National Library of Energy BETA

Sample records for horizontal copolar channel

  1. Visual inspections of N Reactor horizontal control rod channels

    SciTech Connect (OSTI)

    Woodruff, E.M.

    1990-07-01

    This document describes the examination of thirteen horizontal control rod channels during the N Reactor Surveillance Program campaigns of 1987 and 1988. Traverses with miniature video cameras recorded the condition and relative positions of graphite blocks that form channel walls. The major conclusion confirms that no conditions exist that would prevent rod insertion. Where encroachment of broken filler block keys into the channel indicated a potential for rod motion impairment their removal by displacement into gaps between blocks was performed as preventive maintenance. In some locations a chisel was used in clearing keys lodged in gaps between tube blocks. Other observations include counts of safety balls observed in channels, breaks in tube blocks and Tee-bars and separations at Tee-bar junctions that results from axial graphite contraction. 15 refs., 18 figs., 6 tabs.

  2. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  3. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the development of simple, robust, MSHA-acceptable clamping unit. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  4. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-08-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  5. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  6. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for orienting the sensor once it is emplaced in the borehole. If the sensors (geophones) do not have the same orientation, the data will be essentially worthless. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  7. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  8. Channeling

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Stephanie Mack Office of Science, Science Undergraduate Laboratory Internship (SULI) University of Ottawa SLAC National Accelerator Laboratory...

  9. ARM - Measurement - Horizontal wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsHorizontal wind ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Horizontal wind The horizontal wind in terms of either speed and direction, or the zonal (u) and meridional (v) components. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  10. Horizontal Plate Plate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unknown Title: Horizontal Plate Plate GeospatialDataPresentationForm: vector digital data OnlineLinkage:

  11. Horizontal well planning

    SciTech Connect (OSTI)

    Schuh, F.J. )

    1991-03-01

    Interest in horizontal drilling has exploded at a rate well above even the most optimistic projections. Certainly, this technique will not end with the Bakken and Austin Chalk plays. However, future reservoirs will undoubtedly require much more complicated well designs and multi-disciplined technical interaction than has been used so far. The horizontal drilling costs are too high to permit resolving of all the technical issues by trial and error. A multi-disciplinary team approach will be required in order for horizontal drilling to achieve its economic potential.

  12. Horizontal drilling spurs optimism

    SciTech Connect (OSTI)

    Crouse, P.C. )

    1991-02-01

    1990 proved to be an exciting year for horizontal wells. This budding procedure appears to be heading for the mainstream oil and gas market, because it can more efficiently recover hydrocarbons from many reservoirs throughout the world. This paper reports on an estimated 1,000 wells that were drilled horizontally (all laterals) in 1990, with the Austin Chalk formation of Texas accounting for about 65% of all world activity. The Bakken Shale play in Montana and North Dakota proved to be the second most active area, with an estimated 90 wells drilled. Many operators in this play have indicated the bloom may be off the Bakken because of poor results outside the nose of the formation, further complicated by some of the harshest rock, reservoir and completion problems posed to horizontal technology.

  13. Horizontal Advanced Tensiometer

    DOE Patents [OSTI]

    Hubbell, Joel M.; Sisson, James B.

    2004-06-22

    An horizontal advanced tensiometer is described that allows the monitoring of the water pressure of soil positions, particularly beneath objects or materials that inhibit the use of previous monitoring wells. The tensiometer includes a porous cup, a pressure transducer (with an attached gasket device), an adaptive chamber, at least one outer guide tube which allows access to the desired horizontal position, a transducer wire, a data logger and preferably an inner guide tube and a specialized joint which provides pressure on the inner guide tube to maintain the seal between the gasket of the transducer and the adaptive chamber.

  14. Horizontal baffle for nuclear reactors

    DOE Patents [OSTI]

    Rylatt, John A. (Monroeville, PA)

    1978-01-01

    A horizontal baffle disposed in the annulus defined between the core barrel and the thermal liner of a nuclear reactor thereby physically separating the outlet region of the core from the annular area below the horizontal baffle. The horizontal baffle prevents hot coolant that has passed through the reactor core from thermally damaging apparatus located in the annulus below the horizontal baffle by utilizing the thermally induced bowing of the horizontal baffle to enhance sealing while accommodating lateral motion of the baffle base plate.

  15. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-06-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  16. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-07-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. No work was completed during this reporting period as project personnel are waiting for the mine to become available for final field testing of the array. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  17. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect (OSTI)

    Erik C. Westman

    2003-01-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  18. Nuclear component horizontal seismic restraint

    DOE Patents [OSTI]

    Snyder, Glenn J.

    1988-01-01

    A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.

  19. Industry survey for horizontal wells. Final report

    SciTech Connect (OSTI)

    Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  20. Entrance Channel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrance Channel Correlations in 40Ca Jeffrey Scott Bull -0.5 0.0 0.5 Triangle Universities Nuclear Laboratory Department of Physics Duke University 1989 ENTRANCE CHANNEL CORRELATIONS IN 40Ca by Jeffrey Scott Bun Depanment of Physics Duke University Date: Approved: Dissenation submitted in panial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 1989 -- .. ABSTRACT (Physics-Nuclear) ENTRANCE CHANNEL

  1. Horizontal drilling improves recovery in Abu Dhabi

    SciTech Connect (OSTI)

    Muhairy, A.A. ); Farid, E.A. )

    1993-09-13

    Both onshore and offshore Abu Dhabi, horizontal wells have increased productivity three to four times more than that from vertical and deviated wells in the same reservoirs. Horizontal drilling technology was first applied in Abu Dhabi in February 1988, and through March 1993, 48 wells have been horizontally drilled. During the 5 years of horizontal drilling, the experience gained by both operating company and service company personnel has contributed to a substantial improvement in drilling rate, and hence, a reduction in drilling costs. The improvements in drilling and completions resulted from the following: The horizontal drilling and completion operations were analyzed daily, and these follow-up analyses helped optimize the planning of subsequent wells. The bits and bottom hole assemblies were continuously analyzed for optimum selections. Steerable drilling assemblies were found very effective in the upper sections of the wells. The paper describes drilling activities onshore and offshore, completion design, and the outlook for future well drilling.

  2. Bakken shale typifies horizontal drilling success

    SciTech Connect (OSTI)

    Leibman, P.R. )

    1990-12-01

    Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

  3. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOE Patents [OSTI]

    Summers, David A.; Barker, Clark R.; Keith, H. Dean

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  4. Consorcio Horizonte Asja | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Consorcio Horizonte Asja Place: Brazil Product: Brazil-based joint venture between two subsidiaries of Asja.biz developing a 4.5MW biogas plant....

  5. Successful horizontal completions require an integrated approach

    SciTech Connect (OSTI)

    Richard, B.; Smejkal, K.; Penberthy, W. Jr.

    1997-01-01

    While a perfect well completion may not exist, depleting a hydrocarbon resource at a sustained high rate--without a workover--is the ultimate goal. Unfortunately, many horizontal well completions fail to achieve this due to wellbore damage or loss of reservoir pressure. These conditions manifest themselves in reduced production rates, extended well life and reduced profitability. Standard completion techniques are not always compatible with each other for site specific well applications. The combination of two incompatible technologies or slight changes in a completion procedure may negatively impact productivity. Hence, the most successful horizontal completion results are obtained using a compatible integrated system approach--an approach that carefully combines the best completion tools and processes to deliver an undamaged well completed at the lowest possible cost. After studying the compatibilities of various drill-in fluids, screens, filter cakes and gravel packs, recommended procedures are presented for successfully completing horizontal wells.

  6. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  7. Waterflooding in a system of horizontal wells

    SciTech Connect (OSTI)

    Bedrikovetsky, P.G.; Magarshak, T.O.; Shapiro, A.A.

    1995-10-01

    An approximate analytical method for the simulation of waterflooding in a system of horizontal wells is developed. The method is based on an advanced stream-line concept. The essence of this new method is the exact solution for the 3D two-phase flow problem in the system of coordinates linked with the stream lines under the only assumption of the immobility of stream lines. A software based on this approach was developed for IBM-compatible PC. It allows one multivariant comparative studies of immiscible displacement in systems of horizontal, vertical and slant wells. The simulator has been used in order to optimize geometrical parameters of a regular well system and to predict recovery in conditions of Prirazlomnoye offshore oil field.

  8. Horizontal subsea trees allow frequent deepwater workovers

    SciTech Connect (OSTI)

    Krenek, M.; Hall, G.; Sheng, W.Z.

    1995-05-01

    Horizontal subsea wellheads have found application in the Liuhua oil field in the South China Sea. These trees allow installation and retrieval of downhole equipment through the tree without having to disturb the tree or its external connections to flow lines, service lines, or control umbilicals. This access to the well is important because the Liuhua wells will be produced with electrical submersible pumps (ESPs), which may have relatively short intervals between maintenance, leading to frequent well work. The wells will be completed subsea in about 300 m of water. The large bore, horizontal trees allow all downhole equipment to be pulled without removal of the subsea tree. This wellhead configuration also provides well control and vertical access to downhole equipment through a conventional marine drilling riser and subsea blowout preventer (BOP), eliminating the need for costly specialized completion risers. Another benefit of the horizontal tree is its extremely compact profile with a low number of valves for well control. Valve size and spacing are decoupled from the size and bore spacing of the tubing hanger. The tree`s low profile geometry reduces costs of manufacturing the tree and framework and optimize load transfer to the wellhead.

  9. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels The ...

  10. Flow distribution channels to control flow in process channels...

    Office of Scientific and Technical Information (OSTI)

    Flow distribution channels to control flow in process channels Citation Details In-Document Search Title: Flow distribution channels to control flow in process channels You are ...

  11. A mechanistic determination of horizontal flow regime bound using void wave celerity

    SciTech Connect (OSTI)

    Park, J.W.

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  12. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Praeg, W.F.

    1995-01-31

    An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

  13. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Pareg, Walter F.

    1990-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  14. Sidewall containment of liquid metal with horizontal alternating magnetic fields

    DOE Patents [OSTI]

    Praeg, Walter F.

    1995-01-01

    An apparatus for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers.

  15. YPF uses horizontal reentry to aid thin bed production

    SciTech Connect (OSTI)

    Acosta, M.R.; Leiro, F.A.; Sesano, G.S.; Hill, D.

    1997-01-01

    Reentry and horizontal drilling/completion techniques have proven themselves useful in exploiting thin beds. A pilot horizontal reentry contracted by Yacimiento Petroliferos Fiscales (YPF) for a marginal well in its Lomita Sur field resulted in decreased water coning and production rates four times greater than expected. Further horizontal reentries in this thin-bed field are planned.

  16. Channel | Open Energy Information

    Open Energy Info (EERE)

    Channel Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleChannel&oldid596209" Feedback Contact needs updating Image needs updating Reference...

  17. USING CORONAL CELLS TO INFER THE MAGNETIC FIELD STRUCTURE AND CHIRALITY OF FILAMENT CHANNELS

    SciTech Connect (OSTI)

    Sheeley, N. R. Jr.; Warren, H. P.; Martin, S. F.; Panasenco, O.

    2013-08-01

    Coronal cells are visible at temperatures of {approx}1.2 MK in Fe XII coronal images obtained from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft. We show that near a filament channel, the plumelike tails of these cells bend horizontally in opposite directions on the two sides of the channel like fibrils in the chromosphere. Because the cells are rooted in magnetic flux concentrations of majority polarity, these observations can be used with photospheric magnetograms to infer the direction of the horizontal field in filament channels and the chirality of the associated magnetic field. This method is similar to the procedure for inferring the direction of the magnetic field and the chirality of the fibril pattern in filament channels from H{alpha} observations. However, the coronal cell observations are easier to use and provide clear inferences of the horizontal field direction for heights up to {approx}50 Mm into the corona.

  18. Reservoir visualization for geosteering of horizontal wells

    SciTech Connect (OSTI)

    Bryant, I.D.; Baygun, B.; Frass, M.; Casco, R.

    1996-08-01

    Horizontal infill wells in the Lower Lagunillas reservoir of Bloque IV, Lake Maracaibo are being drilled in thin, oil-bearing zones that have been bypassed by gas. Steering the horizontal sections of these wells requires high resolution reservoir models that can be updated during drilling. An example from well VLD-1152 serves to illustrate how these models are generated and used. Resistivity images collected by wireline and logging-while-drilling (LWD) tools in the pilot well formed the basis of prejob, high resolution modeling of the formation properties. 3-D seismic data and data from an offset vertical seismic profile collected in the pilot well provided the structural model. During drilling information from cuttings and LWD tools was used to continuously update these models. After the well had been drilled, analysis of LWD resistivity images provided a detailed model of the relationship between the well trajectory and the dip of the formation. This information is used to improve interpretation of the LWD logs to provide a petrophysical evaluation of the well.

  19. Planning and well evaluations improve horizontal drilling results

    SciTech Connect (OSTI)

    Hovda, S. )

    1994-10-31

    A systematic approach, including better planning and performance evaluation, improved the horizontal drilling efficiency of a multiwell program in the Oseberg field in the North Sea. The horizontal drilling program in the Oseberg field is one of the most comprehensive horizontal drilling programs in the North Sea. The present horizontal drilling program consists of 14 oil producers from the C platform and 18 from the B platform. Total horizontal displacement varies from around 1,500 m to 5,540 m. The lengths of the horizontal section vary from 600 m to 1,500 m. The paper discusses will planning, directional drilling, drilling problems with coal seams and orientation, true vertical depth control, horizontal liner cement, spacer system, cement slurries, job execution, and results.

  20. Channel nut tool

    DOE Patents [OSTI]

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  1. Passive magnetic bearing for a horizontal shaft

    DOE Patents [OSTI]

    Post, Richard F.

    2003-12-02

    A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.

  2. Microfluidic channel fabrication method

    DOE Patents [OSTI]

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  3. MHK ISDB/Instruments/TRDI Workhorse Horizontal ADCP | Open Energy...

    Open Energy Info (EERE)

    Horizontal ADCP < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help Under...

  4. Zero Discharge Water Management for Horizontal Shale Gas Well...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of...

  5. Horizontal well replaces hydraulic fracturing in North Sea gas well

    SciTech Connect (OSTI)

    Reynolds, D.A.; Seymour, K.P. )

    1991-11-25

    This paper reports on excessive water production from hydraulically fractured wells in a poor quality reservoir in the North SEa which prompted the drilling of a horizontal well. Gas production from the horizontal well reached six times that of the offset vertical wells, and no water production occurred. This horizontal well proved commercial the western section of the Anglia field. Horizontal drilling in the North SEa is as an effective technology to enhance hydrocarbon recovery from reservoirs that previously had proven uncommercial with other standard techniques. It is viable for the development of marginal reservoirs, particularly where conditions preclude stimulation from hydraulic fracturing.

  6. MHK Technologies/Horizontal Axis Logarithmic Spiral Turbine ...

    Open Energy Info (EERE)

    Horizontal Axis Logarithmic Spiral Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Golden...

  7. Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling

    SciTech Connect (OSTI)

    Deshpande, A.; Flemings, P.B. ); Huang, J. )

    1996-01-01

    A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

  8. Method and application of horizontal slice volumetrics to waterflood management and horizontal drilling

    SciTech Connect (OSTI)

    Deshpande, A.; Flemings, P.B.; Huang, J.

    1996-12-31

    A computer mapping program was used to make horizontal slices of pore volume. The goal was to create maps that showed the distribution of pore volume vertically and laterally throughout the reservoir. That information was used for studying waterflood feasibility, monitoring an existing waterflood, and planning a horizontal well. This work was done at the United States Naval Petroleum Reserve No. 1, Elk Hills, CA. The reservoirs are the Miocene aged Northwest Stevens A sands and T & N sands. These sands are a series of stacked deep water turbidites draped across the western nose of a plunging anticline. To determine the reservoir sensitivity to the approach used to calculate horizontal slice volume, two methods were tested. The first involves creation of four isochores, bounded above by the sand top or base and below by the slice top or base, whose volumes are combined to give the slice volume. The second involves creation of a grid of the slice itself from which slice volume is calculated.

  9. Yaw dynamics of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Hansen, A.C. )

    1992-05-01

    Designers of a horizontal axis wind turbine yaw mechanism are faced with a difficult decision. They know that if they elect to use a yaw- controlled rotor then the system will suffer increased initial cost and increased inherent maintenance and reliability problems. On the other hand, if they elect to allow the rotor to freely yaw they known they will have to account for unknown and random, though bounded, yaw rates. They will have a higher-risk design to trade-off against the potential for cost savings and reliability improvement. The risk of a yaw-free system could be minimized if methods were available for analyzing and understanding yaw behavior. The complexity of yaw behavior has, until recently, discouraged engineers from developing a complete yaw analysis method. The objectives of this work are to (1) provide a fundamental understanding of free-yaw mechanics and the design concepts most effective at eliminating yaw problems, and (2) provide tested design tools and guidelines for use by free-yaw wind systems manufacturers. The emphasis is on developing practical and sufficiently accurate design methods.

  10. Steerable vertical to horizontal energy transducer for mobile robots

    DOE Patents [OSTI]

    Spletzer, Barry L.; Fischer, Gary J.; Feddema, John T.

    2001-01-01

    The present invention provides a steerable vertical to horizontal energy transducer for mobile robots that less complex and requires less power than two degree of freedom tilt mechanisms. The present invention comprises an end effector that, when mounted with a hopping actuator, translates along axis (typically vertical) actuation into combined vertical and horizontal motion. The end effector, or foot, mounts with an end of the actuator that moves toward the support surface (typically a floor or the earth). The foot is shaped so that the first contact with the support surface is off the axis of the actuator. Off-axis contact with the support surface generates an on-axis force (typically resulting in vertical motion) and a moment orthogonal to the axis. The moment initiates a horizontal tumbling motion, and tilts the actuator so that its axis is oriented with a horizontal component and continued actuation generates both vertical and horizontal force.

  11. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  12. Fading channel simulator

    DOE Patents [OSTI]

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  13. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect (OSTI)

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.

  14. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect (OSTI)

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  15. A Model For The Transient Temperature Effects Of Horizontal Fluid...

    Open Energy Info (EERE)

    Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For The...

  16. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect (OSTI)

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  17. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  18. Fractional channel multichannel analyzer

    DOE Patents [OSTI]

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  19. Fractional channel multichannel analyzer

    DOE Patents [OSTI]

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  20. Automated Tracing of Horizontal Neuron Processes During Retinal Development

    SciTech Connect (OSTI)

    Kerekes, Ryan A [ORNL; Martins, Rodrigo [St. Jude Children's Research Hospital; Dyer, Michael A [ORNL; Gleason, Shaun Scott [ORNL; Karakaya, Mahmut [ORNL; Davis, Denise [St. Jude Children's Research Hospital

    2011-01-01

    In the developing mammalian retina, horizontal neurons undergo a dramatic reorganization oftheir processes shortly after they migrate to their appropriate laminar position. This is an importantprocess because it is now understood that the apical processes are important for establishing theregular mosaic of horizontal cells in the retina and proper reorganization during lamination isrequired for synaptogenesis with photoreceptors and bipolar neurons. However, this process isdifficult to study because the analysis of horizontal neuron anatomy is labor intensive and time-consuming. In this paper, we present a computational method for automatically tracing the three-dimensional (3-D) dendritic structure of horizontal retinal neurons in two-photon laser scanningmicroscope (TPLSM) imagery. Our method is based on 3-D skeletonization and is thus able topreserve the complex structure of the dendritic arbor of these cells. We demonstrate theeffectiveness of our approach by comparing our tracing results against two sets of semi-automatedtraces over a set of 10 horizontal neurons ranging in age from P1 to P5. We observe an averageagreement level of 81% between our automated trace and the manual traces. This automatedmethod will serve as an important starting point for further refinement and optimization.

  1. TRANSIENT BRIGHTENINGS ASSOCIATED WITH FLUX CANCELLATION ALONG A FILAMENT CHANNEL

    SciTech Connect (OSTI)

    Wang, Y.-M.; Muglach, K. E-mail: karin.muglach@nasa.gov

    2013-02-15

    Filament channels coincide with large-scale polarity inversion lines of the photospheric magnetic field, where flux cancellation continually takes place. High-cadence Solar Dynamics Observatory (SDO) images recorded in He II 30.4 nm and Fe IX 17.1 nm during 2010 August 22 reveal numerous transient brightenings occurring along the edge of a filament channel within a decaying active region, where SDO line-of-sight magnetograms show strong opposite-polarity flux in close contact. The brightenings are elongated along the direction of the filament channel, with linear extents of several arcseconds, and typically last a few minutes; they sometimes have the form of multiple two-sided ejections with speeds on the order of 100 km s{sup -1}. Remarkably, some of the brightenings rapidly develop into larger scale events, forming sheetlike structures that are eventually torn apart by the diverging flows in the filament channel and ejected in opposite directions. We interpret the brightenings as resulting from reconnections among filament-channel field lines having one footpoint located in the region of canceling flux. In some cases, the flow patterns that develop in the channel may bring successive horizontal loops together and cause a cascade to larger scales.

  2. Shear horizontal surface acoustic wave microsensor for Class...

    Office of Scientific and Technical Information (OSTI)

    To achieve a high level of sensitivity for fluidic detection applications, we have ... Each die has four delay-line detection channels, permitting simultaneous measurement of ...

  3. Coiled tubing buckling implication in drilling and completing horizontal wells

    SciTech Connect (OSTI)

    Wu, J.; Juvkam-Wold, H.C.

