied by the evacuated tube collector system.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-01-01T23:59:59.000Z

12

Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations  

DOE Green Energy (OSTI)

The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

None

1983-01-01T23:59:59.000Z

13

Solar: monthly global horizontal (GHI) GIS data at 10km resolution...  

Open Energy Info (EERE)

Central America from SUNY

(Abstract):Monthly Average Solar Resource for horizontal flat-plate solar collectors for Central America
<...

14

Performance of residential solar heating and cooling system with flat-plate and evacuated tubular collectors: CSU Solar House I  

SciTech Connect

Measurements in Solar House I at Colorado State University have provided comparison data on space heating, water heating, and cooling by systems in which flat-plate collectors and evacuated tube collectors were used. Data were procured on 47 days during operation of the flat-plate collector and on 112 days when the house was heated or cooled by the evacuated tube collector system. It was concluded that the system comprising an evacuated tubular collector, lithium bromide absorption water chiller, and associated equipment is highly effective in providing solar heating and cooling to a small building, that it can supply up to twice the space heating and several times the cooling obtainable from an equal occupied area of good quality flat-plate collectors, and that a greater fraction of the domestic hot water can be obtained by supplying its heat from main storage. The cost-effectiveness of the system, in comparison with one employing a good flat-plate collector, can be determined when commercial pricing data are made available.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-01-01T23:59:59.000Z

15

Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors  

Office of Scientific and Technical Information (OSTI)

Solar Radiation Data Manual Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefuleness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply iots endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not

16

Flat-plate solar collectors utilizing polymeric film for high performance and very low cost  

SciTech Connect

Polymeric films are used in the construction of the absorber and window portions of a flat plate solar collector. The absorber heat exchanger consists of a channeled liquid envelope constructed using a polymeric film and metal foil laminate. In addition, the composite films and light frame monocoque construction contribute to very light weight and low cost. The use of high-performance polymers permits low-loss designs with high thermal performance. The construction concepts are consistent with high speed mass production and installation with manufacturing cost projections of $15/m/sup 2/. Tests performed at Brookhaven National Laboratory (BNL) and elsewhere indicate performance potential consistent with applications incorporating solar absorption air conditioning.

Wilhelm, W.G.

1981-01-01T23:59:59.000Z

17

Nonimaging solar energy concentrators (CPC's) with fully illuminated flat receivers: A viable alternative to flat-plate collectors  

SciTech Connect

Low-concentration, stationary, nonimaging concentrators (CPC's) with flat receivers illuminated on both sides are considered as viable alternatives to flat-plate solar collectors. Closed-form, analytic formulae are derived for the geometric characteristics of two concentrator types of greatest interest (i.e., stationary collectors for year-round energy delivery), which enable calculations of collectible energy without computer ray-tracing stimulations. The relative merits of these concentrators in terms of energy collection and production costs are assessed with respect to each other as well as to flat-plate collectors.

Gordon, J.M.

1986-08-01T23:59:59.000Z

18

Flat-Plate Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

The most common photovoltaic (PV) array design uses flat-plate PV modules or panels. These panels can be fixed in place or allowed to track the movement of the sun. They respond to sunlight that is direct or diffuse. Even in clear skies, the diffuse component of sunlight accounts for between 10% and 20% of the total solar radiation on a horizontal surface. On partly sunny days, up to 50% of that radiation is diffuse, and on cloudy days, 100% of the radiation is diffuse.

19

Heat pipes applied to flat-plate solar collectors. Final report  

SciTech Connect

The objective of this program was to analytically and experimentally investigate the use of heat pipes in flat-plate solar collectors. Heat pipes are passive heat transport devices which utilize a closed evaporation-condensation cycle. Because of their high equivalent conductance, they appear to be well suited to transport heat from the solar absorber to an air or liquid distribution system. The program consisted of the following tasks: (I) Configuration Studies, (II) Parametric Performance Studies, (III) Economic Analysis, (IV) System Integration Studies, (V) Submodule Fabrication and Testing (in the laboratory), and (VI) Full-Scale Module Fabrication and Testing (using solar input). An additional Task VII, Feasibility Study of a Stationary Concentrator, was identified during the program and was also completed. In performing Tasks I through IV, various aspects of integrating heat pipes into flat-palte solar collectors were investigated. The results of these tasks were reported in the Annual Progress Report (Ref. 2) dated January 31, 1975. A summary of that program effort is included in the present report. The results of the experimental work conducted under Tasks V and VI are presented in this report. Under Task V, breadboard heat pipes were fabricated from sections of Roll-Bond panels and their heat transfer performance was evaluated in the laboratory. Three complete solar panels, two of which were heat pipe absorbers and one was a Roll-Bond control panel, were fabricated and solar tested during Task VI. Finally, under the new Task VII, a feasibility study of a stationary concentrator using heat pipes as thermal diodes was conducted. Results are presented and discussed.

Bienert, W.B.; Wolf, D.A.

1976-05-01T23:59:59.000Z

20

Design, construction and testing of a liquid-heating flat-plate solar collector  

SciTech Connect

The purpose of this study was to design, construct, and test a liquid-heating flat-plate solar collector. From the literature search, information was gathered concerning the basic components of the collector, the different processes and materials that can be used in the construction of these components, and their advantages and disadvantages. The literature search also revealed a method used to measure the performance of the collector in terms of efficiency and heat output. Design considerations were then listed for each of the major components as well as the collector as a single unit. Then, each component was designed, taking into consideration the final assembly of the completed unit. Detailed designs were required for the absorber plate and the box and frame assembly because of their complexity in construction and assembly. Once the components were designed, the construction details were arranged in a logical sequence, again considering the final assembly of the unit. The collector was then carefully constructed and assembled following the design details. After the solar collector was assembled completely, tests were made, data were obtained and recorded, and a collector performance curve was developed.

Tuttle, R E

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

DOE Green Energy (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

22

Flat plate heat exchangers  

SciTech Connect

A lightweight flat plate heat exchanger comprised of two or more essentially parallel flat plates which are formed and arranged to provide fluid flow passages between the plates. New combinations of plastic plates include the usage of transparent plastic foam and honeycomb structures. Improved shapes of flow passages include the usage of flow nozzles, flow diffusers, and jet pumps to increase fluid flow and heat transfer. The invention includes the usage of transparent plastic foam plates which are shaped to concentrate solar energy onto plastic tubes. Clear plastic tubes containing black heat transfer fluid are included. The invention includes the usage of spiral flow channels within plastic foam plates. Six different embodiments of the invention are included. Five of the embodiments could be used as efficient lightweight solar collectors.

Berringer, R.T.

1981-09-29T23:59:59.000Z

23

Need for and evaluation of hail protection devices for solar flat plate collectors. Final report, June 1978-March 1980  

DOE Green Energy (OSTI)

A brief summary of the hail risk work previously done under this contract is given, and a summary evaluation of hail impact resistance standards currently being developed is presented. Simulated hail impact test data, field data, and the impact resistance of commercially available glazings are discussed. The use of screens for protection against hail and the threat of vandalism to solar flat plate collectors are discussed. (WHK)

Armstrong, P R; Cox, M; de Winter, F

1980-03-01T23:59:59.000Z

24

Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions  

SciTech Connect

New comparative tests on two different types of solar collectors are presented in this paper. A standard glazed flat plate collector and an evacuated tube collector are installed in parallel and tested at the same working conditions; the evacuated collector is a direct flow through type with external compound parabolic concentrator (CPC) reflectors. Efficiency in steady-state and quasi-dynamic conditions is measured following the standard and it is compared with the input/output curves measured for the whole day. The first purpose of the present work is the comparison of results in steady-state and quasi-dynamic test methods both for flat plate and evacuated tube collectors. Besides this, the objective is to characterize and to compare the daily energy performance of these two types of collectors. An effective mean for describing and analyzing the daily performance is the so called input/output diagram, in which the collected solar energy is plotted against the daily incident solar radiation. Test runs have been performed in several conditions to reproduce different conventional uses (hot water, space heating, solar cooling). Results are also presented in terms of daily efficiency versus daily average reduced temperature difference: this allows to represent the comparative characteristics of the two collectors when operating under variable conditions, especially with wide range of incidence angles. (author)

Zambolin, E.; Del Col, D. [Dipartimento di Fisica Tecnica, Universita degli Studi di Padova, Via Venezia 1, 35131 Padova (Italy)

2010-08-15T23:59:59.000Z

25

Interferometric study of the natural convection characteristics of flat plate, slat and vee-corrugated solar collectors. Final report  

DOE Green Energy (OSTI)

The natural convection heat transfer relations for the heat transfer between absorber and cover plates of solar collectors have been studied. Interferometric techniques were employed to evaluate the local coefficients. Average values were obtained by integration of the local values. The results are presented in terms of correlations between Nusselt number and Grashof number. The investigations were carried out over tilt angles of 45 to 90 degrees. The Grashof number range tested was representative of that existing in flat plate collectors. The various geometrics included large flat enclosures, small aspect ratio enclosures representative of honeycomb or slat collectors, vee-corrugated (vee-grooved) collectors, and compound parabolic concentrators.

El Wakil, M.M.; Mitchell, J.W.

1979-06-30T23:59:59.000Z

26

Solar: annual average global horizontal (GHI) GIS data at 10km...  

Open Energy Info (EERE)

at 10km resolution for Cuba from SUNY

(Abstract):Monthly Average Solar Resource for horizontal flat-plate solar collectors for Cuba

(Purpose):<...

27

Coaxial extrusion conversion concept for polymeric flat plate solar collectors. Final technical report, September 30, 1978-December 31, 1979  

DOE Green Energy (OSTI)

This study investigated materials and processes for fundamental improvements in flat-plate solar collector cost and performance. The goal was to develop a process for direct conversion of inexpensive raw materials into a completed solar collector unit, without labor intensive assembly operations. It was thought that materials carefully matched to the process and end-use environment would substantially reduce collector costs, as compared to conventional industry practice. The project studied the feasibility of a cost-effective, glazed solar collector, with low labor input, utilizing a coaxial extrusion of compatible polymeric materials. This study evaluated all considered materials for the desired application. In addition, there was a trial extrusion of the leading candidate glazing and absorber materials, which resulted in successfully performing a coaxial extrusion of one cell. At the time the study was conducted, there were no materials available that met the necessary requirements for the specified utilization. It was recommended that, if potentially compatible materials become available, further investigation into the suitability of those materials be researched. Then, if a suitable material was found, proceeding into Phase II would be recommended.

Rhodes, R.O.; Chapman, N.J.; Chao, K.C.; Sorenson, K.F.

1980-01-01T23:59:59.000Z

28

Design and installation package for the Sunmat Flat Plate Solar Collector  

DOE Green Energy (OSTI)

The information used in evaluating the design of the Sunmat Liquid Flat Plat Plate Solar Collector developed by Calmac Manufacturing Company is presented. Included in this package are the Subsystem Performance Specification, Installation, Operation and Maintenance Manuals, collector sizing guides, and detailed drawings of the single-glazed collector.

Not Available

1978-03-01T23:59:59.000Z

29

Flat-Plate Photovoltaic System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flat-Plate Photovoltaic System Basics Flat-Plate Photovoltaic System Basics Flat-Plate Photovoltaic System Basics August 20, 2013 - 4:03pm Addthis The most common photovoltaic (PV) array design uses flat-plate PV modules or panels. These panels can be fixed in place or allowed to track the movement of the Illustration of a cutaway of a typical flat-plate module. The layers, in order from top to bottom, are: cover film, solar cell, encapsulant, substrate, cover film, seal, gasket, and frame. One typical flat-plate module design uses a substrate of metal, glass, or plastic to provide structural support in the back; an encapsulant material to protect the cells; and a transparent cover of plastic or glass. sun. They respond to sunlight that is direct or diffuse. Even in clear skies, the diffuse component of sunlight accounts for between 10% and 20%

30

Flat-Plate Photovoltaic Modules  

Energy.gov (U.S. Department of Energy (DOE))

Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame.

31

`Convective` flat plate collectors and their applications  

SciTech Connect

The `convective` flat plate collector is a particular two-way collector system with air in gravity flow as primary working fluid. Its thermal characteristics are described. Results of outdoor tests and thermal simulations are shown. Different applications of the system are presented: water heating, steam generation for medical sterilization, solar cooking and space heating. 10 refs., 16 figs., 6 tabs.

Grupp, M.; Bergler, H.; Bertrand, J.P. [Synopsis, Lodeve (France); Kromer, B. [Institut fuer Umweltphysik der Universtaet, Heidelberg (Germany); Cieslok, J. [INCO, Aachen (Germany)

1995-12-31T23:59:59.000Z

32

Side-by-side comparisons of evacuated compound parabolic concentrator and flat plate solar collector systems at temperatures of 90 to 100/sup 0/C  

SciTech Connect

This collector system study is an extension of a previous system study in which Argonne National Laboratory (ANL) compared the performance of three solar energy systems operated side by side for over a year. In the present system study, four solar energy systems were operated side by side for part of a year. Two of the collector systems used commercially available compound parabolic concentrator (CPC) collectors, one used a commercially available flat plate collector, and one used an experimental CPC collector built by The University of Chicago. The collectors were mounted in fixed positions; they did not track the sun, and their tilt angles were not seasonally adjusted. All of the collector arrays faced south and were tilted at 42/sup 0/ with respect to the horizon (to match the 42/sup 0/N latitude at ANL). All four collector systems started each day with their storage temperatures at 90/sup 0/C. During the day, each system was operated by its own solar controller. At the end of the day, the tanks were mixed and the temperature changes in the tanks were measured. The change in storage energy was calculated from the temperature change, the heat capacity of the storage system, and the pump energy. 6 refs., 5 figs., 5 tabs.

Allen, J.W.; Schertz, W.W.; Wantroba, A.S.

1987-03-01T23:59:59.000Z

33

Solar: monthly global horizontal (GHI) GIS data at 10km resolution for  

Open Energy Info (EERE)

Central America from SUNY Central America from SUNY Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate solar collectors for Central America (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a horizontal flat-plate solar collector, such as a Photovoltaic (PV) solar panel. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 10 km by 10 km in size. The solar resource value is represented as kilowatt-hours per square meter per day for each month. The data were developed from the State University of New York's (SUNY) GOES satellite solar model.

34

Solar: monthly and annual latitude tilt horizontal GIS data at 40km  

Open Energy Info (EERE)

latitude tilt horizontal GIS data at 40km latitude tilt horizontal GIS data at 40km resolution for Nepal from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

35

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Brazil. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

36

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

37

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors for Ghana. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

38

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Kenya. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

39

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Sri Lanka from NREL Sri Lanka from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Sri Lanka (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

40

Solar: monthly global horizontal (GHI) GIS data at 40km resolution for  

Open Energy Info (EERE)

40km resolution for 40km resolution for Bangladesh from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Bangladesh. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Corrugated cover plate for flat plate collector  

SciTech Connect

A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

Hollands, K. G. Terry (Elora, CA); Sibbitt, Bruce (Waterloo, CA)

1978-01-01T23:59:59.000Z

42

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

East Asia from NREL East Asia from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

43

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Africa from NREL Africa from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water

44

Flat-Plate Photovoltaic Module Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Module Basics Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials, encapsulant, rear surface, and frame. Front Surface Materials The front surface of a flat-plate PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have high transmission of light with wavelengths from 350 to 1200 nm. Also, reflection from the front surface should be minimal. An antireflection coating added to the top surface can greatly reduce the reflection of sunlight, and texturing of the surface can cause light that strikes the surface to stay within the cells. Unfortunately, these textured

45

Solar: annual average global horizontal (GHI) GIS data at 10km resolution  

Open Energy Info (EERE)

global horizontal (GHI) GIS data at 10km resolution global horizontal (GHI) GIS data at 10km resolution for Cuba from SUNY Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate solar collectors for Cuba (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a horizontal flat-plate solar collector, such as a Photovoltaic (PV) solar panel. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 10 km by 10 km in size. The solar resource value is represented as kilowatt-hours per square meter per day for each month. The data were developed from the State University of New York's (SUNY) GOES satellite solar model. This model uses information on hourly satellite observed visible irradiance, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total of the normal or beam insolation falling on a tracking concentrator pointed

46

Flat-Plate Photovoltaic Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flat-Plate Photovoltaic Systems Flat-Plate Photovoltaic Systems August 20, 2013 - 4:03pm Addthis The most common photovoltaic (PV) array design uses flat-plate PV modules or...

47

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

South America from NREL South America from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

48

Solar: monthly and annual average direct normal (DNI), global horizontal  

Open Energy Info (EERE)

Central America and the Carribean from NREL Central America and the Carribean from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

49

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Mexico, Central America, and the Caribbean Islands from NREL Mexico, Central America, and the Caribbean Islands from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate

50

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for Ethiopia. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the

51

Solar: monthly and annual average global horizontal (GHI) GIS data at 40km  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations are used to validate the data where possible. The modeled values are accurate to approximately 10% of a true measured value within the grid cell due to the uncertainties associated with meteorological input to the model. The local cloud cover can vary significantly even within a single grid cell as a result of terrain effects and other microclimate influences. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

52

Flat-Plate Photovoltaic Modules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modules Flat-Plate Photovoltaic Modules August 20, 2013 - 4:25pm Addthis Flat-plate photovoltaic (PV) modules are made of several components, including the front surface materials,...

53

Natural convection flow over an inclined flat plate with internal heat generation and variable viscosity  

Science Conference Proceedings (OSTI)

The present investigation deals with study of laminar natural convection flow of a viscous fluid over a semi-infinite flat plate inclined at a small angle to the horizontal with internal heat generation and variable viscosity. The dimensionless boundary ... Keywords: Heat generation, Inclined flat surface, Natural convection, Temperature dependent viscosity

S. Siddiqa; S. Asghar; M. A. Hossain

2010-11-01T23:59:59.000Z

54

Flat-Plate Photovoltaic Balance of System | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Balance of System Flat-Plate Photovoltaic Balance of System August 20, 2013 - 4:29pm Addthis Complete photovoltaic (PV) energy systems are composed of three subsystems....

55

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

56

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

57

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV module must have a high transmission in the wavelengths that can be used by the solar cells in the module. For example, for silicon solar cells, the top surface must have...

58

OpenEI - solar radiation  

Open Energy Info (EERE)

monthly and monthly and annual average latitude tilt GIS data at 40km resolution for Mexico, Central America, and the Caribbean Islands from NREL http://en.openei.org/datasets/node/500 (Abstract):  Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America,
and the Caribbean Islands. (Purpose):  Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the

59

Measurements of sky luminance, sky illuminance, and horizontal solar radiation  

Science Conference Proceedings (OSTI)

This paper presents initial findings of a sky measurement program currently in progress at the National Bureau of Standards. Measurements are reported on sky luminance and illuminance and how they relate to horizontal solar radiation and sun position. Correlations are presented relating horizontal illuminance to horizontal solar radiation, and zenith luminance to solar altitude. These empirical models are particularly suitable for use in daylighting energy studies since they are based on existing solar data currently available on standard weather tapes.

Treado, S.; Gillette, G.

1983-04-01T23:59:59.000Z

60

Interim qualification tests and procedures for terrestrial photovoltaic thin-film flat-plate modules  

DOE Green Energy (OSTI)

This document provides recommended procedures and specifications for qualification tests that are structured to evaluate terrestrial thin-film flat-plate photovoltaic nonconcentrating modules intended for power generation applications. The qualification tests provided in this document are designed to evaluate flat-plate thin-film photovoltaic (PV) module design performance and susceptibility to known failure mechanisms. Emphasis is placed on testing and evaluating module performance characteristics and design features that will affect possible degradation of module performance and physical properties resulting from solar exposure, environmental weathering, mechanical loading, corrosion, and module shadowing. Because of limited thin-film module field operation experience and the evolutionary nature of new thin-film module material technologies and designs, these tests should not be considered definitive or complete, nor do they provide a basis to predict 30-year field life. Current understanding of failure and degradation mechanisms and the relationship between accelerated tests and field reliability is not sufficient to allow accurate estimation of life-expectancy, nor are the cycling tests given in this document considered to be equivalent to a full 30-year field exposure. However, the test and evaluation procedures given in this document provide a common approach for conducting qualification tests. Acceptable results from these tests should provide reasonable assurance that the modules that pass these tests will perform reliably in the field but for an unspecified period of time. 8 refs., 6 figs.

DeBlasio, R.; Mrig, L.; Waddington, D.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

System Advisor Model: Flat Plate Photovoltaic Performance Modeling Validation Report  

SciTech Connect

The System Advisor Model (SAM) is a free software tool that performs detailed analysis of both system performance and system financing for a variety of renewable energy technologies. This report provides detailed validation of the SAM flat plate photovoltaic performance model by comparing SAM-modeled PV system generation data to actual measured production data for nine PV systems ranging from 75 kW to greater than 25 MW in size. The results show strong agreement between SAM predictions and field data, with annualized prediction error below 3% for all fixed tilt cases and below 8% for all one axis tracked cases. The analysis concludes that snow cover and system outages are the primary sources of disagreement, and other deviations resulting from seasonal biases in the irradiation models and one axis tracking issues are discussed in detail.

Freeman, J.; Whitmore, J.; Kaffine, L.; Blair, N.; Dobos, A. P.

2013-12-01T23:59:59.000Z

62

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

63

solar radiation | OpenEI  

Open Energy Info (EERE)

radiation radiation Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor Carribean Central America GEF. latitude tilt GIS Mexico NREL solar solar radiation SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 241.3 KiB)

64

Solar: monthly and annual average global horizontal irradiance...  

Open Energy Info (EERE)

b>
Global Horizontal Irradiance
NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)
22-year Monthly & Annual Average...

65

Weather durability testing and failures in terrestrial flat plate ...  

Science Conference Proceedings (OSTI)

... Atlas XR-260 large scale xenon weathering device ... & standard Atlas xenon Weather-Ometers) ... Atlas SolarClimatic 1600 metal-halide global solar ...

2013-11-15T23:59:59.000Z

66

Analysis of a Flat-Plate, Liquid-Desiccant, Dehumidifier and Regenerator.  

E-Print Network (OSTI)

??A numerical model for isothermal and non-isothermal flat-plate liquid-desiccant dehumidifiers and regenerators was developed and implemented. The two-dimensional model takes into account the desiccant, water (more)

Mesquita, Lucio Cesar De Souza

2008-01-01T23:59:59.000Z

67

Modeling, Designing, Fabricating, and Testing of Channel Panel Flat Plate Heat Pipes.  

E-Print Network (OSTI)

??Flat plate heat pipes are very efficient passive two-phase heat transport devices. Their high e'ciency and low mass are desirable in the aerospace and electronics (more)

Harris, James R

2008-01-01T23:59:59.000Z

68

Construction and testing of large-area CPC-collector and comparison with a flat plate collector  

Science Conference Proceedings (OSTI)

A 13.6 m{sup 2} east-west aligned CPC-collector(compound parabolic concentrator) with flat absorbers, proposed for use in large-area applications, has been built and tested and compared with a flat plate collector. The performance of the CPC at a working temperature of 50{degree}C over ambient can be described by F`{eta}{sub 0} = 0.75 and F`U{sub L} = 2.5 W m{sup -2} K{sup -1} while the flat plate collector is described by F`{eta}{sub 0} = 0.80, and F`U{sub L} = 3.3 W m{sup -2} K{sup -1}. The large difference in heat loss coefficient is to a large degree explained by absorption of solar radiation in the reflectors in the CPC-collector. The incidence angle dependence of the optical performance of the two collectors showed a similar appearance. Both collector constructions are based on the LGB (long ground based) technology, which allows them to be built in large modules up to 170 m{sup 2}. 12 refs., 6 figs., 1 tab.

Roennelid, M. [Dalarna Univ., Borlaenge (Sweden)] [Dalarna Univ., Borlaenge (Sweden); Perers, B.; Karlsson, B. [Vattenfall Utveckling AB, Aelvkarleby (Sweden)] [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

1996-09-01T23:59:59.000Z

69

Solar: annual and seasonal average global horizontal (GHI) GIS data  

Open Energy Info (EERE)

global horizontal (GHI) GIS data global horizontal (GHI) GIS data (contours) for Brazil from INPE and LABSOLAR Dataset Summary Description (Abstract): Annual and seasonal mean of Global Horizontal Solar Radiation in kWh/m2/day based on data from 1995 to 2002 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The cross-calibration process worked with data from 3 ground stations: Caicó (located in the Northeast of Brazil), Florianópolis (located in the South) and Balbina (located in Amazonia). These data have been used for validation and comparison of radiation transfer models operated in SWERA to estimate the incidence of solar radiation on the surface of the country from satellite images

70

Modified horizontal solar collector for low temperature grain drying  

DOE Green Energy (OSTI)

The project consisted of constructing a horizontal solar collector with a small amount of rock storage integrated into the collector air stream. The collected energy was used to dry corn in a 6000 bushel low-temperature drying facility. The collector proved to be economically feasible to build and collected sufficient energy to show a reasonable return on the investment.

None

1980-01-27T23:59:59.000Z

71

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Ghana. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to

72

Solar: monthly latitude tilt GIS data at 40km resolution for Bangladesh  

Open Energy Info (EERE)

latitude tilt GIS data at 40km resolution for Bangladesh latitude tilt GIS data at 40km resolution for Bangladesh from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Bangladesh. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

73

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

Mexico, Central America, and the Caribbean Islands from NREL Mexico, Central America, and the Caribbean Islands from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The

74

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Ghana from NREL Ghana from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a

75

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Sri Lanka from NREL Sri Lanka from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a

76

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Brazil from NREL Brazil from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a

77

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Central America from NREL Central America from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a

78

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Ethiopia from NREL Ethiopia from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a

79

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Cuba from NREL Cuba from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a location, if enough years of data are present. The TMY consists of months selected from individual years and concatenated to form a complete year.. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years.

80

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Nepal from NREL Nepal from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a location, if enough years of data are present. The TMY consists of months selected from individual years and concatenated to form a complete year.. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years.

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Kenya from NREL Kenya from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a location, if enough years of data are present. The TMY consists of months selected from individual years and concatenated to form a complete year.. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years.

82

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a location, if enough years of data are present. The TMY consists of months selected from individual years and concatenated to form a complete year. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years.

83

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Bangladesh stations from NREL Bangladesh stations from NREL Dataset Summary Description (Abstract): Each data file is a set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. Each container file contains up to 30 yearly files for one station, plus the Typical Meteorological Year (TMY) file for the selected station, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations (Supplemental Information): The intended use of these data files is for computer simulations of solar energy conversion systems and building systems. The yearly data may be suitable for designing systems and their components to meet the worst-case conditions occurring at a location, if enough years of data are present. The TMY consists of months selected from individual years and concatenated to form a complete year.. Because of the selection criteria, these TMYs are not appropriate for simulations of wind energy conversion systems. A TMY provides a standard for hourly data for solar radiation and other meteorological elements that permit performance comparisons of system types and configurations for one or more locations. A TMY is not necessarily a good indicator of conditions over the next year, or even the next 5 years. Rather, it represents conditions judged to be typical over a long period of time, such as 30 years.

84

Solar collectors  

SciTech Connect

Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

Cassidy, V.M.

1981-11-01T23:59:59.000Z

85

Analysis of asymmetric disk-shaped and flat-plate heat pipes  

SciTech Connect

An analytical investigation and conceptual design of a disk-shaped asymmetric heat pipe is presented in this work. Using the conservative formulations for the steady incompressible vapor and liquid flow for a disk-shaped heat pipe, an in-depth integral analysis is applied. Analytical results for the asymmetric vapor velocity profile, the vapor and liquid pressure distributions, and the vapor temperature distribution in the heat pipe are obtained and compared to those of a rectangular flat-plate heat pipe. The analysis establishes the physics of the process and the intrawick interactions for the disk-shaped heat pipe. The effects of variations in the thicknesses of the vapor channel and the wick as well as the heat pipe on the performance of both disk-shaped and rectangular flat-plate heat pipes are analyzed in detail and compared with each other. The factors limiting heat pipe performance are discussed and the results show that the disk-shaped heat pipe, while utilizing a smaller surface area and being more adaptable to several application areas, significantly increases the heat transfer capability per unit surface area compared to rectangular flat-plate heat pipe. 19 refs., 7 figs.

Vafai, K.; Zhu, N.; Wang, W. (Ohio State Univ., Columbus, OH (United States))

1995-02-01T23:59:59.000Z

86

Stress analyses of flat plates with attached nozzles. Vol. 3. Experimental stress analyses of a flat plate with two closely spaced nozzles of equal diameter attached  

SciTech Connect

The complete test results for a flat plate with two closely spaced nozzles attached are presented. Test loadings were 1:1, 1:2, and 2:1 biaxial planar tension loadings on the plate, axial thrust loadings applied separately to the nozzles, and bending moment loadings applied to the nozzles both within and normal to the plane of symmetry containing the nozzle axes. The test plate was 36 x 36 x 0.375 in., and the attached nozzles had outer diameters of 2.625 in. and wall thicknesses of 0.250 in. The nozzles were located in the center of the plate with their centers 3.0 in. apart and were considered to be free of weld distortions and irregularities in the junction region. 6 references. (auth)

Bryson, J.W.; Swinson, W.F.