    1995-03-01

    This paper discusses coiled tubing buckling and load transmission when drilling and completing horizontal wells. Comprehensive analyses and new equations are presented to predict buckling of coiled tubing, slack-off weight transmission, actual bit weight or packer load, and maximum horizontal length. Coiled tubing lock-up and yield due to buckling are also discussed. These equations can also be used for other coiled tubing operations, such as coiled tubing workover, coiled tubing well stimulation, and even for conventional joint-connected drill strings. Calculations based on the equations presented are also compared with the previous literature.

  4. Further discussion of productivity of a horizontal well

    SciTech Connect (OSTI)

    Suprunowicz, R.; Butler, R.M. )

    1993-05-01

    This paper is presented as a comment to an earlier paper entitled Productivity of a Horizontal Well' (Nov. 1992, SPE Reservoir Engineering). These authors attempt to refute the original authors conclusions regarding pressure gradients and boundary conditions in horizontal wells. These authors state that the pressure gradient proposed in the original paper which was parallel to the well bore and was required to maintain constant-flux distribution, are large and unrealistic. They also discuss the use of steady-state and pseudo-steady-state flow models and the interpretation of model results to help predict productivity.

  5. MEMS in microfluidic channels.

    SciTech Connect (OSTI)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  6. Channel plate for DNA sequencing

    DOE Patents [OSTI]

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  7. Channel plate for DNA sequencing

    DOE Patents [OSTI]

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  8. Horizontal drilling the Bakken Formation, Williston basin: A new approach

    SciTech Connect (OSTI)

    Lefever, J.A. )

    1990-05-01

    Horizontal drilling is an attractive new approach to exploration and development of the Mississippian/Devonian Bakken Formation in the southwestern part of North Dakota. This drilling technique increases the probability of success, the profit potential, the effective drainage area maximizing recoverable reserves, and the productivity by encountering more natural occurring fractures. The target formation, the Mississippian/Devonian Bakken, consists of three members in an overlapping relationship, a lower organic-rich black shale, a middle siltstone/limestone, and an upper organic-rich black shale. It attains a maximum thickness of 145 ft and thins to a feather edge along its depositional limit. Considered to be a major source rock for the Williston basin, the Bakken is usually overpressured where productive. Overpressuring is attributed to intense hydrocarbon generation. Reservoir properties are poor with core fluid porosities being generally 5% or less and permeabilities ranging from 0.1 to 0.2 md. The presence of natural fractures in the shale are necessary for production. Two types of fractures are associated with Bakken reservoirs: large vertical fractures (of tectonic origin) and microfractures (probably related to hydrocarbon generation). An economic comparison between horizontal and vertical wells show that well completion costs are approximately two times higher (average costs; $1,500,000 for a horizontal to $850,000 for a vertical) with average payout for horizontal wells projected to occur in half the time (1.5 yr instead of 3.4 yr). Projected production and reserves are considered to be 2 to 4 times greater from a horizontal well.

  9. Zeolites: Exploring Molecular Channels

    SciTech Connect (OSTI)

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  10. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    SciTech Connect (OSTI)

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William; Eker, Erdinc; Baker, Reed; Augustine, Chad

    2015-09-02

    The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consisting of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide zonal

  11. Developments in relativistic channeling

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1996-10-01

    The possibility of using channeling as a tool for high energy accelerator applications and particle physics has now been extensively investigated. Bent crystals have been used for accelerator extraction and for particle deflection. Applications as accelerating devices have been discussed but have not yet been tried. 61 refs., 1 fig.

  12. Developments in relativistic channeling

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1997-03-01

    The possibility of using channeling as a tool for high energy accelerator applications and particle physics has now been extensively investigated. Bent crystals have been used for accelerator extraction and for particle deflection. Applications as accelerating devices have been discussed but have not yet been tried. {copyright} {ital 1997 American Institute of Physics.}

  13. Horizontal-well pilot waterflood tests shallow, abandoned field

    SciTech Connect (OSTI)

    McAlpine, J.L. ); Joshi, S.D. )

    1991-08-05

    This paper reports on the suitability of using horizontal wells in a waterflood of shallow, partially depleted sands which will be tested in the Jennings field in Oklahoma. The vertical wells drilled in the Jennings field intersect several well-known formations such as Red Fork, Misner, and Bartlesville sand. Most of these formations have been produced over a number of years, and presently no wells are producing in the field. In the 1940s, 1950s, and 1960s, wells were drilled on 10-acre spacing, and the last well was plugged in 1961. The field was produced only on primary production and produced approximately 1 million bbl of oil. Because the field was not waterflooded, a large potential exists to produce from the field using secondary methods. To improve the economics for the secondary process, a combination of horizontal and vertical wells was considered.

  14. Laminar mixed convection in a horizontal eccentric annulus

    SciTech Connect (OSTI)

    Choudhury, D. ); Karki, K. )

    1992-01-01

    Laminar fluid flow and heat transfer phenomena in cylindrical annuli are encountered in various applications. The purpose of this paper is to present a numerical study of laminar mixed convection in horizontal eccentric annuli. Axial flow and heat transfer in a horizontal cylindrical annulus can be influenced by eccentricity of the inner cylinder and the presence of buoyancy forces. A numerical study is presented for the combined forced and free convection for the fully developed flow and heat transfer to eccentric annuli of different eccentricities and radius ratios. The flow field is characterized by large cross-stream secondary currents and significant flow distortion. The Nusselt number increases significantly with the Rayleigh number; the corresponding increase in the friction factor is relatively small. The eccentricity introduces additional nonuniformity of the flow and temperature fields.

  15. Horizontal Pretreatment Reactor System (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diff erent pretreatment chemistry/ residence time combinations are possible using these multiple horizontal-tube reactors * Each tube is indirectly and directly steam heated to temperatures of 150 0 C to 210 0 C * Residence time is varied by changing the speed of the auger that moves the biomass through each tube reactor * Tubes are used individually or in combination to achieve diff erent pretreatment residence times * Smaller tubes made from Hastelloy, an acid-resistant material, are used with

  16. Horizontal film balance having wide range and high sensitivity

    DOE Patents [OSTI]

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  17. Horizontal film balance having wide range and high sensitivity

    DOE Patents [OSTI]

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  18. Horizontal film balance having wide range and high sensitivity

    DOE Patents [OSTI]

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  19. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  20. Horizontal natural gas storage caverns and methods for producing same

    DOE Patents [OSTI]

    Russo, Anthony

    1995-01-01

    The invention provides caverns and methods for producing caverns in bedded salt deposits for the storage of materials that are not solvents for salt. The contemplated salt deposits are of the bedded, non-domed variety, more particularly salt found in layered formations that are sufficiently thick to enable the production of commercially usefully sized caverns completely encompassed by walls of salt of the formation. In a preferred method, a first bore hole is drilled into the salt formation and a cavity for receiving insolubles is leached from the salt formation. Thereafter, at a predetermined distance away from the first bore hole, a second bore hole is drilled towards the salt formation. As this drill approaches the salt, the drill assumes a slant approach and enters the salt and drills through it in a horizontal direction until it intersects the cavity for receiving insolubles. This produces a substantially horizontal conduit from which solvent is controlledly supplied to the surrounding salt formation, leaching the salt and producing a concentrated brine which is removed through the first bore hole. Insolubles are collected in the cavity for receiving insolubles. By controlledly supplying solvent, a horizontal cavern is produced with two bore holes extending therefrom.

  1. Geysering in boiling channels

    SciTech Connect (OSTI)

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  2. Athermal channeled spectropolarimeter

    SciTech Connect (OSTI)

    Jones, Julia Craven

    2015-12-08

    A temperature insensitive (athermal) channeled spectropolarimeter (CSP) is described. The athermal CSP includes a crystal retarder formed of a biaxial crystal. The crystal retarder has three crystal axes, wherein each axis has its own distinct index of refraction. The axes are oriented in a particular manner, causing an amplitude modulating carrier frequency induced by the crystal retarder to be thermally invariant. Accordingly, a calibration beam technique can be used over a relatively wide range of ambient temperatures, with a common calibration data set.

  3. Radar channel balancing with commutation

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  4. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect (OSTI)

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  5. Micro-channel plate detector

    DOE Patents [OSTI]

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  6. Productivity improvement by frontier horizontal drilling in Italy

    SciTech Connect (OSTI)

    Schenato, A.

    1995-12-31

    Italian domestic activity on horizontal wells has been specially addressed to carbonate reservoir and specifically targeted to re-entry in existing wells. The speech will focus on the specific experience matured in frontier applications in Italy, from 1989 with the short radius drain holes in Sicily, throughout world record deep water short radius in the southern part of Adriatic sea and depth world record medium radius in a HP/HT reservoir in the Po Valley. Production results will be reported as well as the achieved technological aspects.

  7. Using resistivity to assess Niobrara fracture patterns for horizontal wells

    SciTech Connect (OSTI)

    Johnson, R.A.; Bartshe, R.T. )

    1991-09-02

    This paper reports on interest in U.S. horizontal drilling which has largely focused on vertically fractured plays such as the Bakken shale and Austin chalk. The Upper Cretaceous Niobrara formation, the chronological equivalent of the Austin chalk, has recently been targeted as a candidate for horizontal drilling in the Denver basin and other areas of the Rocky Mountains. A primary key to success in such plays is to predict the occurrence and distribution of oil bearing fracture systems. Much emphasis is placed on theoretical aspects of fracture origin and prediction. Remote sensing techniques (e.g., seismic, satellite image analysis) have gained wide use in the search for fractured reservoirs. While these methods are important elements of an integrated exploration effort, they lack the benefit of direct detection of open, oil saturated fracture systems. In the areas of the Denver basin in which the Niobrara is oil prone, certain resistivity responses are indicative of the proximity of oil bearing fractures to the well bore. This provides an extremely useful technique in areas of pre-existing well control penetrating the Niobrara section. As such, the Denver basin is an ideal area due to the large number of penetrations to the Lower Cretaceous D and J sandstones that underlie the Niobrara.

  8. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  9. Roderick MacKinnon and Ion Channels - Potassium Channels and...

    Office of Scientific and Technical Information (OSTI)

    2003 Nobel Prize in Chemistry 'for structural and mechanistic studies of ion channels.' ... Synchrotron Light Source (NSLS): Chemistry of Ion Coordination and Hydration ...

  10. Channeling and Volume Reflection Based Crystal Collimation of Tevatron Circulating Beam Halo (T-980)

    SciTech Connect (OSTI)

    Shiltsev, V.; Annala, G.; Drozhdin, A.; Johnson, T.; Legan, A.; Mokhov, N.; Reilly, R.; Still, D.; Tesarek, R.; Zagel, J.; Peggs, S.; /Brookhaven /CERN /Serpukhov, IHEP /INFN, Ferrara /PNPI, CSTD

    2010-05-01

    The T980 crystal collimation experiment is underway at the Tevatron to determine if this technique could increase 980 GeV beam-halo collimation efficiency at high-energy hadron colliders such as the Tevatron and the LHC. T980 also studies various crystal types and parameters. The setup has been substantially enhanced during the Summer 2009 shutdown by installing a new O-shaped crystal in the horizontal goniometer, as well as adding a vertical goniometer with two alternating crystals (O-shaped and multi-strip) and additional beam diagnostics. First measurements with the new system are quite encouraging, with channeled and volume-reflected beams observed on the secondary collimators as predicted. Investigation of crystal collimation efficiencies with crystals in volume reflection and channeling modes are described in comparison with an amorphous primary collimator. Results on the system performance are presented for the end-of-store studies and for entire collider stores. The first investigation of colliding beam collimation simultaneously using crystals in both the vertical and horizontal plane has been made in the regime with horizontally channeled and vertically volume-reflected beams. Planning is underway for significant hardware improvements during the FY10 summer shutdown and for dedicated studies during the final year of Tevatron operation and also for a 'post-collider beam physics running' period.

  11. Negative particle planar and axial channeling and channeling collimation

    SciTech Connect (OSTI)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    While information exists on high energy negative particle channeling there has been little study of the challenges of negative particle bending and channeling collimation. Partly this is because negative dechanneling lengths are relatively much shorter. Electrons are not particularly useful for investigating negative particle channeling effects because their material interactions are dominated by channeling radiation. Another important factor is that the current central challenge in channeling collimation is the proton-proton Large Hadron Collider (LHC) where both beams are positive. On the other hand in the future the collimation question might reemerge for electon-positron or muon colliders. Dechanneling lengths increase at higher energies so that part of the negative particle experimental challenge diminishes. In the article different approaches to determining negative dechanneling lengths are reviewed. The more complicated case for axial channeling is also discussed. Muon channeling as a tool to investigate dechanneling is also discussed. While it is now possible to study muon channeling it will probably not illuminate the study of negative dechanneling.

  12. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOE Patents [OSTI]

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequently developed in a standard, commercially available developer, leaving patterned trench areas in the EDPR. The metal layer thereunder is now exposed in the trench areas and masked in others, and thereafter can be etched to form the desired pattern (subtractive process), or can be plated with metal (additive process), followed by a resist stripping, and removal of the remaining field metal (additive process). This improved laser pantograph process is simpler, faster, move manufacturable, and requires no micro-machining.

  13. IDENTIFYING BLUE HORIZONTAL BRANCH STARS USING THE z FILTER

    SciTech Connect (OSTI)

    Vickers, John J.; Grebel, Eva K.; Huxor, Avon P.

    2012-04-15

    In this paper we present a new method for selecting blue horizontal branch (BHB) candidates based on color-color photometry. We make use of the Sloan Digital Sky Survey z band as a surface gravity indicator and show its value for selecting BHB stars from quasars, white dwarfs, and main-sequence A-type stars. Using the g, r, i, and z bands, we demonstrate that extraction accuracies on a par with more traditional u, g, and r photometric selection methods may be achieved. We also show that the completeness necessary to probe major Galactic structure may be maintained. Our new method allows us to efficiently select BHB stars from photometric sky surveys that do not include a u-band filter such as the Panoramic Survey Telescope and Rapid Response System.

  14. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  15. High-frequency shear-horizontal surface acoustic wave sensor

    DOE Patents [OSTI]

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  16. Mirrored serpentine flow channels for fuel cell

    DOE Patents [OSTI]

    Rock, Jeffrey Allan

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  17. A Horizontal Well Program for the Upper Miocene 26R Pool, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Kuespert, J.G.; McJannet, G.S.

    1992-07-01

    The goals of this paper are to (1) summarize the complex geologic and reservoir characteristics of the 26R Pool, (2) note those characteristics and criteria that would make this Pool ideally suited for horizontal well technology, (3) discuss the evolution of horizontal drilling technology and our corresponding development of knowledge about the 26R Pool, and (4) discuss how our objectives have been achieved by utilizing horizontal wells. (VC)

  18. A Horizontal Well Program for the Upper Miocene 26R Pool, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A. ); Kuespert, J.G. ); McJannet, G.S. )

    1992-01-01

    The goals of this paper are to (1) summarize the complex geologic and reservoir characteristics of the 26R Pool, (2) note those characteristics and criteria that would make this Pool ideally suited for horizontal well technology, (3) discuss the evolution of horizontal drilling technology and our corresponding development of knowledge about the 26R Pool, and (4) discuss how our objectives have been achieved by utilizing horizontal wells. (VC)

  19. Information geometry of Gaussian channels

    SciTech Connect (OSTI)

    Monras, Alex; Illuminati, Fabrizio

    2010-06-15

    We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirable properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).

  20. Radioactive tracers offer a closer look at horizontal completions

    SciTech Connect (OSTI)

    Holcomb, D.L.; Read, D.A. )

    1991-11-01

    Radioactive tracer tagging during stimulation treatments on vertical wells has been in use for many years and applications have been discussed in literature. More recently, multiple radioactive tracers have been employed to help evaluate various aspects of well stimulation. They have become standard industry practice for evaluation of treatment containment, fracture height growth, channeling behind casing, fracture initiation from perforations, diversion and acid or proppant distribution. In this paper completion techniques are analyzed using gamma ray-emitting isotopes and spectral-gamma ray logging. Examples of Austin Chalk and Bakken Shale evaluations show how operators can qualitatively compare stimulation and diversion effectiveness, and completion methods by using tracer technology.

  1. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  2. Lifting surface performance analysis for horizontal axis wind turbines

    SciTech Connect (OSTI)

    Kocurek, D.

    1987-06-01

    This report describes how numerical lifting-surface theory is applied to the calculation of a horizontal-axis wind turbine's aerodynamic characteristics and performance. The report also describes how such an application is implemented as a computer program. The method evolved from rotary-wing and helicopter applications and features a detailed, prescribed wake. The wake model extends from a hovering-rotor experimental generalization to include the effect of the windmill brake state on the radial and axial displacement rates of the trailing vortex system. Performance calculations are made by coupling the lifting-surface circulation solution to a blade-element analysis that incorporates two-dimensional airfoil characteristics as functions of angle of attack and Reynolds number. Several analytical stall models are also provided to extend the airfoil characteristics beyond the limits of available data. Although this work focuses on the steady-performance problem, the method includes ways to investigate the effects of wind-shear profile, tower shadow, and off-axis shaft alignment. Correlating the method to measured wind-turbine performance, and comparing it to blade-element momentum theory calculations, validate and highlight the extreme sensitivity of predictions to the quality of early post-stall airfoil behavior.

  3. Horizontal underbalanced drilling of gas wells with coiled tubing

    SciTech Connect (OSTI)

    Cox, R.J.; Li, J.; Lupick, G.S.

    1999-03-01

    Coiled tubing drilling technology is gaining popularity and momentum as a significant and reliable method of drilling horizontal underbalanced wells. It is quickly moving into new frontiers. To this point, most efforts in the Western Canadian Basin have been focused towards sweet oil reservoirs in the 900--1300 m true vertical depth (TVD) range, however there is an ever-increasing interest in deeper and gas-producing formations. Significant design challenges on both conventional and coiled tubing drilling operations are imposed when attempting to drill these formations underbalanced. Coiled tubing is an ideal technology for underbalanced drilling due to its absence of drillstring connections resulting in continuous underbalanced capabilities. This also makes it suitable for sour well drilling and live well intervention without the risk of surface releases of reservoir gas. Through the use of pressure deployment procedures it is possible to complete the drilling operation without need to kill the well, thereby maintaining underbalanced conditions right through to the production phase. The use of coiled tubing also provides a means for continuous wireline communication with downhole steering, logging and pressure recording devices.

  4. Global horizontal irradiance clear sky models : implementation and analysis.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.

    2012-03-01

    Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.

  5. Horizontally scaling dChache SRM with the Terracotta platform

    SciTech Connect (OSTI)

    Perelmutov, T.; Crawford, M.; Moibenko, A.; Oleynik, G.; /Fermilab

    2011-01-01

    The dCache disk caching file system has been chosen by a majority of LHC experiments Tier 1 centers for their data storage needs. It is also deployed at many Tier 2 centers. The Storage Resource Manager (SRM) is a standardized grid storage interface and a single point of remote entry into dCache, and hence is a critical component. SRM must scale to increasing transaction rates and remain resilient against changing usage patterns. The initial implementation of the SRM service in dCache suffered from an inability to support clustered deployment, and its performance was limited by the hardware of a single node. Using the Terracotta platform, we added the ability to horizontally scale the dCache SRM service to run on multiple nodes in a cluster configuration, coupled with network load balancing. This gives site administrators the ability to increase the performance and reliability of SRM service to face the ever-increasing requirements of LHC data handling. In this paper we will describe the previous limitations of the architecture SRM server and how the Terracotta platform allowed us to readily convert single node service into a highly scalable clustered application.

  6. SAFL Channel | Open Energy Information

    Open Energy Info (EERE)

    University of Minnesota Hydrodynamics Hydrodynamic Testing Facility Type Channel Length(m) 84.0 Beam(m) 2.8 Depth(m) 1.8 Cost(per day) Contact POC Towing Capabilities Towing...

  7. Scripps Channel 1 | Open Energy Information

    Open Energy Info (EERE)

    Scripps Channel 1 Jump to: navigation, search Basic Specifications Facility Name Scripps Channel 1 Overseeing Organization University of California, San Diego (Scripps)...

  8. Catalytic reaction in confined flow channel

    DOE Patents [OSTI]

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  9. MHL Free Surface Channel | Open Energy Information

    Open Energy Info (EERE)

    Free Surface Channel Jump to: navigation, search Basic Specifications Facility Name MHL Free Surface Channel Overseeing Organization University of Michigan Hydrodynamics...

  10. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  11. Channel Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Channel Energy Center Jump to: navigation, search Name: Channel Energy Center Place: Texas Phone Number: 713.830.2000 Website: www.calpine.compowerplant.as Outage Hotline:...

  12. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  13. New design of a guidelineless horizontal tree for deepwater ESP wells

    SciTech Connect (OSTI)

    Olijnik, L.A.; Vigesa, S.; Paula, M.T.R.; Figueiredo, M.W. de; Rutherford, H.W.

    1996-12-31

    This paper presents the new design of a horizontal tree for deepwater installation, as a key piece of equipment for application of a Electrical Submersible Pump in Subsea Wells. The production from subsea wells equipped with ESPs is a reality since October/94 with the first installation in Campos Basin. The horizontal tree adds simplicity to workover operations expected to be two to three times more frequency when compared to natural flow or gas lifted wells. The design and fabrication of the deepwater horizontal tree is a result of a Technological Cooperation Agreement. The design incorporates new solutions, mainly in diverless guidelineless connection of power cables and flowlines using the vertical connection system. The guidelineless horizontal subsea tree is fully prepared to be integrated on the new manifolds being designed for the Brazilian deepwater oilfields. The applications of the horizontal trees in subsea ESP wells reduce intervention cost, increasing economical attractiveness and scenarios for the applications of this new boosting technology.

  14. Coiled tubing workover saves horizontal well in Lake Maracaibo

    SciTech Connect (OSTI)

    Lizak, K.; Patterson, J.; Suarez, D.; Salas, J.

    1996-12-31

    A slotted liner horizontal completion became stuck while being run. Inflatable packers were to be used to isolate the productive interval from a water-bearing, unconsolidated sand in the curved section of this well. While personnel were deciding how to cement the well, the liner was left in the hole with the inflatable packers unset, and the production tubing was run. Coiled tubing was used to log the well, isolate the productive interval, and remove damage to restore well productivity. Personnel considered all possible options, and a thorough decision-making process guided the workover. Because of severe lost-circulation problems, extensive ``what if`` scenarios were made and updated daily for the engineers on location. Service company and oil company personnel worked together to guarantee the job designs were practical and did not exceed the limits of the equipment on location. Computer simulations of all operations were run to allow corrective action to be taken if unusual circumstances arose. All fluids were thoroughly laboratory tested and witnessed by oil company personnel to ensure job success. Problems on the job included lost circulation, locating the exact positions of the packers and water zone, ensuring correct cement placement, removing mud and workover fluids without damaging the squeeze, and bad weather on Lake Maracaibo. Advantages and disadvantages of all the solutions that were considered are included to assist anyone in a similar situation. Post-job oil production has stabilized at 900 BOPD with no water or sand production. Careful job planning and the versatility of coiled tubing saved this well and proved economical with an estimated payout of 33 days, assuming a price of $12 per barrel of oil.

  15. Thin-channel electrospray emitter

    DOE Patents [OSTI]

    Van Berkel, Gary J.

    2004-08-31

    An electrospray device includes a high voltage electrode chamber. The high voltage electrode chamber includes an inlet for receiving a fluid to be ionized and for directing the fluid into the chamber and at least one electrode having an exposed surface within the chamber. A flow channel directs fluid over a surface of the electrode and out of the chamber. The length of the flow channel over the electrode is greater than the height of the flow channel over the electrode, thereby producing enhanced mass transport to the working electrode resulting in improved electrolysis efficiency. An outlet is provided for transmitting the fluid out from the electrode chamber. A method of creating charged droplets includes flowing a fluid over an electrode where the length over the electrode is greater than the height of the fluid flowing over the electrode.

  16. Continuous equal channel angular pressing

    DOE Patents [OSTI]

    Zhu, Yuntian T.; Lowe, Terry C.; Valiev, Ruslan Z.; Raab, Georgy J.

    2006-12-26

    An apparatus that continuously processes a metal workpiece without substantially altering its cross section includes a wheel member having an endless circumferential groove, and a stationary constraint die that surrounds the wheel member, covers most of the length of the groove, and forms a passageway with the groove. The passageway has a rectangular shaped cross section. An abutment member projects from the die into the groove and blocks one end of the passageway. The wheel member rotates relative to the die in the direction toward the abutment member. An output channel in the die adjacent the abutment member has substantially the same cross section as the passageway. A metal workpiece is fed through an input channel into the passageway and carried in the groove by frictional drag in the direction towards the abutment member, and is extruded through the output channel without any substantial change in cross section.

  17. Ceramic membranes having macroscopic channels

    DOE Patents [OSTI]

    Anderson, Marc A.; Peterson, Reid A.

    1996-01-01

    Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes.

  18. Ceramic membranes having macroscopic channels

    DOE Patents [OSTI]

    Anderson, M.A.; Peterson, R.A.

    1996-09-03

    Methods have been developed to make porous ceramic membranes having macroscopic channels therethrough. The novel membranes are formed by temporarily supporting the sol-gel membrane precursor on an organic support which is ultimately removed from the interior of the membrane, preferably by pyrolysis or by chemical destruction. The organic support may also include an inorganic metal portion that remains on destruction of the organic portion, providing structural support and/or chemical reactivity to the membrane. The channels formed when the organic support is destroyed provide the ability to withdraw small catalytic products or size-separated molecules from the metal oxide membrane. In addition, the channel-containing membranes retain all of the advantages of existing porous ceramic membranes. 1 fig.

  19. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect (OSTI)

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  20. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    SciTech Connect (OSTI)

    Zhu, Xuejun; Ye, Shichao; Pan, Xiaoheng

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model is able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)

  1. The drilling of a horizontal well in a mature oil field

    SciTech Connect (OSTI)

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  2. Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel

    SciTech Connect (OSTI)

    Sy, Amy; Afanaciev, Andre; Derbenev, Yaroslav S.; Johnson, Rolland; Morozov, Vasiliy

    2015-09-01

    Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.

  3. Process tomography for unitary quantum channels

    SciTech Connect (OSTI)

    Gutoski, Gus; Johnston, Nathaniel

    2014-03-15

    We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a d-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only O(d{sup 2}) interactive observables, as opposed to the O(d{sup 4}) required for tomography of arbitrary channels. This result generalizes to the problem of identifying channels with at most q Kraus operators, and slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with q Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.

  4. Dynamical coupled-channel analysis at EBAC

    SciTech Connect (OSTI)

    T.-S. H. Lee

    2007-08-01

    The status and progress of the dynamical coupled-channel analysis at the Excited Baryon Analysis Center (EBAC) is reported.

  5. Multiple channel data acquisition system

    DOE Patents [OSTI]

    Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  6. Multiple channel data acquisition system

    DOE Patents [OSTI]

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  7. Study of material properties using channeling radiation

    SciTech Connect (OSTI)

    Pantell, R.H.; Kephart, J.O.; Klein, R.K.; Park, H.; Berman, B.L.; Datz, S.

    1986-01-01

    A possible application for channeling radiation is for investigating the properties of crystals in which the channeling occurs. In this paper we present some general considerations concerning channeling radiation as a measurement technique, and then we proceed to describe several specific examples.

  8. Fundamental channeling questions at ultra relativistic energies

    SciTech Connect (OSTI)

    Carrigan, Richard A., Jr.; /Fermilab

    2006-08-01

    TeV-range bent crystal channeling has interesting advantages for several applications at high energy accelerators. Observations of enhanced deflection over the whole arc of a bent crystal at RHIC and recently at the Tevatron may be due to a process called ''volume reflection''. More investigations of volume reflection and of the complimentary process, volume capture, are needed. So-called quasimosaic bending processes also deserve additional study. Negative particle channeling may be relevant to channeling collimation for electron machines. Electron and positron channeling and channeling radiation are interwoven so that the impact of channeling radiation on applications needs to be better understood. Beams in the 0.1 to 1 GeV range may be useful for some of these investigations. Finally there has been little or no study of positive and negative muon channeling. The current understanding of these topics and the desirability of further work is reviewed.

  9. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    SciTech Connect (OSTI)

    Zhao, L.; Inoue, M.; Komino, T.; Kim, J.-H.; Ribierre, J. C. E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research , Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency , ERATO, Adachi Molecular Exciton Engineering Project, c and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4′-bis(N-carbazolyl)-1,1′-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  10. Conductive Channel for Energy Transmission

    SciTech Connect (OSTI)

    Apollonov, Victor V.

    2011-11-10

    For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

  11. Magnetohydrodynamic (MHD) channel corner seal

    DOE Patents [OSTI]

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  12. Multiple channel programmable coincidence counter

    DOE Patents [OSTI]

    Arnone, Gaetano J.

    1990-01-01

    A programmable digital coincidence counter having multiple channels and featuring minimal dead time. Neutron detectors supply electrical pulses to a synchronizing circuit which in turn inputs derandomized pulses to an adding circuit. A random access memory circuit connected as a programmable length shift register receives and shifts the sum of the pulses, and outputs to a serializer. A counter is input by the adding circuit and downcounted by the seralizer, one pulse at a time. The decoded contents of the counter after each decrement is output to scalers.

  13. Successful drilling of the first horizontal well in a mature field

    SciTech Connect (OSTI)

    Marruffo, I.; Achong, C.

    1996-08-01

    This paper discusses how the decision to drill the first horizontal well of a reservoir was taken, based on Production acceleration and the incremental economy of cash flow. The reservoir is located in the Guafita-Norto Field in Western Venezuela, contiguous to the La Yuca-Cano Limon Fields in Colombia. Guafita-Norte has 183 million stb of remaining oil reserves with 26 production wells on electrical submergible pumps. The STOIP of this under saturated reservoir (bubble point pressure is 36 psi) is 160 million stb with an initial GOR of 10 stf/stb, having a permeability between 1.5-12 darcies with a strong water drive, water coning and sanding problems due to fines migration. During 1995, it was decided to drill the first horizontal well in the reservoir based on a 3-D numerical simulation with radial flow (for water coning) and local grid refinement (for horizontal wells) coupled to an economic analysis. The simulation predetermines an initial production rate for a horizontal well 2.5 times greater than for a vertical one, and the incremental cash flow for the horizontal well is 4.5 MM$ larger for the vertical one in four (4) years, with a ROR of 200%. The horizontal well was drilled with oil-based mud to avoid hole collapse, and it was completed open hole with a single screen pack. The well is currently producing between 2000 and 3500 stb/d, clean, on natural flow. This study has clearly shown that the ultimate and decisive parameter to be weighed before undertaking this type of project, is the economic analysis, which must be performed as extensively as the technical analysis.

  14. Structure of conducting channel of lightning

    SciTech Connect (OSTI)

    Alanakyan, Yu. R.

    2013-08-15

    The spatial distribution of the plasma density in a lightning channel is studied theoretically. It is shown that the electric-field double layer is formed at the channel boundary. In this case, the electron temperature changes abruptly and ions are accelerated by the electric field of the double layer. The ion momentum flux density is close to the surrounding gas pressure. Cleaning of the channel from heavy particles occurs in particle-exchange processes between the plasma channel and the surrounding air. Hydrogen ions are accumulated inside the expanding channel from the surrounding air, which is enriched by hydrogen-contained molecules. In this case, the plasma channel is unstable and splits to a chain of equidistant bunches of plasma. The hydrogen-enrich bunches burn diffusely after recombination exhibiting the bead lightning behavior.

  15. Web-based multi-channel analyzer

    DOE Patents [OSTI]

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  16. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, Michael

    1998-01-01

    A novel design for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment.

  17. Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry

    DOE Patents [OSTI]

    Siminovitch, M.

    1998-02-10

    A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

  18. Low-drag electrical-contact arrangement for maintaining continuity between horizontally movable members

    DOE Patents [OSTI]

    Brown, R.J.; Gerth, H.L.; Robinson, S.C.

    1981-01-23

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  19. Low-drag electrical contact arrangement for maintaining continuity between horizontally movable members

    DOE Patents [OSTI]

    Brown, R. Jack; Gerth, Howard L.; Robinson, Samuel C.

    1982-01-01

    This invention is a low-drag electrical contact arrangement for establishing continuity between upper and lower spaced members which are subject to relative horizontal movement. In one aspect, the invention comprises an electrical commutating arrangement which includes a horizontally disposed linear electrical commutator. A horizontally movable electrically conductive pedestal is positioned below the commutator and defines a clearance therewith. The pedestal is formed with a cavity confronting the commutator. In the cavity is a bead of electrical conductive liquid, the bead being characterized by an upwardly convex meniscus portion which extends across the clearance and contacts the commutator. The surface tension of the bead is sufficient to maintain the bead intact when the commutator and pedestal are displaced horizontally at speeds from zero to at least twelve inches a minute. This arrangement provides a significant advance in highly precise machining processes, such as diamond-turning, where precision is limited by the drag imposed by conventional commutators of the carbon-brush type.

  20. Hurricanes in an Aquaplanet World: Implications of the Impacts of External Forcing and Model Horizontal Resolution

    SciTech Connect (OSTI)

    Li, Fuyu; Collins, William D.; Wehner, Michael F.; Leung, Lai-Yung R.

    2013-06-02

    High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, and mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.

  1. Analytical admittance characterization of high mobility channel

    SciTech Connect (OSTI)

    Mammeri, A. M.; Mahi, F. Z.; Varani, L.

    2015-03-30

    In this contribution, we investigate the small-signal admittance of the high electron mobility transistors field-effect channels under a continuation branching of the current between channel and gate by using an analytical model. The analytical approach takes into account the linearization of the 2D Poisson equation and the drift current along the channel. The analytical equations discuss the frequency dependence of the admittance at source and drain terminals on the geometrical transistor parameters.

  2. Balancing radar receiver channels with commutation. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Balancing radar receiver channels with commutation. Abstract not provided. Authors: Doerry, Armin Walter Publication Date: 2015-01-01 OSTI Identifier: 1244859 Report ...

  3. Carderock Circulating Water Channel | Open Energy Information

    Open Energy Info (EERE)

    Features The Circulating Water Channel is a vertical plane, open to the atmosphere test section with a free surface in a closed recirculating water circuit, variable speed,...

  4. Channeling collimation studies at the Fermilab Tevatron

    SciTech Connect (OSTI)

    Carrigan, Richard A.; Drozhdin, Alexandr I.; Fliller, Raymond P., III; Mokhov, Nikolai V.; Shiltsev, Vladimir D.; Still, Dean A.; /Fermilab

    2006-08-01

    Bent crystal channeling has promising advantages for accelerator beam collimation at high energy hadron facilities such as the LHC. This significance has been amplified by several surprising developments including multi-pass channeling and the observation of enhanced deflections over the entire arc of a bent crystal. The second effect has been observed both at RHIC and recently at the Tevatron. Results are reported showing channeling collimation of the circulating proton beam halo at the Tevatron. Parenthetically, this study is the highest energy proton channeling experiment ever carried out. The study is continuing.

  5. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    SciTech Connect (OSTI)

    Kelkar, Mohan; Liner, Chris; Kerr, Dennis

    1999-10-15

    This final report describes the progress during the six year of the project on ''Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance.'' This report is funded under the Department of Energy's (DOE's) Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially-dominated deltaic deposits. The project involves using an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The project was divided into two budget periods. In the first budget period, many modern technologies were used to develop a detailed reservoir management plan; whereas, in the second budget period, conventional data was used to develop a reservoir management plan. The idea was to determine the cost effectiveness of various technologies in improving the performance of mature oil fields.

  6. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect (OSTI)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  7. Analysis of the D0 Crane Rail as a Support for a Horizontal Lifeline

    SciTech Connect (OSTI)

    Cease, H.; /Fermilab

    2000-03-02

    The D-Zero crane rail is analyzed for use as an anchor support for a one person Horizon{trademark} Horizontal Lifeline system that will span the pit area at D-Zero assembly hall. The lifeline will span 75 ft across the pit area, will be located out of the travel of the crane and above the concrete lentil wall. The crane rail is a suitable anchor for a one person Horizon TM Horizontal Lifeline system. The expected stress on the rail is 1,995 psi which has a factor of safety of 5.5 on the allowable stress. The anchor position is located 18 feet away from the concrete lentil wall and out of the travel of the overhead crane.

  8. A new approach for the determinination of horizontal wind direction fluctuations

    SciTech Connect (OSTI)

    Ibarra, J.I.

    1995-09-01

    A new method to determine horizontal wind direction fluctuations {sigma}{sub {theta}} is presented based on the hypothesis of a Gaussian distribution of wind direction that gradually moves to a circular, uniform distribution under near-calm conditions. A theoretical formulation for {sigma}{sub {theta}}, the persistence of wind and the total horizontal standard deviation {sigma} is provided and supported by experimental observations, both in a complex terrain valley site and in an open grassland spot in Spain. Comparisons of the proposed model with observations yielded a fairly good agreement, making the theoretical functions a straightforward procedure for use in atmospheric dispersion calculations. The method also provides insights on either the residual diffusivity in near-calm conditions or the maximal observable standard deviation. 13 refs., 5 figs., 1 tab.

  9. High horizontal movements in longwall gate roads controlled by cable support systems

    SciTech Connect (OSTI)

    Dolinar, D.R.; Tadolini, S.C.; Blackwell, D.V.

    1996-12-01

    Controlling coal mine roofs subjected to high-horizontal stress conditions has always been difficult and uncertain. Traditional supports such as wooden cribs and posts, concrete donut cribs, and standing supports collapse and fail when the roof and floor move horizontally as mining progresses. The former U.S. Bureau of Mines (USBM) (currently the U.S. Department of Energy (DOE)), in cooperation with Western Fuels-Utah, Incorporated, conducted research to provide an alternative for traditional secondary support systems in a 3-entry gate road system subjected to high horizontal movements. The support system used in several other coal mine operations, consisted of internal high-strength galvanized resin-grouted cable supports. The system virtually eliminates the necessity for external crib, timber, or concrete supports. The support system consisted of 2.4 m (8 ft) full-column resin grouted bolts and 4.8 m (16 ft) long cable supports installed in conjunction with wire mesh and {open_quotes}Monster-Mats.{close_quotes} Cable loading and roof deformations were monitored to evaluate the behavior of the immediate and main roofs during first and second panel extractions. Additionally, cable trusses were installed on the longwall headgate to protect the coal conveyance system from roof and pillar falls created by the formation of cutters and gutters. The test results indicated that the designed support system successfully maintained the roof during the extraction of two longwall panels and dramatically reduced the cost of secondary support. This paper describes the theory of high-horizontal roof movements, the advantages of vertical cable supports and cable trusses, and presents the roof and cable measurements made to assess the support performance during longwall retreat mining.

  10. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  11. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  12. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  13. Some Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results of Joint Measurements of Aerosol Extinction of Solar Radiation on Horizontal and Slant Paths S. M. Sakerin, D. M. Kabanov, Yu. A. Pkhalagov, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction It's a well-known fact that the contribution atmospheric aerosol makes in the total extinction of radiation in calculations and models of radiation must be considered; the quantitative measure of this contribution is the aerosol optical thickness of the atmosphere. The

  14. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOE Patents [OSTI]

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  15. Large-Actuator-Number Horizontal Path Correction of Atmospheric Turbulence utilizing an Interferometric Phase Conjugate Engine

    SciTech Connect (OSTI)

    Baker, K L; Stappaerts, E A; Gavel, D; Tucker, J; Silva, D A; Wilks, S C; Olivier, S S; Olsen, J

    2004-08-25

    An adaptive optical system used to correct horizontal beam propagation paths has been demonstrated. This system utilizes an interferometric wave-front sensor and a large-actuator-number MEMS-based spatial light modulator to correct the aberrations incurred by the beam after propagation along the path. Horizontal path correction presents a severe challenge to adaptive optics systems due to the short atmospheric transverse coherence length and the high degree of scintillation incurred by laser propagation along these paths. Unlike wave-front sensors that detect phase gradients, however, the interferometric wave-front sensor measures the wrapped phase directly. Because the system operates with nearly monochromatic light and uses a segmented spatial light modulator, it does not require that the phase be unwrapped to provide a correction and it also does not require a global reconstruction of the wave-front to determine the phase as required by gradient detecting wave-front sensors. As a result, issues with branch points are eliminated. Because the atmospheric probe beam is mixed with a large amplitude reference beam, it can be made to operate in a photon noise limited regime making its performance relatively unaffected by scintillation. The MEMS-based spatial light modulator in the system contains 1024 pixels and is controlled to speeds in excess of 800 Hz, enabling its use for correction of horizontal path beam propagation. In this article results are shown of both atmospheric characterization with the system and open loop horizontal path correction of a 1.53 micron laser by the system. To date Strehl ratios of greater than 0.5 have been achieved.

  16. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOE Patents [OSTI]

    Ricketts, Thomas E.

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  17. Measurement and modeling of solar irradiance components on horizontal and tilted planes

    SciTech Connect (OSTI)

    Padovan, Andrea; Col, Davide del

    2010-12-15

    In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurements taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)

  18. Regional geologic characteristics relevant to horizontal drilling, Woodford Shale, Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W. )

    1991-06-01

    Horizontal drilling in the Late Devonian-Early Mississippian Bakken Formation of the Williston basin has spurred new interest in other black shales as primary hydrocarbon reservoirs. The Late Devonian-Early Mississippian Woodford Shale, which is similar in some respects to the Bakken Formation, is a major source of oil and gas in the Anadarko basin of Oklahoma and could prove to be a significant reservoir rock as well. The three regional geologic characteristics of the Woodford discussed here are of likely importance to horizontal drilling programs, although direct relations to drilling strategy cannot be developed until empirical data from horizontal tests become available. First, the Woodford Shale is composed of three distinct depositional units (the upper, middle, and lower informal members) with different physical and geochemical properties. Second, a paleotopographic high that was rising before and during Woodford deposition divided the Woodford Shale into northeast and southwest depocenters. Third, Woodford depositional patterns are overprinted by thermal-maturity trends shaped primarily by differential burial of the Woodford during Pennsylvanian and Permian time. The Woodford Shale northeast of the forebulge is generally immature to marginally mature, whereas its thermal maturity southwest of the forebulge ranges from mature to postmature with respect to oil generation. A formation resistivity of about 35 ohm-m approximates the updip limit of oil-saturated Woodford Shale from which free oil might be produced from fracture systems.

  19. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

  20. Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1995-05-01

    This annual report describes the progress during the second year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvial-dominated deltaic deposits. The project involves an integrated approach to characterize the reservoir followed by the drilling of horizontal injection wells to improve production performance. The type of data we have integrated include cross bore hole seismic surveys, geological interpretation based on logs and cores, and engineering information. This report covers the second phase of the project which includes a detailed reservoir description of the field by integrating all the available information, followed by flow simulation of the Self Unit under various operating conditions. Based on an examination of the various operating parameters, we observed that the best possible solution to improve the Self Unit performance is to recomplete and stimulate most of the wells followed by an increase in the water injection rate. Drilling of horizontal injection well, although helpful in improving the performance, was not found to be economically feasible. The proposed reservoir management plan will be implemented shortly.