1975-12-01T23:59:59.000Z

87

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Honduras from SUNY Honduras from SUNY Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems (Supplemental Information): Each file's name identifies year and location, by listing Country_City_latitude-longitude_year, e.g., EL_SALVADOR_San_Salvador_13.75-89.15_98.out is for the city of San Salvador, in El Salvador, latitude 13.75 degrees, longitude -89.15 degrees, year 1998. The content of each file includes A one line header, listing latitude, longitude and ground elevation in meters,Hourly records including, year, month, day, time (GMT), global irradiance, direct irradiance and

88

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Nicaragua from SUNY Nicaragua from SUNY Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems (Supplemental Information): Each file's name identifies year and location, by listing Country_City_latitude-longitude_year, e.g., EL_SALVADOR_San_Salvador_13.75-89.15_98.out is for the city of San Salvador, in El Salvador, latitude 13.75 degrees, longitude -89.15 degrees, year 1998. The content of each file includes A one line header, listing latitude, longitude and ground elevation in meters,Hourly records including, year, month, day, time (GMT), global irradiance, direct irradiance and

89

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Guatemala from SUNY Guatemala from SUNY Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems (Supplemental Information): Each file's name identifies year and location, by listing Country_City_latitude-longitude_year, e.g., EL_SALVADOR_San_Salvador_13.75-89.15_98.out is for the city of San Salvador, in El Salvador, latitude 13.75 degrees, longitude -89.15 degrees, year 1998. The content of each file includes A one line header, listing latitude, longitude and ground elevation in meters,Hourly records including, year, month, day, time (GMT), global irradiance, direct irradiance and

90

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

Cuba sites from SUNY Cuba sites from SUNY Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems (Supplemental Information): Each file's name identifies year and location, by listing Country_City_latitude-longitude_year, e.g., EL_SALVADOR_San_Salvador_13.75-89.15_98.out is for the city of San Salvador, in El Salvador, latitude 13.75 degrees, longitude -89.15 degrees, year 1998. The content of each file includes A one line header, listing latitude, longitude and ground elevation in meters,Hourly records including, year, month, day, time (GMT), global irradiance, direct irradiance and

91

Solar: hourly solar (direct normal (DNI), global horizontal (GHI), and  

Open Energy Info (EERE)

El Salvador sites from SUNY El Salvador sites from SUNY Dataset Summary Description (Abstract): Zip file contains year-site specific files including time series of global, direct and diffuse irradiance (Purpose): The time series are useful for performing site specific simulation of customized solar energy systems (Supplemental Information): Each file's name identifies year and location, by listing Country_City_latitude-longitude_year, e.g., EL_SALVADOR_San_Salvador_13.75-89.15_98.out is for the city of San Salvador, in El Salvador, latitude 13.75 degrees, longitude -89.15 degrees, year 1998. The content of each file includes A one line header, listing latitude, longitude and ground elevation in meters,Hourly records including, year, month, day, time (GMT), global irradiance, direct irradiance and

92

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

solar-electric system (typical for thin-film panels currently) plus a 58% efficient solar-thermal system (flat-plate efficiency

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

93

An evaluation of the thermal characteristics of a flat plate heat pipe spreader  

E-Print Network (OSTI)

An evaluation of the thermal characteristics of a flat plate heat pipe spreader was performed through an analytical, numerical, and experimental analysis. The physical system considered was comprised of a high heat flux heat source attached to the center of a flat plate heat pipe, mounted at the base of a plate-finned heat sink and cooled by forced convection. In the analysis, the theoretical maximum operating conditions for the heat pipe are predicted, and it is found that the specific heat pipe configuration would most likely fail based on capillary limitations of the wick structure for conditions typical of electronic cooling applications. The mass and heat transfer processes which contribute to the capillary limitation were considered in theory, and a novel technique which utilizes well-known conventional heat pipe relations for pressure loss was developed to estimate the point of heat pipe failure. In addition, a thermal resistance network was developed in an effort to predict the temperature drop across the heat pipe spreader. Through a separate approach, a numerical model was developed to solve the conjugate problem of heat transfer in the heat pipe/heat sink with turbulent forced convection. In this approach, the heat pipe was modeled as a solid material having a high effective conductivity. Finally, the system was tested experimentally, and the results were compared to the analytical and numerical results. It was found that the capillary limit model over-predicted the measured point of heat pipe failure by several orders of magnitude, and the resistance model under-represented the actual resistance by a factor of 2 to 3. In addition, a change in thermal resistance with power input was discovered during experimentation that was not predicted by the analysis. The numerical model was compared to the experimental results and a relation for the effective conductivity as a function of power input was determined. Complexities associated with the internal heat and mass transfer processes of the flat plate heat pipe spreader were thoroughly discussed and the discrepancies between the experimental and analytical results were examined.

Chesser, Jason Blake

2000-01-01T23:59:59.000Z

94

Solar Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heaters Solar Water Heaters August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate...

95

High-Cloud Horizontal Inhomogeneity and Solar Albedo Bias  

Science Conference Proceedings (OSTI)

High ice cloud horizontal inhomogeneity is examined using optical depth retrievals from four midlatitude datasets. Three datasets include ice cloud microphysical profiles derived from millimeter cloud radar at the Southern Great Plains ...

Betty Carlin; Qiang Fu; Ulrike Lohmann; Gerald G. Mace; Kenneth Sassen; Jennifer M. Comstock

2002-09-01T23:59:59.000Z

96

Wind loads on flat plate photovoltaic array fields. Phase II. Final report  

SciTech Connect

This report describes a theoretical study of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20/sup 0/ to 60/sup 0/, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. Included is an outline of a wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices.

Miller, R.; Zimmerman, D.

1979-09-01T23:59:59.000Z

97

Enrichment of heavy water in flat-plate thermal diffusion columns of the Frazier scheme inclined for improved performance  

SciTech Connect

A separation theory for the enrichment of heavy water in flat-plate thermal diffusion columns of the Frazier scheme inclined for improved performance has been developed. Equations for the best angle of inclination and maximum separation have been derived. Considerable improvement in separation is obtainable if the columns are inclined at the best angle, so that the convective strength can be properly reduced and controlled, resulting in suppression of the undesirable remixing effect while still preserving the desirable cascading effect.

Ho-Ming Yeh [Tamkang Univ., Taiwan (China)

1995-04-01T23:59:59.000Z

98

Renewable energy technologies for federal facilities: Solar water heating  

SciTech Connect

This sheet presents information on solar water heaters (passive and active), solar collectors (flat plate, evacuated tube, parabolic trough), lists opportunities for use of solar water heating, and describes what is required and the costs. Important terms are defined.

1996-05-01T23:59:59.000Z

99

Solar: monthly and annual average latitude tilt GIS data at 40km resolution  

Open Energy Info (EERE)

China from NREL China from NREL Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. The solar resource value is represented as watt-hours per square meter per day for each month. The data were developed from NREL's Climatological Solar Radiation (CSR) Model. This model uses information on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. Existing ground measurement stations

100

Potential for Development of Solar and Wind Resource in Bhutan  

DOE Green Energy (OSTI)

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Review of Consensus Standard Spectra for Flat Plate and Concentrating Photovoltaic Performance  

DOE Green Energy (OSTI)

Consensus standard reference terrestrial solar spectra are used to establish nameplate ratings for photovoltaic device performance at standard reporting conditions. This report describes reference solar spectra developed in the United States and international consensus standards community which are widely accepted as of this writing (June 2011).

Myers, D.

2011-09-01T23:59:59.000Z

102

Solar heating and you  

SciTech Connect

This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

1994-08-01T23:59:59.000Z

103

Summer-heat-gain control in passive-solar-heated buildings: fixed horizontal overhangs  

DOE Green Energy (OSTI)

An aspect of passive cooling relates to cooling load reduction by the use of solar controls. When there is a substantial winter heating requirement, and when the winter heating needs are met in part by a passive solar heating system, then the potential aggravation of summer cooling loads by the heating system is an important design issue. A traditional solution is the use of a fixed, horizontal shading overhang. An approach to quantitative design rules for the sizing of a shading overhang to minimize total annual space conditioning energy needs is outlined.

Jones, R.W.

1981-01-01T23:59:59.000Z

104

Comparison of Energy Production and Performance from Flat-Plate Photovoltaic Module Technologies Deployed at Fixed Tilt: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the performance data for 14 photovoltaic modules deployed at fixed-latitude tilt in the field are presented and compared. Module performance is monitored continuously for optimum power characteristics. Flat-plate module technologies representative of crystalline, amorphous, and polycrystalline silicon, and cadmium telluride and copper indium diselenide, are scrutinized for energy production, effective efficiency and performance ratio-ratio of effective to reference efficiency. Most performance ratios exhibit seasonal fluctuations largely correlated to air or module temperatures, varying between 80% and 100%. These ratios tend toward larger values during winter and vise versa, except for amorphous silicon and cadmium telluride modules. In a-Si cases, the situation appears reversed: better performance ratios are exhibited during late summer. The effective efficiency and average daily and yearly energy production are analyzed and quantified.

del Cueto, J. A.

2002-05-01T23:59:59.000Z

105

Wind loading on solar collectors  

DOE Green Energy (OSTI)

The present design methodology for the determination of wind loading on the various solar collectors has been reviewed and assessed. The total force coefficients of flat plates of aspect ratios 1.0 and 3.0, respectively, at various angles of attack obtained by using the guidelines of the ANSI A58.1-1982, have been compared with those obtained by using the methodology of the ASCE Task Committee, 1961, and the experimental results of the full-scale test of heliostats by Peglow. The turbulent energy spectra, currently employed in the building code, are compared with those of Kaimal et al., Lumley, and Ponofsky for wind velocities of 20.0 m/s and 40.24 m/s at an elevation of 9.15 m. The longitudinal spectra of the building code overestimates the Kaimal spectra in the frequency range of 0.007 Hz to 0.08 Hz and underestimates beyond the frequency of 0.08 Hz. The peak angles of attack, on the heliostat, stowed in horizontal position, due to turbulent vertical and lateral components of wind velocity, have been estimated by using Daniel's methodology for three wind velocities and compared with the value suggested by the code. The experimental results of a simple test in the laboratory indicate the feasibility of decreasing the drag forces of the flat plate by reducing the solidity ratio.

Bhaduri, S.; Murphy, L.M.

1985-06-01T23:59:59.000Z

106

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Ethiopia from DLR Ethiopia from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Ethiopia for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the documentation file for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR Ethiopia GEF GHI GIS solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 2.8 MiB) text/csv icon Download Data (csv, 5.6 MiB)

107

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Nepal from DLR Nepal from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Nepal for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR GEF GHI GIS Nepal solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 593.8 KiB) text/csv icon Download Data (csv, 1.2 MiB)

108

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Sri Lanka from DLR Sri Lanka from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Sri Lanka for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR GHI GIS solar Sri Lanka SWERA UNEP Data text/csv icon Download Data (csv, 296.1 KiB) application/zip icon Download Shapefile (zip, 153.7 KiB)

109

Solar: monthly global horizontal (GHI) GIS data at 10km resolution for  

Open Energy Info (EERE)

Bangladesh from DLR Bangladesh from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Bangladesh for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords Bangladesh DLR GEF GHI GIS solar SWERA UNEP Data text/csv icon Download Data (csv, 916.5 KiB) application/zip icon Download Shapefile (zip, 479.3 KiB)

110

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

West China from DLR West China from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for China for the years 2000, 2002 and 2003. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the country report for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords China CRED CREIA DLR GHI GIS solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 4.4 MiB) text/csv icon Download Data (csv, 8.9 MiB)

111

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Ghana from DLR Ghana from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Ghana for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the documentation file for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR Ghana GHI GIS solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 504 KiB) text/csv icon Download Data (csv, 1 MiB)

112

Solar: monthly and annual average global horizontal (GHI) GIS data at 10km  

Open Energy Info (EERE)

Kenya from DLR Kenya from DLR Dataset Summary Description (Abstract): Data of high resolution (10kmx10km) Global Horizontal Irradiance (GHI) for Kenya for the years 2000, 2001 and 2002. The data are available for monthly and annual sums stored in a ESRI-Shapefile. Please read the documentation file for additional information. (Purpose): The data are helpful for the assessment of the solar potential of the country and can give project developer a first impression of the solar resource of the country. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR GEF GHI GIS Kenya NREL solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 1.3 MiB) text/csv icon Download Data (csv, 2.5 MiB)

113

South America Global Horizontal SR Solar Model from INPE and LABSOLAR |  

Open Energy Info (EERE)

727 727 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142256727 Varnish cache server South America Global Horizontal SR Solar Model from INPE and LABSOLAR Dataset Summary Description (Abstract): Mean values of Global Horizontal Solar Radiation in kWh/m2/day for 40km cells for 1 year (month, season, year) based on data from 1995 to 2005 (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders. (Supplemental Information): The BRASIL-SR model (developed by INPE - National Institute for Space Research) and the ARCVIEW software were used to produce the dataset and SHAPE files. The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-à-vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took part in this phase like benchmark due to its employment to map solar energy resources in countries from European Union. In the second phase, the solar flux estimates provided by the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory. The BRASIL-SR model is not validated for areas covered by snow.

114

Solar: monthly and annual average global horizontal irradiance GIS data at  

Open Energy Info (EERE)

irradiance GIS data at irradiance GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Global Horizontal IrradianceNASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Insolation Incident On A Horizontal Surface (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region are -90 to -89 (south) and -180 to -179 (west). The last region, 89/180, is bounded by 89 to 90 (north) and 179 to 180 (east). The mid-point of

115

Brazil Global Horizontal Solar Radiation Model (40km) from INPE | OpenEI  

Open Energy Info (EERE)

40km) from INPE 40km) from INPE Dataset Summary Description (Abstract): Global horizontal solar radiation in kWh/m2/day for 1 year organized into cells with 40km x 40km (Purpose): To provide a set of consistent, reliable, verifiable, and accessible global data sets for international and in-country investors and other stakeholders (Supplemental Information): The BRASIL-SR model and the SPRING software (both developed by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files. The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-à-vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took art in this phase like benchmark due to its employment to map solar energy resources in countries from European Union. In the second phase, the solar flux estimates provided by the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory.

116

Brazil Global Horizontal Solar Radiation Model (10km) from INPE | OpenEI  

Open Energy Info (EERE)

10km) from INPE 10km) from INPE Dataset Summary Description (Abstract): Global horizontal solar radiation in kWh/m2/day for 1 year organized into cells with 10km x 10km (Purpose): The BRASIL-SR model and the SPRING software (both developed by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files (Supplemental Information): The assessment of reliability levels of the BRASIL-SR model were performed through the evaluation of the deviations shown by the estimated values for solar radiation flux vis-à-vis the values measured at the surface (ground truth). This evaluation was done in two phases. The first phase consisted in an inter-comparison between the core radiation transfer models adopted by the SWERA Project to map the solar energy in the various countries participating in the project. The HELIOSAT model took part in this phase like benchmark due to its employment to map solar energy resources in countries from European Union. In the second phase, the solar flux estimates provided by the BRASIL-SR model were compared with measured values acquired at several solarimetric stations spread along the Brazilian territory

117

Optimum plate-spacing for the best performance of the enrichment of heavy water in flat-plate thermal-diffusion columns of the Frazier scheme  

SciTech Connect

The effect of plate spacing on the degree of separation and production rate for the enrichment of heavy water in flat-plate thermal diffusion columns of the Frazier scheme with fixed operating expense has been investigated. The equations for estimating optimum plate-space for maximum separation and for maximum production rate have been developed. Considerable improvement in performance is obtainable when thermal diffusion columns with optimum plate-spacing are employed for operation.

Ho-Ming Yeh [Tamkang Univ., Taiwan (China)

1996-11-01T23:59:59.000Z

118

Structurally integrated steel solar collector  

DOE Patents (OSTI)

Herein is disclosed a flat plate solar heat collector unit. The solar collector is integrated as a structural unit so that the collector also functions as the building roof. The functions of efficient heat collection, liquid coolant flow passages, roof structural support and building insulation are combined into one unit.

Moore, Stanley W. (Los Alamos, NM)

1977-03-08T23:59:59.000Z

119

An indoor solar energy lab  

SciTech Connect

Describes the solar simulator, 2 flat-plate collectors, still, and parabolic concentrator at Ohio State University. Purpose is to enable mechanical engineering students to experiment with solar collection systems without being troubled by inclement weather, wind, or transient insolation levels. Compares compound and true parabolic shapes of concentrators. Presents illustrations of all components.

Clark, J.A.

1982-09-01T23:59:59.000Z

120

Investigation Of The Friction Factor Behavior for Flat Plate Tests Of Smooth And Roughened Surfaces With Supply Pressures Up To 84 Bars  

E-Print Network (OSTI)

Annular gas seal clearances were simulated with closely spaced parallel plates using a Flat?Plate tester. The device is designed to measure the pressure gradient along the test specimen. The main function of the Flat?Plate tester is to provide friction factor data and measure dynamic pressure oscillations. A detailed description of the test facility is described, and a theory for determining the friction factor is reviewed. Three clearances were investigated: 0.635, 0.381, and 0.254 mm. Tests were conducted at three different inlet pressures (84, 70, and 55 bars), producing Reynolds numbers range from 50,000 to 700,000. Three surface configurations were tested including smooth?on-smooth, smooth?on?hole, and hole?on?hole. The Hole?pattern plates are identical with the exception of the hole depth. The results indicate that, for the smooth?on?smooth and smooth?on?hole configurations, the friction factor remains constant or increases slightly with increasing Reynolds numbers. Moreover, the friction factor increases as the clearance between the plates increases. However, the results from the hole?on-hole configurations are quite different. A "friction?factor jump" phenomenon was observed, and the Helmholtz frequency was detected on the frequency spectra.

Kheireddin, Bassem A.

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres  

Science Conference Proceedings (OSTI)

In a previous work, we described a simple model for calculating direct normal and diffuse horizontal spectral solar irradiance for cloudless sky conditions. In this paper, we present a new simple model (SPCTRAL2) that incorporates improvements to ...

Richard E. Bird; Carol Riordan

1986-01-01T23:59:59.000Z

122

An investigation of wind loads on solar collectors. Appendix II - net pressure coefficients. Final report  

SciTech Connect

A wind-tunnel study of a series of model solar-collector installations (flat-plate collectors) immersed in a thick turbulent shear layer was undertaken in order to determine design wind loads on such installations. Wind tunnel measurements were made of the mean and fluctuating pressures on a model of a single flat-plate collector which was a component of different multi-panel installations. The pressures were spatially integrated over the top and bottom of the single collector separately.

Tieleman, H.W.; Akins, R.E.; Sparks, P.R.

1980-01-01T23:59:59.000Z

123

Page Jackson solar school, Charles Town, West Virginia. Final technical report  

DOE Green Energy (OSTI)

The Page Jackson Elementary School in Charles Town, West Virginia, uses a solar energy system to provide space heating and cooling for a 52,600 sq. ft. school building. A total of 11,215 sq. ft. of PPG Industries, Inc., double-glazed, flat plate collectors (facing south at a 45/sup 0/ tilt from the horizontal) are used in conjunction with glass mirrored reflectors facing north at a 38/sup 0/ tilt from the horizontal) to collect the available solar energy. The solar energy system at Page Jackson is of the drainback type. Space heating for the school is provided by circulating warm water from the storage tanks through five air handling units (AHU's). Space cooling to the building is provided by a 100 ton Trane packaged absorption water chiller when sufficiently hot solar water is available. The solar energy system began operation late in the summer of 1977. In general, the solar energy systemand controls appears to be in good working order. The performance of the system is particularly good; in fact, much better than most. Because the refurbished collector array is now operating at near design conditions, it is anticipated that the system will begin to contribute substantially (as originally intended) to the building load. In order to ensure that the system is operating as designed while in the space cooling mode, it is recommended that the solar cooling subsystem be tested for proper operation and performance during the warmer summer months.

Frazier, R.H.; Pickett, J.W.

1983-07-01T23:59:59.000Z

124

Definition: Global horizontal irradiance | Open Energy Information  

Open Energy Info (EERE)

Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DIF).1 Related Terms DNI, Solar radiation, Concentrating solar power, Photovoltaics References http:...

125

Decline in Global Solar Radiation with Increased Horizontal Visibility in Germany between 1964 and 1990  

Science Conference Proceedings (OSTI)

A statistically significant decrease in mean annual global solar radiation between 1964 and 1990 under completely overcast skies was found at five out of eight studied locations in Germany. A decrease of global solar radiation is also evident in ...

Beate G. Liepert; George J. Kukla

1997-09-01T23:59:59.000Z

126

NREL: Learning - Solar Hot Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Hot Water Hot Water Photo of solar collectors on a roof for a solar hot water system. For solar hot water systems, flat-plate solar collectors are typically installed facing south on a rooftop. The shallow water of a lake is usually warmer than the deep water. That's because the sunlight can heat the lake bottom in the shallow areas, which in turn, heats the water. It's nature's way of solar water heating. The sun can be used in basically the same way to heat water used in buildings and swimming pools. Most solar water heating systems for buildings have two main parts: a solar collector and a storage tank. The most common collector is called a flat-plate collector. Mounted on the roof, it consists of a thin, flat, rectangular box with a transparent cover that faces the sun. Small tubes

127

Prospects for investment in solar energy  

SciTech Connect

The prospects for solar energy and the growth of the solar industry are discussed. Some misconceptions, capital requirements, energy payback, and growth rate are reviewed. Technologies briefly discussed in the order in which they will likely be commercialized are: conservation, passive solar, biomass, flat plate collectors for water and space heating, wind power, solar ponds, photovoltaics, concentrating collectors for high temperature heat and electricity generation, ocean thermal energy conversion systems, and the solar power satellite. (MCW)

Edesess, M.

1979-12-01T23:59:59.000Z

128

U.S. Solar Resource Maps and Tools from the National Renewable Energy Laboratory (NREL)  

DOE Data Explorer (OSTI)

Solar maps provide monthly average daily total solar resource information on grid cells. The insolation values represent the resource available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal to equal to the latitude of the collector location. [Copied from http://www.nrel.gov/gis/solar.html] Several types of solar maps are made available. The U.S. Solar resource maps show the resource potential for energy from photovoltaics and from concentrating solar power (CSP). Both sets of maps are available in low or high resolution. A dynamic map based on version 2 of PVWATTS calculates electrical energy performance estimates for a grid-connected photovoltaic system. The map of U.S. Solar Measurement Station Locations is also dynamic, showing the spatial distribution of measurement stations across the U.S. that are monitored by programs and agencies such as DOE's Atmospheric Radiation Measurement (ARM) Program or NREL's Cooperative Network for Renewable Resource Measurements (CONFRRM). Clicking on a station location will take the user to the website of that station. Finally, static map images providing solar resource information averaged by month are also available.

129

Simulation Studies on a Multi-stage Distillation with Slope-Plate Falling Film Evaporation Desalination System Using Solar Energy  

Science Conference Proceedings (OSTI)

An innovative, multi-stage solar distillation with slope-plate falling film system for seawater desalination is investigated. The system consists of a solar heater (flat plate solar collector) and one evaporation-condensation set that is composed of ... Keywords: solar energy, falling film, desalination

Penghui Gao; Guoqing Zhou; Henglin Lv

2009-10-01T23:59:59.000Z

130

Proceedings of the flat-plate solar array project workshop on low-cost polysilicon for terrestrial photovoltaic solar-cell applications  

SciTech Connect

Separate abstracts were prepared for 21 papers in this workshop proceedings. Topics covered include: polysilicon material requirements; economics; process developments in the USA and internationally; and the polysilicon market and forecasts. (LEW)

1986-02-01T23:59:59.000Z

131

TRNSYS simulation of solar water heating system in Iraq  

Science Conference Proceedings (OSTI)

The objective of this work is to model and verify a direct solar water heating system in Baghdad, Iraq using TRNSYS software to meet the demand of hot water for 25 persons. This is achieved by using 10 m2 of a flat plate collector and 600 ... Keywords: Baghdad-Iraq, TRNSYS, solar, water heating

M. N. Mohammed; M. A. Alghoul; Kh. Abulqasem; Alshrif. Mustafa; Kh. Glaisa; P. Ooshaksaraei; M. Yahya; A. Zaharim; K. Sopian

2011-07-01T23:59:59.000Z

132

Solar laboratory development. Final report, September 1, 1977--August 31, 1978  

DOE Green Energy (OSTI)

Progress made on the establishment of a solar laboratory at the University of Illinois is reported. The laboratory will be located in a moving trailer and will demonstrate the operation of a solar water heater and a solar-assisted heat pump using flat plate collector. (WHK)

Simon, H.A.

1978-08-01T23:59:59.000Z

133

Solar energy controlled-environment agriculture in the United States and in Saudi Arabia  

Science Conference Proceedings (OSTI)

A number of greenhouse designs proposed for use in hot climates to reduce the temperature by essentially passive means are illustrated. The project plans of the SOLERAS, solar-powered, controlled-environment agriculture are outlined. The water desalination technology being evaluated is reverse osmosis. The solar collection technologies include flat-plate thermal collectors, solar ponds, photovoltaics, and wind turbines. (MHR)

Luft, W.; Froechtenigt, J.

1981-11-01T23:59:59.000Z

134

The State of Solar Power: Benchmarking Solar Technology, Market, and Project Developments  

Science Conference Proceedings (OSTI)

The proliferation of solar projects throughout the world is accelerating the pace of technical and economic change in the sector. In fact, innovation is occurring across all the major solar technologies, including crystalline and thin-film, flat-plate photovoltaics, concentrating photovoltaics, and concentrating solar thermal power (CSP), and is driving greater commercial and utility interest. As the sector matures, benchmarking solar market developments and pioneering project work is becoming increasing...

2010-12-23T23:59:59.000Z

135

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

Nepal from DLR Nepal from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2002 and 2003 for selected sites in Nepal. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GEF GHI hourly data Nepal NREL solar SWERA TILT UNEP Data application/zip icon Download data (zip, 1.2 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

136

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

Ethiopia from DLR Ethiopia from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2001 and 2002 for selected sites in Ethiopia. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GHI hourly data solar SWERA TILT UNEP Data application/zip icon Download data (zip, 2.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

137

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

Kenya from DLR Kenya from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2001 and 2002 for selected sites in Kenya. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GEF GHI hourly data Kenya solar SWERA TILT UNEP Data application/zip icon Download data (zip, 3.9 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

138

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

Sri Lanka sites from DLR Sri Lanka sites from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2002 and 2003 for selected sites in Sri Lanka. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI GHI hourly data solar Sri Lanka SWERA TILT UNEP Data application/zip icon Download data (zip, 368.2 KiB) Quality Metrics Level of Review Some Review Comment

139

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

China sites from DLR China sites from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2002 and 2003 for selected sites in China. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords China DLR DNI GEF GHI solar SWERA UNEP Data application/zip icon Download Data (zip, 953.6 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

140

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

Ghana from DLR Ghana from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2001 and 2002 for selected sites in Ghana. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords DLR DNI Ghana GHI hourly data solar SWERA TILT TMY UNEP Data application/zip icon ghanaDLRtimeseries_103.zip (zip, 2.7 MiB) Quality Metrics Level of Review Some Review Comment

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar: hourly global horizontal (GHI) and direct normal (DNI) data for  

Open Energy Info (EERE)

Bangladesh sites from DLR Bangladesh sites from DLR Dataset Summary Description (Abstract): Hourly time series of GHI and DNI for the years 2000, 2002 and 2003 for selected sites in Bangladesh. The hourly data are stored in ASCII files for each station. Please read the documentation file for additional information. (Purpose): For the selected sites, the hourly time series can be used for the simulation of Photovoltaic (PV)-systems or Concentrating Solar Power (CSP)-systems. Source DLR - Deutsches Zentrum für Luft- und Raumfahrt Date Released October 31st, 2004 (10 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords Bangladesh DLR DNI GHI hourly data solar SWERA UNEP Data application/zip icon Download Data (zip, 1.2 MiB) Quality Metrics Level of Review Some Review Comment

142

Solar Water Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heater Basics Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel called a flat plate collector is connected to a tank called a solar storage/backup water heater by two pipes. One of these pipes runs through a cylindrical pump into the bottom of the tank, where it becomes a coil called a double-wall heat exchanger. This coil runs up through the tank and out again to the flat plate collector. Antifreeze fluid runs only through this collector loop. Two pipes run out the top of the water heater tank; one is a cold water supply into the tank, and the other sends hot water to the house. Solar water heaters use the sun's heat to provide hot water for a home or

143

Heterojunction solar cells  

DOE Green Energy (OSTI)

A qualitative description of semiconductor/semiconductor heterojunction solar cells is given. The two groups of heterojunctions of greatest economic potential, very highly efficient cells for concentrator applications and moderately efficient thin film cells for flat plates, are described with examples. These examples illustrate the role of heterojunctions in surface passivation, monolithic multijunction devices, devices with semiconductors of only one conductivity type, and low-temperature fabrication techniques.

Wagner, S.

1978-01-01T23:59:59.000Z

144

Performance comparison between air and liquid residential solar heating systems  

SciTech Connect

Comparisons of system performance for the flat plate liquid-heating system in CSU Solar House I, the evacuated-tube collector system in Solar House I, and the flat plate air-heating system in CSU Solar House II are described for selected months of the 1976 and 1977 heating seasons. Only space and domestic water heating data are compared. The flat plate air- and liquid-heating collectors operating with complete heating systems have nearly equal efficiencies when based upon solar flux while the collector fluids are flowing, but approximately 40% more energy is collected during a heating season with the air-heating system because the air system operates over a longer period of the day. On the basis of short-term data, the evacuated tube collector array on Solar House I is about 27% more efficient than the flat plate air-heating collector array on Solar House II based on gross roof area occupied by the collectors and manifolds.

Karaki, S.; Duff, W.S.; Loef, G.O.G.

1978-01-01T23:59:59.000Z

145

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network (OSTI)

is unglazed col- lectors, mainly serving swimming pools. The remaining 75% comprises flat-plate and evacuated-tube) Photovoltaic Solar Thermal Wind Power #12;Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther

146

Solar collectors, energy storage, and materials  

SciTech Connect

This volume was prepared as an extended, annotated bibliography in the solar thermal energy collection field, documenting the state-of-the-art in the late 1980s. It covers collectors of solar thermal energy, including salt gradient solar ponds, flat plate collectors, compound parabolic concentrators, and other stationary and tracking collection systems. Collectors that are used for building applications are emphasized since power and industrial applications are considered in other volumes.

de Winter, F. (ed.) (Altas Corp., Santa Cruz, CA (USA))

1990-01-01T23:59:59.000Z

147

An investigation of wind loads on solar collectors. Final report  

SciTech Connect

A wind-tunnel study of a series of model solar-collector installations (flat-plate collectors) immersed in a thick turbulent shear layer was undertaken in order to determine design wind loads on such installations. Wind tunnel measurements were made of the mean and fluctuating pressures on a model of a single flat-plate collector which was a component of different multi-panel installations. The pressures were spatially integrated over the top and bottom surface of the single collector separately.

Tieleman, H.W.; Akins, R.E.; Sparks, P.R.

1980-01-01T23:59:59.000Z

148

Economic analysis of a candidate 50 cents/Wpk flat-plate photovoltaic manufacturing technology. Low-Cost Solar Array Project 5101-94  

SciTech Connect

The SAMICS methodology was used to analyze the first candidate manufacturing sequence that could meet the LSA Projects's 1986 price goal. That goal represents a reduction in photovoltaic prices by a factor of a hundred over a 10-year period, from approximately 50 $/Wpk in 1975 to 50 cents/Wpk in 1986. The results of analysis which has occurred since the original presentation of the 5 cents/Wpk candidate factory at the 10th LSA Project Integration Meeting are described. Briefly, if a number of events occur, such as a high cell efficiency (14% for this technology), vertical industry integration, long periods of amortizing the initial capital investment, and full utilization of a large plant, then a price of 39.9 cents/Wpk is possible. Non-optimal circumstances will increase this required price, and several of these circumstances are addressed.

Aster, R.W.

1978-12-01T23:59:59.000Z

149

Horizontal Plate Plate  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizontal Plate Plate Horizontal Plate Plate Metadata also available as Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: Ray George Publication_Date: Unknown Title: Horizontal Plate Plate Geospatial_Data_Presentation_Form: vector digital data Online_Linkage: Description: Abstract: Monthly and annual average solar resource potential for the lower 48 states Purpose: Provide information on the solar resource potential for the lower 48

150

Forecasting of thermal energy storage performance of Phase Change Material in a solar collector using soft computing techniques  

Science Conference Proceedings (OSTI)

The performance of a solar collector system using sodium carbonate decahydrate (Na"2CO"3.10H"2O) as Phase Change Material (PCM) was experimentally investigated during March and collector efficiency was compared with those of convectional system including ... Keywords: Flat plate solar collector, PCM, Soft computing

Yasin Varol; Ahmet Koca; Hakan F. Oztop; Engin Avci

2010-04-01T23:59:59.000Z

151

Solar Energy Task Force Report Technical Guidelines  

NLE Websites -- All DOE Office Websites (Extended Search)

swimming pool type, a single-glazed nonselective flat plate, a double-glazed selective flat plate, an evacuated tube module, and a concentrating parabolic tracker. Air systems...

152

Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies  

DOE Green Energy (OSTI)

Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

Kutscher, C.F. (ed.)

1981-03-01T23:59:59.000Z

153

An investigation of wind loads on solar collectors. Appendix I - data listing for top and bottom of collector. Final report  

SciTech Connect

A wind-tunnel study of a series of model solar-collector installations (flat-plate collectors) immersed in a thick turbulent shear layout was undertaken in order to determine design wind loads on such installations. Wind tunnel measurements were made of the mean and fluctuating pressures on a model of a single flat-plate collector which was a component of different multi-panel installations. The pressures were spatially integrated over the top and bottom surface of the single collector separately.

Tieleman, H.W.; Akins, R.E.; Sparks, P.

1980-01-01T23:59:59.000Z

154

Solar Photovoltaic System Operations and Maintenance  

Science Conference Proceedings (OSTI)

Grid-connected flat plate solar photovoltaic (PV) systems are being deployed at an accelerating rate worldwide. Representing a growing absolute share of both independent power producer (IPP) and utility generation portfolios, these PV assets are now commanding a greater level of attention to ensure their optimal availability and performance. Contrary to popular belief, PV power plants are not maintenance free; in fact, they require a steady diet of scheduled preventive maintenance and unscheduled service...

2011-12-22T23:59:59.000Z

155

Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report  

DOE Green Energy (OSTI)

Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

Not Available

1981-03-01T23:59:59.000Z

156

Open cycle liquid desiccant dehumidifier and hybrid solar/electric absorption refrigeration system. Annual report, January 1993--December 1993. Calendar year 1993  

DOE Green Energy (OSTI)

This annual report presents work performed during calendar year 1993 by the Florida Solar Energy Center under contract to the US Department of Energy. Two distinctively different solar powered indoor climate control systems were analyzed: the open cycle liquid desiccant dehumidifier, and an improved efficiency absorption system which may be fired by flat plate solar collectors. Both tasks represent new directions relative to prior FSEC research in Solar Cooling and Dehumidification.

Nimmo, B.G.; Thornbloom, M.D.

1995-04-01T23:59:59.000Z

157

Thermal performance of space-cooling solar-energy systems in the National Solar Data Network  

DOE Green Energy (OSTI)

Results derived from analysis of data obtained from monitoring the operation of four solar energy cooling installations in the National Solar Data Network are presented. It is shown that chiller coefficients of performance (COP) on the order of 0.65 can be easily obtained with existing technology, provided the designer adequately matches the solar energy system to the absorption chiller. It is also shown that flat-plate, concentrating, and evacuated tube collectors may each be used successfully to operate absorption chillers in space cooling systems. The results show that appreciation for the systems engineering aspects of solar energy is extremely important to the development of a viable industry.

Bartlett, J.C.

1979-07-01T23:59:59.000Z

158

Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth's surface for cloudless atmospheres  

DOE Green Energy (OSTI)

A new, simple model for calculating clear-sky direct and diffuse spectral irradiance on horizontal and tilted surfaces is presented. The model is based on previously reported simple algorithms and on comparisons with rigorous radiative transfer calculations and limited outdoor measurements. Equations for direct normal irradiance are outlined; and include: Raleigh scattering; aerosol scattering and absorption; water vapor absorption; and ozone and uniformly mixed gas absorption. Inputs to the model include solar zenith angle, collector tilt angle, atmospheric turbidity, amount of ozone and precipitable water vapor, surface pressure, and ground albedo. The model calculates terrestrial spectra from 0.3 to 4.0 ..mu..m with approximately 10 nm resolution. A major goal of this work is to provide researchers with the capability to calculate spectral irradiance for different atmospheric conditions and different collector geometries using microcomputers. A listing of the computer program is provided.

Bird, R.; Riordan, C.

1984-12-01T23:59:59.000Z

159

Comparative performance of two types of evacuated tubular solar collectors in a residential heating and cooling system. Final report, October 1, 1977-September 30, 1978. [CSU Solar House 1  

DOE Green Energy (OSTI)

Solar House I, the first residential solar system test facility at the Colorado State University, is described. Provision was made for the removal and replacement of the various subsystems so that the facility could be utilized to evaluate other residential size solar components and systems. Two evacuated tube collectors and one flat plate collector were evaluated. The operations history, system performance, performance assessment, and comparison with model are included. (MHR)

Loef, G.O.G.; Duff, W.S.

1979-09-01T23:59:59.000Z

160

Active space heating and hot water supply with solar energy  

DOE Green Energy (OSTI)

Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

Karaki, S.; Loef, G. O.G.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL GIS Data: Hawaii Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Low Resolution Concentrating Solar Power Resource Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Hawaii. Purpose: Provide information on the solar resource potential for Hawaii. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximately 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

162

NREL GIS Data: Alaska Low Resolution Concentrating Solar Power Resource |  

Open Energy Info (EERE)

Alaska Low Resolution Concentrating Solar Power Resource Alaska Low Resolution Concentrating Solar Power Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain. Units are in watt hours.

163

Ingham County Geriatric Medical Care Facility solar water-heating system refurbishments. Final technical report  

DOE Green Energy (OSTI)

The tasks of the refurbishment of a damaged solar water heating system are outlined. The system is a closed loop, 50% glycol antifreeze system consisting of 14 rows of 6 series manifolds each containing 6 solar collectors connected in parallel for a total of 504 modules. The Wyle Laboratories' test report for the Revere Model 132 flat plate collector is appended. A collector test plan and photographs are also appended. Reference CAPE-2834. (LS)

Not Available

1983-07-01T23:59:59.000Z

164

Solar water heaters | Open Energy Information  

Open Energy Info (EERE)

heaters heaters Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of Solar Water Heating technology.)[1] Solar Water Heater One of the most cost-effective ways to include renewable technologies into a building is by incorporating solar hot water. A typical residential solar water-heating system reduces the need for conventional water heating by about two-thirds. It minimizes the expense of electricity or fossil fuel to heat the water and reduces the associated environmental impacts. Solar Water Heating for Buildings Most solar water-heating systems for buildings have two main parts: (1) a solar collector and (2) a storage tank. The most common collector used in solar hot water systems is the flat-plate collector. Solar water heaters use the sun to heat either water

165

Tracking system for solar collectors  

DOE Patents (OSTI)

A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

Butler, B.

1980-10-01T23:59:59.000Z

166

Tracking system for solar collectors  

DOE Patents (OSTI)

A tracking system is provided for pivotally mounted spaced-apart solar collectors. A pair of cables is connected to spaced-apart portions of each collector, and a driver displaces the cables, thereby causing the collectors to pivot about their mounting, so as to assume the desired orientation. The collectors may be of the cylindrical type as well as the flat-plate type. Rigid spar-like linkages may be substituted for the cables. Releasable attachments of the cables to the collectors is also described, as is a fine tuning mechanism for precisely aligning each individual collector.

Butler, Barry L. (Golden, CO)

1984-01-01T23:59:59.000Z

167

Evaluation of high performance evacuated tubular collectors in a residential heating and cooling system: Colorado State University Solar House I. Report for October 1, 1976--September 30, 1977  

DOE Green Energy (OSTI)

CSU Solar House I is configured with a prototype Corning evacuated tubular collector and a new Arkla lithium bromide water chiller designed for solar operation. Data have been collected for this configuration since January 1977. Prior to that time and since mid-1974, Solar House I has operated with a flat-plate collector and a previous Arkla LiBr air conditioner modified to operate in the lower solar temperature ranges. Project objectives were to develop an operating and control system for the new configuration and to compare the performance of the new residential solar heating, cooling, and hot water system with performance of the previous system. Many problems were encountered in the evolution of the operating and control systems due to the different operating characteristics of evacuated tubular collectors, such as their rapid thermal response and the possibility of much higher temperatures as compared to a flat-plate collector.

Duff, W.S.; Conway, T.M.; Loef, G.O.G.; Meredith, D.B.; Pratt, R.B.

1978-03-01T23:59:59.000Z

168

Contoured insulation window for evacuated solar collector  

SciTech Connect

An insulating contoured window is provided for use with an enclosed chamber such as an evacuated flat plate solar heat collector with the contoured solar window being of minimum thickness and supported solely about its peripheral edge portions. The window is contoured in both its longitudinal and transverse directions, such that in its longitudinal direction the window is composed of a plurality of sinusoidal corrugations whereas in its transverse direction the peaks of such corrugations are contoured in the form of paraboloids so that the structure may withstand the forces generated thereon by the atmosphere.

Coppola, F. T.; Lentz, W. P.; Vandewoestine, R. V.

1980-02-05T23:59:59.000Z

169

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is usually at an angle that is less than optimal. Therefore, fixed arrays collect less energy per unit area of array than tracking arrays. However, this drawback must be balanced...

170

PROCEEDINGS OF THE SOLAR 99 CONFERENCE  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLAR 99 CONFERENCE SOLAR 99 CONFERENCE Including Proceedings of ASES Annual Conference Proceedings of 24 th National Passive Solar Conference Portland, Maine June 12 -16, 1999 Editors: R. Campbell-Howe B. Wilkins-Crowder American Solar Energy Society American Institute of Architects Committee on the Environment Printed on recycled paper HIGH-RESOLUTION MAPS OF SOLAR COLLECTOR PERFORMANCE USING A CLIMATOLOGICAL SOLAR RADIATION MODEL Raymond L. George National Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 e-mail: ray george@nrel.gov ABSTRACT This paper will present a new methodology for producing estimates of the monthly and annual average performance of different types of flat-plate and concentrating solar collectors. The estimates are made on a uniform spatial grid

171

NREL: Energy Analysis - Solar Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Technology Analysis Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate PV system configurations and applications. R&D goals, which are supported by solar technology analysis, include: Investigating the steps needed to improve the impact of PV technologies in the marketplace through technical R&D, market analyses, and value and policy analyses

172

Solar hot water system installed at Anderson, South Carolina  

DOE Green Energy (OSTI)

The solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina is described. The building is a low-rise two-story 114-room motel. The solar components were partly funded by the Department of Energy. The solar system was designed to provide 40% of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

Not Available

1978-12-01T23:59:59.000Z

173

Development of surfaces optically suitable for flat solar panels. Final report  

DOE Green Energy (OSTI)

This final report contains three principal items. The first describes a simple and novel reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces. A phase locked detection system for the reflectometer is also described. The second item is a selective coating on aluminium potentially useful for flat-plate solar collector applications. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminium alloy with high copper content. Because of this one step fabrication process, fabrication costs are expected to be small. Process parameters, however, need further definition. The third item contains conclusions gleaned from the literature as to the required optical properties of flat plate solar collectors.

Not Available

1979-08-01T23:59:59.000Z

174

global horizontal irradiance | OpenEI  

Open Energy Info (EERE)

horizontal irradiance horizontal irradiance Dataset Summary Description (Abstract): Global Horizontal IrradianceNASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Jan 2008)22-year Monthly & Annual Average (July 1983 - June 2005) Parameter: Insolation Incident On A Horizontal Surface (kWh/m^2/day) Internet: http://eosweb.larc.nasa.gov/sse/ Note 1: SSE Methodology & Accuracy sections online Note 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords GHI GIS global horizontal irradiance NASA solar

175

NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278078 Varnish cache server NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

176

Mid-South solar total energy: institutional analysis. Final report, May 1, 1978-December 31, 1979  

DOE Green Energy (OSTI)

A comprehensive survey was undertaken to determine the current usage of energy by the Mississippi State University, considering electricity and fuel separately. A variety of individual components likely to be employed in total energy systems are then considered in detail, including: solar assisted space heating system, space cooling system design, solar electric system, flat plate solar collector system, central solar receiver, and geothermal heat pump system. Also, algorithms have been developed for the approximate prediction of building heating and cooling loads based on gross parameters such as floor area, type of wall construction, etc. System considerations and evaluation are then presented. (LEW)

Powe, R.E.; Carley, C.T.; Forbes, R.E.; Johnson, L.R.; Stiffler, A.K.; Hodge, B.K.; Bouchillon, C.W.

1979-01-01T23:59:59.000Z

177

Summerwood Associates, House M, Old Saybrook, Connecticut: Solar energy system performance evaluation, June 1980-May 1981  

DOE Green Energy (OSTI)

Summerwood Associates, House M is a single-family rowhouse residence in Connecticut. The active solar energy system is designed to supply 78% of the space heating and 100% of the hot water loads. It is equipped with 378 square feet of flat plate collectors, a 600-gallon concrete storage tank, and for auxiliary heating, a heat pump and electrical resistance heater. The system and subsystem performance are measured, including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Also given are the system operating energy, energy savings, and weather conditions. (LEW)

Raymond, M.

1981-01-01T23:59:59.000Z

178

Enhanced Oil Recovery by Horizontal Waterflooding  

DOE Green Energy (OSTI)

Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The U.S. Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities. At Lawrence Berkeley Laboratory (LBL), projects are in progress that span a wide range of activities, with the emphasis on research to extend the scientific basis for solar energy applications, and on preliminary development of new approaches to solar energy conversion. To assess various solar applications, it is important to quantify the solar resource. Special instruments have been developed and are now in use to measure both direct solar radiation and circum-solar radiation, i.e., the radiation from near the sun resulting from the scattering of sunlight by small particles in the atmosphere. These measurements serve to predict the performance of solar designs that use focusing collectors employing mirrors or lenses to concentrate the sunlight. Efforts have continued at a low level to assist DOE in demonstrating existing solar technology by providing the San Francisco Operations Office (SAN) with technical support for its management of commercial-building solar demonstration projects. Also, a hot water and space-heating system has been installed on an LBL building as part of the DOE facilities Solar Demonstration Program. LBL continues to provide support for the DOE Appropriate Energy Technology grants program. Evaluations are made of the program's effectiveness by, for example, estimating the resulting potential energy savings. LBL also documents innovative features and improvements in economic feasibility as compared to existing conventional systems or applications. In the near future, we expect that LBL research will have a substantial impact in the areas of solar heating and cooling. Conventional and new types of high-performance absorption air conditioners are being developed that are air-cooled and suitable for use with flat plate or higher-temperature collectors. Operation of the controls test facility and computer modeling of collector loop and building load dynamics are yielding quantitative evaluations of the performance of different control strategies for active solar-heating systems. Research is continuing on ''passive'' approaches to solar heating and cooling, where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed and incorporated into building energy analysis computer programs which are in the public domain. The resulting passive analysis capabilities are used in systems studies leading to design tools and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat-storage material would be cooled by radiation to the night sky, and would then provide ''coolness'' to the building. Laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Active Heating and Cooling Division and the Passive and Hybrid Division of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low-grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the ''shape-memory'' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources, such as solar-heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central

Scott Robinowitz; Dwight Dauben; June Schmeling

2005-09-05T23:59:59.000Z

179

Solar Photovoltaics: Status, Costs, and Trends  

Science Conference Proceedings (OSTI)

This White Paper addresses the history, status, and trends of flat-plate solar photovoltaic power technologies in both crystalline silicon and thin-film forms. Perspectives are provided on the cost and performance, as well as, the materials used for producing PV modules. The major milestones and trends in PV power system development are described, looking back to the 1970's, and forward to the next 30 years. Current incentives and policies are also discussed with focus on utility engagement in PV power. ...

2009-12-31T23:59:59.000Z

180

Solar collector  

DOE Patents (OSTI)

The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solar heating and hot water system installed at Listerhill, Alabama  

DOE Green Energy (OSTI)

The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

Not Available

1978-12-01T23:59:59.000Z

182

Solar collector related research and development in the United States for heating and cooling of buildings  

DOE Green Energy (OSTI)

Some of the research funded by the Research and Development Branch of the Heating and Cooling Division of Solar Energy of the United States Energy Research and Development Administration is described. Specifically, collector and collector materials research is reported on during FY-1977. The R and D Branch has funded research in open and closed cycle liquid heating flat plate collectors, air heating flat plate collectors, heat pipe collectors, concentrating collectors, collector heat transfer studies, honeycomb glazings, evacuated tube collectors, ponds both salt gradient and viscosity stabilized, materials exposure testing, collector testing standards, absorber surface coatings, and corrosion studies. A short description of the nature of the research is provided as well as a presentation of the significant results.

Collier, R.K.

1978-01-01T23:59:59.000Z

183

Heat pipe dynamics. Final report, April 30, 1981. [Uses of heat pipe, especially in solar collector  

DOE Green Energy (OSTI)

A heat-pipe flat plate solar collector is constructed like a typical flat plate collector with the exception that individual heat pipes are attached to the collector surface to transfer collected heat via a phase change from collector surface into an attached jacket containing a phase change material. The efficiency of such a collector was measured roughly. Also briefly described are: a heat-pipe heat exchanger, heat-pipe heat exchanger freeze proofing, heat-pipe attic ventilation, transfer of light bulb heat via a heat pipe to heat water, heat recovery via heat pipe, cooling of oil in engines and transmissions via heat pipe, a tracking reflector, automatic sun tracker, single-stroke vacuum pump for heat-pipe manufacture, and heat pipe heat transfer from rock bed. (LEW)

Norman, R.M. Sr.

1981-01-01T23:59:59.000Z

184

Solar energy retrofit for Clarksville Middle School, Clarksville, Indiana. Final report  

DOE Green Energy (OSTI)

This final report describes in detail the solar energy retrofit heating system installed to provide heating for two gymnasiums at the Clarksville Middle School located in Clarksville, Indiana. The solar components were partly funded by the Department of Energy, and the technical management was done by the Marshall Space Flight Center. The system type is hot water using existing chilled water piping and chilled water coils in an air handler system. Flat-plate, single-glazed selectively coated solar collectors were installed on the roof of each gymnasium. Total collector area covers 6,520 square feet. The liquid is stored in a 10,000 gallon steel tank installed below grade.

Not Available

1979-08-01T23:59:59.000Z

185

Desiccant solar air conditioning in tropical climates: II-field testing in Guadeloupe  

Science Conference Proceedings (OSTI)

This paper presents the results of the experimental investigation of a solar desiccant air conditioning device exposed to the sun in Guadeloupe to test that adaptability of a silicagel compact bed, the most simple technology, in a tropical climate. It has been shown that it is possible to make use of solar flat plate collectors with a balancing water tank, to produce heat for the regeneration of a solid desiccant as silicagel, with solar energy. Second, the compact bed system proposed gives the foreseen cooling power, but considerable losses appear, particularly in the sorption process, which is not close enough to the reversible adiabatic one.

Dupont, M.; Celestine, B.; Beghin, B. (Solar Energy Lab., Pointe-a-Pitre (Guadeloupe))

1994-06-01T23:59:59.000Z

186

global horizontal | OpenEI  

Open Energy Info (EERE)

87 87 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278787 Varnish cache server global horizontal Dataset Summary Description (Abstract): Documentation of the satellite-based high resolution solar resource assessment for Ghana provided by DLR. The high resolution solar data (10kmx10km) provide country maps of the annual and monthly sums of hourly global horizontal and direct normal irradiance (GHI and DNI) for the year 2000, 2001 and 2002. Additionally, for selected sites hourly values of GHI and DNI are provided.The Documentation gives an overview about the used input data and used methodology, shows example maps and describes a comparison with ground data (if provided by the country)

187

Solar energy concentrator design and operation. 1970-July 1980 (citations from the Engineering Index data base). Report for 1970-July 1980. [220 citations  

SciTech Connect

Worldwide research on the design and operation of various types of solar energy concentrators is discussed. Topic areas cover thermal and optical performance of Fresnel lenses, compound parabolic concentrators, fixed mirror concentrators, and planar reflector enhancement of flat plate collector systems. A few abstracts deal with V-trough concentrators and methods to calculate performance of concentrators. A separate Published Search on heliostat systems is available. (This updated bibliography contains 220 citations, 53 of which are new entries to the previous edition.)

Hundemann, A.S.

1980-09-01T23:59:59.000Z

188

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

189

Low cost solar energy collection for cooling applications  

DOE Green Energy (OSTI)

Solar energy collector designs utilizing thinfilm polymeric materials in the absorber and glazing are now under development at Brookhaven National Laboratory. The objective is dramatic cost reduction consistent with acceptable performance and life. Originally intended for low temperature applications (< 100/sup 0/F), these collectors now appear capable of high temperature applications including desiccant and absorption cooling (150/sup 0/ to 200/sup 0/ F). The performance and economics of the thin-film collector are compared with those of conventional flat-plate designs in cooling applications.

Wilhelm, W.G.

1981-06-01T23:59:59.000Z

190

Solar energy system performance evaluation, July 1979 through June 1980  

SciTech Connect

The Loudoun County site is the Charles S. Monroe Vocational Technical School in Leesburg, Virginia. The active solar energy system is designed to supply 26% of the domestic hot water demand. It is equipped with 1225 square feet of double glazed flat-plate collectors manufactured by Southwest Enertech, a 2056 gallon liquid storage tank located in the school's mechanical room, and a backup electric immersion heater, 2 stage, 20 kW per stage. The system performance for the period July 1979 through June 1980 is presented, and the meteorological conditions are included. (WHK)

Missal, D.

1980-01-01T23:59:59.000Z

191

High temperature solar thermal technology: The North Africa Market  

DOE Green Energy (OSTI)

High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

Not Available

1990-12-01T23:59:59.000Z

192

Application of solar thermal energy to buildings and industry  

DOE Green Energy (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

193

Solar energy system performance evaluation. Seasonal report for SEMCO, Loxahatchee, Florida  

DOE Green Energy (OSTI)

The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The objective of the analysis is to report the long-term field performance of the installed system and to make technical contributions to the definition of techniques and requirements for solar energy system design. The solar energy system was designed to supply domestic hot water for a family of four, single-family residence. The SEMCO System 80 consists of two liquid flat plate collectors, single tank, pump, controls, and transport lines.

Not Available

1980-01-01T23:59:59.000Z

194

Solar energy system performance evaluation. Seasonal report for SEMCO, Macon, Georgia  

DOE Green Energy (OSTI)

The analysis used is based on instrumented system data monitored and collected for at least one full season of operation. The objective of the analysis is to report the long-term field performance of the installed system and to make technical contributions to the definition of techniques and requirements for solar energy system design. The solar energy system was designed to supply domestic hot water for a family of four, single-family residence. The SEMCO System 80 consists of liquid (silicone) flat plate collectors, single tank, pump, controls and transport lines.

Not Available

1980-01-01T23:59:59.000Z

195

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

SciTech Connect

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

196

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

DOE Green Energy (OSTI)

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

197

Solar energy system design for a lobster aquaculture facility  

DOE Green Energy (OSTI)

In aquaculture, as in most manufacturing processes, the operating cost is greatly dependent upon the cost of energy. The objectives were to: (a) analyze the power requirements for a lobster aquaculture plant, and (b) to evaluate the use of solar energy as a cost reduction measure in plant operation. A flat plate collector system capable of supplying heat alone was compared with a total energy system in which both electrical power and heat were supplied. The flat plate collector was not cost effective because when heat was needed in December, the least amount of heat was available from solar radiation. Therefore, the collector area and cost were prohibitive. However, the total energy system was cost effective when the capital investment was amortized over ten or more years. The optimum solar power plant was designed to provide 100% of the average yearly power demands, or 60% of the December power requirement. This plant would consist of 60,000 square feet of mirror surface (3.5 acres of land for 40% packing density) which would concentrate 1500 to 2000 suns on a receiver mounted on an 85 foot tower. In the tower would be the three storage stoves which would contain the heat required to operate a 343 KWe Brayton gas turbine engine and alternator for 27 hours. Equipment to generate 3 million kw-hr annually will cost an estimated $1.3 million.

Not Available

1977-09-30T23:59:59.000Z

198

Yearly average performance of the principal solar collector types  

DOE Green Energy (OSTI)

The results of hour-by-hour simulations for 26 meteorological stations are used to derive universal correlations for the yearly total energy that can be delivered by the principal solar collector types: flat plate, evacuated tubes, CPC, single- and dual-axis tracking collectors, and central receiver. The correlations are first- and second-order polynomials in yearly average insolation, latitude, and threshold (= heat loss/optical efficiency). With these correlations, the yearly collectible energy can be found by multiplying the coordinates of a single graph by the collector parameters, which reproduces the results of hour-by-hour simulations with an accuracy (rms error) of 2% for flat plates and 2% to 4% for concentrators. This method can be applied to collectors that operate year-around in such a way that no collected energy is discarded, including photovoltaic systems, solar-augmented industrial process heat systems, and solar thermal power systems. The method is also recommended for rating collectors of different type or manufacturer by yearly average performance, evaluating the effects of collector degradation, the benefits of collector cleaning, and the gains from collector improvements (due to enhanced optical efficiency or decreased heat loss per absorber surface). For most of these applications, the method is accurate enough to replace a system simulation.

Rabl, A.

1981-01-01T23:59:59.000Z

199

Lawrence Berkeley Laboratory, Berkeley, California solar energy system performance evaluation, July 1980-June 1981  

SciTech Connect

The Lawrence Berkeley Laboratory site is an office building in California with an active solar energy system designed to supply from 23 to 33% of the space heating load and part of the hot water load. The solar heating system is equipped with 1428 square feet of flat-plate collectors, a 2000-gallon water storage tank, and two gas-fired boilers to supply auxiliary heat for both space heating and domestic hot water. Poor performance is reported, with the solar fraction being only 4%. Also given are the solar savings ratio, conventional fuel savings, system performance factor, and the coefficient of performance. The performance data are given for the collector, storage, solar water heating and solar space heating subsystems as well as the total system. Typical system operation and solar energy utilization are briefly described. The system design, performance evaluation techniques, weather data, and sensor technology are presented. (LEW)

Wetzel, P.E.

1981-01-01T23:59:59.000Z

200

Solar supplement to laundry drying. Annual progress report, October 31, 1977--October 31, 1978  

SciTech Connect

A project is reported which utilizes solar energy to supplement the heating energy requirements of a large commercial type laundry dryer. Air is solar heated in flat-plate collectors and is introduced into the air intake of a dryer. The air is drawn directly from the outdoor ambient air. This system is designed for direct supply of solar heated air to the dryer with no solar heat storage. Solar heat storage could not be justified economically due to the close match in schedule between solar availability and laundry operation. The factors associated with selection of a hospital laundry facility for the project site are discussed. The design of the system for solar laundry drying is presented.

Smith, C.C.

1978-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High accuracy diffuse horizontal irradiance measurements without a shadowband  

DOE Green Energy (OSTI)

The standard method for measuring diffuse horizontal irradiance uses a fixed shadowband to block direct solar radiation. This method requires a correction for the excess skylight blocked by the band, and this correction varies with sky conditions. Alternately, diffuse horizontal irradiance may be calculated from total horizontal and direct normal irradiance. This method is in error because of angular (cosine) response of the total horizontal pyranometer to direct beam irradiance. This paper describes an improved calculation of diffuse horizontal irradiance from total horizontal and direct normal irradiance using a predetermination of the angular response of the total horizontal pyranometer. We compare these diffuse horizontal irradiance calculations with measurements made with a shading-disk pyranometer that shields direct irradiance using a tracking disk. Results indicate significant improvement in most cases. Remaining disagreement most likely arises from undetected tracking errors and instrument leveling.

Schlemmer, J.A; Michalsky, J.J.