  1. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    SciTech Connect (OSTI)

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  2. Coupled-channel scattering on a torus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Peng; Dudek, Jozef Jon; Edwards, Robert G.; Szczepaniak, Adam Pawel

    2013-07-01

    Based on the Hamiltonian formalism approach, a generalized Luscher's formula for two particle scattering in both the elastic and coupled-channel cases in moving frames is derived from a relativistic Lippmann-Schwinger equation. Some strategies for extracting scattering amplitudes for a coupled-channel system from the discrete finite-volume spectrum are discussed and illustrated with a toy model of two-channel resonant scattering. This formalism will, in the near future, be used to extract information about hadron scattering from lattice QCD computations.

  3. TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2012-05-30

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at {approx}30 GHz, and the structure is configured to exhibit a high transformer ratio ({approx}12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  4. Multi-channel polarized thermal emitter

    DOE Patents [OSTI]

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  5. Complete Muon Cooling Channel Design and Simulations

    SciTech Connect (OSTI)

    C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. Johnson, Y.S. Derbenev, V.S. Morozov, D.V. Neuffer, K. Yonehara

    2012-07-01

    Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittances required for an energy-frontier muon collider. However, it has not yet been demonstrated that the various proposed cooling subsystems can be consolidated into an integrated end-to-end design. Presented here are concepts to address the matching of transverse emittances between subsystems through an extension of the theoretical framework of the Helical Cooling Channel (HCC), which allows a general analytical approach to guide the transition from one set of cooling channel parameters to another.

  6. Laboratory and numerical evaluation of borehole methods for subsurface horizontal flow characterization.

    SciTech Connect (OSTI)

    Pedler, William H. (Radon Abatement Systems, Inc., Golden, CO); Jepsen, Richard Alan (Sandia National Laboratories, Carlsbad, NM)

    2003-08-01

    The requirement to accurately measure subsurface groundwater flow at contaminated sites, as part of a time and cost effective remediation program, has spawned a variety of flow evaluation technologies. Validation of the accuracy and knowledge regarding the limitations of these technologies are critical for data quality and application confidence. Leading the way in the effort to validate and better understand these methodologies, the US Army Environmental Center has funded a multi-year program to compare and evaluate all viable horizontal flow measurement technologies. This multi-year program has included a field comparison phase, an application of selected methods as part of an integrated site characterization program phase, and most recently, a laboratory and numerical simulator phase. As part of this most recent phase, numerical modeling predictions and laboratory measurements were made in a simulated fracture borehole set-up within a controlled flow simulator. The scanning colloidal borescope flowmeter (SCBFM) and advanced hydrophysical logging (NxHpL{trademark}) tool were used to measure velocities and flow rate in a simulated fractured borehole in the flow simulator. Particle tracking and mass flux measurements were observed and recorded under a range of flow conditions in the simulator. Numerical models were developed to aid in the design of the flow simulator and predict the flow conditions inside the borehole. Results demonstrated that the flow simulator allowed for predictable, easily controlled, and stable flow rates both inside and outside the well. The measurement tools agreed well with each other over a wide range of flow conditions. The model results demonstrate that the Scanning Colloidal Borescope did not interfere with the flow in the borehole in any of the tests. The model is capable of predicting flow conditions and agreed well with the measurements and observations in the flow simulator and borehole. Both laboratory and model results showed a

  7. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect (OSTI)

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  8. Message passing with queues and channels

    DOE Patents [OSTI]

    Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer; Ratterman, Joseph D; Steinmacher-Burow, Burkhard; Wisniewski, Robert W

    2013-09-24

    In an embodiment, a send thread receives an identifier that identifies a destination node and a pointer to data. The send thread creates a first send request in response to the receipt of the identifier and the data pointer. The send thread selects a selected channel from among a plurality of channels. The selected channel comprises a selected hand-off queue and an identification of a selected message unit. Each of the channels identifies a different message unit. The selected hand-off queue is randomly accessible. If the selected hand-off queue contains an available entry, the send thread adds the first send request to the selected hand-off queue. If the selected hand-off queue does not contain an available entry, the send thread removes a second send request from the selected hand-off queue and sends the second send request to the selected message unit.

  9. Scripps Channel 2 | Open Energy Information

    Open Energy Info (EERE)

    Co-located facilities 10.5m Salt Water Deep TankFlume2nd Wave ChannelPressure Test VesselsTemperature-Pressure Calibration Facility Specializations, Capabilities, and Key...

  10. Electric Cooperatives Channel Solar Resources to Rural American...

    Office of Environmental Management (EM)

    Electric Cooperatives Channel Solar Resources to Rural American Communities Electric Cooperatives Channel Solar Resources to Rural American Communities February 4, 2016 - 12:07pm ...

  11. Multi-Channel Data Acquisition System for Nuclear Pulse Processing...

    Office of Scientific and Technical Information (OSTI)

    Conference: Multi-Channel Data Acquisition System for Nuclear Pulse Processing Citation Details In-Document Search Title: Multi-Channel Data Acquisition System for Nuclear Pulse ...

  12. Counter-current flow limitation in thin rectangular channels...

    Office of Scientific and Technical Information (OSTI)

    Counter-current flow limitation in thin rectangular channels Citation Details In-Document Search Title: Counter-current flow limitation in thin rectangular channels The phenomenon ...

  13. New Flexible Channels for Room Temperature Tunneling Field Effect...

    Office of Scientific and Technical Information (OSTI)

    New Flexible Channels for Room Temperature Tunneling Field Effect Transistors Citation Details In-Document Search Title: New Flexible Channels for Room Temperature Tunneling Field ...

  14. Peter Agre and Aquaporin Water Channels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter Agre and Aquaporin Water Channels Resources with Additional Information Peter Agre Courtesy of Johns Hopkins University 'Peter Agre, MD received the Nobel Prize in Chemistry in 2003 for his work with aquaporins, a family of water channel proteins found throughout nature and responsible for numerous physiological processes in humans.'1 'Dr. Agre received his BA in chemistry from Augsburg College in 1970, and his MD from Johns Hopkins in 1974. Following an Internal Medicine Residency at Case

  15. Radio Channel Simulator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Electricity Transmission Early Stage R&D Early Stage R&D Find More Like This Return to Search Radio Channel Simulator Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryRadio Channel Simulator (RCSim) is a simulation package for making site-specific predictions of radio signal strength. The software computes received power at discrete grid points as a function of the transmitter location and propagation environment. It is

  16. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect (OSTI)

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  17. Horizontal Wells to Enhance Production in the Bottle Rock Field - Final Report - 09/30/2000 - 02/01/2001

    SciTech Connect (OSTI)

    Cohen, J. H.

    2001-02-26

    This report describes the work that was done to prepare the Phase II proposal for an enhanced geothermal system based on the use of horizontal well to increase production of reservoir fluids from geothermal wells.

  18. Horizontal slim-hole drilling with coiled tubing; An operator's experience

    SciTech Connect (OSTI)

    Ramos, A.B. Jr.; Faahel, R.A.; Chaffin, M.G.; Pulis, K.H. )

    1992-10-01

    What is believed to be the first horizontal well drilled with directionally controlled coiled tubing recently was completed in the Austin Chalk formation. an existing well was sidetracked out of 4 1/2-in. casing with a conventional whipstock. an average build rate of 15[degrees]/100 ft was achieved in the curve, and a 1,458-ft vertical section was drilled with 2-in. coiled tubing, downhole mud motors, wireline steering tools, a mechanical downhole orienting tool, and 3 7/8-in. bits. This paper discusses the orienting and directional tools and techniques developed during this operation. It also describes improvements made for the second well.

  19. Rectified motion of a Bose-Einstein condensate in a horizontally vibrating shallow optical lattice

    SciTech Connect (OSTI)

    Azizi, Y.; Valizadeh, A.

    2011-01-15

    We consider a Bose-Einstein condensate, described by the Gross-Pitaevskii equation, in a horizontally vibrating shallow optical lattice. We study the dynamics of a bright soliton using the collective coordinate approximation. We show that depending on the parameters, amplitude, and frequency of the vibration of the lattice, the phase space of the equation of motion for the soliton center of mass shows multistability. In the frequency locked regions, in which the soliton has a nonzero average velocity determined by the external frequency, the motion is quasiperiodic, and between the locked regions the soliton moves chaotically.

  20. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    SciTech Connect (OSTI)

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  1. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  2. Integrated approach towards the Application of Horizontal Wells to Improve Waterflooding Performance. Annual report

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1994-06-01

    This annual report describes the progress during the first year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvial-dominated deltaic deposits. The project involves an integrated approach to characterize the reservoir followed by drilling of horizontal injection wells to improve production performance. The type of data the authors intend to integrate includes cross bore hole seismic surveys, geological interpretation based on logs and cores, and engineering information. This report covers the first phase of the project which includes a detailed reservoir description of the field based on the available information, followed by flow simulation of the Self Unit to compare the simulated result with the historical performance. Based on the simulated results, a vertical test well was drilled to validate this reservoir description. The well will also be used as a source well for a cross bore hole seismic survey. This report discusses the related geophysical, geological and engineering activities leading to the drilling of the vertical test well. The validation phase and the collection of the cross bore hole survey has just begun, and the results will be presented in the next annual report.

  3. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    SciTech Connect (OSTI)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  4. Report on full-scale horizontal cable tray fire tests, FY 1988

    SciTech Connect (OSTI)

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results.

  5. Plasma channel optical pumping device and method

    DOE Patents [OSTI]

    Judd, O.P.

    1983-06-28

    A device and method are disclosed for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device. 5 figs.

  6. Plasma channel optical pumping device and method

    DOE Patents [OSTI]

    Judd, O'Dean P.

    1983-06-28

    A device and method for optically pumping a gaseous laser using blackbody radiation produced by a plasma channel which is formed from an electrical discharge between two electrodes spaced at opposite longitudinal ends of the laser. A preionization device which can comprise a laser or electron beam accelerator produces a preionization beam which is sufficient to cause an electrical discharge between the electrodes to initiate the plasma channel along the preionization path. The optical pumping energy is supplied by a high voltage power supply rather than by the preionization beam. High output optical intensities are produced by the laser due to the high temperature blackbody radiation produced by the plasma channel, in the same manner as an exploding wire type laser. However, unlike the exploding wire type laser, the disclosed invention can be operated in a repetitive manner by utilizing a repetitive pulsed preionization device.

  7. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect (OSTI)

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  8. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Quarterly report, October 1 - December 31, 1996

    SciTech Connect (OSTI)

    Wood, J.R.

    1997-01-01

    The principal objective of this project is to demonstrate the feasibility and economic success of producing oil from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. A site for a horizontal well was selected in Crystal Field, a nearly-abandoned Dundee oil field in Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well was drilled as a field demonstration pilot, funded through this DOE project, and was successful. It has produced over 37,000 bbls of oil as of December 31, 1996 at sustained rate of {approximately}100 bbls/day. At a nominal wellhead price of $20/bbl, this well has made about $750,000 and is still going strong. Two additional horizontal wells have just been completed and are on test. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The horizontal well was brought on production at a rate of 100 bbls/day and is probably capable of producing at a higher rate. The addition of several horizontal wells, similar to the demonstration well, will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. The presence of untapped oil in this Dundee field was dramatically demonstrated and the favorable economics were made clearly evident. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels. Horizontal drilling will likely revolutionize the development of old carbonate fields such as those in the Dundee of Michigan.

  9. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  10. Transformer Recharging with Alpha Channeling in Tokamaks

    SciTech Connect (OSTI)

    N.J. Fisch

    2009-12-21

    Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________

  11. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect (OSTI)

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  12. Method for forming an in situ oil shale retort with horizontal free faces

    DOE Patents [OSTI]

    Ricketts, Thomas E.; Fernandes, Robert J.

    1983-01-01

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  13. Linear mechanism of surface gravity wave generation in horizontally sheared flow

    SciTech Connect (OSTI)

    Kalashnik, M. V.

    2008-01-15

    An analysis is presented of a linear mechanism of surface gravity wave generation in a horizontally sheared flow in a fluid layer with free boundary. A free-surface flow of this type is found to be algebraically unstable. The development of instability leads to the formation of surface gravity waves whose amplitude grows with time according to a power law. Flow stability is analyzed by using a nonmodal approach in which the behavior of a spatial Fourier harmonic of a disturbance is considered in a semi-Lagrangian frame of reference moving with the flow. Shear-flow disturbances are divided into two classes (wave and vortex disturbances) depending on the value of potential vorticity. It is shown that vortex disturbances decay with time while the energy of wave disturbances increases indefinitely. Transformation of vortex disturbances into wave ones under strong shear is described.

  14. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  15. Numerical Simulation of Horizontal Continuous Casting Process of C194 Copper Alloy

    SciTech Connect (OSTI)

    Huang Guojie; Xie Shuisheng; Cheng Lei; Cheng Zhenkang [State Key Laboratory for Fabrication and Processing of Nonferrous Metals, Beijing General Research Institute for Non-ferrous Metals, China, 100088 (China)

    2007-05-17

    Horizontal Continuous Casting (H.C.C) is an important method to cast C194 copper ingot. In this paper, numerical simulation is adopted to investigate the casting process in order to optimize the H.C.C technical parameters, such as the casting temperature, casting speed and cooling intensity. According to the numerical results, the reasonable parameters are that the casting temperature is between 1383K{approx}1463K, the casting speed is between 7.2m/h{approx}10.8m/h and the speed of cooling water is between 3.6m/s{approx}4.6m/s. The results of numerical simulation provide the significant reference to the subsequent experiments.

  16. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  17. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect (OSTI)

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  18. Theoretical and experimental power from large horizontal-axis wind turbines

    SciTech Connect (OSTI)

    Viterna, L A; Janetzke, D C

    1982-09-01

    A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-O (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.

  19. Sand transport and deposition in horizontal multiphase trunklines of subsea satellite developments

    SciTech Connect (OSTI)

    Oudeman, P. )

    1993-11-01

    Gravel packing is unattractive as a way to protect against the effects of sand production in subsea wells because it involves additional completion costs, loss of productivity, and difficulties in subsequent recompletion/well servicing operations. On the other hand, omitting gravel packs means that subsea developments must be designed and operated so that they can tolerate sand production. An experimental study was carried out on sand transport and deposition in multiphase flow in modeled subsea flowlines to address the problem and sand collection in horizontal trunklines, which could lead to reduced line throughput, pigging problems, enhanced pipe-bottom erosion, or even blockage. This study led to the definition of a new model for sand transport in multiphase flow, which was used to establish the risk of sand deposition in trunklines connecting a subsea development to nearby production platform.

  20. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOE Patents [OSTI]

    Ciszek, Theodore F.

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  1. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOE Patents [OSTI]

    Ciszek, T.F.

    1984-09-12

    Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

  2. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    SciTech Connect (OSTI)

    Hata, K.; Shiotsu, M.; Takeuchi, Y.

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  3. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    SciTech Connect (OSTI)

    Chris Liner; Dennis Kerr; Mohan Kelkar

    1998-09-30

    Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance The overall purpose of the proposed project is to improve secondary recovery performance of a marginal oil field through the use of an appropriate reservoir management plan. The selection of plan will be based on the detailed reservoir description using an integrated approach. We expect that 2 to 5% of the original oil in place will be recovered using this method. This should extend the life of the reservoir by at least 10 years. The project is divided into two stages. In Stage I of the project, we selected part of the Glenn Pool Field - Self Unit. We conducted cross borehole tomography surveys and formation micro scanner logs through a newly drilled well. By combining the state-of-the-art data with conventional core and log data, we developed a detailed reservoir description based on an integrated approach. After conducting extensive reservoir simulation studies, we evaluated alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal injection well. We observed that selective completion of many wells followed by an increase in the injection rate was the most feasible option to improve the performance of the Self Unit. This management plan is currently being implemented and the performance is being monitored. Stage II of the project will involve selection of part of the same reservoir (Berryhill Unit - Tract 7), development of reservoir description using only conventional data, simulation of flow performance using developed reservoir description, selection of an appropriate reservoir management plan, and implementation of the plan followed by monitoring of reservoir performance.

  4. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    SciTech Connect (OSTI)

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.

  5. Fuel cell collector plates with improved mass transfer channels

    DOE Patents [OSTI]

    Gurau, Vladimir; Barbir, Frano; Neutzler, Jay K.

    2003-04-22

    A fuel cell collector plate can be provided with one or more various channel constructions for the transport of reactants to the gas diffusion layer and the removal of water therefrom. The outlet channel can be arranged to have a reduced volume compared to the inlet channel, in both interdigitated and discontinuous spiral applications. The land width between an inlet channel and outlet channel can be reduced to improved mass flow rate in regions of deleted reactant concentrations. Additionally or alternatively, the depth of the inlet channel can be reduced in the direction of flow to reduce the diffusion path as the concentration of reactant is reduced.

  6. Reliable quantum communication over a quantum relay channel

    SciTech Connect (OSTI)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  7. Computational optimization of synthetic water channels.

    SciTech Connect (OSTI)

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  8. Modeling Feat Sheds Light on Protein Channel's Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Feat Sheds Light on Protein Channel's Function Modeling Feat Sheds Light on Protein Channel's Function November 1, 2012 NERSC Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 nerscweb.png The ribosome (red-blue) in complex with the translocon channel (green), which is embedded in the cell membrane (yellow, white). Proteins that are inserted via the ribosome into the channel can either be laterally integrated into the cell membrane or secreted across the cell membrane (inset). (Image

  9. Application of channeling in bent crystals to charged particle...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 43 PARTICLE ACCELERATORS; BEAM OPTICS; CHANNELING; ATTENUATION; ... BEAMS 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics

  10. Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

    SciTech Connect (OSTI)

    Chris Liner; Dennis Kerr; Mohan Kelkar

    1998-06-30

    Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance scanner logs through a newly drilled well. By combining the state-of-the-art data with conventional core and log data, we developed a detailed reservoir description based on an integrated approach. After conducting extensive reservoir simulation studies, we evaluated alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal injection well. We observed that selective completion of many wells followed by an increase in the injection rate was the most feasible option to improve the performance of the Self Unit. This management plan is currently being implemented and the performance is being Stage II of the project will involve selection of part of the same reservoir (Berryhill Unit - Tract 7), development of reservoir description using only conventional data, simulation of flow performance using developed reservoir description, selection of an appropriate reservoir management plan, and implementation of the plan followed by monitoring of reservoir performance. During the summer of 1995, we started implementing the reservoir management plan in the Self Unit. Last quarter, after evaluating each individual well, we decided to install electrical submersible pumps to produce three wells. The other three wells required the use of rod pumps. Production from the field improved significantly once the pumps were installed. Over the last two years, an average daily production has been approximately 40 to 45 bbls/day. Compared to a base line production of 13 bbls/day before the implementation, this is more than a 200% increase in production. determined. We are finalizing the AFE for the overall implementation. This overall implementation will include converting well no 61 into an injector, re-perforating wells M-3A and M-4A, and drilling a deviated production well between 61 and M-3A/M-4A i n east west direction. The total

  11. Microwave Radiometer – 3 Channel (MWR3C) Handbook

    SciTech Connect (OSTI)

    Cadeddu, MP

    2012-05-04

    The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

  12. Concurrent signal combining and channel estimation in digital communications

    DOE Patents [OSTI]

    Ormesher, Richard C.; Mason, John J.

    2011-08-30

    In the reception of digital information transmitted on a communication channel, a characteristic exhibited by the communication channel during transmission of the digital information is estimated based on a communication signal that represents the digital information and has been received via the communication channel. Concurrently with the estimating, the communication signal is used to decide what digital information was transmitted.

  13. Quasi-superactivation for the classical capacity of quantum channels

    SciTech Connect (OSTI)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.

  14. Geological aspects of drilling horizontal wells in steam flood reservoirs, west side, southern San Joaquin Valley, California

    SciTech Connect (OSTI)

    Crough, D.D.; Holman, M.L.; Sande, J.J. )

    1994-04-01

    Shell Western E P Inc. has drilled 11 horizontal wells in four mature steam floods in the Coalinga, South Belridge, and Midway-Sunset fields. Two medium radius wells are producing from the Pliocene Etchegoin Formation in Coalinga. One medium radius well is producing from the Pleistocene Tulare Formation in South Belridge field. Three short radius and five medium radius wells are producing from the upper Miocene, Sub-Hoyt and Potter sands in Midway-Sunset field. Horizontal wells at the base of these reservoirs and/or structurally downdip near the oil-water contact are ideally suited to take advantage of the gravity drainage production mechanism. Reservoir studies and production experience have shown these horizontal wells should increase reserves, improve recovery efficiency, improve the oil-steam ratio, and improve project profitability. Geological considerations of targeting the wells vary between fields because of the different depositional environments and resulting reservoir characteristics. The thin sands and semicontinuous shales in the Tulare Formation and the Etchegoin Formation require strict structural control on the top and base of the target sand. In the Sub-Hoyt and Potter sands, irregularities of the oil-water contact and sand and shale discontinuities must be understood. Logging and measurement while drilling provide geosteering capability in medium radius wells. Teamwork between all engineering disciplines and drilling and producing operations has been critical to horizontal well success.

  15. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOE Patents [OSTI]

    Praeg, W.F.

    1997-02-11

    An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

  16. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam

    DOE Patents [OSTI]

    Praeg, Walter F.

    1997-01-01

    An apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure.

  17. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    DOE Patents [OSTI]

    Praeg, Walter F.

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  18. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    1998-04-01

    This Class II field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two long horizontal wells were drilled successfully in Crystal after the TOW 1-3, but were disappointing economically. Core and logs from the Dundee interval were recovered from a vertical borehole at the same surface location. The addition of several horizontal wells will likely add another 2 million bbls (or more) to the cumulative production of the field over the next few years. If other abandoned Dundee fields are re-developed in a similar manner, the additional oil produced could exceed 80 million barrels.

  19. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect (OSTI)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per [Royal Institute of Technology, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  20. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2013-09-08

    Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.

  1. Use of jet grouting to create a low permeability horizontal barrier below an incinerator ash landfill

    SciTech Connect (OSTI)

    Furth, A.J.; Burke, G.K.; Deutsch, W.L. Jr.

    1997-12-31

    The City of Philadelphia`s Division of Aviation (DOA) has begun construction of a new commuter runway, designated as Runway 8-26, at the Philadelphia International Airport. A portion of this runway will be constructed over a former Superfund site known as the Enterprise Avenue Landfill, which for many years was used to dispose of solid waste incinerator ash and other hazardous materials. The site was clay capped in the 1980`s, but in order for the DOA to use the site, additional remediation was needed to meet US EPA final closure requirements. One component of the closure plan included installation of a low permeability horizontal barrier above a very thin (approximately 0.61 to 0.91 meters) natural clay stratum which underlies an approximately 1020 m{sup 2} area of the landfill footprint so as to insure that a minimum 1.52 meter thick low permeability barrier exists beneath the entire 150,000 m{sup 2} landfill. The new barrier was constructed using jet grouting techniques to achieve remote excavation and replacement of the bottom 0.91 meters of the waste mass with a low permeability grout. The grout was formulated to meet the low permeability, low elastic modulus and compressive strength requirements of the project design. This paper will discuss the advantages of using jet grouting for the work and details the development of the grout mixture, modeling of the grout zone under load, field construction techniques, performance monitoring and verification testing.

  2. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    SciTech Connect (OSTI)

    Valcarce, A. A. R.; De Medeiros, J. R.; Catelan, M.; Alonso-Garca, J.; Corts, C.

    2014-02-20

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ?Y ? 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  3. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect (OSTI)

    Song, P.; Vasyli?nas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvn waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  4. HORIZONTAL BRANCH MORPHOLOGY AND MULTIPLE STELLAR POPULATIONS IN THE ANOMALOUS GLOBULAR CLUSTER M 22

    SciTech Connect (OSTI)

    Marino, A. F.; Milone, A. P.; Lind, K. E-mail: milone@iac.es

    2013-05-01

    M 22 is an anomalous globular cluster that hosts two groups of stars with different metallicity and s-element abundance. The star-to-star light-element variations in both groups, with the presence of individual Na-O and C-N anticorrelations, demonstrates that this Milky Way satellite has experienced a complex star formation history. We have analyzed FLAMES/UVES spectra for seven stars covering a small color interval on the reddest horizontal branch (HB) portion of this cluster and investigated possible relations between the chemical composition of a star and its location along the HB. Our chemical abundance analysis takes into account effects introduced by deviations from the local thermodynamic equilibrium (NLTE effects), which are significant for the measured spectral lines in the atmospheric parameters range spanned by our stars. We find that all the analyzed stars are barium-poor and sodium-poor, thus supporting the idea that the position of a star along the HB is strictly related to the chemical composition, and that the HB morphology is influenced by the presence of different stellar populations.

  5. Comparison of optically measured and radar-derived horizontal neutral winds. Master's thesis

    SciTech Connect (OSTI)

    Christie, M.S.

    1990-01-01

    Nighttime thermospheric winds for Sondrestrom, Greenland from 11 nights between 1983 and 1988, have been compared to learn about the O(+)-O collision cross section and the high-latitude atomic oxygen density. The horizontal winds in the magnetic meridian were derived indirectly from incoherent-scatter radar (ISR) measurements on ion velocities antiparallel to the magnetic field and directly from Fabry-Perot interferometer (FPI) measurements of Doppler shifts of the (6300-A) emission of atomic oxygen. In deriving the radar winds, the O(+)-O collision cross section, was scaled by a factor of f what was varied from 0.5 to 5.1. On the basis of several arguments the altitude of the 6300-A emission was assumed to be 230 km. The best agreement between the ISR and FPI winds was obtained when f was increased substantially, to between 1.7 and 3.4. If the average peak emission altitude were higher, these factors would be larger; if it were lower, they would be somewhat smaller. However, if the average altitude were substantially lower it would have been more difficult to have obtained agreement between the two techniques.

  6. METALLICITY AND KINEMATIC DISTRIBUTIONS OF RED HORIZONTAL-BRANCH STARS FROM THE SDSS SURVEY

    SciTech Connect (OSTI)

    Chen, Y. Q.; Zhao, G.; Zhao, J. K.; Xue, X. X.; Schuster, W. J. E-mail: schuster@astrosen.unam.m

    2010-08-15

    On the basis of a recently derived color-metallicity relation and stellar parameters from the Sloan Digital Sky Survey Data Release 7 spectroscopic survey, a large sample of red horizontal-branch (RHB) candidates have been selected to serve as standard candles. The metallicity and kinematic distributions of these stars indicate that they mainly originate from the thick-disk and the halo populations. The typical thick disk is characterized by the first group peaking at [Fe/H] {approx} -0.6, V{sub rot} {approx} 170 km s{sup -1} with a vertical scale height around |Z| {approx} 1.2 kpc, while stars with [Fe/H] < -0.9 are dominated by the halo population. Two sub-populations of the halo are suggested by the RHB stars peaking at [Fe/H] {approx} -1.3: one component with V{sub rot} > 0 km s{sup -1} (Halo I) shows a sign of metallicity gradient in the [Fe/H] versus |Z| diagram, while the other with V{sub rot} < 0 km s{sup -1} (Halo II) does not. The Halo I mainly clumps at the inner halo with R < 10 kpc and the Halo II comes both from the inner halo with R < 10 kpc and the outer halo with R > 10 kpc based on the star distribution in the R versus |Z| diagram.

  7. Aerodynamic analysis of a 10 kW horizontal-axis windmill

    SciTech Connect (OSTI)

    Figard, R.L.

    1980-01-01

    An aerodynamic study of the performance and the flowfield in the vicinity of the rotor of a three bladed 10 kW, horizontal-axis windmill is presented. The windmill has a 6.38 m (20.92 ft) diameter rotor and is rated at 10 kW in a 13.41 m/s (44.0 fps) wind. Three basic approaches are utilized. First, field measurements of the performance and the axial velocity and turbulence behind the rotor were conducted. Second, wind tunnel tests of a 1:5 scale model were performed. Third, theoretical analyses of the windmill were made. This included performance predictions with a computerized, modified blade element (vortex theory) analysis and the development and utilization of a numerical procedure employing the full Navier-Stokes equations in axi-symmetric form to examine the wake development in detail. In that effort the rotor is modeled by an actuator disk in a uniform flow, a simple turbulence transport model based on an integrated TKE equation is applied, and the equations of motion are taken in terms of the stream function, one vorticity component, and the peripheral velocity. The results of each of the three approaches shows agreement within 10 to 15% with the other two approaches.

  8. Horizontal-flow anaerobic immobilized sludge (HAIS) reactor for paper industry wastewater treatment

    SciTech Connect (OSTI)

    Foresti, E.; Cabral, A.K.A.; Zaiat, M.; Del Nery, V.

    1996-11-01

    Immobilized cell reactors are known to permit the continuous operation without biomass washout and also for increasing the time available for cells` catalytic function in a reaction or in a series of reactions. Several cell immobilization supports have been used in different reactors for anaerobic wastewater treatment, such as: agar gel, acrylamide, porous ceramic, and polyurethane foam besides the self-immobilized biomass from UASB reactors. However, the results are not conclusive as to the advantages of these different reactors with different supports as compared to other anaerobic reactor configurations. This paper describes a new anaerobic attached growth reactor configuration, herein referred as horizontal-flow anaerobic immobilized sludge (HAIS) reactor and presents the results of its performance test treating kraft paper industry wastewater. The reactor configuration was conceived aiming to increase the ratio useful volume/total volume by lowering the volume for gas separation. The HAIS reactor conception would permit also to incorporate the reactor hydrodynamic characteristics in its design criteria if the flow pattern could be approximated as plug-flow.

  9. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

    SciTech Connect (OSTI)

    Lobitz, D.W.

    1984-01-01

    This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

  10. Underbalanced coiled-tubing-drilled horizontal well in the North Sea

    SciTech Connect (OSTI)

    Wodka, P.; Tirsgaard, H.; Damgaard, A.P.; Adamsen, C.J.

    1996-05-01

    Maersk Olie and Gas A/S (Maersk Oil) has drilled a 3,309-ft-long near-horizontal drainhole with coiled tubing to a total measured depth (MD) of 11,000 ft in the Danish sector of the North Sea. The well was completed in may 1994 as a 3{1/2}-in. openhole producer in the Gorm field chalk reservoir. Part of the well was drilled at underbalanced conditions, and oil production rates of up to 1,100 STB/D were reached during drilling. Conventional well-test equipment was used for handling returns. A nearby process facilities platform supplied lift gas and received the produced hydrocarbons during the drilling phase. Worth noting are the penetration of several chert layers, the fairly long reach, and the application of geosteering. Indications were that the well productivity was significantly improved compared with that of a conventionally drilled well, but problems were experienced with borehole stability in a fractured region.

  11. Experimental Investigation of Liquid-propellant Laser Propulsion with a Horizontal Momentum Measuring Lever

    SciTech Connect (OSTI)

    Wang Bin; Li Long; Tang Zhiping; Cai Jian

    2010-05-06

    Thrust performance of Liquid-propellant laser propulsion (LLP) is seriously influenced by factors like laser parameters, choice of propellants and ablation materials. For the purpose of studying these influences, series of impulse measuring experiments for various propellants and ablation materials were conducted. The key device is a Horizontal Momentum Measuring Lever, which covers a C{sub m} measuring range from 10{sup 3} Ns/MJ to about 1.6x10{sup 4} Ns/MJ. A Nd:YAG laser was used as the laser source. From the result, it is found that laser energy density plays an important role on LLP efficiency, higher energy density leads to higher C{sub m} and I{sub sp}. Highest C{sub m} of about 10{sup 4} Ns/MJ with the I{sub sp} of 3.57s was achieved by focusing the laser to the average energy density of 8.83x10{sup 8} W/cm{sup 2}. Besides of that, it is also found that when the energy density is certainly high, C{sub m} of LLP increases stably with the increase of the propellant thickness, which gives a potential way to further improve the thrust performance in LLP.

  12. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect (OSTI)

    Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  13. Analysis of a Lifting Fixture to Hold a Steel Mandrel Horizontally from one End Support

    SciTech Connect (OSTI)

    Cease, H.; /Fermilab

    1999-04-07

    A lifting fixture (drawing number 3823.113-MD-372382) that lifts large steel mandrels from one end through the mandrel's end support web is described. The mandrels are used as a mold to form carbon fiber cylinders. The mandrels are held from one end to allow the carbon cylinder to be pulled horizontally off the mandrel. Only mandrels as described in drawing numbers 3823.113-MD-358992 and 3823.1 13-MD-358994 are lifted by the fixture. The largest mandrel is 41 inches in diameter, 120 inches long, and weighs approximately 3,000 lbs. A detailed procedure for removing the carbon cylinder from the steel mandrel is given in the Appendix. The fixture is to be supported only using Fermilab Forklift 10207 or equivalent. The forklift has a nameplate capacity of 12,000 lbs 24 inches from the mast at an elevation of 130 inches from the floor. The forklift forks must be removed from the truck prior to using the fixture. The forklift is to be used to support the mandrels only during the lifting operation and is not to be used to transport the mandrels. Stresses at the lifting fixture are shear stresses on the support brackets due to the overall weight of the mandrel and moment loads due to the cantilever style suppOrt. The moment on the forklift due to the overhanging weight of the mandrel is calculated. Stresses in the mandrel due to the method of support are also described.

  14. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect (OSTI)

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  15. DOUBLE HORIZONTAL BRANCHES IN NGC 6440 AND NGC 6569 UNVEILED BY THE VVV SURVEY

    SciTech Connect (OSTI)

    Mauro, Francesco; Bidin, Christian Moni; Cohen, Roger; Geisler, Doug; Chene, Andre-Nicolas; Villanova, Sandro; Minniti, Dante; Catelan, Marcio

    2012-12-20

    We report the discovery of a peculiar horizontal branch (HB) in NGC 6440 and NGC 6569, two massive and metal-rich Galactic globular clusters (GGCs) located in the Galactic bulge, within 4 kpc from the Galactic center. In both clusters, two distinct clumps are detected at the level of the cluster HB, separated by only {approx}0.1 mag in the K{sub s} band. They were detected with IR photometric data collected with the 'VISTA Variables in the Via Lactea' Survey, and confirmed in independent IR catalogs available in the literature and Hubble Space Telescope optical photometry. Our analysis demonstrates that these clumps are real cluster features, not a product of field contamination or interstellar reddening. The observed split HBs could be a signature of two stellar sub-populations with different chemical composition and/or age, as recently found in Terzan 5, but it cannot be excluded that they are caused by evolutionary effects, in particular for NGC 6440. This interpretation, however, requires an anomalously high helium content (Y > 0.30). Our discovery suggests that such a peculiar HB morphology could be a common feature of massive, metal-rich bulge GGCs.

  16. Energy conversion device with support member having pore channels

    DOE Patents [OSTI]

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  17. CHANNEL MORPHOLOGY TOOL (CMT): A GIS-BASED AUTOMATED EXTRACTION MODEL FOR CHANNEL GEOMETRY

    SciTech Connect (OSTI)

    JUDI, DAVID; KALYANAPU, ALFRED; MCPHERSON, TIMOTHY; BERSCHEID, ALAN

    2007-01-17

    This paper describes an automated Channel Morphology Tool (CMT) developed in ArcGIS 9.1 environment. The CMT creates cross-sections along a stream centerline and uses a digital elevation model (DEM) to create station points with elevations along each of the cross-sections. The generated cross-sections may then be exported into a hydraulic model. Along with the rapid cross-section generation the CMT also eliminates any cross-section overlaps that might occur due to the sinuosity of the channels using the Cross-section Overlap Correction Algorithm (COCoA). The CMT was tested by extracting cross-sections from a 5-m DEM for a 50-km channel length in Houston, Texas. The extracted cross-sections were compared directly with surveyed cross-sections in terms of the cross-section area. Results indicated that the CMT-generated cross-sections satisfactorily matched the surveyed data.

  18. Channeling and dechanneling at high energy

    SciTech Connect (OSTI)

    Carrigan, R.A. Jr.

    1987-09-30

    The possibility of using channeling as a tool for high energy particle physics has now been extensively investigated. Bent crystals have been used as an accelerator extraction element and for particle deflection. Applications as accelerating devices have been discussed but appear remote. The major advantage in using a bent crystal rather than a magnet is the large deflection that can be achieved in a short length. The major disadvantage is the low transmission. A good understanding of dechanneling is important for applications. 43 refs., 1 fig., 3 tabs.

  19. System to acquire and monitor operating machinery positions for horizontal coke oven batteries

    SciTech Connect (OSTI)

    Bierbaum, D.; Teschner, W.

    1980-02-26

    In a horizontal coke oven battery with at least one coke receiving device movable along one longitudinal side of the battery and at least one coke driving device movable along an opposite longitudinal side of the battery, an apparatus is disclosed for determining the relative position of the coke receiving device with respect to the coke driving device and for activating the coke driving device when its position corresponds with that of the coke receiving device. A first wheel is mounted on the coke receiving device for rotation with the movement of the coke receiving device, a first angle encoder is connected to the first wheel for producing a first signal corresponding to the location of the first wheel and the position of the coke receiving device along the coke oven, and an input storage in the form of a magnetic disc is connected to the first angle encoder for recording and storing the signal. A second wheel is mounted on the coke driving device for rotation with the movement of the coke driving device and a second angle encoder is connected thereto for producing a second signal which corresponds to the rotation of the second wheel and the position of the coke driving device along the coke oven. A comparator is connected to the second signal encoder for receiving the second signal and a data link is provided between the comparator and the input storage of the coke receiving device so that the first signal from the coke receiving device can be impressed on the comparator. An activator is connected to the comparator for activating the coke driving device when the first signal corresponds to the second signal indicating a corresponding positional relationship between the coke receiving device and the coke driving device.

  20. Global and nonglobal parameters of horizontal-branch morphology of globular clusters

    SciTech Connect (OSTI)

    Milone, A. P.; Marino, A. F.; Dotter, A.; Norris, J. E.; Jerjen, H.; Asplund, M. E-mail: amarino@mso.anu.edu.au E-mail: jerjen@mso.anu.edu.au; and others

    2014-04-10

    The horizontal-branch (HB) morphology of globular clusters (GCs) is mainly determined by metallicity. However, the fact that GCs with almost the same metallicity exhibit different HB morphologies demonstrates that at least one more parameter is needed to explain the HB morphology. It has been suggested that one of these should be a global parameter that varies from GC to GC and the other a nonglobal parameter that varies within the GC. In this study we provide empirical evidence corroborating this idea. We used the photometric catalogs obtained with the Advanced Camera for Surveys of the Hubble Space Telescope and analyze the color-magnitude diagrams of 74 GCs. The HB morphology of our sample of GCs has been investigated on the basis of the two new parameters L1 and L2 that measure the distance between the red giant branch and the coolest part of the HB and the color extension of the HB, respectively. We find that L1 correlates with both metallicity and age, whereas L2 most strongly correlates with the mass of the hosting GC. The range of helium abundance among the stars in a GC, characterized by ΔY and associated with the presence of multiple stellar populations, has been estimated in a few GCs to date. In these GCs we find a close relationship among ΔY, GC mass, and L2. We conclude that age and metallicity are the main global parameters, while the range of helium abundance within a GC is the main nonglobal parameter defining the HB morphology of Galactic GCs.

  1. A Method of Correcting for Tilt From Horizontal in Downwelling Shortwave Irradiance Measurements on Moving Platforms

    SciTech Connect (OSTI)

    Long, Charles N.; Bucholtz, Anthony; Jonsson, Haf; Schmid, Beat; Vogelmann, A. M.; Wood, John

    2010-04-14

    Significant errors occur in downwelling shortwave irradiance measurements made on moving platforms due to tilt from horizontal because, when the sun is not completely blocked by overhead cloud, the downwelling shortwave irradiance has a prominent directional component from the direct sun. A-priori knowledge of the partitioning between the direct and diffuse components of the total shortwave irradiance is needed to properly apply a correction for tilt. This partitioning information can be adequately provided using a newly available commercial radiometer that produces reasonable measurements of the total and diffuse shortwave irradiance, and by subtraction the direct shortwave irradiance, with no moving parts and regardless of azimuthal orientation. We have developed methodologies for determining the constant pitch and roll offsets of the radiometers for aircraft applications, and for applying a tilt correction to the total shortwave irradiance data. Results suggest that the methodology is for tilt up to +/-10°, with 90% of the data corrected to within 10 Wm-2 at least for clear-sky data. Without a proper tilt correction, even data limited to 5° of tilt as is typical current practice still exhibits large errors, greater than 100 Wm-2 in some cases. Given the low cost, low weight, and low power consumption of the SPN1 total and diffuse radiometer, opportunities previously excluded for moving platform measurements such as small Unmanned Aerial Vehicles and solar powered buoys now become feasible using our methodology. The increase in measurement accuracy is important, given current concerns over long-term climate variability and change especially over the 70% of the Earth’s surface covered by ocean where long-term records of these measurements are sorely needed and must be made on ships and buoys.

  2. Integrated approach towards the application of horizontal wells to improve waterflooding performance. 1995 annual report

    SciTech Connect (OSTI)

    Kelkar, M.; Liner, C.; Kerr, D.

    1996-06-01

    This annual report describes the progress during the third year of the project on Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance. This project is funded under the Department of Energy`s Class I program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially dominated deltaic geological environments. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data we integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, we intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The preliminary results look promising from the field implementation. The production from the Self Unit (location of Stage I) has increased by 35 bbls/day with additional increase anticipated with further implementation. Based on our understanding of the first stage, we hope to examine a greater area of the Glenn Pool field for additional increase in production. We have collected available core and log data and have finished the initial geological description. Although not a direct part of this project, we also have initiated a 3-D seismic survey of the area which should help us in improving the reservoir description.

  3. Mixed convection transport from an isolated heat source module on a horizontal plate

    SciTech Connect (OSTI)

    Kang, B.H.; Jaluria, Y.; Tewari, S.S. )

    1990-08-01

    An experimental study of the mixed convective heat transfer from an isolated source of finite thickness, located on a horizontal surface in an externally induced forced flow, has been carried out. This problem is of particular interest in the cooling of electronic components and also in the thermal transport associated with various manufacturing systems, such as ovens and furnaces. The temperature distribution in the flow as well as the surface temperature variation are studied in detail. The dependence of the heat transfer rate on the mixed convection parameter and on the thickness of the heated element or source, particularly in the vicinity of the source, is investigated. The results obtained indicate that the heat transfer rate and fluid flow characteristics vary strongly with the mixed convection variables. The transition from a natural convection dominated flow to a forced convection dominated flow is studied experimentally and the basic characteristics of the two regimes determined. This transition has a strong influence on the temperature of the surface and on the heat transfer rate. As expected, the forced convection dominated flow is seen to be significantly more effective in the cooling of a heat dissipating component than a natural convection dominated flow. The location of the maximum temperature on the module surface, which corresponds to the minimum local heat transfer coefficient, is determined and discussed in terms of the underlying physical mechanisms. The results obtained are also compared with these for an element of negligible thickness and the effect of a significant module thickness on the transport is determined. Several other important aspects of fundamental and applied interest are studied in this investigation.