1995-12-31T23:59:59.000Z

202

Desiccant cooling using unglazed transpired solar collectors  

DOE Green Energy (OSTI)

The use of unglazed solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are lower in cost than conventional glazed flat-plate collectors. Using computer models, the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors was obtained. We found that the thermal performance of the unglazed system was lower than the thermal performance of the glazed system because the unglazed system could not take advantage of the heat of adsorption released during the dehumidification process. For a 3-ton cooling system, although the area required for the unglazed collector was 69% more than that required for the glazed collector, the cost of the unglazed collector array was 44% less than the cost of the glazed collector array. The simple payback period of the unglazed system was half of the payback period of the glazed collector when compared to an equivalent gas-fired system. Although the use of unglazed transpired collectors makes economic sense, some practical considerations may limit their use in desiccant regeneration. 8 refs.

Pesaran, A.A. [National Renewable Energy Lab., Golden, CO (United States); Wipke, K. [Stanford Univ., CA (United States)

1992-05-01T23:59:59.000Z

203

Survey of solar thermal test facilities  

DOE Green Energy (OSTI)

The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

Masterson, K.

1979-08-01T23:59:59.000Z

204

On second-law efficiency of solar collectors  

SciTech Connect

Traditionally, the performance of solar collectors has been examined from the standpoint of energy-balance approach (Hahne, 1985; Francy et al., 1985; Lund, 1985; Satyamurty, 1985; Proctor, 1984a; Proctor; 1984b; Proctor, 1984c). It is important to note that this approach gives a very poor indication of how well a particular energy resource is being utilized by a given system to accomplish a specific objective. For example, it is difficult to examine the performance of solar thermal collectors versus solar-photovoltaic panels, strictly based on the first law of thermodynamics. A photovoltaic panel having ten percent first-law efficiency may be better than a solar collector converting 50 percent of useful energy by raising the water temperature from 30 to 50 C. Thus, it has been necessary to resort to the second law of thermodynamics for evaluation of solar systems, particularly collection devices. The second-law efficiency addresses the quality of energy. The quality of energy may be defined as its available portion; that portion which may be used for producing shaft work. It is important to note that the energy be conserved, but the manner in which energy is used must be examined. To use high quality energy for low-quality energy tasks is wasteful. This type of indication can only be examined from the second-law point of view. In this paper, measurements obtained from an experimental solar collector test facility are presented. Analysis of the performance of two flat-plate thermal solar collectors and one photovoltaic panel are analyzed based on both the first and second law of thermodynamics. The measurements presented, indicate very low second-law efficiency (maximum of 17 percent for photovoltaic panel and 11 percent for solar thermal flat-plate collectors), but are merely used as a vehicle for discussion.

Said, S.A.M.; Zubair, S.M. (King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia))

1993-02-01T23:59:59.000Z

205

Horizontal Plate Plate  

NLE Websites -- All DOE Office Websites (Extended Search)

potential for the lower 48 states Purpose: Provide information on the solar resource potential for the lower 48 states. The insolation values represent the average solar energy...

206

SOLCOST-PHOTOVOLTAIC solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PHOTOVOLTAIC solar energy design program is a public domain interactive computer design tool intended for use by non-solar specialists to predict the long term performance for photovoltaic systems. A life cycle cost analysis is included in the program along with the ERDA-EPRI standard economic analysis which predicts levelized busbar energy costs for the photovoltaic system assuming ownership by an electric utility. SOLCOST-PV currently can evaluate flat plate arrays and concentrating arrays which use Fresnel lenses and passive cooling. The methodology could easily be extended to include all the known types of concentrators, however the scope of the version 1.0 activity was limited to only the flat plate and the passive Fresnel concentrators. An overview of the SOLCOST-PV capabilities and methodology is given. A detailed guide to the SOLCOST-PV input parameters is included, and examples showing typical interactive execution sessions and the resulting SOLCOST-PV output are presented. Appendices A and B provide additional information on the SOLCOST-PV analysis.

Not Available

1980-10-01T23:59:59.000Z

207

Use of unglazed transpired solar collectors for desiccant cooling  

SciTech Connect

The use of unglazed transpired solar collectors for desiccant regeneration in a solid desiccant cooling cycle was investigated because these collectors are less expensive than conventional glazed flat-plate collectors. Using computer models, we studied the performance of a desiccant cooling ventilation cycle integrated with either unglazed transpired collectors or conventional glazed flat-plate collectors. We found that the thermal coefficient of performance of the cooling system with unglazed collectors was lower than that of the cooling system with glazed collectors because the former system did not use the heat of adsorption released during the dehumidification process. Although the area required for the unglazed collector array was 70% more than that required for the glazed collector array in a 10.56 kW (3 ton) solar cooling system, the cost of the unglazed array was 45% less than the cost of the glazed array. The simple payback period of the unglazed collector was half of the payback period of the glazed collector when replacing an equivalent gas-fired air heater. Although the use of unglazed transpired collectors seems to make economic sense relative to use of glazed conventional collectors, some practical considerations may limit their use for desiccant regeneration.

Pesaran, A.A.; Wipke, K.B. (National Renewable Energy Lab., Golden, CO (United States))

1994-05-01T23:59:59.000Z

208

Thermal performance evaluation of the solargenics solar collector at outdoor conditions  

DOE Green Energy (OSTI)

Information contained within this report presents test procedures used during the performance of an evaluation program. The test program was conducted to obtain the following performance data and information on the solar collector. (1) Thermal performance data under outdoor conditions, (2) Structural behavior of collector under static conditions, and (3) Effects of long term exposure to material weathering elements. The Solargenics is a liquid, single-glazed, flat-plate collector. Approximate dimensions of each collector are 240 inches long, 36 inches wide, and 3.5 inches in depth.

Not Available

1978-12-01T23:59:59.000Z

209

Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania  

DOE Green Energy (OSTI)

The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

Not Available

1980-01-01T23:59:59.000Z

210

Solar energy system performance evaluation: Aratex Services, Fresno, California, December 1979-November 1980  

SciTech Connect

Solar preheated water is supplied to a commercial laundry plant by an active system consisting of 6528 square feet of single glazed flat-plate collectors, 12,500-gallon fiberglass storage tank, auxiliary steam boilers, and a 16,500-gallon water pump with tube-shell heat exchanger for feedwater preheat. The system is designed to provide 20% of the water heating load by solar energy. The solar fraction measured is 18%. Other measures of performance are given, including solar savings ratio, conventional fuel savings, system performance factor, and solar coefficient of performance. The collector, storage, laundry hot water, and heat recovery subsystem performances are also discussed. The laundry's operating energy and weather data are given. (LEW)

Howard, B.D.

1980-01-01T23:59:59.000Z

211

DOE Solar Process Heat Program: FY1991 Solar Process Heat Prefeasibility Studies activity  

DOE Green Energy (OSTI)

During fiscal year (FY) 1991, the US Department of Energy (DOE) Solar Process Heat Program implemented a Solar Process Heat Prefeasibility Studies activity. For Program purposes, a prefeasibility study is an engineering assessment that investigates the technical and economic feasibility of a solar system for a specific application for a specific end-user. The study includes an assessment of institutional issues (e.g., financing, availability of insurance, etc.) that impact the feasibility of the proposed solar project. Solar process heat technology covers solar thermal energy systems (utilizing flat plate or concentrating solar Collectors) for water heating, water preheating, cooling/refrigeration, steam generation, ventilation air heating/preheating, etc. for applications in industry, commerce, and government. The studies are selected for funding through a competitive solicitation. For FY 1991, six projects were selected for funding. As of August 31, 1992, three teams had completed their studies. This paper describes the prefeasibility studies activity, presents the results from the study performed by United Solar Technologies, and summarizes the conclusions from the studies that have been completed to date and their implications for the Solar Process Heat Program.

Hewett, R.

1992-11-01T23:59:59.000Z

212

Nonlinear Horizontal Diffusion for GCMs  

Science Conference Proceedings (OSTI)

The mixing-length-based parameterization of horizontal diffusion, which was originally proposed by Smagorinsky, is revisited. The complete tendencies of horizontal momentum diffusion, the associated frictional heating, and horizontal diffusion of ...

Erich Becker; Ulrike Burkhardt

2007-04-01T23:59:59.000Z

213

ARM - Measurement - Horizontal wind  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsHorizontal wind govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System DISDROMETER : Impact Disdrometer

214

Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode  

E-Print Network (OSTI)

1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

American Society for Testing and Materials. Philadelphia

1992-01-01T23:59:59.000Z

215

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network (OSTI)

J. F. , and Kreith, T. , Solar Heating and Cooling, McGraw-horizontal axis machines. E. Solar Heating and cooling10 ,11Instead of the active solar heating and cooling described

Davidson, M.

2010-01-01T23:59:59.000Z

216

Solar-energy-system performance evaluation: Page Jackson Elementary School, Charles Town, West Virginia, November 1978-March 1979  

DOE Green Energy (OSTI)

The solar energy system reported is designed to provide space heating and cooling for a West Virginia elementary school. It has an array of water-based flat plate collectors freeze protected through a drain-down system, two 10,000-gallon storage tanks, and an absorption chiller. There are an oil-fired boiler and a centrifugal chiller for back-up. The system and its operation are briefly described, and its space heating performance is analyzed using a system energy balance technique. The performance of major subsystems is also presented. (LEW)

Smith, H.T.

1979-01-01T23:59:59.000Z

217

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

In this study, the simulation and the analysis of a solar flat plate collectors combined with a compression heat pump is carried out. The system suggested must ensure the heating of a building without the recourse to an auxiliary energy source in complement of this heating system. The system is used to heat a building using heating floor. The building considered is located in Constantine-East of Algeria (Latitude 36.28 N, Longitude 6.62 E, Altitude 689m). For the calculation, the month of February was chosen, which is considered as the coldest month according to the weather data of Constantine. The performances of this system were compared to the performances of the traditional solar heating system using solar collectors and an auxiliary heating load to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy combined with heat pump improve the thermal performance of the heat pump and the global system. The performances of the heating system combining heat pump and solar collectors are higher than that of solar heating system with solar collectors and storage tank. The heat pump assisted by solar energy can contribute to the conservation of conventional energy and can be competitive with the traditional systems of heating.

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

218

Feasibility evaluation for solar industrial process heat applications  

DOE Green Energy (OSTI)

An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

Stadjuhar, S. A.

1980-01-01T23:59:59.000Z

219

Wind heat transfer coefficient in solar collectors in outdoor conditions  

Science Conference Proceedings (OSTI)

Knowledge of wind heat transfer coefficient, h{sub w}, is required for estimation of upward losses from the outer surface of flat plate solar collectors/solar cookers. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficient by employing unglazed test plate (of size about 0.9 m square) in outdoor conditions. Experiments, for measurement of h{sub w}, have been conducted on rooftop of a building in the Institute campus in summer season for 2 years. The estimated wind heat transfer coefficient has been correlated against wind speed by linear regression and power regression. Experimental values of wind heat transfer coefficient estimated in present work have been compared with studies of other researchers after normalizing for plate length. (author)

Kumar, Suresh; Mullick, S.C. [Centre for Energy Studies, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

2010-06-15T23:59:59.000Z

220

Thermal performance evaluation of the Calmac (liquid) solar collector  

DOE Green Energy (OSTI)

The procedures used and the results obtained during the evaluation test program on the Calmac Manufacturing Company, S.N.1, (Liquid) Solar Collector are presented. The flat-plate collector uses water as the working fluid. The absorber plate is aluminum with plastic tubes coated with Urethane black. The glazing consists of a single .040'' Fiberglas reinforced polyester (Kalwall). The collector weight is 78.5 pounds with overall external dimensions of approximately 50.3'' x 98.3'' x 3.8''. The test program was conducted to obtain the following information: Thermal performance data under simulated conditions, structural behavior under static loading and the effects of long-term exposure to natural weathering. These tests were conducted using the MSFC Solar Simulator.

Usher, H.

1978-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar-energy-system performance-evaluation update: Wood Road School, Ballston Spa, New York, October 1982-April 1983  

DOE Green Energy (OSTI)

The Wood Road School Solar Project is a 216,000 square foot combined elementary and middle school in Ballston Spa, New York. The solar energy system supplies energy to the space heating and domestic hot water subsystems. Heat is collected by flat plate collector panels and stored in two storage tanks. Performance data are given for the system overall and for each of the four subsystems - energy collection, storage, space heating, and domestic hot water. Data are also provided on operating energy, energy savings, and weather conditions. Design and actual system solar fraction are compared, and percentage of incident solar energy and collected solar energy utilized are given. Also given are building loads analysis, system thermal losses, and system coefficient of performance. (LEW)

Kendall, P

1983-01-01T23:59:59.000Z

222

Horizontal Advanced Tensiometer  

DOE Patents (OSTI)

An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

Hubbell, Joel M.; Sisson, James B.

2004-06-22T23:59:59.000Z

223

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Balance of System Complete photovoltaic (PV) energy systems are composed of three subsystems. On the power-generation side, the first subsystem of PV devices (cells, modules, and...

224

System Advisor Model: Flat Plate Photovoltaic Performance Modeling...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the technology and system design. To be accessible by the financial community, the impact of variations in energy yield must also flow through to financial metrics, such as the...

225

University of Texas Panamerican (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data)  

DOE Data Explorer (OSTI)

This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Ramos, J.; Andreas, A.

226

University of Texas Panamerican (UTPA): Solar Radiation Lab (SRL); Edinburg, Texas (Data)  

SciTech Connect

This measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Ramos, J; Andreas, A

2011-09-01T23:59:59.000Z

227

Assessment of solar heating and cooling techology  

DOE Green Energy (OSTI)

In order to assess in detail the state of the technology for solar heating and cooling of buildings, five 2-day meetings were held. The meeting subjects were solar collectors, thermal storage, air conditioning and heat pumps, systems and controls, and non-engineering aspects of solar energy. This is a condensation of these meetings, presenting for each topic discussed the details of the state of the art, the problem areas, and the objectives of necessary research and development. The existing state of technology for solar heating and cooling presents a mixed picture. Liquid-heating flat-plate solar collectors, for example, are in a rather mature stage, and there is a small, viable industry producing components. Even here, however, there are problems of materials which, if solved, can reduce collector cost, improve performance, or increase lifetime. In other areas such as, for example, desiccant chillers, passive concepts, and many of the systems categories, the technology is at an early stage of evolution, and much research and development remain to be done.

Balcomb, J.D.; Perry, J.E. Jr.

1977-05-01T23:59:59.000Z

228

Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report  

Science Conference Proceedings (OSTI)

The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

Not Available

1980-08-01T23:59:59.000Z

229

Solar energy system performance evaluation, Hogate's Restaurant, Washington, D. C. January 1980-December 1980  

Science Conference Proceedings (OSTI)

The Hogate's Restaurant site is a business establishment which serves as a restaurant on the waterfront in Washington, D.C. It is part of the National Solar Data Network. The active solar energy system is designed to supply 64% of the restaurant's hot water. It is equipped with 6,254 square feet of liquid flat-plate collectors, two 5,000-gallon tanks for storage, and an auxiliary gas boiler. Pump repairs are reported. Data are given describing the overall system performance, energy savings, and solar energy utilization and availability. Performance data for the collector, storage and Domestic Hot Water (DHW) subsystems are given, as are the system operating energy and site weather conditions. Performance evaluation techniques and sensor technology are discussed briefly. (LEW)

Whitehead, C.Y.

1981-01-01T23:59:59.000Z

230

Experience on design and operation of hotel/motel solar hot water systems  

SciTech Connect

The use of solar energy to preheat domestic hot water in hotels and motels has many advantages. Year long use of these solar systems provides shorter payback periods. Temperature requirements for hotel/motel use are relatively low and are compatible with low cost flat plate collectors. Simple controls relate to higher reliability in both drain-down and heat exchanger configurations. Solar systems are easily retrofitted to most existing hotel/motel hot water systems and there are many hotels and motels across the country with roof area sufficient in size to hold the required collector arrays. Hotel/motel systems with payback periods of less than four years, which provide 70% of the total hot water load, are discussed.

Brohl, E.C.; Struss, R.G.; Sidles, P.H.

1978-01-01T23:59:59.000Z

231

Cementing horizontal wells  

SciTech Connect

Since the introduction of horizontal drilling, most completions have been open hole. Open-hole or slotted-liner completions may be satisfactory in straight, thick formations, if stimulation is not required. But if the wellbore wanders out of the reservoir, whether due to loss of directional control or spotty knowledge of formation dimensions, casing becomes a necessity. In addition, a wellbore that stays in the formation but comes uncomfortably close to the water-oil contact or gas cap requires casing to prevent coning. Further, if stimulation is anticipated, or may become a necessity, it is essential that the hole be cased and cemented. Otherwise, there is no control of the stimulation treatment. Even if the horizontal wellbore itself does not require casing, intermediate casing in the high-angle hole is needed. This is especially critical in open-hole completions below a gas cap, for example. The keys to effective horizontal cementing are fundamentally the same as for cementing vertical wells: proper centralization of casing in the bore-hole to ensure efficient mud removal and well-designed cement slurries.

Baret, F.; Griffin, T.J.

1989-05-01T23:59:59.000Z

232

A performance data network for solar process heat systems  

DOE Green Energy (OSTI)

A solar process heat (SPH) data network has been developed to access remote-site performance data from operational solar heat systems. Each SPH system in the data network is outfitted with monitoring equipment and a datalogger. The datalogger is accessed via modem from the data network computer at the National Renewable Energy Laboratory (NREL). The dataloggers collect both ten-minute and hourly data and download it to the data network every 24-hours for archiving, processing, and plotting. The system data collected includes energy delivered (fluid temperatures and flow rates) and site meteorological conditions, such as solar insolation and ambient temperature. The SPH performance data network was created for collecting performance data from SPH systems that are serving in industrial applications or from systems using technologies that show promise for industrial applications. The network will be used to identify areas of SPH technology needing further development, to correlate computer models with actual performance, and to improve the credibility of SPH technology. The SPH data network also provides a centralized bank of user-friendly performance data that will give prospective SPH users an indication of how actual systems perform. There are currently three systems being monitored and archived under the SPH data network: two are parabolic trough systems and the third is a flat-plate system. The two trough systems both heat water for prisons; the hot water is used for personal hygiene, kitchen operations, and laundry. The flat plate system heats water for meat processing at a slaughter house. We plan to connect another parabolic trough system to the network during the first months of 1996. We continue to look for good examples of systems using other types of collector technologies and systems serving new applications (such as absorption chilling) to include in the SPH performance data network.

Barker, G.; Hale, M.J.

1996-03-01T23:59:59.000Z

233

Performance improvement of a solar heating system utilizing off-peak electric auxiliary. Semi-annual progress report, June 18, 1979-December 31, 1979  

SciTech Connect

During the period 18 June 1979 through December 1979, a solar assisted heat pump system was designed, installed and operated in the University of Toledo Experimental Solar House. The heat pump system is capable of operating in a wide range of temperatures which is needed in a solar house utilizing off-peak storage from the electric utility. The complete system consists of 584.1 square feet of Libbey-Owens-Ford's flat plate solar collectors, a 5 horsepower compressor (Victaulic Corp.), an evaporator (Dunham-Bush), a condensor (Dunham-Bush), thermal storage units, and associated equipment. During the installation and initial operation of the system, numerous aspects of the feasibility of this system design have been evaluated. Many of these aspects point to the potentially improved operating performance of a solar heating system utilizing off-peak storage from the electric utility.

Eltimsahy, A.H.

1979-12-01T23:59:59.000Z

234

Solar energy system case study: Telex Communications, Blue Earth, Minnesota  

DOE Green Energy (OSTI)

A study is made of a solar energy system for space heating a 97,000-square-foot office, factory, and warehouse building owned by Telex Communications, Inc. in Blue Earth, Minnesota. The solar system has 11,520 square feet of ground-oriented flat-plate collectors and a 20,000-gallon storage tank inside the building. Freeze protection is by drainback. Solar heated water from the storage tank circulates around the clock throughout the heating season to heating coils in the ducts. The system achieves its design solar fraction, is efficient, and generally reliable, but not cost-effective. Performance data for the solar system was collected by the National Solar Data Network for three heating seasons from 1978 to 1981. Because of a freeze-up of the collector array in December 1978, the solar system was only partially operational in the 1978 to 1979 heating season. The data in this report were collected in the 1979 to 1980 and 1980 to 1981 heating seasons.

Raymond, M.G.

1984-09-01T23:59:59.000Z

235

Survey of failure modes from 122 residential solar water heaters  

DOE Green Energy (OSTI)

This report describes the results of a survey on the operation of active solar heating and cooling systems and their components. Questionnaires were sent to homeowners and installers, covering 122 systems. Results were categorized according to problem severity, location, system type, length of system operation, and time of the year. Approximately 47% of the systems had at least one reliability problem over a two-year period. Flat-plate collector and storage systems were highly reliable. Improper operation of these components was attributed to installation problems. Drainback designs also had the greatest reliability; draindown systems were the least reliable, largely because of the failure of draindown valves. Differential controllers caused the largest number of failures that resulted in a repair cost in excess of $50 to the homeowner.

Not Available

1984-10-01T23:59:59.000Z

236

Solar project description for Ingham County Medical Care Facility  

SciTech Connect

Domestic hot water preheating is provided by a solar energy system utilizing 9425 square feet of liquid flat plate collectors. The collectors are double-glazed with tempered glass, have copper absorber plates and a non-selective black coating. A 50% propylene glycol/water solution protects the collectors from freezing down to -20/sup 0/F. A steam-fired heat exchanger and circulation pump with an emergency generator provide heat to protect the collectors below -20/sup 0/F. A 5000 gallon, currently uninsulated, steel storage tank, is located in the existing mechanical room. The preheated water in the tank is provided directly to a steam-fired hot water heater for use in the laundry facility. A heat exchanger provides preheated water to a steam-fired domestic hot water heater. A gas/oil fired boiler provides steam to the hot water heaters. (MHR)

1979-08-01T23:59:59.000Z

237

Efficiency of a solar collector with internal boiling  

DOE Green Energy (OSTI)

The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a weak function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

Neeper, D.A.

1986-01-01T23:59:59.000Z

238

Efficiency of a solar collector with internal boiling  

DOE Green Energy (OSTI)

The behavior of a solar collector with a boiling fluid is analyzed to provide a simple algebraic model for future systems simulations, and to provide guidance for testing. The efficiency equation is developed in a form linear in the difference between inlet and saturation (boiling) temperatures, whereas the expression upon which ASHRAE Standard 109P is based utilizes the difference between inlet and ambient temperatures. The coefficient of the revised linear term is a week function of collector parameters, weather, and subcooling of the working fluid. For a glazed flat-plate collector with metal absorber, the coefficient is effectively constant. Therefore, testing at multiple values of insolation and subcooling, as specified by ASHRAE 109P, should not be necessary for most collectors. The influences of collector properties and operating conditions on efficiency are examined.

Neeper, D.A.

1986-06-01T23:59:59.000Z

239

Use of compound parabolic concentrator for solar energy collection  

DOE Green Energy (OSTI)

The joint team of Argonne National Laboratory (ANL) and the University of Chicago is reporting their midyear results of a proof-of-concept investigation of the Compound Parabolic Concentrator (CPC) for solar-energy collection. The CPC is a non-imaging, optical-design concept for maximally concentrating radiant energy onto a receiver. This maximum concentration corresponds to a relative aperture (f/number) of 0.5, which is well beyond the limit for imaging collectors. We have constructed an X3 concentrating flat-plate collector 16 ft/sup 2/ in area. This collector has been tested in a trailer laboratory facility built at ANL. The optical and thermal performance of this collector was in good agreement with theory. We have constructed an X10 collector (8 ft/sup 2/) and started testing. A detailed theoretical study of the optical and thermal characteristics of the CPC design has been performed.

Rabi, A.; Sevcik, V.J.; Giugler, R.M.; Winston, R.

1974-01-01T23:59:59.000Z

240

Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode  

E-Print Network (OSTI)

1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions. 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

HORIZONTAL BOILING REACTOR SYSTEM  

DOE Patents (OSTI)

Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

Treshow, M.

1958-11-18T23:59:59.000Z

242

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

243

Analysis of heat-pipe absorbers in evacuated-tube solar collectors  

SciTech Connect

Heat transfer in evacuated-tube solar collectors with heat-pipe absorbers is compared with that for similar collectors with flow-through absorbers. In systems that produce hot water or other heated fluids, the heat-pipe absorber suffers a heat transfer penalty compared with the flow-through absorber, but in many cases the penalty can be minimized by proper design at the heat-pipe condenser and system manifold. The heat transfer penalty decreases with decreasing collector heat loss coefficient, suggesting that evacuated tubes with optical concentration are more appropriate for use with heat pipes than evacuated or nonevacuated flat-plate collectors. When the solar collector is used to drive an absorption chiller, the heat-pipe absorber has better heat transfer characteristics than the flow-through absorbers.

Hull, J.R.; Schertz, W.W.; Allen, J.W.

1986-02-01T23:59:59.000Z

244

Page Jackson solar school, Charles Town, West Virginia. Final technical report  

DOE Green Energy (OSTI)

The Page Jackson Elementary School uses a solar energy system to provide space heating and cooling for a 52,600 sq. ft. school building. A total of 11,215 sq. ft. of PPG Industries, Inc., double-glazed, flat plate collectors are used in conjunction with glass mirrored reflectors. The system is of the drainback type. Space heating is provided by circulating warm water from the storage tanks through five air handling units. Space cooling is provided by a 100 ton Trane packaged absorption water chiller when sufficient hot solar water is available. Following the introduction and description, the remaining sections include: problems and solutions; acceptance test report; building plans; as-built plans; control drawings; and operating and maintenance instructions and diagrams.

Frazier, R.H.; Pickett, J.W.

1983-07-01T23:59:59.000Z

245

Solar Project Cost Report. Aratex Services, Inc. , Industrial Laundry, Fresno, California  

SciTech Connect

The system utilizes 140 Ying, flat plate, lexan glazed collectors which provide an effective aperture area of 6500 square feet. The collectors are mounted in 24 rows on the flat roof of the building. The water is pumped between the collectors and the atmospherically vented storage tank. The 12,500 gallon insulated fiberglass storage tank is located above ground on the concrete floor of a covered area of the building which is open to the outside. The solar energy system is used in conjunction with a system which recovers heat from laundry wastewater and steam condensate. The construction costs of this solar water heating system are presented. Category costs are listed by materials, labor, and subcontract costs. The subcontract costs include materials, labor, overhead and profit costs for insulation and electrical subcontractors.

1978-06-07T23:59:59.000Z

246

Solar project description for Hei Wai Wong multi-dwelling building, Honolulu, Hawaii  

SciTech Connect

The Hei Wai Wong site is a 4-story, 55 unit apartment building in Honolulu, Hawaii. Three solar systems are installed at this project to supplement the domestic hot water (DHW) requirements, and include preheating the laundry hot water for average usage rate. The solar energy system collector-to-storage results from thermosyphoning. The flat plate collector array has a gross area of 3,002 sq ft of which 807.4 square feet is instrumented. The collectors are facing south with a collector tilt of 24/sup 0/. Collected energy is accumulated in the 1230 gallon water tank that is roof top mounted. Such preheated water can be gravity fed to the laundry and apartment units. Auxiliary heating of the hot water in each apartment is provided by 30 gallon tanks using electric resistance heat elements. Auxiliary heating of the hot water in the laundry is provided by an 85 gallon tank fired by natural gas.

1979-10-01T23:59:59.000Z

247

Second generation ground coupled solar assisted heat pump systems. Six month progress report  

DOE Green Energy (OSTI)

Progress is reported on an investigation of the technical and commercial viability of a novel ground coupled, solar assisted heat pump system for residential space heating and cooling applications. Specific areas of study are solar collector/heat rejector performance, flat plate earth heat exchanger performance, system performance simulations, and commercialization and marketing analysis. Collector/rejector performance, determined by various thermal experiments, is discussed. The design and construction of an experimental site to study ground coupling is discussed. Theoretical analysis is also presented. The performance of the GCSAHP system and conventional alternatives, as determined by simple computer models, is presented and discussed. Finally, the commercial viability of this unique space conditioning system is examined.

Rhodes, G W; Backlund, J C; Helm, J M

1981-01-01T23:59:59.000Z

248

SOLERAS - Solar Energy Water Desalination Project. Solar energy falling on Yanbu, Saudi Arabia, August 1985  

Science Conference Proceedings (OSTI)

The direct normal and total horizontal insolation that fell on the Yanbu, Saudi Arabia solar powered desolation site during the month of August 1985 are presented. (BCS)

Not Available

1986-01-01T23:59:59.000Z

249

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

horizontal irradiance in California, Solar Energy, 84 (2010)UNIVERSITY OF CALIFORNIA, SAN DIEGO Analyzing and SimulatingChair University of California, San Diego iii EPIGRAPH We

Lave, Matthew S.

2012-01-01T23:59:59.000Z

250

Solar heating system installed at Stamford, CT. Final report  

DOE Green Energy (OSTI)

Information is provided on the solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut. The information consists of description of system and components, operation and maintenance manual, as-built drawings and manufacturer's component data. The solar system was designed to provide approximately 50 percent of the heating requirements. The solar facility has 2,561 sq. ft. of liquid flat plate collectors and a 6000 gallon, stone lined, well-insulated storage tank. Freeze protection is provided by a 50 percent glycol/water mixture in the collector loop. From the storage tank, solar heated water is fed into the building's distributed heat pump loop via a modulating three-way valve. If the storage tank temperature drops below 80/sup 0/F, the building loop may be supplied from the existing electrical hot water boilers. The Executive East Office Building is of moderate size, 25,000 sq. ft. of heated space in 2 1/2 stories. The solar system makes available for other users up to 150 KVA of existing electrical generating capacity.

Not Available

1979-09-01T23:59:59.000Z

251

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-05-01T23:59:59.000Z

252

SOLERAS - Solar Energy Water Desalination Project. Solar energy falling on Yanbu, Saudi Arabia, May 1985  

Science Conference Proceedings (OSTI)

Yanbu, Saudi Arabia was selected as the location for the SOLERAS Solar Powered Desalination Plant. The direct normal and total horizontal insolation that fell on the Yanbu solar powered desalination site during the month of May 1985 are presented. (BCS)

Not Available

1985-01-01T23:59:59.000Z

253

SOLERAS - Solar Energy Water Desalination Project. Solar energy falling on Yanbu, Saudi Arabia, June 1985  

Science Conference Proceedings (OSTI)

Yanbu, Saudi Arabia was selected as the location for the SOLERAS Solar Powered Desalination Plant. The direct normal and total horizontal insolation that fell on the Yanbu solar powered desalination site during the month of June 1985 are presented. (BCS)

Not Available

1985-01-01T23:59:59.000Z

254

SOLERAS - Solar Energy Water Desalination Project. Solar energy falling on Yanbu, Saudi Arabia  

Science Conference Proceedings (OSTI)

Yanbu, Saudi Arabia was selected as the location for the SOLERAS Solar Powered Desalination Plant. The direct normal and total horizontal insolation that fell on the Yanbu solar powered desalination site during the month of March 1985 are presented. (BCS)

Not Available

1985-03-01T23:59:59.000Z

255

SOLERAS - Solar Energy Water Desalination Project. Solar energy falling on Yanbu, Saudi Arabia, April 1985  

Science Conference Proceedings (OSTI)

Yanbu, Saudi Arabia was selected as the location for the SOLERAS Solar Powered Desalination Plant. The direct normal and total horizontal insolation that fell on the Yanbu solar powered desalination site during the month of April 1985 was presented. (BCS)

Not Available

1985-01-01T23:59:59.000Z

256

Solar-energy-system performance evaluation, Cathedral Square, Burlington, Vermont, July-December 1981  

DOE Green Energy (OSTI)

The Cathedral Square solar site is a 10-story multiunit apartment building in Vermont. Its active solar energy system is designed to supply 51% of the hot water load, and consists of 1798 square feet of flat plate collectors, 2699-gallon water tank in an enclosed mechanical room on the roof, and two auxiliary natural gas boilers to supply hot water to immersed heat exchanger in an auxiliary storage tank. The measured solar fraction was only 28%, not 51%, which, it is concluded, is an unreasonable expectation. Other performance data include the solar savings ratio, conventional fuel savings, system performance factor, and solar system coefficient of performance. Monthly performance data are given for the solar system overall, and for the collector, storage, and hot water subsystems. Also included are insolation data, typical storage fluid temperatures, domestic hot water consumption, and solar heat exchangers inlet/outlet temperatures, and typical domestic hot water subsystem temperatures. In addition, the system operating sequence and solar energy utilization are given. Appended are a system description, performance evaluation techniques, long-term weather data. (LEW)

Welch, K.M.

1981-01-01T23:59:59.000Z

257

Comparative report: performance of active solar space cooling systems, 1982 cooling season  

DOE Green Energy (OSTI)

This report provides a detailed analysis of solar absorption cooling and solar Rankine cooling processes as represented by the National Solar Data Network (NSDN) systems. Five solar cooling systems were monitored in 1982; four of these have absorption chillers and one has a Rankine engine. Of the four absorption chillers, two are directly solar fired and two are boiler fired using solar energy as the preheat to the boiler. The composite data for the five sites covers the period from September 1981 through December 1982. There are 36 site months of data covered in the report. These are all commercial systems with buildings ranging in size from 5000 to 84,000 square feet. There are three evacuated-tube, one flat-plate, and one linear concentrating collector systems. Analyses performed for which comparative data is provided include: Energy savings and operating costs in terms of Btu; Overall solar cooling efficiency and coefficient of performance; Hourly building cooling loads; Actual and long-term weather conditions; Collector performance; Chiller performance; Normalized building cooling loads per cooling degree-day and building area; and Cooling solar fractions, design and measured. Conclusions and lessons learned from the comparative analysis are presented.

Logee, T.; Kendall, P.

1982-01-01T23:59:59.000Z

258

Fundamentals of horizontal well completions  

Science Conference Proceedings (OSTI)

Oil and gas wells are drilled horizontally for a variety of reasons, chiefly to improve production without drilling multiple vertical wells and to prevent water or gas coning. Benefits of horizontal drilling are well documented. This article addresses the fundamentals of completing a horizontal well, discussing completion by (1) open hole, (2) casing packers, (3) slotted or perforated liner, and (4) cemented casing/liner. Completion methods 1 through 3 are generally known as ''drain hole'' completions, and method 4 is commonly called the ''case hole'' or ''stimulated'' completion.

Austin, C.; Zimmerman, C.; Sullaway, B.; Sabins, F.

1988-05-01T23:59:59.000Z

259

Solar energy system performance evaluation: Hei Wai Wong, Honolulu, Hawaii, November and December 1979 and April through August 1980  

SciTech Connect

The Hei Wai Wong site is a four-story apartment building in Honolulu, Hawaii. The building is equipped with three hot water solar energy systems with essentially the same design. One of these systems is instrumented for six apartments and a laundry. The instrumented system consists of an array of flat-plate collectors with an area of 807.4 square feet. The collector and storage subsystem consists of a 1230-gallon storage tank mounted on the roof with the bottom of the tank slightly higher than the top of the collector panels. When the sun heats the water in the collectors above the tank water temperature, a thermosiphon current is induced. When the temperature in storage exceeds the temperature of the water in the collectors, the thermosiphon flow ceases. The solar energy system at Hei Wai Wong supplied 98% of the energy required for hot water for the six apartments and the laundry.

Cramer, M.

1980-01-01T23:59:59.000Z

260

Carribean Islands | OpenEI  

Open Energy Info (EERE)

Carribean Islands Carribean Islands Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate collectors, for Mexico, Central America, and the Caribbean Islands. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released January 31st, 2004 (10 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Carribean Islands Central America GEF GHI GIS Mexico NREL solar SWERA UNEP Data text/csv icon Download Data (csv, 370.6 KiB) application/zip icon Download Shapefile (zip, 244 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GEF | OpenEI  

Open Energy Info (EERE)

GEF GEF Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords China GEF GHI GIS NREL solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 629.4 KiB) text/csv icon Download Data (csv, 779.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1985 - 12/31/1991 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

262

China | OpenEI  

Open Energy Info (EERE)

China China Dataset Summary Description (Abstract): Monthly average solar resource for horizontal flat-plate collectors for China. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented horizontally. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords China GEF GHI GIS NREL solar SWERA UNEP Data application/zip icon Download Shapefile (zip, 629.4 KiB) text/csv icon Download Data (csv, 779.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 01/01/1985 - 12/31/1991 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

263

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Data Explorer (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

264

Lowry Range Solar Station: Arapahoe County, Colorado (Data)  

DOE Green Energy (OSTI)

A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

Yoder, M.; Andreas, A.

2008-05-30T23:59:59.000Z

265

Solar Success Story at Moanalua Terrace  

DOE Green Energy (OSTI)

Solar systems prove to be the environmentally and economically sound choice for heating water in U.S. Navy housing at Moanalua Terrace in Pearl Harbor, Hawaii. Hawaii is a perfect environment for solar water heating,'' according to Alan Ikeda, a Housing Management Specialist with the Pacific Naval Facility Engineering Command Housing Department in Pearl Harbor, Hawaii. ''The sun shines most of the time, we don't have to worry about freezing, the state offers a 35% solar tax credit, and our local utility supports the purchase and installation of solar systems with generous rebates.'' The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction helped persuade the Navy to take advantage of Hawaii's solar resource and install solar water heaters on family housing units. At Moanalua Terrace, the Navy had demolished 752 units of family housing, which they are rebuilding in four phases. Designers decided to use the opportunity to give the solar systems a try. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, Ikeda subsequently secured a $130,000 grant from the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar systems. In retrofit applications, HECO rebates $800 per unit ($80,000 total) on approved equipment, and Pearl Harbor Family Housing will pay the difference of the estimated $340,000 total cost, or about $130,000. The 136 units built during Phase II of the Moanalua Terrace project included solar systems in their specifications, so the Navy was able to take advantage of the $1,500 per system HECO rebate for approved solar water heaters in new construction. The Navy chose direct (open-loop) active systems that circulate potable water through flat-plate collectors coated with a black chrome selective surface. Each system consists of a 4-foot by 8-foot (1.2-m by 2.4-m) collector made by American Energy Technologies, Ltd., and an 80-gallon (302-liter) Rheem tank containing an electric backup element.

Not Available

1999-03-01T23:59:59.000Z

266

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

DOE Green Energy (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

267

Solar oven  

SciTech Connect

This patent describes a solar oven. It comprises: an oven chamber having an open end and defining an interior cooking chamber; means providing a flat-back interior surface on the cooking chamber for absorbing sunlight and converting the absorbed sunlight into heat; an oven door hingedly mounted over the open end and movable between open and closed positions relative to the open end; means for pivotably supporting the oven chamber about a first substantially horizontal pivot axis; user-actuable latch means for selectively retaining the oven chamber in selected positions around the first horizontal axis, the user-actuable latch means including a user releasable ratchet mechanism including a plurality of ratchet teeth formed on the oven chamber and ratchet pawl pivoted to the support means in a position to engage selective ones of the ratchet teeth to retain the over chamber in selected orientations around the horizontal axis, the latch means further including means for pivoting the pawl into and out of the path of movement of the ratchet teeth to thereby achieve the selective positioning; a tray disposed within the interior cooking chamber for supporting foodstuffs during coking; pivot means for pivotally mounting the tray within the interior cooking chamber for movement around a second substantially horizontal pivot axis such that the tray can be positioned so as to maintain the foodstuffs in a substantially level position independently of the position of the oven chamber around the first pivot axis.

Burns, T.J.; Burns, C.L.

1989-07-18T23:59:59.000Z

268

Nuclear component horizontal seismic restraint  

DOE Patents (OSTI)

A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

Snyder, Glenn J. (Lynchburg, VA)

1988-01-01T23:59:59.000Z

269

Horizontal completions challenge for industry  

SciTech Connect

As the technology to drill horizontal wells continues to evolve, the problem of efficiently and cost-effectively completing such wells grows. The economics of applying horizontal technology in high-productivity reservoirs demands both increased production and lower development costs. Such high productivity reservoirs are typical of the Gulf of Mexico, North Sea, South China basin, and other areas. Lowering development costs is achieved by drilling fewer wells and in the offshore environment by reducing the number of platforms and other well structures. Specifically addressed in this article are the problems of achieving high efficiency, long lasting completions while controlling costs in unconsolidated and poorly consolidated sandstone reservoirs.

Zaleski, T.E. Jr.; Spatz, E.

1988-05-02T23:59:59.000Z

270

Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981  

DOE Green Energy (OSTI)

Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

Howard, B.D.

1981-01-01T23:59:59.000Z

271

Solar project description for Florida gas company's single family residence, Winter Springs, Florida  

DOE Green Energy (OSTI)

The Florida Gas Company solar energy system is installed in a 1548 square-foot, three bedroom single family dwelling located in Winter Springs, Florida. The system is designed to provide solar energy for space heating, space cooling, and domestic hot water heating. Solar energy is collected by two banks of double glazed flat plate collectors with a gross area of 714 square feet. Solar energy is transferred from the collector array to a 1350 gallon underground storage tank. Water is used as the heat collection, transfer and storage medium. Freeze protection is provided by means of circulation of hot water from storage through the collectors. No anti-freeze additive is required. A 3-ton solar energy powered absorption cycle Water Chiller provides chilled water for circulation through the same air distribution system. A gas fired boiler provides supplemental thermal energy to the chiller when sufficient thermal energy is not available from storage. Original cost estimates for provisioning and installation of the Solar System are given.

Not Available

1979-06-22T23:59:59.000Z

272

Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report  

DOE Green Energy (OSTI)

Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

Not Available

1979-06-01T23:59:59.000Z

273

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

1980-07-01T23:59:59.000Z

274

Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona  

DOE Green Energy (OSTI)

This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

Mathur, A K

1983-09-01T23:59:59.000Z

275

Solar house heating system using reflective pyramid optical condensing system. Evaluation of performance, June 1, 1975--December 31, 1976  

DOE Green Energy (OSTI)

The prototype system, previously built on Westover Road, Stamford, Connecticut, was upgraded, instrumented, and evaluated. It was found to perform essentially as expected, but the open construction was found to have problems. A fully enclosed model Pyramidal Optics house was built by Better Homes of Delaware near Rehoboth, Delaware. After a number of significant improvements were made in the optical concentrating system and the flat plate receiver assembly, the system was monitored throughout the winter of 1976/1977 and found to perform very well. The solar contribution to heating amounted to 70 percent during the severe winter months and is expected to exceed 80 percent throughout the year. The Pyramidal Optics system has been found to have a number of economic and operational advantages. It is planned to evaluate additional systems in other locations and different climatic conditions.

Not Available

1978-01-01T23:59:59.000Z

276

Solar energy system performance evaluation. Aratex Services, Inc. , industrial laundry, Fresno, California, June--September 1978  

SciTech Connect

The system utilizes 140 collectors manufactured by Ying. The collectors are flat plate and lexan glazed. They provide an effective aperture area of 6500 square feet. The collectors are mounted in 24 rows on the flat roof of the building. The 12,500 gallon insulated fiberglass storage tank is mounted on an above ground slab in a partially enclosed area. All solar energy system piping is copper. All exterior piping is insulated with fiberglass covered by an aluminum jacket. The solar energy system is used in conjunction with a heat recovery system. Softened cold water is first pumped through a heat exchanger which recovers heat from the laundry wastewater. The water then flows into the solar storage tank and circulates through the collectors. It is then pumped through another heat exchanger which boosts the water to the required temperature of 170/sup 0/F. Steam from a low pressure gas-fired boiler located in the building is used as the auxiliary energy source. The hot water is stored in a 4,000 gallon holding tank which contains an immersed heat exchanger that adds heat to the water from the steam condensate. The ARATEX solar system has an average hot water demand of over 30,000 gallons per day at a temperature of 180/sup 0/F. The heat recovery system reduced the hot water load at the laundry by 30 percent. Of the remaining load, 25 percent was provided by solar energy.

Armstrong, H.L.; Sohoni, V.S.; Murphy, L.J.

1978-01-01T23:59:59.000Z

277

latitutde tilt irradiance | OpenEI  

Open Energy Info (EERE)

latitutde tilt irradiance latitutde tilt irradiance Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Bangladesh. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Source NREL Date Released April 12th, 2005 (9 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords atmospheric water vapor GEF GIS latitutde tilt irradiance NREL solar SWERA TILT UNEP Data text/csv icon Download Data (csv, 35.5 KiB) application/zip icon Download Shapefile (zip, 26.7 KiB) Quality Metrics

278

latitude tilt | OpenEI  

Open Energy Info (EERE)

latitude tilt latitude tilt Dataset Summary Description (Abstract): Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Nepal. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Source U.S. National Renewable Energy Laboratory (NREL) Date Released April 12th, 2005 (9 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords atmospheric water vapor GIS latitude tilt Nepal NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile (zip, 25.6 KiB) text/csv icon Download Data (csv, 36.2 KiB)

279

Solar radiation model validation  

Science Conference Proceedings (OSTI)

Several mathematical models have been developed within the past few years which estimate the solar radiation from other weather variables. Some of these models have been used to generate data bases which are extensively used in the design and analysis of solar system. Three of these solar radiation models have been used in developing the Augmented SOLMET Solar Data Tapes for the 26 SOLMET sites and the 222 ERSATZ Solar Data Tapes. One of the models, a theoretical one, predicts the solar noon radiation for clear sky conditions from the optical air mass, precipitable water vapor and turbidity variables. A second model, an empirical one, predicts the hourly total horizontal radiation from meteorological variables. And, a third model, also an empirical one, predicts the hourly direct normal radiation from the hourly total horizontal radiation. A study of the accuracy of these three solar radiation models is reported here. To assess the accuracy of these models, data were obtained from several US National Weather Service Stations and other sources, used the models to estimate the solar-radiation, and then compared the modeled radiation values with observed radiation values. The results of these comparisons and conclusions regarding the accuracy of the models are presented.

Hall, I.J.; Prairie, R.R.; Anderson, H.E.; Boes, E.C.

1980-10-01T23:59:59.000Z

280

The Canopy Horizontal Array Turbulence Study  

Science Conference Proceedings (OSTI)

The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (...

Edward G. Patton; Thomas W. Horst; Peter P. Sullivan; Donald H. Lenschow; Steven P. Oncley; William O. J. Brown; Sean P. Burns; Alex B. Guenther; Andreas Held; Thomas Karl; Shane D. Mayor; Luciana V. Rizzo; Scott M. Spuler; Jielun Sun; Andrew A. Turnipseed; Eugene J. Allwine; Steven L. Edburg; Brian K. Lamb; Roni Avissar; Ronald J. Calhoun; Jan Kleissl; William J. Massman; Kyaw Tha Paw U; Jeffrey C. Weil

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Growing Nanowires Horizontally Yields New Benefit: 'Nano ...  

Science Conference Proceedings (OSTI)

Growing Nanowires Horizontally Yields New Benefit: 'Nano-LEDs'. ... Optical microscope image of nano LEDs emitting light. ...

2012-10-17T23:59:59.000Z

282

Implementation plan for the demonstration of a 50,000 ft/sup 2/ solar hot water system for the textile industry. Final report  

DOE Green Energy (OSTI)

An analysis of textile processes was conducted to determine their applicability to integration into a 50,000 ft/sup 2/ collector field and into a waste heat recovery system. Various processes in a typical carpet finishing plant, a typical cotton/cotton blend finishing plant, and a typical 100% synthetic fabric pressurized beck finishing plant are analyzed. The flat-plate, evacuated tube, and parabolic concentrator are discussed and evaluated. Evaluations of direct heat exchange, closed cycle enhanced recovery, and open cycle enhanced heat recovery techniques as applied to textile processes are presented. Conceptual designs are discussed that use a solar array to produce hot water and use standard boilers to produce process steam and to augment the hot water output when insolation values are insufficient to meet process demands. Conceptual designs and cost estimates are presented for: process water systems with evacuated tube solar collectors; process water system with concentrating-tracking solar collectors; feedwater system with concentrating-tracking solar collectors; templifier and direct exchange waste heat recovery system; direct heat recovery systems; integrated system using enhanced heat recovery and concentrating-tracking solar collectors; integrated system using direct heat recovery and concentrating-tracking solar collectors; integrated system using direct heat recovery, evacuated tube solar collectors and concentrating-tracking solar collectors; and integrated system using enhanced heat recovery, evacuated tube collectors, and concentrating-tracking source collectors. An economic evaluation of the systems is presented using the rate of return method. Results and recommendations are summarized. (MCW)

Hester, J.C.; Beasley, D.E.; Rogers, W.A. Jr.

1980-08-01T23:59:59.000Z

283

Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)  

DOE Data Explorer (OSTI)

A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Wilcox, S..; Andreas, A.

284

Solar Radiation Monitoring Station (SoRMS): Humboldt State University, Arcata, California (Data)  

Science Conference Proceedings (OSTI)

A partnership with HSU and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location.

Wilcox, S..; Andreas, A.

2007-05-02T23:59:59.000Z

285

Instrumentation and performance analysis of the New Mexico Department of Agriculture solar heated and cooled building. Final report  

DOE Green Energy (OSTI)

An instrumentation system was designed and installed on the New Mexico Department of Agriculture (NMDA) building to evaluate the performance of the solar system. The NMDA building is the first specifically designed solar heated and cooled building constructed in the United States. The solar system utilizes the flat plate collectors with liquid as the thermal transfer fluid, hot and cold storage tanks, and an absorption chiller. Over two years of operating experience now exists in regard to the NMDA building. Operation of the NMDA building heating, ventilation and air conditioning (HVAC) system involves three modes. The full heating mode utilizes the collected solar thermal energy for space heating. The full cooling mode utilizes the energy input from the solar collectors in driving the absorption chiller to provide space cooling. The intermediate mode requires heating during the morning hours and cooling during the afternoon. Cooling for the intermediate mode utilizes the cooling tower due to the low ambient relative humidity. The requirement of auxiliary energy is met with a gas fired boiler within the building. The instrumentation system installed on the NMDA building monitored solar insolation, 45 temperatures, 15 flow rates, the rate of electrical energy consumption, local meterology and the relative humidity. The data was recorded on a 15 minute time interval during daylight and every hour during the night.

San Martin, R.L.; Fenton, D.L.

1978-08-01T23:59:59.000Z

286

Cost of Federal tax credit programs to develop the market for industrial solar and wind energy technologies. Final report to Lawrence Livermore Laboratory, University of California. Volume 2: appendices  

DOE Green Energy (OSTI)

A study was made to estimate the impact tax credits (from Acts passed by Congress) would have on renewable energy investment and to estimate the net costs to the US Treasury of providing these tax credits. The appendices to this study are presented. Some investment and marketing penetration worksheets are presented on wind turbines, solar ponds, flat plates, evacuated tubes, and parabolic troughs. A market penetration and economic analysis program with test written for TI-59 programmable calculator with printer is presented. Data on the average $/kWh for each state are included for energy use (70 to 400/sup 0/F and electricity) and energy resource (total and direct solar and wind). Also included is an energy use processing program written for TI-59 programmable calculator with printer. (MCW)

Downey, W.T.; Carey, H.; Dlott, E.; Frantzis, L.; McDonald, M.; Myer, L.; O& #x27; Neill, K.; Patel, R.; Perkins, R.

1981-11-12T23:59:59.000Z

287

Building Energy Software Tools Directory: RadOnCol  

NLE Websites -- All DOE Office Websites (Extended Search)

project involving flat plate collectors. Might also be of interest to solar engineers, solar installers. Input Local Latitude, altitude, and azimuth and tilt of collector....

288

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geographic...  

NLE Websites -- All DOE Office Websites (Extended Search)

crops. Lower 48 Solar Photovoltaics (PV) Collectors 40km Reslution These datasets provide solar radiation values for common flat-plate and concentrating collectors for 239 stations...

289

DOE Solar Decathlon: 2009 Team Boston  

NLE Websites -- All DOE Office Websites (Extended Search)

so the "L" is horizontal, with the long side composed of the top and roof. Three rows of solar panels peek up above the roof. The wood section sits atop a rectangular black...

290

Improved Atmospheric Solar Radiation Budget Pyranometry  

Science Conference Proceedings (OSTI)

The solar radiation budget is investigated with seven pyranometers. Three of these instruments have horizontally aligned sensors. The sensors of the remaining four instruments are vertically aligned in such a way that their normals point to the ...

Gottfried Hnel; Karin Kastner

2000-07-01T23:59:59.000Z

291

User's manual for DELSOL2: a computer code for calculating the optical performance and optimal system design for solar-thermal central-receiver plants  

DOE Green Energy (OSTI)

DELSOL2 is a revised and substantially extended version of the DELSOL computer program for calculating collector field performance and layout, and optimal system design for solar thermal central receiver plants. The code consists of a detailed model of the optical performance, a simpler model of the non-optical performance, an algorithm for field layout, and a searching algorithm to find the best system design. The latter two features are coupled to a cost model of central receiver components and an economic model for calculating energy costs. The code can handle flat, focused and/or canted heliostats, and external cylindrical, multi-aperture cavity, and flat plate receivers. The program optimizes the tower height, receiver size, field layout, heliostat spacings, and tower position at user specified power levels subject to flux limits on the receiver and land constraints for field layout. The advantages of speed and accuracy characteristic of Version I are maintained in DELSOL2.

Dellin, T.A.; Fish, M.J.; Yang, C.L.

1981-08-01T23:59:59.000Z

292

South Dakota School of Mines, Keystone, South Dakota solar-energy-system performanceevaluation, June 1980-April 1981  

DOE Green Energy (OSTI)

The South Dakota School of Mines site is the Mount Rushmore National Memorial Visitor's Center in Keystone, South Dakota. The active solar energy system is a retrofit designed to supply 45% of the heating load and 53% of the observation room cooling load. The system is equipped with 2000 square feet of flat-plate collector panels double-glazed with a black chrome absorber surface; 3000 gallons of water in an insulated tank for sensible heat storage; a two-stage fuel oil furnace for auxiliary heating; and direct expansion electric air conditioning units for auxiliary cooling. The actual heating and cooling provided are 42% and 12% respectively. The solar fraction, solar savings ratio, conventional fueld savings, electrical energy expense, system performance factor, and solar system coefficient of performance are among the performance data listed. A control problem is reported that kept the collector pump running 24 hours a day for 18 days. Performance data are given for each subsystem as well as for the overall system. Typical system operation and the system operating sequence for a day are given. The system's use of solar energy and the percentage of losses are given. Also included are a system description, performance evaluation techniques and equations, long-term weather data, chemical analysis of the antifreeze solutions, sensor technology, and typical weather and performance data for a month. (LEW)

Eck, T.F.

1981-01-01T23:59:59.000Z

293

Comparative performance of two types of evacuated tube solar collectors in a residential heating and cooling system. The progress report  

DOE Green Energy (OSTI)

Two types of evacuated tube solar collectors have been operated in space heating, cooling and domestic hot water heating systems in Colorado State University Solar House I. An experimental collector from Corning Glass Works supplied heat to the system from January 1977 through February 1978, and an experimental collector from Philips Research Laboratory, Aachen, which is currently in use, has been operating since August 1978. A flat absorber plate inside a single-walled glass tube is used in the Corning design, whereas heat is conducted through a single glass wall to an external heat exchanger plate in the Philips collector. In comparison with conventional flat-plate collectors, both types show reduced heat losses and improved efficiency. For space heating and hot water supply in winter, the solar delivery efficiency of the Corning collector ranged from 49% to 60% of the incident solar energy. The portion of the space heating and domestic hot water load carried by solar energy through fall and winter ranged from 50% to 74%, with a four-month contribution of 61% of the total requirements. Data on the Philips collector are currently being analyzed.

Conway, T.M.; Duff, W.S.; Lof, G.O.G.; Pratt, R.G.

1979-01-01T23:59:59.000Z

294

Brazil Global Horizontal Solar Radiation Model (10km) from INPE  

Open Energy Info (EERE)

by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files

(Supplemental Information): The assessment of...

295

South America Global Horizontal SR Solar Model from INPE and...  

Open Energy Info (EERE)

for Space Research) and the ARCVIEW software were used to produce the dataset and SHAPE files. The assessment of reliability levels of the BRASIL-SR model were performed...

296

Brazil Global Horizontal Solar Radiation Model (40km) from INPE  

Open Energy Info (EERE)

by INPE - National Institute for Space Research) were used to produce the dataset and SHAPE files.
The assessment of reliability levels of the BRASIL-SR model were performed...

297

Solar: monthly and annual average global horizontal (GHI) GIS...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

298

Solar: monthly and annual latitude tilt horizontal GIS data at...  

Open Energy Info (EERE)

on cloud cover, atmospheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and...

299

Durability testing of antireflection coatings for solar applications  

DOE Green Energy (OSTI)

Antireflection (AR) coatings can be incorporated into highly transmitting glazings that, depending on their cost, performance, and durability of optical properties, can be economically viable in solar collectors, agricultural greenhouses, and PV systems. A number of AR-coated glazings have been prepared under the auspices of the International Energy Agency (IEA) Working Group on Durability of Materials for Solar Thermal Collectors. The AR coatings are of two types, including (1) various sol-gels applied to glass and (2) an embossed treatment of sheet acrylic. Typically, for unweathered glazings, a 4%--5% increase in solar-weighted transmittance has been achieved. For AR-coated glass, reflectance values as low as 0.5%--0.7% at selected wavelengths (680--720 nm) were obtained. To determine the durability of the hemispherical transmittance, several collaborating countries are testing these materials both outdoors and in accelerated weathering chambers. All materials exposed outdoors are affixed to mini-collector boxes to simulate flat-plate collector conditions. Results for candidate AR coatings weathered at geographically disperse outdoor test sites exhibit changes in spectral transmittance primarily in the high visible range (600--700 nm). Accelerated testing at measured levels of simulated solar irradiance and at different constant levels of temperature and relative humidity have been performed in different countries. Parallel testing with different levels of laboratory-controlled relevant stress factors permits the time-dependent performance of these materials to be compared with measured results from in-service outdoor exposure conditions. Coating adhesion and performance loss resulting from dirt and dust retention are also discussed.

Jorgensen, G.; Brunold, S.; Koehl, M.; Nostell, P.; Roos, A.; Oversloot, H.

2000-01-05T23:59:59.000Z

300

Technical and economic feasibility of solar augmented process steam generation. Final report  

DOE Green Energy (OSTI)

A study of the technical and economic feasibility of solar augmented process steam generation was performed. This approach is analogous to a heat pump that extracts heat from a low temperature reservoir (provided by solar energy) and raises its temperature to a useful level via mechanical work. The shaft power required in the compressor is only one third to one quarter of total steam enthalpy for low pressure process steam (100 psig). This approach permits the use of low cost flat plate collectors. It was concluded that these systems have the potential of yielding payback periods of 5 to 8 years and 10 to 15 years for collector costs of $2/ft/sup 2/ and $5/ft/sup 2/, respectively, depending upon the location. A design study of various components indicated that these components are generally available or need only minor modifications for steam service. The component selection was largely a function of steam generation rate. In general, collector cost was the controlling factor. It was also concluded that additional incentives are probably required for increased utilization of solar energy for industrial process steam.

Not Available

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Solar energy facility at North Hampton Recreation Center, Dallas, Texas. Final report  

DOE Green Energy (OSTI)

The solar energy system is installed in a single story (two heights), 16,000 sq ft building enclosing a gymnasium, locker area, and health care clinic surrounded by a recreational area and athletic field. The solar energy system is designed to provide 80 percent of the annual space heating, 48 percent of the annual space cooling, and 90 percent of the domestic hot water requirements. The solar energy system includes a 238 single glazed flat plate, 3650 sq ft area collector subsystem, a 6000 gallon hot water storage subsystem, a domestic hot water preheat subsystem, an absorption chiller subsystem with a 2000 gallon tank chilled water storage subsystem. The auxiliary back up system is a gas-fired boiler and a conventional 100 gallon natural gas water heater provides any additional energy to satisfy hot water load requirements. A summary of project information, project chronology, project costs, the five modes of system operation, description of the Site Data Acquisition System, system performance summary, experience recommendations, system operational verification, drawings and major component manufacturers information are provided.