  4. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  5. Helium Loop Cooling Channel Hydraulic Characterization

    SciTech Connect (OSTI)

    Olivas, Eric Richard; Morgan, Robert Vaughn; Woloshun, Keith Albert

    2015-07-02

    New methods for generating ⁹⁹Mo are being explored in an effort to eliminate proliferation issues and provide a domestic supply of ⁹⁹mTc for medical imaging. Electron accelerating technology is used by sending an electron beam through a series of ¹⁰⁰Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature set for the system. In order to maintain the required temperature range, helium gas is used to serve as a cooling agent that flows through narrow channels between the target disks. Currently we are tailoring the cooling channel entrance and exits to decrease the pressure drop through the targets. Currently all hardware has be procured and manufactured to conduct flow measurements and visualization via solid particle seeder. Pressure drop will be studied as a function of mass flow and diffuser angle. The results from these experiments will help in determining target cooling geometry and validate CFD code results.

  6. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland; Flanagan, Gene

    2014-09-10

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  7. An application utilizing horizontal re-entries versus waterflooding for depleting a mid-life Niagaran Reef

    SciTech Connect (OSTI)

    Pieters, D.A.; Pearce, L.A.

    1996-12-31

    Waterflooding has been the preferred secondary recovery technique for mid-life Michigan Niagaran reefs that were large enough to economically warrant it. Since these pinnacle reefs average 50-550 acres, the success in waterflooding such a limited space has been a hit or miss proposition depending on the pinpoint accuracy in locating injector and producer. This paper presents a case history for the Colfax 25 reef where five horizontal drainholes were positioned across the field in a pattern to access and drain all areas of the reservoir. This particular reef was chosen based on identified incremental reserves, areal extent and on past production history which displayed reservoir characteristics that were favorable for horizontal wells. The application was tremendously successful. Production in all wells doubled as gas oil ratios were significantly reduced. Start-up costs were slightly below those of a conventional water flood and operating costs were substantially lower than would be incurred for a waterflood.

  8. Modeling of horizontal well and lifting mechanisms to improve ultimate recovery in a depleted field in Lake Maracaibo, Venezuela

    SciTech Connect (OSTI)

    Saputelli, L.; Mata, T.; Jimenez, Z.

    1995-12-31

    Recovery of the remaining reserve of millions of oil barrels is inhibited by depleted reservoir pressures and existing exploitation policies in Lower Lagunillas Reservoir in Lake Maracaibo, Venezuela. Numerical simulation results indicated that proper production and reservoir management policies such as, controlled drawdown, producing wells at rates below the critical rates, low gas-oil-ratio production will promote efficient gravity segregation process, and subsequent optimum final recovery. Combination of infill horizontal wells and adequate lifting mechanisms yielded the recovery of additional reserves.

  9. Recovery of bypassed oil in the Dundee Formation using horizontal drains. Annual report, April 1994--June 1995

    SciTech Connect (OSTI)

    Wood, J.

    1995-08-01

    Crystal Field in Montcalm County, MI, was selected as a field trial site for this project. Analysis of production data for Crystal Field suggests that an additional 200,000 bbls of oil can be produced using one strategically located horizontal well. Total addition production from the Crystal Field could be as much as 6--8 MMBO. Application of the technology developed in this project to other Dundee fields in the area has the potential to increase Dundee production in Michigan by 35%, adding 80--100 MMBO to ultimate recovery. This project will demonstrate through a field trial that horizontal wells can be substantially increase oil production in older reservoirs that are at or near their economic limit. To maximize the potential of the horizontal well and to ensure that a comprehensive evaluation can be made, extensive reservoir characterization will be performed. In addition to the proposed field trial at Crystal Field, 29 additional Dundee fields in a seven-county area have been selected for study in the reservoir characterization portion of this project.

  10. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decompositionmore » models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.« less

  11. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    SciTech Connect (OSTI)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  12. Application of channeling in bent crystals to charged particle beams

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Application of channeling in bent crystals to charged particle beams Citation Details In-Document Search Title: Application of channeling in bent crystals to charged particle beams The process of channeling of charged particle beams in bent crystals is described, including the effects of angular acceptance, spatial acceptance, normal dechanneling, bending dechanneling, and surface acceptance. Some bending applications that have been tried and future

  13. San Miguel Island, Channel Islands National Park, California | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Miguel Island, Channel Islands National Park, California San Miguel Island, Channel Islands National Park, California Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at

  14. Multiple channel optical data acquisition system

    DOE Patents [OSTI]

    Fasching, G.E.; Goff, D.R.

    1985-02-22

    A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.

  15. Multi-channel medical imaging system

    DOE Patents [OSTI]

    Frangioni, John V

    2013-12-31

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  16. Multi-channel medical imaging system

    DOE Patents [OSTI]

    Frangioni, John V.

    2016-05-03

    A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.

  17. Power module assemblies with staggered coolant channels

    DOE Patents [OSTI]

    Herron, Nicholas Hayden; Mann, Brooks S; Korich, Mark D

    2013-07-16

    A manifold is provided for supporting a power module assembly with a plurality of power modules. The manifold includes a first manifold section. The first face of the first manifold section is configured to receive the first power module, and the second face of the first manifold section defines a first cavity with a first baseplate thermally coupled to the first power module. The first face of the second manifold section is configured to receive the second power module, and the second face of the second manifold section defines a second cavity with a second baseplate thermally coupled to the second power module. The second face of the first manifold section and the second face of the second manifold section are coupled together such that the first cavity and the second cavity form a coolant channel. The first cavity is at least partially staggered with respect to second cavity.

  18. MHK Projects/Spieden Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Spieden Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3...

  19. MHK Projects/Muskeget Channel Tidal Energy | Open Energy Information

    Open Energy Info (EERE)

    Muskeget Channel Tidal Energy < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  20. MHK Projects/Guemes Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Guemes Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3"...

  1. San Clemente Island, Channel Islands National Park, California...

    Energy Savers [EERE]

    San Clemente Island, Channel Islands National Park, California Photo of Wind Turbine on ... Management Program (FEMP). A third turbine was installed in 1999, allowing the wind ...

  2. Channels, reservoir orientation, and paleocurrents - Theory and exploitation

    SciTech Connect (OSTI)

    Grace, L.M.; Pirie, R.G. ); Potter, P.E. )

    1990-05-01

    Channels, from a few up to hundreds of meters thick, occur in virtually all the major sandy and carbonate environments. The fill of channels varies greatly and includes stream deposits, delta distributaries, tidal deposits, debris flows, marine detritus washed both longitudinally and laterally into shelf channels, deep-water turbidites, glacial deposits, and volcanic rocks. Landslide blocks from collapsing channel margins can also be incorporated in the fill. Most of these occur in combinations, although a few combinations are very common and some are rare. Reservoirs in channels are increasingly significant in mature basins. The authors propose a general set of rules for predicting reservoir orientation in channels. The rules are independent of depositional environment and scale, and depend only on the physical processes of channel filling. This set of rules is based on studies of outcrop and electrical images from well bores and includes channel sinuosity, type of accretion, and the orientation of paleocurrent structures. A key concept is compactional dip, which mirrors the channel's bottom morphology. These rules are illustrated with case histories of successful offset wells from basins of all ages throughout the world.

  3. Stationary bubbles and their tunneling channels toward trivial...

    Office of Scientific and Technical Information (OSTI)

    We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition of geometries, we build a ...

  4. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    SciTech Connect (OSTI)

    Gonsalves, A.J.; Nakamura, K.; Lin, C.; Osterhoff, J.; Shiraishi, S.; Schroeder, C.B.; Geddes, C.G.R.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2010-02-12

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. Experiments were performed using low-intensity (< 1014 Wcm-2) laser pulses focused onto the entrance of a hydrogen-filled capillary discharge waveguide. Scanning the laser centroid position at the input of the channel and recording the exit position allows determination of the channel depth with an accuracy of a few percent, measurement of the transverse channel shape, and inference of the matched spot size. In addition, accurate alignment of the laser beam through the plasma channel is provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  5. The potassium ion channel opener NS1619 inhibits proliferation...

    Office of Scientific and Technical Information (OSTI)

    ovarian cancer cells Citation Details In-Document Search Title: The potassium ion channel opener NS1619 inhibits proliferation and induces apoptosis in A2780 ovarian cancer cells ...

  6. Massively parallel processor networks with optical express channels

    DOE Patents [OSTI]

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  7. Massively parallel processor networks with optical express channels

    DOE Patents [OSTI]

    Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  8. Single Channel DPF Experiments to Investigate Soot Cake Structures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Single Channel DPF Experiments to Investigate Soot Cake Structures Single Channel DPF Experiments to Investigate Soot Cake Structures 2005_deer_gallant.pdf (1.89 MB) More Documents & Publications Experimental Diesel Particulate Filter Capabilities at PNNL The State of the Science in Diesel Particulate Control Development of Advanced Particulate Filters

  9. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  10. Dartmouth Stellar Evolution Database and the ACS Survey of Galactic Globular Clusters II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dotter, A; Chaboyer, B; Jevremovic, D; Kostov, V; Baron, E; Ferguson, J; Sarajedini, A; Anderson, J

    Web tools are also available at the home page (http://stellar.dartmouth.edu/~models/index.html). These tools allow users to create isochrones and convert them to luminosity functions or create synthetic horizontal branch models.

  11. Designer proton-channel transgenic algae for photobiological hydrogen production

    SciTech Connect (OSTI)

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  12. Component having cooling channel with hourglass cross section

    SciTech Connect (OSTI)

    Campbell, Christian X; Lee, Ching-Pang

    2015-04-28

    A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).

  13. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect (OSTI)

    Saibal Bhattacharya

    2005-08-31

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data

  14. Muon Beam Helical Cooling Channel Design

    SciTech Connect (OSTI)

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  15. Corrosion and arc erosion in MHD channels

    SciTech Connect (OSTI)

    Rosa, R.J.; Pollina, R.J.

    1991-04-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.

  16. Channeling Radiation Experiment at Fermilab ASTA

    SciTech Connect (OSTI)

    Mihalcea, D.; Edstrom, D. R.; Piot, P.; Rush, W.; Sen, T.

    2015-06-01

    Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance ($\\approx 100$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV

  17. Quantum channel for the transmission of information

    DOE Patents [OSTI]

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  18. Statistical Hot Channel Analysis for the NBSR

    SciTech Connect (OSTI)

    Cuadra A.; Baek J.

    2014-05-27

    A statistical analysis of thermal limits has been carried out for the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The objective of this analysis was to update the uncertainties of the hot channel factors with respect to previous analysis for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuels. Although uncertainties in key parameters which enter into the analysis are not yet known for the LEU core, the current analysis uses reasonable approximations instead of conservative estimates based on HEU values. Cumulative distribution functions (CDFs) were obtained for critical heat flux ratio (CHFR), and onset of flow instability ratio (OFIR). As was done previously, the Sudo-Kaminaga correlation was used for CHF and the Saha-Zuber correlation was used for OFI. Results were obtained for probability levels of 90%, 95%, and 99.9%. As an example of the analysis, the results for both the existing reactor with HEU fuel and the LEU core show that CHFR would have to be above 1.39 to assure with 95% probability that there is no CHF. For the OFIR, the results show that the ratio should be above 1.40 to assure with a 95% probability that OFI is not reached.

  19. Development of more efficient impellers for horizontal axis windmills. Final report, October 1, 1980-April 30, 1982

    SciTech Connect (OSTI)

    Fosdick, G.A. Jr.

    1982-01-01

    The purpose of the project reported has been the development of a wind turbine incorporating a new concept in horizontal-axis impellers. The impeller consists of six rows of radial blades arranged to extend in a spiral covering 55/sup 0/ of arc about a hollow support section. Each blade in the rows is contoured to receive both direct flow pressure as well as airfoil lift in order to provide maximum energy transfers from low velocity airflows such as those normally found in most localities throughout the country most of the time. A disclosure of the wind turbine configuration is attached. (LEW)

  20. Commissioning of horizontal-bend superconducting magnet for Jefferson Lab's 11-GeV super high momentum spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Eric; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Mike J.; Fenker, Howard C.; DeKamp, Jon C.

    2016-03-02

    Commissioning characteristics of the Superconducting High Momentum Spectrometer (SHMS) Horizontal Bend (HB) magnet was presented. Pre-commissioning peer review of the magnet uncovered issues with eddy currents in the thermal shield, resulting in additional testing and modeling of the magnet. A three-stage test plan was discussed. A solution of using a small dump resistor and a warm thermal shield was presented. Analyses illustrated that it was safe to run the magnet to full test current. As a result, the HB magnet was successfully cooled to 4 K and reached its maximum test current of 4000 A.

  1. Preliminary analysis of the audible noise of constant-speed, horizontal-axis wind-turbine generators

    SciTech Connect (OSTI)

    Keast, D. N.; Potter, R. C.

    1980-07-01

    An analytical procedure has been developed for calculating certain aerodynamic sound levels produced by large, horizontal-axis wind-turbine generators (WTG's) such as the DOE/NASA Mods-0, -0A, -1, and -2. This preliminary procedure is based upon very limited field data from the Mod-0. It postulates a noise component due to the (constant) rotation of the blades of the WTG, plus a wake-noise component that increases with the square of the power produced by the WTG. Mechanical sound from machinery, and low-frequency impulsive sounds produced by blade interaction with the wake of the support tower are not considered.

  2. Progress on Superconducting Magnets for the MICE Cooling Channel

    SciTech Connect (OSTI)

    Green, Michael A; Virostek, Steve P.; Li, Derun; Zisman, Michael S.; Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Xu, FengYu; Liu, X. K.; Zheng, S. X.; Bradshaw, Thomas; Baynham, Elwyn; Cobb, John; Lau, Wing; Lau, Peter; Yang, Stephanie Q.

    2009-09-09

    The muon ionization cooling experiment (MICE) consists of a target, a beam line, a pion decay channel, the MICE cooling channel. Superconducting magnets are used in the pion decay channel and the MICE cooling channel. This report describes the MICE cooling channel magnets and the progress in the design and fabrication of these magnets. The MICE cooling channel consists of three types of superconducting solenoids; the spectrometer solenoids, the coupling solenoids and the focusing solenoids. The three types of magnets are being fabricated in he United States, China, and the United Kingdom respectively. The spectrometer magnets are used to analyze the muon beam before and after muon cooling. The coupling magnets couple the focusing sections and keep the muon beam contained within the iris of the RF cavities that re used to recover the muon momentum lost during ionization cooling. The focusing magnets focus the muon beam in the center of a liquid hydrogen absorber. The first of the cooling channel magnets will be operational in MICE in the spring of 2010.

  3. Siegert pseudostate formulation of scattering theory: Two-channel case

    SciTech Connect (OSTI)

    Sitnikov, George V.; Tolstikhin, Oleg I.

    2003-03-01

    Siegert pseudostates (SPS) are a finite basis representation of Siegert states (SS) for finite-range potentials. This paper presents a generalization of the SPS formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A 58, 2077 (1998)] for s-wave scattering in the one-channel case, to s-wave scattering in the two-channel case. This includes the investigation of the properties of orthogonality and completeness of two-channel SPS and the derivation of the SPS expansions for the two-channel Green function, wave function, and scattering matrix. Similar to the one-channel case, two types of expansions for the scattering matrix are obtained: one has a form of a sum and requires the knowledge of both the SPS eigenvalues and eigenfunctions, while the other has a form of a product and involves the eigenvalues only. As the size of the basis tends to infinity, the product formulas obtained here in terms of SPS coincide with those given by Le Couteur [Proc. R. Soc. London, Ser. A 256, 115 (1960)] in terms of SS; all the other relations, as far as we know, have no counterparts in the literature. Partial widths of resonances in the case when both channels are open for decay are identified in terms of SPS - a feature that is absent in the one-channel case. The results are illustrated by numerical calculations for two model potentials.

  4. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAAs High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  5. Characterization study of lower Lagunillas member, Block IV, Lake Maracaibo. Application of horizontal well to revive a mature oil field

    SciTech Connect (OSTI)

    Coll, C.; Gamero, H.; Jimenez, Z. )

    1996-01-01

    The Lower Lagunillas is one of the largest reservoirs in Venezuela located in Block IV in the Lake Maracaibo Basin in Zulia State in Western Venezuela. The estimated remaining reserves are 270 MMSTB. A multidisciplinary, integrated reservoir characterization study was performed to evaluate reservoir heterogeneity and fluid flow dynamics in fine scale. The majority of the remaining reserves are in the form of oil bypassed in the low resistivity pay zones. These zones were identified by the now core-log calibration performed in this area. Significant pressure decline from the initial 4200 psi to 1400 psi has prompted us to explore new development strategy of selective drilling of horizontal wells. A key step in the study was acquisition and integration of new geoscience, well log and pressure data. The available geology, geophysics, sedimentology and petrophysics were integrated and loaded on to a 3-D visualization package for correlating and validating the various lithofacies with petrophysics and sedimentology. The resulting reservoir model was exported to a flow simulator for developing a dynamic simulation model. A target layer was selected based on the results of the characterization study and risk assessment strategy. A pilot well was drilled in the reservoir to acquire new data and information. These information were processed to evaluate the borehole stability, petrophysical properties, location of the fluid phases, pressure behavior and target zone. The processed data were utilized to confirm the location and to develop the completion diagram of the horizontal well.

  6. Design and Fabrication of the Superconducting Horizontal Bend Magnet for the Super High Momentum Spectrometer at Jefferson Lab

    SciTech Connect (OSTI)

    Chouhan, Shailendra S.; DeKamp, Jon; Burkhart, E. E,; Bierwagen, J.; Song, H.; Zeller, Albert F.; Brindza, Paul D.; Lassiter, Steven R.; Fowler, Michael J.; Sun, Qiuli

    2015-06-01

    A collaboration exists between NSCL and JLab to design and build JLab's Super High Momentum Spectrometer (SHMS) horizontal bend magnet that allows the bending of the 12 GeV/c particles horizontally by 3 to allow SHMS to reach angles as low as 5.5. Two full size coils have been wound and are cold tested for both magnetic and structural properties. Each coil is built from 90 layers of single-turn SSC outer conductor cable. An initial test coil with one third the turns was fabricated to demonstrate that the unique saddle shape with fully contoured ends could be wound with Rutherford superconducting cable. Learned lessons during the trial winding were integrated into the two complete full-scale coils that are now installed in the helium vessel. The fabrication of the iron yoke, cold mass, and thermal shield is complete, and assembly of the vacuum vessel is in progress. This paper presents the process and progress along with the modified magnet design to reduce the fringe field in the primary beam region and also includes the impact of the changes on coil forces and coil restraint system.

  7. The sixteen channel CAMAC constant fraction discriminator for APEX

    SciTech Connect (OSTI)

    Maier, M.R. ); Robertson, M. ); Wolfs, F.L.H.; Perera, P.A.A. . Nuclear Structure Research Lab.)

    1991-11-01

    We report on the construction and the performance of a sixteen channel constant fraction discriminator (CFD) for the Atlas Positron Experiment (APEX). We have used an integrated circuit (IC), recently introduced commercially, which contains all the electronic building blocks needed to construct a CFD. We have placed 16 channels of CFD into a CAMAC module. An important feature is the time to charge converter (TQC) that we have included for every CFD channel. Its calibration constant is controlled via CAMAC. The TQC allows the use charge sensitive analog to digital converters (QDC) for timing measurements. Results for CFD walk, resolution and crosstalk as well as for TQC linearity will be presented.

  8. Channeling of intense laser beams in underdense plasmas

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Rubenchik, A.M.

    1997-09-01

    A hydrodynamic simulation is used to show that intense laser pulses propagating in underdense plasmas create stable, long-lived, and completely evacuated channels. At low intensities, I=10{sup 17} W/cm{sup 2}, self focusing seriously distorts the temporal envelope of the pulse, but channeling still occurs. At high intensities, I=10{sup 19} W/cm{sup 2}, channeling can proceed over many diffraction lengths with significant distortion restricted to the leading edge of the pulse. {copyright} {ital 1997} {ital The American Physical Society}

  9. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  10. Turbine component cooling channel mesh with intersection chambers

    DOE Patents [OSTI]

    Lee, Ching-Pang; Marra, John J

    2014-05-06

    A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

  11. Cold plate with combined inclined impingement and ribbed channels

    DOE Patents [OSTI]

    Parida, Pritish R.

    2015-12-22

    Heat transfer devices and methods for making the same that include a first enclosure having at least one inlet port; a second enclosure having a bottom plate and one or more dividing walls to establish channels, at least one internal surface of each channel having rib structures to create turbulence in a fluid flow; and a jet plate connecting the first enclosure and the second enclosure having impinging jets that convey fluid from the first enclosure to the channels, said impinging jets being set at an angular deviation from normal to cause local acceleration of fluid and to increase a local heat transfer rate.

  12. Property:Number of channels | Open Energy Information

    Open Energy Info (EERE)

    Hinsdale Wave Basin 1 + Up to 192 + Hinsdale Wave Basin 2 + Up to 192 + L Los Angeles and Long Beach Harbors Model + 30 + M MHL 2D WindWave + 16 + MHL Free Surface Channel + 16 +...

  13. Methods of Using Alpha Channeling Together with Transformer Recharging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods of Using Alpha Channeling Together with Transformer Recharging A tokamak current can be sustained using rf waves for transformer recharging at low density and high-Z with...