Not Available

1980-05-01T23:59:59.000Z

302

Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications  

E-Print Network (OSTI)

Air conditioning systems have a major impact on energy demand. With fossil fuels fast depleting, it is imperative to look for cooling systems that require less high-grade energy for their operation. In this context, absorption cooling systems have become increasingly popular in recent years from the viewpoints of energy and environment. Two types of the absorption chillers, the single effect and the half-effect systems, can operate using low temperature hot water. This paper presents the simulation results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors. The complete systems (solar collectors and absorption cooling system) were simulated using a developed software program. The energy and exergy analysis is carried out for each component of the two systems. When evaporator temperature is maintained constant at 5 C and the condenser temperature is fixed at 28 C, 32 C and 36 C respectively the percentage of the used energy covered by solar collectors and the percentage of auxiliary heating load were calculated versus time of day.

Gomri, R.

2010-01-01T23:59:59.000Z

303

Technical and economic analysis of the thermal performance of a solar boiling concentrator for power generation  

SciTech Connect

A system for power generation using solar energy collected by compound parabolic concentrators (CPC) incorporated into a Rankine cycle system is studied by developing a model to simulate the CPC performance. The power cycle is also modeled under quasi-steady and transient conditions. An economic analysis is performed through a model developed to study the economic viability of the power system. The CPC performance is sensitive to the ratio of diffuse to beam components of the solar incident irradiation. This ratio, along with the concentration ratio, govern the CPC optical efficiency which in turn determine the thermal efficiency. The performance of the CPC working under boiling and superheating conditions is governed by the axial fractional lengths of the non-boiling and the superheating regions. The overall thermal loss coefficient is formulated as a function of the local thermal loss coefficient in the different regions and the length of each region. The thermal efficiency of CPC's and flat plates, whether under non-boiling, boiling or superheating conditions, is evaluated. The CPC working under superheating conditions has a good potential for solar powered Rankine cycles. System efficiencies as high as 11.3% could be obtained at R-11 evaporation temperature of 120/sup 0/C and a condensation temperature of 20/sup 0/ C.

El-Assy, A.Y.

1985-01-01T23:59:59.000Z

304

Solar Cycle Variations of p-Mode Frequencies  

E-Print Network (OSTI)

Observations show that the solar p-mode frequencies change with the solar cycle. The horizontal-phase-velocity dependence of the relative frequency change, scaled by mode mass, provides depth information on the perturbation in the solar interior. We find that the smoothed scaled relative frequency change varies along the solar cycle for horizontal phase velocities higher than a critical value, which corresponds to a depth near the base of the convection zone. This phenomenon suggests that the physical conditions in a region near the base of the convection zone change with the solar cycle.

Dean-Yi Chou; Alexander Serebryanskiy

2004-05-10T23:59:59.000Z

305

Gravel packing feasible in horizontal well completions  

SciTech Connect

Successful completion of horizontal wells in unconsolidated formations depends on proper equipment selection and installation method balanced with reservoir objectives, formation parameters, and costs. The guidelines for designing these completions are based on generalized field experience, including horizontal cases where applicable.

Zaleski, T.E. Jr.; Ashton, J.P. (Baker Sand Control, Houston, TX (US))

1990-06-11T23:59:59.000Z

306

Horizontal Symmetries $?(150)$ and $?(600)$  

E-Print Network (OSTI)

Using group theory of mixing to examine all finite subgroups of SU(3) with an order less than 512, we found recently that only the group $\\Delta(150)$ can give rise to a correct reactor angle $\\th_{13}$ of neutrino mixing without any free parameter. It predicts $\\sin^22\\th_{13}=0.11$ and a sub-maximal atmospheric angle with $\\sin^22\\th_{23}=0.94$, in good agreement with experiment. The solar angle $\\th_{12}$, the CP phase $\\d$, and the neutrino masses $m_i$ are left as free parameters. In this article we provide more details of this case, discuss possible gain and loss by introducing right-handed symmetries, and/or valons to construct dynamical models. A simple model is discussed where the solar angle agrees with experiment, and all its mixing parameters can be obtained from the group $\\Delta(600)$ by symmetry alone. The promotion of $\\Delta(150)$ to $\\Delta(600)$ is on the one hand analogous to the promotion of $S_3$ to $S_4$ in the presence of tribimaximal mixing, and on the other hand similar to the extension from $A_4$ to $S_4$ in that case.

C. S. Lam

2013-01-09T23:59:59.000Z

307

Commercial building unitary heat pump system with solar heating. Final report, May 1, 1976--October 31, 1977  

DOE Green Energy (OSTI)

A generalized dynamic computer program (SYRSOL) has been developed for the mathematical simulation of the thermal behavior of multi-zone solar heated buildings. The system modeled employs a series of water-to-air heat pumps connected in a closed loop, flat-plate liquid cooled solar collector, a water storage tank, and a cooling tower. Weather data are represented by sinusoids, which provide a convenient and economical alternative to weather tapes. Results indicate that the use of sinusoidal functions for temperature and monthly average values for cloud cover is quite realistic and accurate. Temperature functions for thirteen cities are presented. A preliminary analysis has been done of the feasibility of using solar-energized desiccant dehumidification systems to reduce summer cooling loads. Service hot water production using a water-to-water heat pump from the storage tank is shown to be highly effective and idle solar collectors can be used directly to make service hot water in the summer. A new mathematical heat pump heating model, in which the COP increases linearly with the source water temperature, has been developed and incorporated into SYRSOL. The computer simulation capability has been extended from a heating season to an entire year. The results of some experiments, that have improved the COP of a heat pump, are also reported.

Drucker, E.E.; Ucar, M.; LaGraff, J.E.

1978-05-01T23:59:59.000Z

308

Modeling of an adiabatic packed bed brine-air contactor for use in a solar energy driven food processing system  

Science Conference Proceedings (OSTI)

A mathematical model was developed for a packed bed brine-air contacting system which has applications in a solar energy driven food processing system. The model considers mass transfer resistances of both phases, but neglects the heat transfer resistance of the liquid phase. It takes into account the large heat effects associated with water absorption into and desorption from the brine. A computational method was also developed to calculate the minimum air flow rate which would prevent a pinch. A packed bed brine-air contactor was built, and experiments were conducted for a range of brine and air conditions. Good agreement between the computed and experimental results warrants use of the model to design and optimize the packed bed water stripping process. A periodic-flow packed bed heat regenerator was built to recover heat from the exit air of the contactor so as to improve the energy efficiency of the system. It was possible to preheat the inlet air to a temperature close to that of the exit air. The inlet air, however, during its passage through the regenerator picked up the condensate deposited from the exit air. This led to a decrease in the driving potential to mass transfer in the contactor. Optimization studies show that using a combined solar driven boiler and air assisted packed bed water stripper would be more economical than using a solar driven boiler alone or using flat plate solar collectors to drive the water stripper.

Biswal, R.N.

1983-01-01T23:59:59.000Z

309

Performance evaluation of the Shenandoah Community Solar Recreational Center for the year 1980. Final report  

DOE Green Energy (OSTI)

The Shenandoah Solar Recreational Center, when completed in early 1977, was the largest building to have most of its heating, air conditioning, and hot water needs met by solar energy. Principal components of the building solar energy system are a 1121 sq-m array of modularized flat plate collectors with 2300 sq-m of aluminum foreground reflectors integrated into a sawtooth wood truss roof, a 15.1 cu-m collector loop buffer tank, a 56.8 cu-m hot water storage tank, two 113.6 cu-m chilled water storage tanks, and a nominal 100 ton single stage absorption chiller. The system is interconnected by means of primary-secondary loops and was designed for simultaneous operation of all subsystems in either the heating or cooling modes. Control is by means of conventional HVAC pneumatic and electric control equipment. Transient thermal simulation studies were used to design the solar energy system. The collector array size was fixed so as to provide a significant fraction of the building annual thermal load, and the hot and chilled water storage volumes and other system functions were sized to maximize economic benefit. On this basis the predicted solar fractions were 95% space heating, 64% space cooling and 50% hot water. The building operation was monitored for a period on one year (February 1980 through February 1981) using a calculator-based data acquisition system with 80 sensors located throughout the building. This report presents an analysis of this data and an evaluation of the building performance over the year. The annual collector efficiency was found to be 19% and the overall annual solar fraction (combined thermal loads met from solar) was determined to be 39%. It is felt that this level of performance for a demonstration system is quite acceptable.

Craig, J.I.; Jeter, S.M.

1983-12-01T23:59:59.000Z

310

National Solar Radiation Database | Open Energy Information  

Open Energy Info (EERE)

National Solar Radiation Database National Solar Radiation Database Jump to: navigation, search The National Solar Radiation Database, or NSRDB, describes the amount of solar energy which is available at any location in the United States. It is generated by the National Renewable Energy Laboratory, with the assistance of many collaborators.[1] Technical Overview Per its user's manual, "The NSRDB is a serially complete collection of hourly values of the three most common measurements of solar radiation (global horizontal, direct normal, and diffuse horizontal) over a period of time adequate to establish means and extremes, and at a sufficient number of locations to represent regional solar radiation climates."[2] There have been two releases of the NSRDB, each covering different time

311

File:SWERA-277.pdf | Open Energy Information  

Open Energy Info (EERE)

annual average global horizontal (GHI) map at 40km resolution for Southern Mexico (Oaxaca, Veracruz, and Chiapas) from NREL annual average global horizontal (GHI) map at 40km resolution for Southern Mexico (Oaxaca, Veracruz, and Chiapas) from NREL Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 236 KB, MIME type: application/pdf) Title Annual Average Solar Resource for horizontal flat-plate solar collectors for Southern Mexico. Description Solar: annual average global horizontal (GHI) map at 40km resolution for Southern Mexico (Oaxaca, Veracruz, and Chiapas) from NREL Sources University at Albany, SUNY Related Technologies Solar Creation Date 2005-09-06 Extent International Countries Mexico UN Region Central America External links http://swera.unep.net/index.php?id=35&idx=277 File history Click on a date/time to view the file as it appeared at that time.

312

Quality site seasonal report, Eisenhower Museum, SFBP (Solar in Federal Buildings Program) 4008, March 1985 through September 1985  

SciTech Connect

The active solar Domestic Hot Water (DHW) and space heating system at the Eisenhower Museum was designed and constructed as part of the Solar in Federal Buildings Program (SFBP). This retrofitted system is one of eight of the systems in the SFBP slected for quality monitoring. The purpose of this monitoring effort is to document the performance of quality state-of-the-art solar systems in large federal building applications. These systems are unique prototypes. Design errors and system faults discovered during the monitoring period could not always be corrected. Therefore, the aggregate, overall performance is often considerably below what might be expected had similar systems been constructed consecutively with each repetition incorporating corrections and improvements. The solar system is a retrofit, designed to supply part of the space heating (and reheating for humidity control) load at the museum, located at President Eisenhower's boyhood home in Abilene, Kansas. The small DHW load is also served by the solar system. The museum and adjacent library entertain approximately 200,000 visitors per year, and require controlled temperature and humidity for preservation of artifacts. The summer reheating load for humidity control is comparable to the space heating load in winter. The solar system has 110 US Solar flat plate collectors with a gross area of 4201 square feet, using ethylene glycol as the collector fluid. The energy from the collector loop is transferred to two 1980 gallon storage tanks via an external heat exchanger. Solar energy is used for DHW preheating and for space heating. Highlights of the performance monitoring at the Eisenhower Museum during the period March 1985 through September 1985 are summarized in this report.

Raymond, M.G.

1987-10-15T23:59:59.000Z

313

Proper centralizers can improve horizontal well cementing  

SciTech Connect

The selection and spacing of appropriate centralizers can improve the cementation of high-angle and horizontal wells. Mud removal is one of the most important factors in obtaining a good cement job. Effective centralization assists in mud removal and helps ensure an even cement coat around the casing. Centralizers for horizontal wells have to fulfill two requirements: They should have a high restoring capability and a low moving force, and they should allow pipe rotation and reciprocation. Conventional bow-type centralizers have been used successfully in some horizontal wells. But as the horizontal section length increases, special centralizers, such as low-moving-force, bow-type centralizers and rigid centralizers, may be necessary. The paper describes the following: cementing liners, centralization, torque and drag, centralizer placement, the bow-type centralizer, the rigid centralizer, and the downhole activated centralizer.

Kinzel, H. (Weatherford Oil Tool, Langenhagen (Germany))

1993-09-20T23:59:59.000Z

314

Horizontal Roll Vortices and Crown Fires  

Science Conference Proceedings (OSTI)

Observational evidence from nine crown fires suggests that horizontal roll vortices are a major mechanism in crown-fire spread. Post-burn aerial photography indicates that unburned tree-crown streets are common with crown fire. Investigation of ...

Donald A. Haines

1982-06-01T23:59:59.000Z

315

Marketing Strategies for Horizontal Axis Washers  

Science Conference Proceedings (OSTI)

Horizontal axis washing machines provide superior washing quality and gentleness as well as reduced energy use. This EPRI guide describes how utilities can effectively engage the horizontal axis washing machine market and the strategic and load-related reasons they should be interested in doing so. The guide covers topics ranging from a detailed overview of the marketplace to specific tactical advice that offers practical insights for any utility considering entering this new market.

1997-04-21T23:59:59.000Z

316

Performance and cost of a hybrid passive/active solar house  

DOE Green Energy (OSTI)

The design, construction, cost, and initial operation of a hybrid passive/active solar-heated house in Los Alamos, New Mexico, is described. The system is dominated by a two-story Trombe wall, constructed of 0.3-m-thick (1-ft) slump block, that can be operated in either a passive or active mode. In the active mode, a blower circulates air through the Trombe wall air space and into a rock bed. A three-zone forced-air distribution system is connected to the rock bed. A separate flat-plate collector array heats a preheater tank for domestic hot water. Operating results of the system, which is being monitored by the Los Alamos Scientific Laboratory (LASL), are reported for just over the first year of operation (1977 and part of 1978). In addition, system cost, occupant observations, and conclusions are presented. Energy consumption records for 1977 indicate that approximately 60% of the net space heating load was provided by solar energy.

Hunn, B.D.

1979-01-01T23:59:59.000Z

317

Evaluation of the Corning and Philips evacuated tubular collectors in a residential solar heating and cooling system. Final report, 1 May 1976--1 December 1976  

DOE Green Energy (OSTI)

The Solar Energy Applications Laboratory of Colorado State University has completed the design, construction, and installation of a complete set of evacuated tubular collectors on a test bed behind Solar House I. The collectors, the Corning evacuated tube collector (December 16, 1976 to December 31, 1977) and the Philips evacuated tube collector (January 16, 1978 to January 31, 1979) are being used sequentially to operate the heating and cooling system of Solar House I. Data are being collected over an entire heating and cooling season and analyses are being performed on these data to provide an evaluation of the two new collectors and comparison with the present conventional collector as part of a residential heating and cooling system that is otherwise identical in every way. This project is significant for several reasons. First, the two high performance collectors operate in conjunction with an advanced ARKLA lithium bromide water chiller. This cooling unit is designed specifically for operation with solar energy systems. For comparative purposes the advanced ARKLA unit will be available for use with the existing conventional flat-plate collector. In addition, comparisons of operating data are being made with Solar Houses II and III, adjacent to Solar House I. Solar Houses II and III have the same thermal load characteristics as Solar House I, but have different solar heating and cooling systems. House II has an air heating collector and pebble-bed storage. House III has an evacuated tube solar collector, and is also coupled with an advanced absorption water chiller unit. The comparative analysis under the same load conditions, provides an exceptional opportunity in evaluating the relative merits of the new collector systems.

Duff, W.S.

1977-03-01T23:59:59.000Z

318

Tracking granules on the Sun's surface and reconstructing horizontal velocity fields: I. the CST algorithm  

E-Print Network (OSTI)

Determination of horizontal velocity fields on the solar surface is crucial for understanding the dynamics of structures like mesogranulation or supergranulation or simply the distribution of magnetic fields. We pursue here the development of a method called CST for coherent structure tracking, which determines the horizontal motion of granules in the field of view. We first devise a generalization of Strous method for the segmentation of images and show that when segmentation follows the shape of granules more closely, granule tracking is less effective for large granules because of increased sensitivity to granule fragmentation. We then introduce the multi-resolution analysis on the velocity field, based on Daubechies wavelets, which provides a view of this field on different scales. An algorithm for computing the field derivatives, like the horizontal divergence and the vertical vorticity, is also devised. The effects from the lack of data or from terrestrial atmospheric distortion of the images are also briefly discussed.

M. Rieutord; T. Roudier; S. Roques; C. Ducottet

2007-07-13T23:59:59.000Z

319

Economic viability of multiple-lateral horizontal wells.  

E-Print Network (OSTI)

??Horizontal wells are gaining popularity throughout the petroleum industry as a means to increase well productivity and enhance incremental economics. Horizontal wells provide greater reservoir (more)

Smith, Christopher Jason

2012-01-01T23:59:59.000Z

320

Some Results of Joint Measurements of Aerosol Extinction of Solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of...

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Investigation of methods to transfer heat from solar liquid-heating collectors to heat storage tanks  

DOE Green Energy (OSTI)

A number of possible solutions to the problems of corrosion and freezing in flat-plate collectors are listed and discussed briefly. Specific considerations involved in the choice and definition of these solutions are discussed in greater detail. (MHR)

de Winter, F.

1976-01-01T23:59:59.000Z

322

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER I. EXPERIMENTAL MEASUREMENTS AND COMPARISON WITH NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

near the leading edge, Electrical 'power is individuallythis way, and the electrical power input can be measured towould be to reduce the electrical power required to maintain

Robben, R.

2010-01-01T23:59:59.000Z

323

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER I. EXPERIMENTAL MEASUREMENTS AND COMPARISON WITH NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

l~ Roberts, "Catathermal Combustion: A New Process for Lm'l-significant gas phase combustion is induced by the presenceInternational) on Combustion (to be published), The

Robben, R.

2010-01-01T23:59:59.000Z

324

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

D.G. , Fourteenth Sympo- sium (International) on Combustion,The Combustion Institute, Pittsburgh, 107 (1973). Wilson,Program for Calculation of Combustion Reaction Equilibrium

Schefer, R.

2010-01-01T23:59:59.000Z

325

Historical evidence of importance to the industrialization of flat-plate silicon photovoltaic systems  

DOE Green Energy (OSTI)

The results of a literature search on the diffusion of new industrial production processes and the determinants of success of previous federally-funded demonstration projects are presented. The industrialization goal of the LSSA project is analyzed. The conclusions of that analysis are used to develop recommendations with respect to pilot, demonstration, and commercial scale production plants, as well as the disposition of the LSSA annual output goal. (MHR)

Smith, J.L.; Gates, W.R.; Lee, T.

1978-04-01T23:59:59.000Z

326

Drag Measurements of an Axisymmetric Nacelle Mounted on a Flat Plate at  

Science Conference Proceedings (OSTI)

An experimental investigation was conducted to determine the effect of diverter wedge half-angle and nacelle lip height on the drag characteristics of an assembly consisting of a nacelle fore cowl from a typical high-speed civil transport (HSCT) and ...

Flamm Jeffrey D.; Jr Floyd J. Wilcox

1995-06-01T23:59:59.000Z

327

Numerical investigation of heat transfer enhancement by carbon nano fibers deposited on a flat plate  

Science Conference Proceedings (OSTI)

Numerical simulations of flow and heat transfer have been performed for flow over a plate surface covered with carbon nano fibers (CNFs). The CNFs influence on fluid flow and heat transfer has been investigated. Firstly, a stochastic model for CNFs deposition ... Keywords: Carbon nano fibers, Heat transfer, Lattice Boltzmann method

Nikola Pelevic; Theo Van Der Meer

2013-03-01T23:59:59.000Z

328

Design of a photovoltaic central power station: flat-plate array  

DOE Green Energy (OSTI)

A design for a photovoltaic central power station using fixed flat-panel arrays has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes high-efficiency photovoltaic modules using dendritic web cells. The modules are arranged in 5 MW subfields, each with its own power conditioning unit. The photovoltaic output is connected to the existing 115 kV utility switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

Not Available

1984-02-01T23:59:59.000Z

329

CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS  

E-Print Network (OSTI)

process, and to determine the roles of heat and mass transferheat and mass transfer in the catalytic combustion process, and

Schefer, R.

2010-01-01T23:59:59.000Z

330

Catalyzed combustion in a flat plate boundary layer. II. Numerical calculations  

DOE Green Energy (OSTI)

A computer program has been developed to solve the boundary layer equations for laminar flow over a heated plate with H/sub 2//air combustion. The objectives are to investigate the importance of homogeneous as opposed to catalytic surface reactions during the combustion process, and to determine the roles of heat and mass transfer and their effect on combustion. Results are presented for combustion of H/sub 2//air at an equivalence ratio of 0.1 for flow over a noncatalytic plate at a surface temperature of 1100/sup 0/K. A detailed mechanism involving 8 chemical species and 13 reactions has been used to describe the kinetics. The reactions leading to the initiation of combustion and the effect of the large diffusivity of hydrogen are discussed. The boundary conditions for catalytic surface and a simplified model to account for catalytic wall reaction are formulated. Results are presented for combustion over a catalytic surface and compared with the non-catalytic case.

Schefer, R.; Robben, F.

1977-09-01T23:59:59.000Z

331

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

332

File:SWERA-254.pdf | Open Energy Information  

Open Energy Info (EERE)

Solar: monthly and annual latitude tilt horizontal GIS data at 40km resolution for Nepal from NREL Solar: monthly and annual latitude tilt horizontal GIS data at 40km resolution for Nepal from NREL Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 240 KB, MIME type: application/pdf) Title Monthly Average Solar Resource for flat-plate collectors tilted at latitude for Nepal. Description Solar: monthly and annual latitude tilt horizontal GIS data at 40km resolution for Nepal from NREL Sources National Renewable Energy Laboratory Related Technologies Solar Creation Date 2005-04-12 Extent International Countries Nepal UN Region Southern Asia External links http://swera.unep.net/index.php?id=35&idx=254 File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

333

File:SWERA-214.pdf | Open Energy Information  

Open Energy Info (EERE)

.pdf .pdf Jump to: navigation, search File File history File usage Solar: annual average global horizontal (GHI) GIS data at 10km resolution for Cuba from SUNY Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 390 KB, MIME type: application/pdf) Title Monthly Average Solar Resource for horizontal flat-plate solar collectors for Cuba Description Solar: annual average global horizontal (GHI) GIS data at 10km resolution for Cuba from SUNY Sources University at Albany, SUNY Related Technologies Solar Creation Date 2004-10-07 Extent International Countries Cuba UN Region Caribbean External links http://swera.unep.net/index.php?id=35&idx=214 File history Click on a date/time to view the file as it appeared at that time.

334

File:SWERA-212.pdf | Open Energy Information  

Open Energy Info (EERE)

.pdf .pdf Jump to: navigation, search File File history File usage Solar: monthly global horizontal (GHI) GIS data at 10km resolution for Central America from SUNY Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 665 KB, MIME type: application/pdf) Title Monthly Average Solar Resource for horizontal flat-plate solar collectors for Central America Description Solar: monthly global horizontal (GHI) GIS data at 10km resolution for Central America from SUNY Sources University at Albany, SUNY Related Technologies Solar Creation Date 2004-10-07 Extent Regional Regions Central America External links http://swera.unep.net/index.php?id=35&idx=212 File history Click on a date/time to view the file as it appeared at that time.

335

Visibility graph analysis of solar wind velocity  

E-Print Network (OSTI)

We analyze in situ measurements of solar wind velocity obtained by Advanced Composition Explorer (ACE) spacecraft and Helios spacecraft during the years 1998-2012 and 1975-1983 respectively. The data belong to mainly solar cycle 23 (1996-2008) and solar cycle 21 (1976-1986) respectively. We use Directed Horizontal Visibility graph (DHVg) algorithm and estimate a graph functional, namely, the degree distance (D) as the Kullback-Leibler divergence (KLD) argument to understand time irreversibility of solar wind time series. We estimate this degree distance irreversibility parameter for these time series at different phases of solar activity cycle. Irreversibility parameter is first established for known dynamical data and then applied for solar wind velocity time series. It is observed that irreversibility in solar wind velocity fluctuations show similar behaviour at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover it changes over the different phases of solar activity cycle.

Suyal, Vinita; Singh, Harinder P

2013-01-01T23:59:59.000Z

336

Low-concentration CPC's for low-temperature solar energy applications  

SciTech Connect

The authors consider the feasiblity of low-concentration CPC's for low-temperature applications. A quantitative assessment of optical gains versus thermal losses, and of savings in reflector area, leads to the conclusion that low-concentration CPC's of relatively small acceptance angle may be competitive with, or superior to, flat plates. Calculations of yearly collected energy and material requirements are presented, and comparisons are made with corresponding flat plate collectors.

Gordon, J.M.

1986-02-01T23:59:59.000Z

337

Sand-control alternatives for horizontal wells  

SciTech Connect

This paper reports that it has been well documented that horizontal completions increase production rates, as much as two to five times those of conventional techniques, because more of the producing formation is exposed to the wellbore. Although productivity improvements are highly sensitive to reservoir parameters, it is becoming generally accepted that optimum horizontal lengths will be 2,000 to 4,000 ft. The length of these completions generally causes the velocity of the fluid at the sandface to be an order of magnitude less than that observed in conventional completions. Because drag forces contributed to sand production, horizontal wells can produce at higher sand-free flow rates than conventional completions in the same reservoir. While it is frequently argued that horizontal wells do not need sand control, the potential for sand production increases significantly as reserves deplete and rock stresses increase. This is becoming more evident today in several major North Sea oil fields with conventional completions. Also, many unconsolidated formations produce sand for the first time with the onset of water production, a typical problem in such areas as the Gulf of Mexico. Operators must decide whether to implement sand control in the original horizontal-completion program because of an immediate concern or because the potential exists for a problem to arise as the well matures.

Zaleski, T.E. Jr. (Baker Sand Control (US))

1991-05-01T23:59:59.000Z

338

File:SWERA-202.pdf | Open Energy Information  

Open Energy Info (EERE)

global horizontal (GHI) GIS data at 40km resolution for Sri Lanka from NREL global horizontal (GHI) GIS data at 40km resolution for Sri Lanka from NREL Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 863 KB, MIME type: application/pdf) Title Monthly Average Solar Resource for horizontal flat-plate collectors, for Sri Lanka Description Solar: monthly and annual average global horizontal (GHI) GIS data at 40km resolution for Sri Lanka from NREL Sources National Renewable Energy Laboratory Related Technologies Solar Creation Date 2004-07-01 Extent International Countries Sri Lanka UN Region Southern Asia External links http://swera.unep.net/index.php?id=35&idx=202 File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

339

Horizontal stirring in the global ocean  

E-Print Network (OSTI)

Horizontal mixing and the distribution of coherent structures in the global ocean are analyzed using Finite-Size Lyapunov Exponents (FSLE), computed for the surface velocity field derived from the Ocean general circulation model For the Earth Simulator (OFES). FSLEs measure horizontal stirring and dispersion; additionally, the transport barriers which organize the oceanic flow can roughly be identified with the ridges of the FSLE field. We have performed a detailed statistical study, particularizing for the behaviour of the two hemispheres and different ocean basins. The computed Probability Distributions Functions (PDFs) of FSLE are broad and asymmetric. Horizontal mixing is generally more active in the northern hemisphere than in the southern one. Nevertheless the Southern Ocean is the most active ocean, and the Pacific the less active one. A striking result is that the main currents can be classified in two 'activity classes': Western Boundary Currents, which have broad PDFs with large FSLE values, and Eas...

Hernndez-Carrasco, I; Hernndez-Garca, E; Turiel, A

2011-01-01T23:59:59.000Z

340

Global horizontal irradiance clear sky models : implementation and analysis.  

SciTech Connect

Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Application of solar energy to the supply of industrial process hot water: preliminary design and performance report. Volume I. Technical report. Aerotherm report TR-76-219. [For can washing at Campbell Soup Plant in Sacramento  

DOE Green Energy (OSTI)

The design and performance of a solar hot water system for can washing at the Campbell Soup Plant in Sacramento, California, are presented. The collector field is located on the roof of the finished products warehouse of the Campbell Soup Sacramento plant. Water is supplied from a 3.8 cm (1/sup 1///sub 2/ in.) supply line which is located directly below an existing roof access hatch. A supply pipe will be brought up through that hatch. The water flow will then be split into two manifold lines which supply the dual rows of flat plate collectors. The preheated water from the flat plates is then passed into six sets of parallel connected concentrators. Each set consist of eight 1.83 x 3.05 m (6 x 10 foot) modules connected in series. The water from these units is gathered in a 3.8 cm (1/sup 1///sub 2/ in.) insulated pipe which transports it to the storage tank. This pipe will be attached to an existing pipe run until it reaches the can washing building. From there the pipe will follow the can washing building around to the storage tank. The storage tank is a 75,200 1 (20,000 gal) steel tank which is coated internally with a USDA approved phenolic liner. The outside of the tank is insulated. A 2.2 kw (3 hp) motor is used to pump the stored water for the tank into the can washing line. Detail drawings and descriptions of the collector field, installation, piping, controls, data acquisition equipment, and roof structure are included. Furthermore, a program schedule with equipment and manpower costs for successfully completing Phase II of this contract is included. Also included is an organization chart of the Phase II program personnel. (WHK)

None

1976-10-14T23:59:59.000Z

342

Quality site seasonal report, Homestead Launderette, SFBP (Solar in Federal Buildings Program), November 1984 through June 1985  

SciTech Connect

The active solar system at Homestead Launderette provides solar preheated domestic hot water for the Launderette (Building 495). This retrofitted system is one of eight systems selected for quality monitoring as part of the Solar in Federal Buildings Program (SFBP). The purpose of this monitoring effort is to document the performance of quality state-of-the-art solar systems in commercial applications. These systems are unique prototypes. Design errors and system faults discovered during the monitoring period could not always be corrected. Therefore, the aggregated, overall performance is often considerably below what might be expected had similar systems been constructed consecutively with each repetition incorporating corrections and improvements. The Launderette at Homestead AFB serves the laundry needs of the personnel at the base. The base is located in Homestead, Florida which is approximately 40 miles south of Miami, Florida. The laundry is expected to accommodate 15,000 customers per year for an approximate load of 531 million Btu per year, or 44.3 million Btu per month. The solar system was designed to supply 68% of the DHW load. The closed loop collector array has a gross area of 1475 square feet of Energy Transfer Systems flat-plate collectors. Solar energy is stored in two 1000-gallon storage tanks where it can be used to preheat DHW. An in-line propane-gas-boiler will provide auxiliary energy according to its desired setpoint. Also, a recirculation loop was included in the design to maintain a constant distribution temperature at all times. Highlights of the system performance at Homestead Launderette during the November 1984 through June 1985 monitoring period are presented in this report.