  14. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  15. V-128: Xen Event Channel Tracking Pointer Bug Local Privilege...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Channel Tracking Pointer Bug Local Privilege Escalation April 8, 2013 - 12:28am Addthis PLATFORM: Version(s): 3.2 and later ABSTRACT: A vulnerability was reported in Xen....

  16. Alpha Channeling in Rotating Plasma with Stationary Waves

    SciTech Connect (OSTI)

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  17. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  18. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  19. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  20. Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are

  1. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  2. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  3. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  4. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  5. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  6. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  7. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a worldwide effort to harness the functionality of oxide materials for advanced electronic

  8. UWB channel estimation using new generating TR transceivers

    DOE Patents [OSTI]

    Nekoogar, Faranak; Dowla, Farid U.; Spiridon, Alex; Haugen, Peter C.; Benzel, Dave M.

    2011-06-28

    The present invention presents a simple and novel channel estimation scheme for UWB communication systems. As disclosed herein, the present invention maximizes the extraction of information by incorporating a new generation of transmitted-reference (Tr) transceivers that utilize a single reference pulse(s) or a preamble of reference pulses to provide improved channel estimation while offering higher Bit Error Rate (BER) performance and data rates without diluting the transmitter power.

  9. Stabilization of Soot in the Single Channel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stabilization of Soot in the Single Channel Stabilization of Soot in the Single Channel Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_dillon.pdf (255.24 KB) More Documents & Publications Experimental Diesel Particulate Filter Capabilities at PNNL Caterpillar Diesel Racing: Yesterday & Today Testing an Active Diesel Particulate Filter on a 2-Cycle Marine

  10. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  11. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  12. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  13. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  14. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the environment. Polymer electrolyte membranes (PEMs), with hydrophilic, proton-conducting channels

  15. Proton Channel Orientation in Block-Copolymer Electrolyte Membranes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Proton Channel Orientation in Block-Copolymer Electrolyte Membranes Print Wednesday, 27 January 2010 00:00 Fuel cells have the potential to provide power for a wide variety of applications ranging from electronic devices to transportation vehicles. Cells operating with H2 and air as inputs and electric power and water as the only outputs are of particular interest because of their ability to produce power without degrading the

  16. Polaractivation for classical zero-error capacity of qudit channels

    SciTech Connect (OSTI)

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    We introduce a new phenomenon for zero-error transmission of classical information over quantum channels that initially were not able for zero-error classical communication. The effect is called polaractivation, and the result is similar to the superactivation effect. We use the Choi-Jamiolkowski isomorphism and the Schmidt-theorem to prove the polaractivation of classical zero-error capacity and define the polaractivator channel coding scheme.

  17. Physiology and Regulation of Calcium Channels in Stomatal Guard Cells

    SciTech Connect (OSTI)

    Schroeder, Julian I.

    2007-05-02

    Stomatal pores in the epidermis of leaves regulate the diffusion of CO2 into leaves for photosynthetic carbon fixation and control water loss of plants during drought periods. Guard cells sense CO2, water status, light and other environmental conditions to regulate stomatal apertures for optimization of CO2 intake and plant growth under drought stress. The cytosolic second messenger calcium contributes to stomatal movements by transducing signals and regulating ion channels in guard cells. Studies suggest that both plasma membrane Ca2+ influx channels and vacuolar/organellar Ca2+ release channels contribute to ABA-induced Ca2+ elevations in guard cells. Recent research in the P.I.'s laboratory has led to identification of a novel major cation-selective Ca2+-permeable influx channel (Ica) in the plasma membrane of Arabidopsis guard cells. These advances will allow detailed characterization of Ica plasma membrane Ca2+ influx channels in guard cells. The long term goal of this research project is to gain a first detailed characterization of these novel plasma membrane Ca2+-permeable channel currents in Arabidopsis guard cells. The proposed research will investigate the hypothesis that Ica represents an important Ca2+ influx pathway for ABA and CO2 signal transduction in Arabidopsis guard cells. These studies will lead to elucidation of key signal transduction mechanisms by which plants balance CO2 influx into leaves and transpirational water loss and may contribute to future strategies for manipulating gas exchange for improved growth of crop plants and for biomass production.

  18. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-01-16

    Work associated with Budget Period 1 of the East Binger (Marchand) Unit project is nearing completion. A major aspect of this project is accurate modeling of the performance of horizontal wells. Well EBU 37-3H, the first horizontal well drilled in the unit, was drilled in the second quarter of 2001. After much difficulty establishing economic production from the well, the well was hydraulically fractured in November 2001. Post-treatment production has been very encouraging and is significantly better than a vertical well drilled in a similar setting. International Reservoir Technologies, Inc. has completed the final history match of the pilot area reservoir simulation model, including tuning to the performance of the horizontal well. The model's predicted reservoir pressure gradient between injection and production wells accurately matches observed data from the field, a significant improvement from prior model predictions. The model's predicted gas injection profiles now also more accurately match field data. Work has begun toward evaluating the optimum development scenario with the pilot model. Initially, four scenarios will be evaluated--two involving all horizontal infill wells, one involving all vertical infill wells, and one involving a combination of vertical and horizontal infill wells. The model cases for these scenarios have been defined, and construction of them is underway.

  19. Contribution to the Study of Ferrite Nanobeads: Synthesis, Characterization and Investigation of Horizontal Low Gradient Magnetophoresis Behaviour

    SciTech Connect (OSTI)

    Benelmekki, Maria; Caparros, Cristina; Goncalves, Renao; Lanceros-Mendez, Senenxu; Montras, Anna; Martinez, Lluis Miquel

    2010-12-02

    In this work we investigate the possibilities of the use of Horizontal Low Gradient Magnetic Field (HLGMF)(<100 T/m) for filtration, control and separation of the synthesized magnetic particles, considering, the characteristics of the suspension, the size and the type of nanoparticles (NPs) and focusing on the process scale up. Reversible aggregation is considered in the different steps of magnetic nanobeads synthesis. For these purpose, we synthesized Fe{sub 2}O{sub 3}-silica core-shell nanobeads by co-precipitation, monodispersion and silica coating. SQUID, TEM, XRD, and Zeta potential techniques were used to characterize the synthesized nanobeads. An extensive magnetophoresis study was performed at different magnetophoretic conditions. Different reversible aggregation times were observed at different HLGMF, at each step of the synthesis route: Several orders of magnitude differences where observed when comparing citric acid (CA) suspension with silicon coated beads. Reversible aggregation times are correlated with the properties of the NPs at different steps of synthesis.

  20. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  1. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, M. J.; Li, Y.; Sale, D. C.

    2011-10-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  2. Direct-bandgap electroluminescence from a horizontal Ge p-i-n ridge waveguide on Si(001) substrate

    SciTech Connect (OSTI)

    Liu, Zhi; Li, Yaming; He, Chao; Li, Chuanbo; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen Wang, Qiming

    2014-05-12

    Horizontal injection Ge p-i-n ridge waveguide light emitting diodes (LEDs) were fabricated on n{sup ?}-Si(001) substrates by ultrahigh vacuum chemical vapor deposition. The direct-bandgap electroluminescence (EL) of Ge waveguide LEDs under a continuous/pulse electrical pump was studied. The heating effect from a continuous electrical pump was found to significantly enhance the emission of devices. The top surface EL intensity of the Ge waveguide LEDs significantly depended on the position. Most direct-bandgap radiative recombination of Ge p-i-n waveguide LEDs occurred near the N{sup +} region of the junction. This interesting phenomenon could be explained by the carrier distribution in the junction and the pseudo-direct bandgap of Ge.

  3. Feasibility study of air-breathing turbo-engines for horizontal take-off and landing space plane

    SciTech Connect (OSTI)

    Minoda, M.; Sakata, K.; Tamaki, T.; Saitoh, T.; Yasuda, A.

    1989-01-01

    Various concepts of air-breathing engines (ABEs) that could be used for a horizontal take-off and landing SSTO vehicle are investigated. The performances (with respect to thrust and the specific fuel consumption) of turboengines based on various technologies, including a turbojet with and without afterburner (TJ), turboramjet, and air-turbo-ram jet engines are compared. The mission capabilities of these ABEs for SSTO and TSTO vehicles is examined in terms of the ratio of the effective remaining weight (i.e., the weight on the orbit) to the take-off gross weight, using two-dimensional flight analysis. It was found that the dry TJ with the turbine inlet temperature 2000 C is one of the most promising candidates for the propulsion system of the SSTO vehicle, because of its small weight and high specific impulse. 6 refs.

  4. Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University

    SciTech Connect (OSTI)

    Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T.; Hermansson, L.; Kern, R. Santiago; Ruber, R.

    2014-01-29

    Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-β elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

  5. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    SciTech Connect (OSTI)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.

  6. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect (OSTI)

    Wray, Laura L.; Eby, David E.; Chidsey, Jr., Thomas C.

    2002-07-24

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells.

  7. Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp

    SciTech Connect (OSTI)

    Ben Hamida, M. B.; Charrada, K.

    2012-06-15

    This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

  8. A Possible Hybrid Cooling Channel for a Neutrino Factory

    SciTech Connect (OSTI)

    Zisman, Michael S; Gallardo, Juan C.

    2010-05-17

    A Neutrino Factory requires an intense and well-cooled (in transverse phase space) muon beam. We discuss a hybrid approach for a linear 4D cooling channel consisting of high-pressure gas-filled RF cavities--potentially allowing high gradients without breakdown--and discrete LiH absorbers to provide the necessary energy loss that results in the required muon beam cooling. We report simulations of the channel performance and its comparison with the vacuum case; we also briefly discuss technical and safety issues associated with cavities filled with high-pressure hydrogen gas. Even with additional windows that might be needed for safety reasons, the channel performance is comparable to that of the original, all-vacuum Feasibility Study 2a channel on which our design is based. If tests demonstrate that the gas-filled RF cavities can operate effectively with an intense beam of ionizing particles passing through them, our approach would be an attractive way of avoiding possible breakdown problems with a vacuum RF channel.

  9. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect (OSTI)

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  10. Molecular analysis of a thylakoid K+channel

    SciTech Connect (OSTI)

    1999-09-10

    The work undertaken sought to use a novel probe to identify and clone plant ion (K) channels. It was also proposed that in vitro biochemical studies of cation transport across purified preparations of thylakoid membrane be employed to characterize a putative K channel in this membrane system. Over the last several years, an enormous data base of partially-sequenced mRNAs and numerous genomes (including those of plants) has evolved and provides a powerful alternative to this brute-force approach to identify and clone cDNAs encoding physiologically important membrane proteins such as channels. The utility of searching genetic databases for relevant sequences, in addition to the difficulty of working with membrane proteins, led to changes in research focus during the granting period. During the course of the funding period, work was finished up which documented the presence of a K channel in the thylakoid membrane and demonstrated that K fluxes through this channel were required for optimal photosynthetic activity, likely due to the requirement for charge balancing of proton flux.

  11. Analysis of Crystal Lattice Deformation by Ion Channeling

    SciTech Connect (OSTI)

    Jozwik, Przemyslaw A.; Sathish, N.; Nowicki, L.; Jagielski, Jacek; Turos, Andrzej W.; Kovarik, Libor; Arey, Bruce W.; Shutthanandan, V.; Jiang, Weilin; Dyczewski, J.; Barcz, A.

    2013-05-01

    A model of dislocations has been developed for the use in Monte Carlo simulations of ion channeling spectra obtained for defected crystals. High resolution transmission electron microscopy micrographs show that the dominant type of defects in the majority of ion irradiated crystals are dislocations. The RBS/channeling spectrum is then composed of two components: one is due to direct scattering on randomly displaced atoms and the second one is related to beam defocussing on dislocations, which produce predominantly crystal lattice distortions, i.e. bent channels. In order to provide a correct analysis of backscattering spectra for the crystals containing dislocations we have modified the existing Monte Carlo simulation code "McChasy". A new version of the code has been developed by implementing dislocations on the basis of the Peierls-Nabarro model. Parameters of the model have been determined from the high resolution transmission electron microscopy data. The newly developed method has been used to study the Ar-ion bombarded SrTiO3 samples. The best fit to the Rutherford backscattering/channeling spectra has been obtained by optimizing the linear combination of two kinds of defects: displaced atoms and bent channels. The great virtue of the Monte Carlo simulation is that unlike a traditional dechanneling analysis it allows quantitative analysis of crystals containing a mixture of different types of defects.

  12. End region effects upon the performance of a magnetohydrodynamic channel

    SciTech Connect (OSTI)

    Wang, S.Y.; Smith, J.M.

    1982-11-01

    Results presented in this paper apply only to plants of the size of 200 MW /SUB e/ and to MHD channels whose design requirements specify cooling with low-pressure, low-temperature boiler feedwater. The sensitivity of various channel parameters (maximum B-field, diffuser recovery coefficient, generator load parameter, Mach number, and combustor pressure) are examined under the constraints of a maximum axial electric field of 2.5kV/m, a maximum transverse current of 10 kA/m/sup 2/, and a maximum transverse electric field of 4 kV/m. In addition to voltage drop calculations, the channel code utilizes tabulated chemical equilibrium properties which are computed separately. Tables give operating conditions, electric stress constraints, and performance of the 16-m channel with end regions. Graphs show axial profiles of B-field, electric field, transverse current, load coefficient, and combustion pressure; and thermodynamic efficiency vs. Mach number for maximum B-field. Study of the MHD channel for a 540 MW /SUB th/ plant suggests that best performance is obtained in the supersonic mode; lowering B /SUB max/ to 5T does not severely lower performance and could result in a reduction of the magnet size of up to 40%; and overall performance is not too sensitive to diffuser pressure recovery coefficient.

  13. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOE Patents [OSTI]

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  14. Quantum dot conjugates in a sub-micrometer fluidic channel

    DOE Patents [OSTI]

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  15. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  16. Identifying Calcium Channels and Porters in Plant Membranes

    SciTech Connect (OSTI)

    Sze, Heven

    1998-04-01

    The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

  17. Simulation of a Helical Channel using GEANT4

    SciTech Connect (OSTI)

    Elvira, V. D.; Lebrun, P.; Spentzouris, P.

    2001-02-01

    We present a simulation of a 72 m long cooling channel proposed byV. Balbekov based on the helical cooling concept developed by Y. Derbenev.LiH wedge absorbers provide the energy loss mechanism and 201 MHz cavities are used for re-acceleration. They are placed inside a main solenoidal field to focus the beam. A helical field with an amplitude of 0.3 T and a period of 1.8 m provides momentum dispersion for emittance exchange.The simulation is performed using GEANT4. The total fractional transmission is 0.85, and the transverse, longitudinal, and 3-D cooling factors 3.75, 2.27, and 14.61, respectively. Some version of this helical channel could eventually be used to replace the first section of the double flip channel to keep the longitudinal emittance under control and increase transmission. Although this is an interesting option, the technical challenges are still significant.

  18. Sub-micrometer fluidic channel for measuring photon emitting entities

    DOE Patents [OSTI]

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  19. Can p-channel tunnel field-effect transistors perform as good as n-channel?

    SciTech Connect (OSTI)

    Verhulst, A. S. Pourghaderi, M. A.; Collaert, N.; Thean, A. V.-Y.; Verreck, D.; Van de Put, M.; Groeseneken, G.; Sore, B.

    2014-07-28

    We show that bulk semiconductor materials do not allow perfectly complementary p- and n-channel tunnel field-effect transistors (TFETs), due to the presence of a heavy-hole band. When tunneling in p-TFETs is oriented towards the gate-dielectric, field-induced quantum confinement results in a highest-energy subband which is heavy-hole like. In direct-bandgap IIIV materials, the most promising TFET materials, phonon-assisted tunneling to this subband degrades the subthreshold swing and leads to at least 10 smaller on-current than the desired ballistic on-current. This is demonstrated with quantum-mechanical predictions for p-TFETs with tunneling orthogonal to the gate, made out of InP, In{sub 0.53}Ga{sub 0.47}As, InAs, and a modified version of In{sub 0.53}Ga{sub 0.47}As with an artificially increased conduction-band density-of-states. We further show that even if the phonon-assisted current would be negligible, the build-up of a heavy-hole-based inversion layer prevents efficient ballistic tunneling, especially at low supply voltages. For p-TFET, a strongly confined n-i-p or n-p-i-p configuration is therefore recommended, as well as a tensily strained line-tunneling configuration.

  20. Horizontal Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Y. L.; Banta, R. M.; Kelley, N. D.; Jonkman, B. J.; Tucker, S. C.; Newsom, R. K.; Brewer, W. A.

    2008-08-01

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--have been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA's high-resolution Doppler lidar (HRDL), which have been shown to be approximately equal to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance {sigma}2u were computed from HRDL measurements of the line-of-sight (LOS) velocity using a method described by Banta et al., which uses an elevation (vertical slice) scanning technique. The method was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. The results for the mean U and mean wind speed measured by sodar and in situ instruments for all nights of LLLJP show high correlation (0.71-0.97), independent of sampling strategies and averaging procedures, and correlation coefficients consistently >0.9 for four high-wind nights, when the low-level jet speeds exceeded 15 m s{sup -1} at some time during the night. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging parameters. Several series of averaging tests are described, to find the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal-velocity variance {sigma}{sup 2}{sub u}. Because of the nonstationarity of the SBL data, the best results were obtained when the velocity data were first averaged over intervals of 1 min, and then further averaged over 3-15 consecutive 1-min intervals, with best results

  1. Spectral brilliance of channeling radiation at the ASTA photoinjector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sen, Tanaji; Lynn, Christopher

    2014-12-01

    We study channeling radiation from electron beams with energies under 100 MeV. We introduce a phenomenological model of dechanneling, correct nonradiative transition rates from thermal scattering, and discuss in detail the population dynamics in low-order bound states. These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszentrum Dresden–Rosenstock (FZDR), extract parameters for dechanneling states, and obtain satisfactory agreement with measured photon yields. The importance of rechanneling phenomena in thick crystals is emphasized. The model is then used to calculate the expected X-ray energies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab's ASTA photoinjector.

  2. Report on Physics of Channelization: Theory, Experiment, and Observation

    SciTech Connect (OSTI)

    Kudrolli, Arshad

    2014-05-19

    The project involved a study of physical processes that create eroded channel and drainage networks. A particular focus was on how the shape of the channels and the network depended on the nature of the fluid flow. Our approach was to combine theoretical, experimental, and observational studies in close collaboration with Professor Daniel Rothman of the Massachusetts Institute of Technology. Laboratory -scaled experiments were developed and quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique and fluorescent optical imaging techniques.

  3. Method and apparatus for controlling cross contamination of microfluid channels

    DOE Patents [OSTI]

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E.; Paul, Phillip H.; Arnold, Don W.

    2006-02-07

    A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.

  4. Piecewise uniform conduction-like flow channels and method therefor

    DOE Patents [OSTI]

    Cummings, Eric B.; Fiechtner, Gregory J.

    2006-02-28

    A low-dispersion methodology for designing microfabricated conduction channels for on-chip electrokinetic-based systems is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed on chips using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions with differing permeability. Regions bounded by interfaces form flow "prisms" that can be combined with other designed prisms to obtain a wide range of turning angles and expansion ratios while minimizing dispersion. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.

  5. Some transport properties of the two-channel Kondo impurity

    SciTech Connect (OSTI)

    Schlottmann, P.; Zvyagin, A.A.

    1997-04-01

    We consider conduction electrons moving along a ring in two different orbital channels interacting with a spin-1/2 impurity via isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the orbital symmetry. The tower structure of the finite size corrections to the ground state energy is derived from the Bethe ansatz equations and used to discuss the Aharonov{endash}Bohm{endash}Casher interference pattern in the persistent current and the magnetoresistivity. {copyright} {ital 1997 American Institute of Physics.}

  6. Spectral brilliance of channeling radiation at the ASTA photoinjector

    SciTech Connect (OSTI)

    Sen, Tanaji; Lynn, Christopher

    2014-12-01

    We study channeling radiation from electron beams with energies under 100 MeV. We introduce a phenomenological model of dechanneling, correct non-radiative transition rates from thermal scattering, and discuss in detail the population dynamics in low order bound states. These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszentrum Dresden-Rosenstock (FZDR), extract parameters for dechanneling states, and obtain satisfactory agreement with measured photon yields. The importance of rechanneling phenomena in thick crystals is emphasized. The model is then used to calculate the expected X-ray energies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab's ASTA photoinjector.

  7. Spectral brilliance of channeling radiation at the ASTA photoinjector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sen, Tanaji; Lynn, Christopher

    2014-12-01

    We study channeling radiation from electron beams with energies under 100 MeV. We introduce a phenomenological model of dechanneling, correct non-radiative transition rates from thermal scattering, and discuss in detail the population dynamics in low order bound states. These are used to revisit the X-ray properties measured at the ELBE facility in Forschungszentrum Dresden-Rosenstock (FZDR), extract parameters for dechanneling states, and obtain satisfactory agreement with measured photon yields. The importance of rechanneling phenomena in thick crystals is emphasized. The model is then used to calculate the expected X-ray energies, linewidths and brilliance for forthcoming channeling radiation experiments at Fermilab's ASTAmorephotoinjector.less

  8. A quantum mechanical description of particle spin rotation in channeling

    SciTech Connect (OSTI)

    Silenko, A.Ya.

    1995-04-01

    Spin rotation of spin-1/2 particles involved in planar channeling in straight and bent crystals is described in a consistent quantum mechanical manner. This is done by solving the Dirac equation in the Foldy-Wouthuysen representation, constructing an operator equation of motion for the spin, and calculating the average value of the spin precession frequency. For the case of channeling in bent crystals agreement is observed between the classical and quantum mechanical expressions, provided that the field of the planes is approximated by a harmonic potential. The effect of spin rotation in straight crystals is also examined. 17 refs.