Pakkala, P.A.

1987-10-15T23:59:59.000Z

343

The Distribution of Cloud Horizontal Sizes  

Science Conference Proceedings (OSTI)

Cloud horizontal size distributions from near-global satellite data, from aircraft, and from a global high-resolution numerical weather prediction model, are presented for the scale range 0.18000 km and are shown to be well-represented using a ...

Robert Wood; Paul R. Field

2011-09-01T23:59:59.000Z

344

Optimization of solar-selective paint coatings. Final report, September 15, 1980-June 15, 1982  

DOE Green Energy (OSTI)

The objective of this program was the development of low-cost, high-performance, solar-selective paint coatings for solar flat-plate collector (FPC) use and passive thermal wall application. Thickness-sensitive selective paint (TSSP) coating development was intended to demonstrate large-scale producibility. Thickness-insensitive selective paint (TISP) coating development was intended to develop and optimize the coating for passive solar systems and FPC applications. Low-cost, high-performance TSSP coatings and processes were developed to demonstrate large-scale producibility and meet all program goals. Dip, spray, roll, laminating and gravure processes were investigated and used to produce final samples. High-speed gravure coating was selected as the most promising process for solar foil fabrication. Development and optimization of TISP coatings was not completely successful. A variation in reflective metal pigment was suspected of being the primary problem, although other variables may have contributed. Consistent repeating of optical properties of these coatings achieved on the previous program was not achieved. However, a new method of achieving better control of coating components was conceived and preliminary development initiated. The new concept was described as an engineered pigment approach. The engineered pigment approach uses TSSP-coated metal foil particles instead of uncoated aluminum flakes in a liquid TSSP coating. The approach offers many advantages over the use of uncoated aluminum flakes: control of particle flatness, size, and thickness; control of the optical selectivity of each particle; and control of the liquid TSSP coating surrounding the coated particles.

McChesney, M.A.; Zimmer, P.B.; Lin, R.J.H.

1982-06-01T23:59:59.000Z

345

Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas  

DOE Green Energy (OSTI)

A cooperative agreement was negotiated in April 1978 for the installation of a space and domestic hot water system at Southeast of Saline, Kansas Unified School District 306, Mentor, Kansas. The solar system was installed in a new building and was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The collectors are liquid flat plate. They are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. This final report, which describes in considerable detail the solar heating facility, contains detailed drawings of the completed system. The facility was declared operational in September 1978, and has functioned successfully since.

Not Available

1979-07-01T23:59:59.000Z

346

Solar process water heat for the Iris Images Custom Color Photo Lab. Final report  

DOE Green Energy (OSTI)

This is the final technical report of the solar facility locted at Iris Images Custom Photo Laboratory in Mill Valley, California. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100/sup 0/F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxiliary back up system is a conventional gas-fired water heater. Freeze protection in this mild climate was originally provided by closed-loop circulation of hot water from the storage tank. Later this was changed to a drain-down system due to a freeze when electrical power failed. This system has been relatively successful with little or no scheduled maintenance. The site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are included.

Not Available

1980-03-01T23:59:59.000Z

347

Design and test of non-evacuated solar collectors with compound parabolic concentrators  

DOE Green Energy (OSTI)

The intermediate range of concentration ratios (1.5X-10X) which can be achieved with CPC's without diurnal tracking provides both economic and thermal advantages for solar collector design even when used with non-evacuated absorbers. The present paper summarizes more than 3 years of research on non-evacuated CPC's and reviews measured performance data and critical design considerations. Concentrations in the upper portions of the practical range (e.g. 6X) can provide good efficiency (40% to 50%) in the 100/sup 0/C to 160/sup 0/C temperature range with relatively frequent tilt adjustments (12 to 20 times per year). At lower concentrations (e.g. 3X) performance will still be substantially better than that for a double glazed flat plate collector above about 70/sup 0/C and competitive below, while requiring only semi-annual adjustments for year round operation. In both cases the cost savings associated with inexpensive reflectors, and the optimal coupling to smaller, simple inexpensive absorbers (e.g. tubes, fins, etc.) can be as important an advantage as the improved thermal performance.

Rabl, A.; O'Gallagher, J.; Winston, R.

1979-07-01T23:59:59.000Z

348

Preliminary operational results of the low-temperature solar industrial process heat field tests  

DOE Green Energy (OSTI)

Six solar industrial process heat field tests have been in operation for a year or more - three are hot water systems and three are hot air systems. All are low-temperature projects (process heat at temperatures below 212/sup 0/F). Performance results gathered by each contractor's data acquisition system are presented and project costs and problems encountered are summarized. Flat-plate, evacuated-tube, and line-focus collectors are all represented in the program, with collector array areas ranging from 2500 to 21,000 ft/sup 2/. Collector array efficiencies ranged from 12% to 36% with net system efficiencies from 8% to 33%. Low efficiencies are attributable in some cases to high thermal losses and, for the two projects using air collectors, are due in part to high parasitic power consumption. Problems have included industrial effluents on collectors, glazing and absorber surface failures, excessive thermal losses, freezing and overheating, control problems, and data acquisition system failure. With design and data acquisition costs excluded costs of the projects ranged from $25/ft/sup 2/ to $87/ft/sup 2/ and $499/(MBtu/yr) to $1537/(MBtu/yr).

Kutscher, C.F.; Davenport, R.L.

1980-06-01T23:59:59.000Z

349

Horizontal Wavenumber Spectra of Vertical Vorticity and Horizontal Divergence in the Upper Troposphere and Lower Stratosphere  

Science Conference Proceedings (OSTI)

The author shows that the horizontal two-point correlations of vertical vorticity and the associated vorticity wavenumber spectrum can be constructed from previously measured velocity structure functions in the upper troposphere and lower ...

Erik Lindborg

2007-03-01T23:59:59.000Z

350

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

351

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

352

Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar...

353

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Virginia's solar easement law is similar to those in effect in other states. The Virginia Solar Easements Act of 1978 allows property owners to create binding solar easements for the purpose of...

354

Africa | OpenEI  

Open Energy Info (EERE)

Africa Africa Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. Source U.S. National Renewable Energy Laboratory (NREL) Date Released July 31st, 2011 (3 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Africa direct normal irradiance DNI GEF GHI GIS global horizontal irradiance latitutde tilt irradiance NASA NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile and Images (zip, 19.3 MiB) text/csv icon Download Data (csv, 3.4 MiB) Quality Metrics Level of Review Some Review

355

Portable top drive cuts horizontal drilling costs  

SciTech Connect

Economic analysis of a seven-well, long-reach horizontal drilling program into an unconsolidated, heavy-oil-bearing reservoir in Winter field near the Alberta/Saskatchewan border in Canada reveals that -- in the right application -- renting a portable top drive drilling system can reduce total drilling costs. Use of the portable top drive combined with other cost-saving measures enabled Saskoil, one of Canada`s larger independents, to drill more cheaply, on a cost-per-meter basis, in 1993 than in 1992. This was despite significant rental rates for drilling rigs and directional drilling services caused by increased demand in Western Canada. Total cost savings of 10% on wells that would otherwise cost in the (C) $500,000 range are believed realistic. Based on this year`s performance, Saskoil recommends top drive for the company`s future horizontal wells in this area. This article describes the operator`s horizontal well program, advantages of top drive in that program and how it was installed and applied. Estimated time savings for six wells, plus other ways top drive can cut costs and improve operations are discussed.

Jackson, B. [Saskoil, Regina, Saskatchewan (Canada); Yager, D. [Tesco Drilling Tech., Calgary, Alberta (Canada)

1993-11-01T23:59:59.000Z

356

Estimators for the Standard Deviation of Horizontal Wind Direction  

Science Conference Proceedings (OSTI)

The standard deviation of horizontal wind direction is a central quantity in the description of atmospheric turbulence and of great practical use in dispersion models. As horizontal wind direction is a circular variable, its standard deviation ...

Rudolf O. Weber

1997-10-01T23:59:59.000Z

357

Horizontal drilling boosts Pennsylvanias natural gas production ...  

U.S. Energy Information Administration (EIA)

Between 2009 and 2011, Pennsylvania's natural gas production more than quadrupled due to expanded horizontal drilling combined with hydraulic fracturing.

358

Effect of soiling on solar mirrors and techniques used to maintain high reflectivity  

DOE Green Energy (OSTI)

Solar mirrors are used to concentrate low-level solar radiation to power levels which are practical and efficient for consumption. Any interference with the collection of that energy not only decreases the power level but also increases the cost of the energy available from a solar power system. One of the most immediate and drastic effects of outdoor exposure is the reflectance loss due to the accumulation of foreign particles on the mirror surface. Specular reflectance losses as great as 25% have been observed for mirrors exposed for only a few weeks. The effect of the deposited particles is to reduce the reflected energy by both absorbing and scattering light. The degree to which the particles reduce the collection of reflected energy depends on their composition, number and size distribution. An additional factor is the optics of the collection system. The angular acceptance aperture of the system, defined as the angle subtended by the receiver at the concentrator surface, determines the relative importance of the scattering due to dust accumulation. For flat plate thermal and photovoltaic collectors which have essentially a 180/sup 0/ angular acceptance aperture, scattering of the incident light is not critical but absorption can be an important factor in the loss of energy. For concentrating collection systems, such as line focus collectors and central receivers, angular acceptance apertures of a few degrees make scattering at the concentrator surface much more important and can result in severe energy losses. Results of a study of each of these areas are presented and discussed. (WHK)

Roth, E.P.; Pettit, R.B.

1980-06-01T23:59:59.000Z

359

Performance of an experimental solar-driven absorption air conditioner. Annual report, July 1975--September 1976  

DOE Green Energy (OSTI)

An important pathway for the use of solar energy for space conditioning of buildings is the development of a heat-actuated air conditioner that can operate with the temperatures available from flat-plate solar collectors and use air cooling for disposal of the waste heat. The solar heating and cooling program of the Lawrence Berkeley Laboratory is exploring the use of the ammonia-water absorption cycle for this purpose. Results of the initial tests of an experimental system that has been fabricated to provide basic engineering data on the operation of the ammonia-water absorption cycle under such conditions are presented. A nominal three-ton, continuous operation, heat-actuated water chiller has been fabricated by drastic modification of a commercial gas-fired unit. The major modifications included designing a new water-heated generator, adding a preheater to the solution circuit, and increasing the flow rate of solution by a factor of about three. The unit was instrumented for measurement of temperatures, pressures, and solution concentrations at points in the circuit. Twenty-two experimental runs have been made and the results analyzed. An analysis of the thermodynamic cycle which includes the finite effectiveness of heat transfer at various points in the cycle is shown to predict with good accuracy the measured values of COP. The measured coefficient of performance agreed with the calculated values over the range 0.4 to 0.75 as the conditions of individual runs were varied. The agreement with the calculated values was within about 5 percent.

Dao, K.; Simmons, M.; Wolgast, R.; Wahlig, M.

1977-01-01T23:59:59.000Z

360

External reflectors for large solar collector arrays, simulation model and experimental results  

SciTech Connect

A model for the calculation of incident solar radiation from flat-and CPC-shaped external reflectors onto flat plate solar collector arrays has been developed. Assuming an infinite length of the collector/reflector rows, the basic calculations of incident radiation in the collector plane from the reflector become very simple. The direct radiation from the sun is projected into a vertical plane perpendicular to the collector and reflector plane. The incident radiation onto the collector, including corrections for shadowing and lost radiation above the collector, can then be calculated using 2-D geometry. For very short collector/reflector rows a 3-D model is given for correction for the loss of specular radiation in the east west direction. The diffuse radiation is assumed to be isotropic. The diffuse radiation in the collector plane is calculated using view factors. CPC-shaped reflectors can be treated with the same models by introducing an equivalent flat reflector. The incidence angle for the solar radiation from the reflector onto the collector is in most cases higher than the incidence angle for the radiation directly from the sun. Therefore the incidence angle characteristics of the collector glazing and absorber become more important in this application. Equations are given for the incidence angles for diffuse and beam radiation. An annual performance increase of over 30%, 100-120 kW h/m[sup 2], has been measured for aged (four operating seasons) flat reflectors in the Swedish climate. With a CPC-shaped reflector and new reflector materials, a performance increase of up to 170 kW h/m[sup 2] is not unrealistic. This means that the collector and ground area requirement can be reduced by more than 30% for a given load.

Perers, B.; Karlsson, B. (Vattenfall Utveckling, Aelvkarleby (Sweden))

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Definition: Solar Water Heating | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Solar Water Heating Jump to: navigation, search Dictionary.png Solar Water Heating A low-energy intensive system that uses solar rays to heat water. It is a viable option in developing countries[1] View on Wikipedia Wikipedia Definition Solar water heating (SWH) or solar hot water (SHW) systems comprise several innovations and many mature renewable energy technologies that have been well established for many years. SWH has been widely used in Australia, Austria, China, Cyprus, Greece, India, Israel, Japan and Turkey. In a "close-coupled" SWH system the storage tank is horizontally mounted immediately above the solar collectors on the roof. No pumping is required as the hot water naturally rises into the tank through thermosiphon flow.

362

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-01-01T23:59:59.000Z

363

Thermal performance of clean horizontal radiant barriers under winter conditions: Laboratory measurements and mathematical modeling  

Science Conference Proceedings (OSTI)

Several field experiments have been performed on attic radiant barriers under winter conditions; however, most of them have been confined to the fairly mild climates of Florida, Oklahoma, and Tennessee. Only one field experiment in a very cold climate (Canada) has been performed. In addition, no previous laboratory experiments under winter conditions have been performed on an attic both with and without a radiant barrier. This paper presents the results of laboratory measurements of the thermal performance of clean horizontal radiant barriers in a simulated residential attic module under nighttime or low solar gain daytime winter conditions. Comparing tests under the same conditions with and without a radiant barrier shows that the addition of a clean horizontal radiant barrier to insulation at the R-22 to R-25 level decreases the ceiling heat flow by 6 to 8%. The experimental results were found to be in very good agreement with predictions made with a mathematical model for the thermal performance of attics.

Wilkes, K.E.; Childs, P.W.

1992-08-01T23:59:59.000Z

364

SOLERAS - Solar Energy Water Desalination Project. Solar energy falling on Yanbu, Saudi Arabia, July 1985  

Science Conference Proceedings (OSTI)

Yanbu is located in the Western Province of Saudi Arabia on the Red Sea at a latitude of 24.1 degrees North and a longitude of 37.8 degrees East. It was selected as the location for the Soleras Solar Powered Desalination Plant. This preliminary report describes the direct normal and total horizontal insolation that fell on the Yanbu Solar Powered Desalination site during the month of July 1985.

Not Available

1986-01-01T23:59:59.000Z

365

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

DOE Green Energy (OSTI)

Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities; and at LBL projects are in progress which span that range of activities. To assess various solar applications it is important to quantify the solar resource. In one project, LBL is cooperating with the Pacific Gas and Electric Company in the implementation and operation of a solar radiation data collection network in northern California. Special instruments have been developed and are now in use to measure the solar and circumsolar (around the sun) radiation. These measurements serve to predict the performance of solar designs which use focusing collectors (mirrors or lenses) to concentrate the sunlight. Efforts are being made to assist DOE in demonstrating existing solar technology. DOE's San Francisco Operations Office (SAN) has been given technical support for its management of commercial-building solar demonstration projects. The installation of a solar hot water and space heating system on an LBL building established model techniques and procedures as part of the DOE Facilities Solar Demonstration Program. Technical support is also provided for SAN in a DOE small scale technology pilot program in which grants are awarded to individuals and organizations to develop and demonstrate solar technologies appropriate to small scale use. In the near future it is expected that research will exert a substantial impact in the areas of solar heating and cooling. An absorption air conditioner is being developed that is air cooled yet suitable for use with temperatures available from flat plate collectors. With inexpensive but sophisticated micro-electronics to control their operation, the performance of many-component solar heating and cooling systems may be improved, and work is under way to develop such a controller and to evaluate commercially available units. Research is continuing on 'passive' approaches to solar heating and cooling where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed in a collaborative project with Los Alamos Scientific Laboratory. These models will be incorporated into public domain building energy analysis computer programs to be used in systems studies and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat storage material would be cooled by radiation to the night sky, then provide 'coolness' to the building. The laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Solar Heating and Cooling Research and Development Branch of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the 'shape-memory' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources such as solar heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central receiver system or a parabolic dish. The conversion of the concentrated sunlight to thermal energy would be accomplished by the absorption of the light by a dispersion of very small particles suspended in a gas. Work continued this year on chemical storage processes (such as 2SO

Authors, Various

1980-10-01T23:59:59.000Z

366

direct normal irradiance | OpenEI  

Open Energy Info (EERE)

normal irradiance normal irradiance Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords direct normal irradiance DNI GEF GHI GIS global horizontal irradiance insolation latitutde tilt irradiance NASA NREL South America SWERA TILT UNEP Data application/zip icon Download Shapefile and Cell Maps (zip, 13.9 MiB) text/csv icon Download Data (csv, 3.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

367

Local-Scale Variability of Solar Radiation in a Mountainous Region  

Science Conference Proceedings (OSTI)

Simultaneous measurements of horizontal global solar irradiance and other meteorological parameters have been taken over three years at a dense radiometric network. The network is located on a mountainous region in southeastern Spain (37N, 3W) ...

J. Tovar; F. J. Olmo; L. Alados-Arboledas

1995-10-01T23:59:59.000Z

368

A New Shadow-Ring Device for Measuring Diffuse Solar Radiation at the Surface  

Science Conference Proceedings (OSTI)

A new shadow-ring device for measuring diffuse solar radiation at the surface is presented. In this device the seasonal variation of shadow is followed by moving the detector horizontally. This unique characteristic facilitates its application ...

Amauri P. de Oliveira; Antonio J. Machado; Joo F. Escobedo

2002-05-01T23:59:59.000Z

369

Modeling the solar thermal receiver for the CSPonD Project  

E-Print Network (OSTI)

The objective was to create an accurate steady state thermal model of a molten salt receiver prototype with a horizontal divider plate in the molten salt for Concentrated Solar Power on Demand (CSPonD). The purpose of the ...

Rees, Jennifer A. (Jennifer Anne)

2011-01-01T23:59:59.000Z

370

Impact of Cloud Cover on Solar Radiative Biases in Deep Convective Regimes  

Science Conference Proceedings (OSTI)

Conflicting claims have been made concerning the magnitude of the bias in solar radiative transfer calculations when horizontal photon transport is neglected for deep convective scenarios. The difficulty of obtaining a realistic set of cloud ...

F. Di Giuseppe; A. M. Tompkins

2005-06-01T23:59:59.000Z

371

Monthly optimum inclination of glass cover and external reflector of a basin type solar still with internal and external reflector  

Science Conference Proceedings (OSTI)

In this report, we present a theoretical analysis of a basin type solar still with internal and external reflectors. The external reflector is a flat plate that extends from the back wall of the still, and can presumably be inclined forwards or backwards according to the month. We have theoretically predicted the daily amount of distillate produced by the still throughout the year, which varies according to the inclination angle of both the glass cover and the external reflector, at 30 N latitude. We found the optimum external reflector inclination for each month for a still with a glass cover inclination of 10-50 deg. The increase in the average daily amount of distillate throughout the year of a still with inclined external reflector with optimum inclination in addition to an internal reflector, compared to a conventional basin type still was predicted to be 29%, 43% or 67% when the glass cover inclination is 10 deg, 30 deg or 50 deg and the length of external reflector is half the still's length. (author)

Tanaka, Hiroshi [Mechanical Engineering Department, Kurume National College of Technology, Komorino, Kurume, Fukuoka 830-8555 (Japan)

2010-11-15T23:59:59.000Z

372

Measuring solar reflectance - Part I: Defining a metric that accurately predicts solar heat gain  

Science Conference Proceedings (OSTI)

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective ''cool colored'' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland US latitudes, this metric R{sub E891BN} can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {roofs in a building energy simulation can exaggerate the economic value N of annual cool roof net energy savings by as much as 23%. We define clear sky air mass one global horizontal (''AM1GH'') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer. (author)

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul [Heat Island Group, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

2010-09-15T23:59:59.000Z

373

Solar Energy Program: Chapter from the Energy and EnvironmentalDivision Annual Report 1980  

DOE Green Energy (OSTI)

Solar energy has become a major alternative for supplying a substantial fraction of the nation's future energy needs. The U.S. Department of Energy (DOE) supports activities ranging from the demonstration of existing technology to research on future possibilities. At Lawrence Berkeley Laboratory (LBL), projects are in progress that span a wide range of activities, with the emphasis on research to extend the scientific basis for solar energy applications, and on preliminary development of new approaches to solar energy conversion. To assess various solar applications, it is important to quantify the solar resource. Special instruments have been developed and are now in use to measure both direct solar radiation and circum-solar radiation, i.e., the radiation from near the sun resulting from the scattering of sunlight by small particles in the atmosphere. These measurements serve to predict the performance of solar designs that use focusing collectors employing mirrors or lenses to concentrate the sunlight. Efforts have continued at a low level to assist DOE in demonstrating existing solar technology by providing the San Francisco Operations Office (SAN) with technical support for its management of commercial-building solar demonstration projects. Also, a hot water and space-heating system has been installed on an LBL building as part of the DOE facilities Solar Demonstration Program. LBL continues to provide support for the DOE Appropriate Energy Technology grants program. Evaluations are made of the program's effectiveness by, for example, estimating the resulting potential energy savings. LBL also documents innovative features and improvements in economic feasibility as compared to existing conventional systems or applications. In the near future, we expect that LBL research will have a substantial impact in the areas of solar heating and cooling. Conventional and new types of high-performance absorption air conditioners are being developed that are air-cooled and suitable for use with flat plate or higher-temperature collectors. Operation of the controls test facility and computer modeling of collector loop and building load dynamics are yielding quantitative evaluations of the performance of different control strategies for active solar-heating systems. Research is continuing on ''passive'' approaches to solar heating and cooling, where careful considerations of architectural design, construction materials, and the environment are used to moderate a building's interior climate. Computer models of passive concepts are being developed and incorporated into building energy analysis computer programs which are in the public domain. The resulting passive analysis capabilities are used in systems studies leading to design tools and in the design of commercial buildings on a case study basis. The investigation of specific passive cooling methods is an ongoing project; for example, a process is being studied in which heat-storage material would be cooled by radiation to the night sky, and would then provide ''coolness'' to the building. Laboratory personnel involved in the solar cooling, controls, and passive projects are also providing technical support to the Active Heating and Cooling Division and the Passive and Hybrid Division of DOE in developing program plans, evaluating proposals, and making technical reviews of projects at other institutions and in industry. Low-grade heat is a widespread energy resource that could make a significant contribution to energy needs if economical methods can be developed for converting it to useful work. Investigations continued this year on the feasibility of using the ''shape-memory'' alloy, Nitinol, as a basis for constructing heat engines that could operate from energy sources, such as solar-heated water, industrial waste heat, geothermal brines, and ocean thermal gradients. Several projects are investigating longer-term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central

Energy and Environment Division

1981-03-01T23:59:59.000Z

374

Predicted daily and yearly average radiative performance of hyperbolic spiral solar concentrators  

SciTech Connect

Some possible applications of solar energy, such as absorption cooling and air conditioning, process heating and preheating unconventional power production systems, require heat at temperatures higher than those associated with flat plate collectors, but below those associated with focussing collectors. Such a level of collection temperatures is economically obtained using non-imaging solar collectors. They are non-focussing, moderate concentrating ratio and trough-like collectors, which are usually arranged east-west, facing south or north. One of these concentrators is the hyperbolic spiral collector, which may be a semi- or compound one. It has been shown that the optical characteristics of semi- and compound hyperbolic spiral concentrators (SHSC and CHSC) are better than those of the compound parabolic one. In this work, the instantaneous radiative performance of both semi- and compound hyperbolic spiral concentrators are extended to average daily and yearly performance. Concentrators of various angles of acceptance are used in the analysis. Its effect upon the daily and yearly performance of the concentrator is discussed. The performance is also studied for various tilt adjustment routines. The results show that the number of tilt adjustments per year is an important factor affecting the daily and yearly performance of both SHSC and CHSC. It has been found that the SHSC is more affected by tilt adjustments than the compound one. The results also indicate that concentrators of small angle of acceptance are much affected by the number of adjustments. The results also show that there is not much difference between weekly and monthly adjustments.

Rabie, L.H.

1983-12-01T23:59:59.000Z

375

Solar-climatic statistical study  

DOE Green Energy (OSTI)

The Solar-Climatic Statistical Study was performed to provide statistical information on the expected future availability of solar and wind power at various nationwide sites. Historic data (SOLMET), at 26 National Weather Service stations reporting hourly solar insolation and collateral meteorological information, were interrogated to provide an estimate of future trends. Solar data are global radiation incident on a horizontal surface, and wind data represent wind power normal to the air flow. Selected insolation and wind power conditions were investigated for their occurrence and persistence, for defined periods of time, on a monthly basis. Information of this nature are intended as an aid to preliminary planning activities for the design and operation of solar and wind energy utilization and conversion systems. Presented in this volume are probability estimates of solar insolation and wind power, alone and in combination, occurring and persisting at or above specified thresholds, for up to one week, for each of the 26 SOLMET stations. Diurnal variations of wind power were also considered. Selected probability data for each station are presented graphically, and comprehensive plots for all stations are provided on a set of microfiche included in a folder in the back of this volume.

Bray, R.E.

1979-02-01T23:59:59.000Z

376

Horizontal Drop of 21- PWR Waste Package  

SciTech Connect

The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

A.K. Scheider

2007-01-31T23:59:59.000Z

377

Horizontal flow drilling requires focus on well control  

Science Conference Proceedings (OSTI)

Horizontal wells drilled underbalanced or while flowing must have surface equipment and a blow-out preventer stack specially designed for circulating operations. Functional well control methods for drilling horizontal wells have been developed in specific regions worldwide. Special safety equipment and procedures, however, are still required in most horizontal development applications. The challenge for horizontal drilling development and underbalanced drilling is to overcome the obstacles of government regulation, reduce pollution dangers, and improve personnel and equipment safety. Well control techniques tailored to the demands of each field can help overcome these challenges. Several well control elements must be addressed carefully on each horizontal well: drilling fluid requirements, well control procedures and equipment, and surface equipment and special considerations for handling hydrocarbons produced while drilling. The paper discusses each of these elements for underbalanced horizontal drilling.

Tangedahl, M.J. (RBOP Oil Tools International Inc., Houston, TX (United States))

1994-06-13T23:59:59.000Z

378

Shallow horizontal drilling in unconsolidated sands offshore California  

SciTech Connect

Four shallow horizontal wells were drilled from Platform C in Dos Cuadras field offshore California to recover reserves inaccessible with conventional drilling techniques. The wells had true vertical depths (TVD's) ranging from 746 to 989 ft with total horizontal displacements from 1,613 to 3,788 ft. The wells had horizontal displacement TVD ratios up to 3.95. The targets were unconsolidated, high-permeability sands. This paper details well planning, drilling, and completion.

Payne, J.D.; Bunyak, M.J. (Unocal Corp., Los Angeles, CA (United States)); Huston, C.W. (Smith International Inc., Tyler, TX (United States))

1993-12-01T23:59:59.000Z

379

Guided Horizontal Drilling: A Primer for Electric Utilities  

Science Conference Proceedings (OSTI)

This document is intended to be an introduction to guided horizontal drilling, also termed horizontal directional drilling (HDD), as an alternative construction method to open trenching for the installation of underground power cables, pipes, ducts, or conduits. It is written for an audience that includes electric power engineers, designers, operations and procurement personnel. The document introduces guided horizontal drilling technology, the equipment, and several critical aspects of operating the equ...

1997-02-18T23:59:59.000Z

380

Solar Neutrinos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Neutrinos at the Conclusion of the Sudbury Neutrino Observatory Noah Oblath April 22, 2008 The study of solar neutrinos began with the idea that one could use the neutrinos...

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In determining that the use of solar energy "can help reduce the nation's reliance upon imported fuels," Georgia encourages the development of solar-energy systems. Accordingly, under Georgia's...

382

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Alaska's solar easement provisions are similar to those in many other states. They do not create an automatic right to sunlight. Rather, they allow parties to voluntarily enter into solar...

383

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

Idahos solar easement provisions allow for the access rights to sunlight for a solar energy device. The easement is transferred with the property title. Only a few Idaho communities have passed...

384

Drilling Sideways -- A Review of Horizontal Well Technology and ...  

U.S. Energy Information Administration (EIA)

DOE/EIA-TR-0565 Distribution Category UC-950 Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application April 1993 Energy Information ...

385

Solar and Wind Energy Resource Assessment in Nepal | OpenEI  

Open Energy Info (EERE)

in Nepal in Nepal Dataset Summary Description (Abstract): Global Horizontal Solar Irradiance is developed based on a linear regression model that has been developed to correlate the theoretical and ground measured solar irradiance on the basis of available ground measured Global Horizontal Solar Irradiance at three locations: a) Syangboche (Solukhumbu) b) Pulchowk (Lalitpur) and c) Prakashpur (Sunsari). These locations represent the three different geographical regions: Mountain, Hill and Plain. The model is used for converting the theoretical Global Horizontal Solar Irradiance to actual solar irradiance in 15 meteorological stations spread throughout the country. Interpolating the data obtained at these stations, a map has been developed using ArcView GIS software. The existing methodology for projecting wind speedat 2m height from DHM meteorological station data to 10m height, shows a deviated figures. In other to develop wind map, valid methodology is required which can project the low height wind speed to higher heights. The projected data (Thini and Thakmarpha) when

386

Solar project  

SciTech Connect

A solar laundry was installed on a college campus in South Carolina, including two separate systems installed in parallel. (LEW)

1983-01-01T23:59:59.000Z

387

Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling  

SciTech Connect

A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

Deshpande, A.; Flemings, P.B. (Pennsylvania State Univ., University Park, PA (United States)); Huang, J. (Exxon Production Research Co., Houston, TX (United States))

1996-01-01T23:59:59.000Z

388

Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

Not Available

1992-12-31T23:59:59.000Z

389

Solar powered desalination system  

E-Print Network (OSTI)

Desalination Systems Developers MIT BARC IMB Power Solar PVcells Solar PV cells 10 MW solar farm Solar pond FranciscoSolar Energy: PEC vs. PV Solar energy is just as important

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

390

Solar Optics  

DOE Green Energy (OSTI)

Solar opacities are presented from the center of the Sun to the photosphere. The temperatures, densities and hydrogen mass fractions are taken from the standard solar model. For the heavy element abundances the Grevesse mixture is used. In the solar interior photoabsorption is dominated by free-free absorption and they compare two sets of opacities based on two different models for the inverse bremsstrahlung. The radiative luminosities calculated from the two sets of opacities are compared with those predicted by previous models of the standard solar model and also with the known luminosity of the Sun. pressures, specific heats and the speed of sound in the solar plasma are also presented.

Rozsnyai, B.F.

2000-10-04T23:59:59.000Z

391

Solar radiation data manual for buildings  

DOE Green Energy (OSTI)

Architects and engineers use solar resource information to help design passive solar and daylighting features for buildings. Solar resource information includes data on how much solar radiation and illuminance are available for different window orientations, and how they vary. This manual provides solar radiation and illuminance values for a horizontal window and four vertical windows (facing north, east, south, and west) for 239 stations in the United States and its territories. The solar radiation values are monthly and yearly averages for the period of 1961--1990. Included are values showing the solar radiation incident on the window and the amount transmitted into the living space, with and without exterior shading of the window. Illuminance values are presented r average dismal profiles for 4 months of the year. In addition to the solar radiation and illuminance data, this manual contains tables listing climatic condition such as average temperature, average daily minimum and maximum temperature, record minimum and maxi mum temperature, average heating and cooling degree days, average humidity ratio, average wind speed, an average clearness index. The solar radiation, illuminance, and climatic data a presented in tables. Data for each station are presented on a single page, and the pages are arranged alphabetically by the state or territory two-letter abbreviation. Within a state or territory, the pages are arranged alp betically by city or island.

Marion, W.; Wilcox, S.

1995-09-01T23:59:59.000Z

392

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

393

SOLAR REFLE TION PANELS  

Unlike other solar collectors that are known to lose solar reflectivity due to issues with their design, the solar collector

394

Comparative performance of two types of evacuated tubular solar collectors in a residential heating and cooling system. Final report, October 1 1977-September 30 1978 (including 1974-1977 operating results comparisons)  

DOE Green Energy (OSTI)

Two types of evacuated tubular solar collectors have been operated in space heating, cooling, and domestic hot water heating systems in Colorado State University Solar House I. An experimental collector from Corning Glass works supplied heat to the system from January 1977 through February 1978, and an experimental collector from the Phillips Research Laboratory, Aachen, which is currently in use, has been operating since August 1978. A flat absorber plate inside a single-walled glass tube is used in the Corning design, whereas heat is conducted through a single glass wall to an external heat exchanger plate in the Philips collector. The respective aperture areas are 50.0 m/sup 2/ and 44.7 m/sup 2/. Since system designs and conditions of operation were not identical, efficiencies and energy deliveries of the two evacuated tubular collectors should not be compared without recognition of these factors. But in comparison with conventional flat plate collectors, both types show substantially reduced heat losses and improved efficiency.

Loef, G.O.G.; Duff, W.S.

1979-09-01T23:59:59.000Z

395

Application of horizontal wells in steeply dipping reservoirs  

E-Print Network (OSTI)

A three-dimensional reservoir simulation study is performed to evaluate the impact of horizontal well applications on oil recovery from steeply dipping reservoirs. The Provincia field, located in Colombia, provided the basic reservoir information for the study. Reservoir simulation results indicate that for reservoir dip angles greater than about 40', this parameter has little or no effect on the primary recovery performance for homogeneous high-permeability reservoirs, The initial gascap size and the anisotropy of permeability (kv/kh ratio) are the dominant parameters affecting the oil recovery. For thin reservoirs, the location of the horizontal injector will not significantly affect the oil recovery. Simultaneous gas and water injection through horizontal wells can increase the oil recovery factor from almost 35% under primary production to 40%. A significant incremental oil recovery could be expected by employing horizontal wells for simultaneous gas and water injection. A comparison of the production performance of horizontal and vertical producers shows that a horizontal well can produce oil up to 2.5 times the oil rate of a vertical well, without a high rate of gas production. Also, the use of horizontal producers significantly accelerates the oil recovery. For the case of a homogeneous reservoir under simultaneous gas and water injection, the horizontal well system does not give a significant increment in the oil recovery compared to the vertical well system.

Lopez Navarro, Jose David

1995-01-01T23:59:59.000Z

396

The Foundation and Application of Horizontal Well Deliverability Type Curves  

Science Conference Proceedings (OSTI)

As a development technique to improve oil and gas deliverability, horizontal wells have recently become an important technical support to develop low permeability or extra-low permeability and unconventional oil and gas fields. Therefore, it is quite ... Keywords: Horizontal well, Impermeable and circular boundary reservoir, Stehfest numerical inversion, Blasingame decline curves, Single well dynamic reserves

Rong Wang; Yonggang Duan; Quantang Fang; Cao Tingkuan; Mingqiang Wei

2011-10-01T23:59:59.000Z

397

Yaw dynamics of horizontal axis wind turbines  

DOE Green Energy (OSTI)

Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

Hansen, A.C. (Utah Univ., Salt Lake City, UT (United States))

1992-05-01T23:59:59.000Z

398

Building Energy Software Tools Directory: Panel Shading  

NLE Websites -- All DOE Office Websites (Extended Search)

Panel Shading Panel Shading lets you optimize the geometry of rows of flat-plate solar collectors (PV or solar thermal) by visualizing on an annual basis how much the rows shade...

399

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nashua Community College, Nashua NH Nashua Community College Solar Hot Water Install 16 flat-plate solar hot water collectors atop existing gym roof. 03 04 11 Stephen B. Humble...

400

Horizontal Symmetries $\\Delta(150)$ and $\\Delta(600)$  

E-Print Network (OSTI)

Using group theory of mixing to examine all finite subgroups of SU(3) with an order less than 512, we found recently that only the group $\\Delta(150)$ can give rise to a correct reactor angle $\\th_{13}$ of neutrino mixing without any free parameter. It predicts $\\sin^22\\th_{13}=0.11$ and a sub-maximal atmospheric angle with $\\sin^22\\th_{23}=0.94$, in good agreement with experiment. The solar angle $\\th_{12}$, the CP phase $\\d$, and the neutrino masses $m_i$ are left as free parameters. In this article we provide more details of this case, discuss possible gain and loss by introducing right-handed symmetries, and/or valons to construct dynamical models. A simple model is discussed where the solar angle agrees with experiment, and all its mixing parameters can be obtained from the group $\\Delta(600)$ by symmetry alone. The promotion of $\\Delta(150)$ to $\\Delta(600)$ is on the one hand analogous to the promotion of $S_3$ to $S_4$ in the presence of tribimaximal mixing, and on the other hand similar to the extens...

Lam, C S

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 California Solar Initiative - Single-Family Affordable Solar...

403

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 Solar Energy Resources Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be...

404

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Estimating Unmeasured Solar Radiation Quantities . . . . . .Weather Data . . . . . , . , . . . . . . . . . .Solar DataB. l'he Solar Constant. . . . . . C. Solar Time and Standard

Berdahl, P.

2010-01-01T23:59:59.000Z

405

Steerable vertical to horizontal energy transducer for mobile robots  

DOE Patents (OSTI)

The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Feddema, John T. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

406

Asia | OpenEI  

Open Energy Info (EERE)

10 10 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281010 Varnish cache server Asia Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Asia DNI GEF GHI insolation NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile and Cell Regions (zip, 20.2 MiB) text/csv icon Download Data (csv, 960.7 KiB)

407

insolation | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278432 Varnish cache server insolation Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal and tilted flat-plates, and 2-axis tracking concentrating collectors. (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to solar collectors. Source NREL Date Released July 31st, 2006 (8 years ago) Date Updated October 30th, 2007 (7 years ago) Keywords Asia DNI GEF GHI insolation NREL solar SWERA TILT UNEP Data application/zip icon Download Shapefile and Cell Regions (zip, 20.2 MiB) text/csv icon Download Data (csv, 960.7 KiB)

408

Handbook of solar energy data for south-facing surfaces in the United States. Volume I. An insolation, array shadowing, and reflector augmentation model  

DOE Green Energy (OSTI)

This handbook provides estimates of average available solar insolation to fixed, flat-plate, south-facing collector surfaces at various array tilt angles at numerous sites in the US. This first volume contains average daily, total insolation estimates, by month, and annual totals for 235 locations. A model that estimates the direct, diffuse, and reflected components of total insolation on an hourly, daily, and monthly basis is presented. A shadow loss model and a reflector augmentation model providing estimates of the losses and gains associated with various fixed array geometries are also described. These models can be used with the insolation model provided or with other recorded data. A FORTRAN computer program with user's guide is presented. The program can be used to generate additional handbook values or to examine the effects of array shadowing and fixed reflector augmentation effects on a daily, monthly, or annual basis. Array shadowing depends on location, array size, array tilt, array separation, and time. The program can be used to examine trade-offs between array spacing and insolation losses due to shadowing. The reflector augmentation program can be used to examine trade-offs among array size and tilt, separation, and reflector tilt to determine the combination of design values that optimize the economic objectives or technical criteria of the system.

Smith, J.H.

1980-01-15T23:59:59.000Z

409

California Solar Initiative - Solar Thermal Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Thermal Program California Solar Initiative - Solar Thermal Program Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family...

410

Building Energy Software Tools Directory: Solar Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Tool Solar Tool Solar Tool logo. Makes the process of accurately sizing and positioning overhangs, shading devices and louvers easy. This software is a must for architects, planners and building services engineers, anyone who needs to quickly determine the extent of solar penetration into buildings, overshadowing or the most appropriate means of shading a window. The program uses a flexible, parametric model on which can be placed any number of horizontal, vertical and detached shades. You can select any date, time or location, seeing immediately the resulting shadows whilst interactively manipulating the geometry to show immediately the effects. You can also choose to automatically optimise the size and shape of any shading device over any range of dates and times you require. Screen Shots

411

Vapor Flow to Horizontal Wells in Unsaturated Zones Hongbin Zhan* and Eungyu Park  

E-Print Network (OSTI)

Vapor Flow to Horizontal Wells in Unsaturated Zones Hongbin Zhan* and Eungyu Park ABSTRACT and vaporthree dimensional form for a horizontal-well sink in an unsaturated zone. This is done by solving; horizontal-well axis to obtain the solution of flow to a horizontal-well Zhan and Cao, 2000). Horizontal

Zhan, Hongbin

412

Solar Decathlon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Solar Decathlon Sara Farrar-Nagy National Renewable Energy Laboratory sara.farrar-nagy@nrel.gov, 303-384-7514 April 3, 2013 Solar Decathlon 2009 Solar Decathlon 2011 Solar Decathlon 2013 & XPO Washington, D.C. Washington, D.C. Irvine, California 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: How to provide workforce training, improve building science instruction, foster innovation in whole-building design, and

413

Solar Cells  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Here we are using microwaves for increasing the surface area of titania nanopowders for energy based applications like dye sensitized solar...

414

Solar News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency http://energy.gov/eere/articles/energy-department-announces-19-million-drive-down-solar-soft-costs-increase-hardware solar-soft-costs-increase-hardware" class="title-link">Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency

415

Fraced horizontal well shows potential of deep tight gas  

SciTech Connect

Successful completion of a multiple fraced, deep horizontal well demonstrated new techniques for producing tight gas sands. In Northwest Germany, Mobil Erdgas-Erdoel GmbH drilled, cased, and fraced the world`s deepest horizontal well in the ultra-tight Rotliegendes ``Main`` sand at 15,687 ft (4,783 m) true vertical depth. The multiple frac concept provides a cost-efficient method to economically produce significant gas resources in the ultra-tight Rotliegendes ``Main`` sand. Besides the satisfactory initial gas production rate, the well established several world records, including deepest horizontal well with multiple fracs, and proved this new technique to develop ultra-tight sands.

Schueler, S. [Mobil Erdgas-Erdoel GmbH, Celle (Germany); Santos, R. [Mobil Erdgas-Erdoel GmbH, Hamburg (Germany)

1996-01-08T23:59:59.000Z

416

Application of compound parabolic concentrators to solar photovoltaic conversion. Final report  

DOE Green Energy (OSTI)

The final results of an analytical and experimental study of the application of nonimaging concentrators to solar photovoltaic conversion are presented. Two versions of the Compound Parabolic Concentrator (CPC) were considered, the Dielectric Compound Parabolic Concentrator (DCPC) in which the concentrator is filled with a dielectric material that satisfies requirements for Total Internal Reflection (TIR), and a conventional CPC in which metallic reflection is used for the mirror surfaces. Two working prototype panels were constructed and tested during the course of the program. The first was a 1.22 m by 1.22 m DCPC panel that requires only ten adjustments/year, has a panel utilization factor (packing factor) of 96%, and delivered the equivalent of 138 W (peak) under 1 kW/m/sup 2/ direct insolation. The net energy conversion efficiency was 10.3% over the entire panel area. The second panel was a conventional CPC panel measuring 1.22 m by 1.22 m. This panel requires thirty-six adjustments per year, and delivers the equivalent of 97 W when under 1 kW/m/sup 2/ direct insolation. The results of a cost-effectiveness analysis of the concept of using nonimaging concentrators for photovoltaic conversion are also presented. The concentrator panels showed a decided savings in comparison to the cost of flat plate photovoltaic panels, both at present-day silicon costs ($2000/m/sup 2/) and projected lower silicon costs ($200/m/sup 2/). At a silicon cost of $200/m/sup 2/, a two-dimensional (cone) version of the collector has the potential for achieving from $0.60-2.00 per average watt (about $0.15-0.50 per peak watt) while requiring only crude (+-4.5/sup 0/) tracking.

Cole, R.L.; Gorski, A.J.; Graven, R.M.; McIntire, W.R.; Schertz, W.W.; Winston, R.; Zwerdling, S.

1977-02-01T23:59:59.000Z

417

DOE Solar Decathlon: Solar Decathlon Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Workshops Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Videos For video of the U.S. Department of Energy Solar Decathlon 2011, see the collections listed below or visit the U.S. Department of Energy Solar Decathlon YouTube Channel. General Solar Decathlon Videos Watch these videos to learn about the Solar Decathlon competition and event. Solar Decathlon House Video Tours Learn about each of the U.S. Department of Energy Solar Decathlon teams and their houses in these video tours. Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the Solar Decathlon

418

Market potential for solar thermal energy supply systems in the United States industrial and commercial sectors: 1990--2030. Final report  

DOE Green Energy (OSTI)

This report revises and extends previous work sponsored by the US DOE on the potential industrial market in the United States for solar thermal energy systems and presents a new analysis of the commercial sector market potential. Current and future industrial process heat demand and commercial water heating, space heating and space cooling end-use demands are estimated. The PC Industrial Model (PCIM) and the commercial modules of the Building Energy End-Use Model (BEEM) used by the DOE`s Energy Information Administration (EIA) to support the recent National Energy Strategy (NES) analysis are used to forecast industrial and commercial end-use energy demand respectively. Energy demand is disaggregated by US Census region to account for geographic variation in solar insolation and regional variation in cost of alternative natural gas-fired energy sources. The industrial sector analysis also disaggregates demand by heat medium and temperature range to facilitate process end-use matching with appropriate solar thermal energy supply technologies. The commercial sector analysis disaggregates energy demand by three end uses: water heating, space heating, and space cooling. Generic conceptual designs are created for both industrial and commercial applications. Levelized energy costs (LEC) are calculated for industrial sector applications employing low temperature flat plate collectors for process water preheat; parabolic troughs for intermediate temperature process steam and direct heat industrial application; and parabolic dish technologies for high temperature, direct heat industrial applications. LEC are calculated for commercial sector applications employing parabolic trough technologies for low temperature water and space heating. Cost comparisons are made with natural gas-fired sources for both the industrial market and the commercial market assuming fuel price escalation consistent with NES reference case scenarios for industrial and commercial sector gas markets.

Not Available

1991-12-01T23:59:59.000Z

419

Numerical and experimental investigation of a supersonic flow field around solid fuel on an inclined flat plate  

Science Conference Proceedings (OSTI)

This research adopts a shock tube 16 meters long and with a 9 cmbore to create a supersonic, high-temperature, and high-pressure flowfield to observe the gasification and ignition of HTPB solid fuel under different environments. Also, full-scale 3D numerical ...

Uzu-Kuei Hsu

2009-01-01T23:59:59.000Z

420

Wind Mixing In a Turbulent Surface Layer in the Presence of a Horizontal Density Gradient  

Science Conference Proceedings (OSTI)

The effect of a horizontal density gradient of buoyancy on the turbulent kinetic energy budget of the surface mixed layer in the ocean is discussed. The combination of a horizontal buoyancy gradient and a vertical shear of the horizontal velocity ...

Johan Rodhe

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Horizontal and Vertical Structure of the Lake Turkana Jet  

Science Conference Proceedings (OSTI)

An observational study was undertaken at selected sites in north Kenya (Turkana channel) in February 1983 and in JuneJuly 1984 to investigate the horizontal and vertical extent of the Turkana low-level jet. Observations indicate that strong ...

Joseph Hiri Kinuthia

1992-11-01T23:59:59.000Z

422

Means and Standard Deviations of Horizontal Wind Components  

Science Conference Proceedings (OSTI)

An algorithm is presented that computes a measure of horizontal wind dispersion. The algorithm features a compact, machine economic structure that removes wind direction scale discontinuities. By requiring only one pass through the input data, ...

G. R. Ackermann

1983-05-01T23:59:59.000Z

423

Does Increasing Horizontal Resolution Produce More Skillful Forecasts?  

Science Conference Proceedings (OSTI)

This paper examines the impacts of increasing horizontal resolution on the performance of mesoscale numerical weather prediction models. A review of previous studies suggests that decreasing grid spacing to approximately 10 km orless generally ...

Clifford F. Mass; David Ovens; Ken Westrick; Brian A. Colle

2002-03-01T23:59:59.000Z

424

Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)  

DOE Green Energy (OSTI)

This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

2006-06-01T23:59:59.000Z

425

Does Increased Horizontal Resolution Improve Hurricane Wind Forecasts?  

Science Conference Proceedings (OSTI)

The representation of tropical cyclone track, intensity, and structure in a set of 69 parallel forecasts performed at each of two horizontal grid increments with the Advanced Research Hurricane (AHW) component of the Weather and Research and ...

Christopher Davis; Wei Wang; Jimy Dudhia; Ryan Torn

2010-12-01T23:59:59.000Z

426

Diagnosing Mesoscale Vertical Motion from Horizontal Velocity and Density Data  

Science Conference Proceedings (OSTI)

The mesoscale vertical velocity is obtained by solving a generalized omega equation (? equation) using density and horizontal velocity data from three consecutive quasi-synoptic high-resolution surveys in the Alboran Sea. The Atlantic Jet (AJ) ...

Enric Palls Sanz; lvaro Videz

2005-10-01T23:59:59.000Z

427

The Response of a Uniform Horizontal Temperature Gradient to Heating  

Science Conference Proceedings (OSTI)

The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient ...

Maarten H. P. Ambaum; Panos J. Athanasiadis

2007-10-01T23:59:59.000Z

428

Mixed Layer Restratification Due to a Horizontal Density Gradient  

Science Conference Proceedings (OSTI)

The restratification in the surface mixed layer driven by a horizontal density gradient following a storm is examined. For a constant layer depth H and constant buoyancy gradient |bx| = M2, geostrophic adjustment leads to new stratification with ...

Amit Tandon; Chris Garrett

1994-06-01T23:59:59.000Z

429

A New Horizontal Gradient, Continuous Flow, Ice Thermal Diffusion Chamber  

Science Conference Proceedings (OSTI)

A continuous-flow, horizontal gradient, ice thermal diffusion chamber has been developed and tested for heterogeneous ice nucleation of aerosol particles under accurately controlled supersaturations and supercooling in the absence of a substrate. ...

E. M. Tomlinson; N. Fukuta

1985-12-01T23:59:59.000Z

430

On Computing the Surface Horizontal Pressure Gradient over Elevated Terrain  

Science Conference Proceedings (OSTI)

Methods are proposed for calculating the surface horizontal pressure gradient or geostrophic wind in a local area over elevated terrain from randomly spaced surface observations. These procedures avoid many of the problems associated with sea-...

Maurice Danard

1989-06-01T23:59:59.000Z

431

On Computing the Horizontal Pressure Gradient Force in Sigma Coordinates  

Science Conference Proceedings (OSTI)

Corby et al. present a finite-difference expression for the horizontal pressure gradient force in sigma coordinates that, in a barotropic atmosphere where the temperature varies linearly with logarithm of pressure, has the same net truncation ...

Maurice Danard; Qing Zhang; John Kozlowski

1993-11-01T23:59:59.000Z

432

Refrigerant forced-convection condensation inside horizontal tubes  

E-Print Network (OSTI)

Condensing heat transfer rates inside a horizontal tube were investigated -for large quality changes across the tube. The proposed correlation is a modification of the work of Rohsenow, Webber and Ling [29]. The result of ...

Bae, Soonhoon

1968-01-01T23:59:59.000Z

433

Asymmetric Tidal Mixing due to the Horizontal Density Gradient  

Science Conference Proceedings (OSTI)

Stratification and turbulent mixing exhibit a floodebb tidal asymmetry in estuaries and continental shelf regions affected by horizontal density gradients. The authors use a large-eddy simulation (LES) model to investigate the penetration of a ...

Ming Li; John Trowbridge; Rocky Geyer

2008-02-01T23:59:59.000Z

434

Simulation studies of waterflood performance with horizontal wells.  

E-Print Network (OSTI)

??Two-and three-dimensional simulation studies have been carried out to evaluate waterflood oil recovery in a 40-acre 5-spot pattern using horizontal and vertical well systems. The (more)

Ferreira, Horacio

2012-01-01T23:59:59.000Z

435

Modeling Vertical and Horizontal Diffusivities with the Sigma Coordinate System  

Science Conference Proceedings (OSTI)

The use of diffusive terms in numerical ocean models is examined relative to different coordinate systems. The conventional model for horizontal diffusion is found to be incorrect when bottom topographical slopes are large. A new formulation is ...

George L. Mellor; Alan F. Blumberg

1985-08-01T23:59:59.000Z

436

Horizontal Divergence Associated with Zonally Isolated Jet Streams  

Science Conference Proceedings (OSTI)

Horizontal divergence in the upper troposphere associated with zonally isolated jet streams in the climatological-mean fold for the Northern Hemisphere winter is examined by using the wind fields obtained from the NMC operational analyses in the ...

Hisashi Nakamura

1993-07-01T23:59:59.000Z

437

On the Horizontal Extent of the Canada Basin Thermohaline Steps  

Science Conference Proceedings (OSTI)

Microstructure profiles of temperatures through the diffusive thermohaline staircase above the Atlantic layer core in the Canada Basin of the Arctic Ocean are used to investigate the horizontal scales of layers. Daily profiles during two periods, ...

Laurie Padman; Thomas M. Dillon

1988-10-01T23:59:59.000Z

438

Horizontal non-contact slumping of flat glass  

E-Print Network (OSTI)

This paper continues the work of M. Akilian and A. Husseini on developing a noncontact glass slumping/shaping process. The shift from vertical slumping to horizontal slumping is implemented and various technologies required ...

Sung, Edward, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

439

SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES  

Science Conference Proceedings (OSTI)

Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

Richard Schultz

2010-08-01T23:59:59.000Z

440

Identification of air pollutant sampling period using horizontal ...  

Science Conference Proceedings (OSTI)

owing to intense incoming solar radiation causing heating of earth surface and subsequent large vertical convection current. Atmospheric dilution potential.

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals  

DOE Patents (OSTI)

Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

Ciszek, Theodore F. (Evergreen, CO)

1987-01-01T23:59:59.000Z

442

Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals  

DOE Patents (OSTI)

Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

Ciszek, T.F.

1984-09-12T23:59:59.000Z

443

Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application  

Reports and Publications (EIA)

Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

Robert F. King

1993-04-01T23:59:59.000Z

444

Solar ponds  

DOE Green Energy (OSTI)

The different types of solar ponds are described, including the nonconvecting salt gradient pond and various saltless pond designs. Then the availability and cost of salts for salt gradient ponds are discussed and costs are compared. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirement is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

Jayadev, T.S.; Edesess, M.

1980-04-01T23:59:59.000Z

445

Solar Two  

DOE Green Energy (OSTI)

Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

Not Available

1998-04-01T23:59:59.000Z

446

High Resolution Solar Energy Resource Assessment within the UNEP Project  

Open Energy Info (EERE)

High Resolution Solar Energy Resource Assessment within the UNEP Project High Resolution Solar Energy Resource Assessment within the UNEP Project SWERA Dataset Summary Description (Abstract): To expand the world wide use of renewable energy a consistent, reliable, verifiable, and easily accessible database of solar energy resources is needed. Within the UNEP (United Nations Environment Programme) Project SWERA (Solar and Wind Energy Resource Assessment, http://swera.unep.net), funded by GEF (Global Environment Facility), a global database of solar and wind energy resources will be set up. SWERA will provide, beside the wind products, global horizontal irradiance, which is mostly used to plan photovoltaic systems, and direct normal irradiance, which is needed for solar concentrating systems. For selected countries throughout the world, additionally high resolution data will be produced which is required to plan solar energy systems in detail. Within SWERA, the partners DLR, SUNY and INPE calculate solar irradiance with high temporal resolution of 1 hour and with a spatial resolution of 10km x 10km. By processing data from geostationary satellites we provide solar irradiance data for Cuba, El Salvador, Honduras, Nicaragua, Guatemala, Brazil, Ghana, Ethiopia, Kenya, China, Sri Lanka, Nepal, and Bangladesh. In this paper we describe the ongoing work of developing this high resolution solar irradiance tx_metadatatool and cross-checking of the used solar irradiance algorithms for various satellite data.

447

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

448

Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain  

SciTech Connect

Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

2010-05-14T23:59:59.000Z

449

Solar PST | Open Energy Information  

Open Energy Info (EERE)

Solar PST Jump to: navigation, search Name Solar PST Place Bergondo, Spain Zip 15 165 Sector Solar Product Spanish company producing thermodynamic solar panels. References Solar...

450

Solar paraphotons  

E-Print Network (OSTI)

I revisit the question of production of paraphotons, or hidden photons, in the Sun and suggest that a simultaneous observations of solar flares by conventional instruments and by axion helioscopes may provide a discovery channel for paraphotons.

Troitsky, Sergey V

2011-01-01T23:59:59.000Z

451

Solar Easements  

Energy.gov (U.S. Department of Energy (DOE))

In Kentucky, solar easements may be obtained for the purpose of ensuring access to direct sunlight. Easements must be expressed in writing and will become an interest in real property that may be...

452

A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part I: Methodology and Homogeneous Biases  

Science Conference Proceedings (OSTI)

A method of computing grid-averaged solar radiative fluxes for horizontally inhomogeneous marine boundary layer cloud fields is presented. Its underlying assumptions are as follows: i) the independent pixel approximation (IPA) is applicable and ...

Howard W. Barker

1996-08-01T23:59:59.000Z

453

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

The University of Wisconsin Interactive Solar Heating DesignProgram, , , , c, Solar Heating of Buildings and DomesticProperty Standards for Solar Heating and Domestic Hot Water

Berdahl, P.

2010-01-01T23:59:59.000Z

454

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

Program, , , , c, Solar Heating of Buildings and DomesticR.L. (1976): Solar Heating of Buildings and Domestic Hotthe costs. c. SOLAR HEATING OF BUILDINGS AND DOMESTIC HOT

Berdahl, P.

2010-01-01T23:59:59.000Z

455

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Energy - Value of Solar Residential Rate (Texas) Austin...

456

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 City of Tallahassee Utilities - Solar Water Heating Rebate The...

457

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Austin Utilities - Solar Rebate Program Austin Utilities provides...

458

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Sources Renewables Solar Solar July 12, 2013 Commonwealth Solar Hot Water Commercial Program Feasibility study...

459

DOE Solar Decathlon: Visit  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Solar Decathlon 2013 at the Orange Country Great Park in Irvine, California The Solar Decathlon houses and surrounding Solar Decathlon village are open to...

460

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 8, 2009 DOE Announces 87 Million in Funding to Support Solar Energy Technologies Projects Aim to Accelerate Adoption of Solar Energy and Develop Solar Workforce September...

Note: This page contains sample records for the topic "horizontal flat-plate solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

contracts which must be entered into in order to ensure uninterrupted solar access for solar energy devices. Solar easement agreements are required at a minimum to contain...

462

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Solar Energy Technologies Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for homes,...

463

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, and Energy Efficiency Easements and Rights Laws Colorado's solar access laws, which date back to 1979, prohibit any residential covenants that restrict solar access....