  9. Short-range nuclear forces in singlet channels

    SciTech Connect (OSTI)

    Bingwei Long, Chiehjen Yang

    2012-08-01

    Continuing our effort to build a consistent power counting for chiral nuclear effective field theory, we discuss the subleading contact interactions, or counterterms, in the singlet channels of nucleon-nucleon scattering, with renormalization group invariance as the constraint. We argue that the rather large cutoff error of the leading amplitude requires O(Q) of the low-energy approximation to be non-vanishing, contrary to Weinberg's original power counting. This, together with the ultraviolet divergences of two pion exchanges in distorted-wave expansion, leads to enhancement of the 1S0 counterterms and results in a pionless theory-like power counting for the singlet channels.

  10. Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine

    SciTech Connect (OSTI)

    Lawson, Mi. J.; Li, Y.; Sale, D. C.

    2011-01-01

    This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

  11. Limitation of parallel flow in double diffusive convection: Two- and three-dimensional transitions in a horizontal porous domain

    SciTech Connect (OSTI)

    Mimouni, N.; Chikh, S.; Rahli, O.; Bennacer, R.

    2014-07-15

    Two-dimensional (2D) and three-dimensional (3D) numerical simulations of double diffusion natural convection in an elongated enclosure filled with a binary fluid saturating a porous medium are carried out in the present work. The Boussinesq approximation is made in the formulation of the problem, and Neumann boundary conditions for temperature and concentration are adopted, respectively, on vertical and horizontal walls of the cavity. The used numerical method is based on the control volume approach, with the third order quadratic upstream interpolation scheme in approximating the advection terms. A semi implicit method algorithm is used to handle the velocity-pressure coupling. To avoid the excessively high computer time inherent to the solution of 3D natural convection problems, full approximation storage with full multigrid method is used to solve the problem. A wide range of the controlling parameters (Rayleigh-Darcy number Ra, lateral aspect ratio Ay, Lewis number Le, and the buoyancy ration N) is investigated. We clearly show that increasing the depth of the cavity (i.e., the lateral aspect ratio) has an important effect on the flow patterns. The 2D perfect parallel flows obtained for small lateral aspect ratio are drastically destabilized by increasing the cavity lateral dimension. This yields a 3D fluid motion with a much more complex flow pattern and the usually considered 2D parallel flow model cannot be applied.

  12. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOE Patents [OSTI]

    Zafred, Paolo R.; Gillett, James E.

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  13. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect (OSTI)

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  14. Stratification of particulate and VOC pollutants in horizontal-flow-paint spray booths. Report for September 1988-October 1989

    SciTech Connect (OSTI)

    Darvin, C.H.

    1990-01-01

    The paper discusses stratification of particulate and volatile organic compound (VOC) pollutants in horizontal flow paint spray booths, as part of a joint U.S. Air Force/EPA research and development program on emissions from paint spray booths. The test program discussed in the paper was designed to characterize the pollutants both within and exiting a typical back-draw booth for which emissions control strategies are being developed. The results of one series of tests indicate that the pollutants, both particulate and VOC, fall to the lower level of the booth or stratify at the level at which they were generated. This might be expected since the densities of typical pollutants found in spray booths are greater than air. The results showed, however, that the concentration of pollutants in the lower level prior to exiting the booth was significantly greater than expected. Data indicated that, for the 16 ft (4.9 m) high booth tested, the concentration at the exit of the booth below the 8 ft (2.4 m) level was 5-25 times greater than the concentration above that level. The importance of these findings is that it might be possible to partition a booth's air flow into two zones, one lean and the other concentrated. The concentrated zone could be directed to a proportionally smaller VOC control system of significantly less capital and operating cost.

  15. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al

    2014-11-05

    We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less

  16. Emergency cooling simulation tests on an electrically heated channel typical of SRP (Savannah River Laboratory) reactor fuel channels - RIG B

    SciTech Connect (OSTI)

    Guerrero, H.N.

    1990-01-01

    Emergency cooling simulation tests were conducted on a single electrically heated test channel representative of Savannah River Plant fuel assembly flow channels. The primary objective was to investigate downflow, air-water hydraulic flow conditions that lead to the onset of a runaway thermal excursion in the range of superficial liquid and gas velocities, 1.4 m/sec and 1 m/sec, respectively. The thermal excursion power normalized by the power to reach fluid outlet saturation conditions, or R-factor, was found to decrease from values close to 2, at annular flow conditions to approximately 0.8 at low to zero void fractions. 3 refs., 9 figs.

  17. Stretchable transistors with buckled carbon nanotube films as conducting channels

    DOE Patents [OSTI]

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  18. Groundwater Discharge along a Channelized Coastal Plain Stream

    SciTech Connect (OSTI)

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit; Fryar, Alan E; Greb, Stephen F

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  19. HIPPI, Fibre Channel, and ATM as gigabit/s LANs

    SciTech Connect (OSTI)

    Tolmie, D.

    1993-12-31

    Computer networks that operate in the gigabit per second speed range are becoming very important for interconnecting supercomputers and other high end equipment. Some trends and applications are examined and criteria for selecting an interconnection technology are developed. HIPPI is the current interface of choice, while Fibre Channel and ATM are emerging standards. These systems are examined as to their backgrounds, advantages, and shortcomings.

  20. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect (OSTI)

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  1. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-30

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production

  2. Mixed convection heat transfer to and from a horizontal cylinder in cross-flow with heating from below.

    SciTech Connect (OSTI)

    Greif, Ralph (University of California, Berkeley, CA); Evans, Gregory Herbert; Kearney, Sean Patrick (Sandia National Laboratories, Albuquerque, NM); Laskowski, Gregory Michael

    2006-02-01

    Heat transfer to and from a circular cylinder in a cross-flow of water at low Reynolds number was studied both experimentally and numerically. The experiments were carried out in a high aspect ratio water channel. The test section inflow temperature and velocity, channel lower surface temperature and cylinder surface temperature were controlled to yield either laminar or turbulent flow for a desired Richardson number. When the lower surface was unheated, the temperatures of the lower surface and water upstream of the cylinder were maintained approximately equal and the flow was laminar. When the lower surface was heated, turbulence intensities as high as 20% were measured several cylinder diameters upstream of the cylinder due to turbulent thermal plumes produced by heating the lower surface. Variable property, two-dimensional simulations were undertaken using a variant of the u{sup 2}-f turbulence model with buoyancy production of turbulence accounted for by a simple gradient diffusion model. Predicted and measured heat flux distributions around the cylinder are compared for values of the Richardson number, Gr{sub d}/Re{sub d}{sup 2} from 0.3 to 9.3. For laminar flow, the predicted and measured heat flux results agreed to within the experimental uncertainty. When the lower surface was heated, and the flow was turbulent, there was qualitative agreement between predicted and measured heat flux distributions around the cylinder. However the predicted spatially averaged Nusselt number was from 37% to 53% larger than the measured spatially averaged Nusselt number. Additionally, spatially averaged Nusselt numbers are compared to correlations in the literature for mixed convection heat transfer to/from cylinders in cross-flow. The results presented here are larger than the correlation values. This is believed to be due to the effects of buoyancy-induced turbulence resulting from heating the lower surface and the proximity of the cylinder to that surface.

  3. Integrated approach towards the application of horizontal wells to improve waterflooding performance. Annual report, January 1, 1997--December 31, 1997

    SciTech Connect (OSTI)

    Kelkar, M.; Kerr, D.

    1998-05-01

    This annual report describes the progress during the fifth year of the project on ``Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance``. This project is funded under the Department of Energy`s Class 1 program which is targeted towards improving the reservoir performance of mature oil fields located in fluvially dominated deltaic geological environments. The project involves using an integrated approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to improve the field performance. In the first stage of the project, the type of data the authors integrated include cross borehole seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In contrast, during the second stage of the project, they intend to use only conventional data to construct the reservoir description. This report covers the results of the implementation from the first stage of the project. It also discusses the work accomplished so far for the second stage of the project. The production from the Self Unit (location of Stage 1) has sustained an increase of 30 bbls/day over more than two years. The authors have collected available core, log and production data from Section 16 in the Berryhill Glenn Unit and have finished the geological description. Based on the geological description and the associated petrophysical properties, they have identified the areas for the most potential. These areas include Tracts 7 and 9. By conducting a detailed flow simulation on both these tracts, and evaluating the economic performance of various alternatives, they have made recommendations for both these tracts. At present, the authors are in the process of implementing the proposed reservoir management strategy in Tract 9.

  4. Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.

    2016-06-02

    The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less

  5. Flame dynamics in a micro-channeled combustor

    SciTech Connect (OSTI)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  6. Majorana Fermion Realization of a Two-Channel Kondo Effect in...

    Office of Scientific and Technical Information (OSTI)

    Majorana Fermion Realization of a Two-Channel Kondo Effect in a Junction of Three Quantum Ising Chains Title: Majorana Fermion Realization of a Two-Channel Kondo Effect in a ...

  7. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect (OSTI)

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  8. Laser induced electron acceleration in an ion-channel guiding

    SciTech Connect (OSTI)

    Esmaeilzadeh, Mahdi; Taghavi, Amin; Hanifpour, Maryam

    2011-09-15

    Direct electron acceleration by a propagating laser pulse of circular polarization in an ion-channel guiding is studied by developing a relativistic three-dimensional single particle code. The electron chaotic dynamic is also studied using time series, power spectrum, and Liapunov exponent. It is found that the electron motion is regular (non-chaotic) for laser pulse with short time duration, while for long enough time duration, the electron motion may be chaotic. In the case of non-chaotic motion, the electron can gain and retain very high energy in the presence of ion-channel before reaching the steady-state, whereas in the case of chaotic motion, the electron gains energy and then loses it very rapidly in an unpredictable manner.

  9. Novel geminate recombination channel after indirect photoionization of water

    SciTech Connect (OSTI)

    Fischer, Martin K.; Rossmadl, Hubert; Iglev, Hristo

    2011-06-07

    We studied the photolysis of neat protonated and heavy water using pump-probe and pump-repump-probe spectroscopy. A novel recombination channel is reported leading to ultrafast quenching (0.7 {+-} 0.1 ps) of almost one third of the initial number of photo-generated electrons. The efficiency and the recombination rate of this channel are lower in heavy water, 27 {+-} 5% and (0.9 {+-} 0.1 ps){sup -1}, respectively. Comparison with similar data measured after photodetachment of aqueous hydroxide provides evidence for the formation of short-lived OH:e{sup -} (OD:e{sup -}) pairs after indirect photoionization of water at 9.2 eV.

  10. Influence of plasma loading in a hybrid muon cooling channel

    SciTech Connect (OSTI)

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  11. Electrically tunable localized tunneling channels in silicene nanoribbons

    SciTech Connect (OSTI)

    Saari, Timo; Huang, Cheng-Yi; Tsai, Wei-Feng; Nieminen, Jouko; Lin, Hsin; Bansil, Arun

    2014-04-28

    The topological phase of a silicene nanoribbon holding edge states in the bulk energy gap can be easily broken by an external electric field. Here, we show through low-energy Green's function calculations that it is possible to localize conducting channels anywhere in a silicene nanoribbon by applying an inhomogeneous electric field. The spin degeneracy of these channels can also be broken in the same manner, allowing conduction of spin as well as charge. On this basis, we suggest design of a ternary logic device, which could be used in low-power circuits. Our study demonstrates that silicene and related group IV elements with honeycomb structure could provide a platform for efficient manipulation of spin currents via external electric fields, without the need to switch magnetic fields for spintronics applications.

  12. Epicyclic helical channels for parametric resonance ionization cooling

    SciTech Connect (OSTI)

    Johson, Rolland Paul; Derbenev, Yaroslav

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  13. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    SciTech Connect (OSTI)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  14. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-06-30

    The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

  15. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2002-03-26

    The objective of this project is two-fold. It will demonstrate use of nitrogen as a widely available, cost-effective and environmentally superior injectant for miscible floods. It will also demonstrate the effectiveness of horizontal wellbores in reducing gas breakthrough and cycling. It is expected that the demonstration will lead to implementation of nitrogen injection projects in areas without readily available carbon dioxide sources. Technology transfer will occur throughout the project.

  16. Amino acid-sensing ion channels in plants

    SciTech Connect (OSTI)

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  17. Multiple-channel, total-reflection optic with controllable divergence

    DOE Patents [OSTI]

    Gibson, D.M.; Downing, R.G.

    1997-02-18

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  18. Multiple-channel, total-reflection optic with controllable divergence

    DOE Patents [OSTI]

    Gibson, David M.; Downing, Robert G.

    1997-01-01

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  19. Evaluation of tropical channel refinement using MPAS-A aquaplanet simulations: TROPICAL CHANNEL REFINEMENT IN MPAS-A

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martini, Matus N.; Gustafson, William I.; O'Brien, Travis A.; Ma, Po-Lun

    2015-09-01

    Climate models with variable-resolution grids offer a computationally less expensive way to provide more detailed information at regional scales and increased accuracy for processes that cannot be resolved by a coarser grid. This study uses the Model for Prediction Across Scales–Atmosphere (MPAS22A), consisting of a nonhydrostatic dynamical core and a subset of Advanced Research Weather Research and Forecasting (ARW-WRF) model atmospheric physics that have been modified to include the Community Atmosphere Model version 5 (CAM5) cloud fraction parameterization, to investigate the potential benefits of using increased resolution in an tropical channel. The simulations are performed with an idealized aquaplanet configurationmore » using two quasi-uniform grids, with 30 km and 240 km grid spacing, and two variable-resolution grids spanning the same grid spacing range; one with a narrow (20°S–20°N) and one with a wide (30°S–30°N) tropical channel refinement. Results show that increasing resolution in the tropics impacts both the tropical and extratropical circulation. Compared to the quasi-uniform coarse grid, the narrow-channel simulation exhibits stronger updrafts in the Ferrel cell as well as in the middle of the upward branch of the Hadley cell. The wider tropical channel has a closer correspondence to the 30 km quasi-uniform simulation. However, the total atmospheric poleward energy transports are similar in all simulations. The largest differences are in the low-level cloudiness. The refined channel simulations show improved tropical and extratropical precipitation relative to the global 240 km simulation when compared to the global 30 km simulation. All simulations have a single ITCZ. The relatively small differences in mean global and tropical precipitation rates among the simulations are a promising result, and the evidence points to the tropical channel being an effective method for avoiding the extraneous numerical artifacts seen in earlier

  20. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    SciTech Connect (OSTI)

    Dergachev, A A; Kandidov, V P; Shlenov, S A; Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  1. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR -- EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-08-24

    Budget Period 2 of the East Binger Unit (''EBU'') DOE Project has been. Recent activities included additional data gathering and project monitoring, plus initiation of work on an SPE paper on the modeling efforts of the project. Early production performance suggests horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost. It will take more time to evaluate the impact of the horizontal wells on sweep and ultimate recovery, but it is unlikely that an improvement in recovery will be sufficient to make the overall economic value of horizontal wells greater than the economic value of vertical wells. Monitoring of overall performance of the pilot area continues. Overall response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Efforts to further disseminate knowledge gained through this project, by means of technical paper presentations to industry groups, are underway. Project monitoring and technology transfer will be focus areas of Budget Period 3.

  2. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-01-31

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.

  3. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-05-18

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen to about 40%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  4. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir -- East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2006-03-23

    A significant work program was implemented from 2002 to 2005 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, has increased an average of 50% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. After decreasing to 20-25% early in the project, nitrogen recycle (produced nitrogen volume divided by injected nitrogen volume) within the pilot area has risen back to about 42%, still far below the 72% prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Seven vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Given similar reservoir conditions of net thickness and gas sweep, vertical wells are performing nearly as well as horizontal wells. Additional vertical well drilling was completed in 2005 following the success of wells drilled from 2002 through 2004.

  5. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  6. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.; Algieri, C.

    2011-03-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  7. Extracting Effective Higgs Couplings in the Golden Channel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  8. Electron mobility enhancement in (100) oxygen-inserted silicon channel

    SciTech Connect (OSTI)

    Xu, Nuo; King Liu, Tsu-Jae; Takeuchi, Hideki; Hytha, Marek; Cody, Nyles W.; Stephenson, Robert J.; Mears, Robert J.; Kwak, Byungil; Cha, Seon Yong

    2015-09-21

    High performance improvement (+88% in peak G{sub m} and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N{sub inv} = 4.0 × 10{sup 12} cm{sup −2} and +25% at N{sub inv} = 8.0 × 10{sup 12} cm{sup −2}). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

  9. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Boyi; Asthana, Anjana; Hazaveh, Paniz Khanmohammadi; Bergstrom, Paul L.; Banyai, Douglas; Savaikar, Madhusudan A.; Jaszczak, John A.; Yap, Yoke Khin

    2016-02-05

    Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used as the flexible tunneling channels of TFETs at room temperatures. The electrical insulating BNNTs are used as the one-dimensional (1D) substrates to confine the uniform formation of Fe QDs on their surface as the flexible tunneling channel. Consistent semiconductor-like transport behaviors under variousmore » bending conditions are detected by scanning tunneling spectroscopy in a transmission electron microscopy system (insitu STM-TEM). Ultimately, as suggested by computer simulation, the uniform distribution of Fe QDs enable an averaging effect on the possible electron tunneling pathways, which is responsible for the consistent transport properties that are not sensitive to bending.« less

  10. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  11. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    SciTech Connect (OSTI)

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For a single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.

  12. Observation of $t$-channel electroweak top quark production

    SciTech Connect (OSTI)

    Triplett, Nathan; /Iowa State U.

    2011-04-01

    The top quark is the heaviest known fundamental particle, with a mass of 172.0{sub -1.3}{sup +0.9}GeV. This is nearly twice the mass of the second heaviest known particle, the Z boson, and roughly the mass of a gold atom. Because of its unusually large mass, studying the top quark may provide insight into the Higgs mechanism and other beyond the standard model physics. Only two accelerators in the world are powerful enough to produce top quarks. The Tevatron, which first accelerated protons in 1983, has produced almost 400,000 top quarks, roughly half at each of its two detectors: DO and CDF. The LHC is a much newer accelerator which currently has accumulated about 0.5% as much data as the Tevatron. However, when running at full luminosity, the LHC is capable of producing a top quark about once every second and will quickly surpass the Tevatron as the leading producer of top quarks. This analysis uses data from the D0 detector at the Tevatron, which are described in chapter 3. Top quarks are produced most often in pairs of top and anti-top quarks through an interaction of the strong force. This production mode was first observed in 1995 at the Tevatron. However, top quarks can also be produced though an electroweak interaction, which produces just one top quark. This production mode was first observed at the Tevatron in 2008. Single top quark production can occur in different channels. In this analysis, a measurement of the cross section of the t-channel production mode is performed. This measurement uses 5.4 fb{sup -1} of data and uses the technique of boosted decision trees in order to separate signal from background events. The t-channel cross section is measured to be: {sigma}(p{bar p} {yields} tqb + X) = 3.03{sub -0.66}{sup +0.78}pb (0.0.1). Additional cross section measurements were also performed for the s-channel as well as the s + t-channel. The measurement of each one of these three cross sections was repeated three times using different techniques, and

  13. Recovery of bypassed oil in the Dundee Formation using horizontal drains, Quarterly technical report, 1/1/97--3/31/97

    SciTech Connect (OSTI)

    1997-03-30

    This Class 11 field project has demonstrated that economic quantities of hydrocarbons can be produced from abandoned or nearly abandoned fields in the Dundee Formation of Central Michigan using horizontal drilling technology. The site selected for the demonstration horizontal well was Crystal Field, a nearly abandoned Dundee oil field in Montcalm County, Michigan. This field had produced over 8 million barrels of oil, mostly in the 1930`s and 1940`s. At the height of development, Crystal Field produced from 193 wells, but by 1995, only seven producing wells remained, each producing less than 10 bbls/day. A horizontal well, the TOW 1-3, drilled as a field demonstration pilot was successful, producing at rate of 100 bbls of oil per day with a zero water cut. Although the well is capable of producing at a rate of 500+ bbls/day, the production rate is being kept low deliberately to try to prevent premature water coning. Cumulative production exceeded 50,000 bbls of oil by the end of April, 1997 and lead to the permitting and licensing of several dozen Dundee wells by project end. Twelve of these permits were for continued development of Crystal Field. Two subsequent wells, the Frost 5-3 and the Happy Holidays 6-3, have not been as successful. Both are currently producing 10 BOPD with 90% water cut. Efforts are underway to determine why these wells are performing so poorly and to see if the situation can be remedied. The reasons for these poor performances of the new wells are not clear at this time. It is possible that the wells entered the Dundee too low and missed pay higher in the section. When the TOW 1-3 was drilled, a vertical probe well was also drilled and cored. That probe well penetrated the pay zone and helped guide the horizontal well. The important lesson may be that vertical probe wells are a crucial step in producing these old fields and should not be eliminated simply to save what amounts to a small incremental cost. Core and logs from the Dundee

  14. Note: Design principles of a linear array multi-channel effusive metal-vapor atom source

    SciTech Connect (OSTI)

    Jana, B.; Majumder, A.; Thakur, K. B.; Das, A. K.

    2013-10-15

    Atomic beams can easily be produced by allowing atoms to effuse through a channel. In an earlier investigation [A. Majumder et al., Vacuum 83, 989 (2009)], we had designed, fabricated, and characterized an effusive metal-vapor source using collinear-array of multi-channel. In this note, we describe the theoretical basis of designing the source. Atom density in atomic beam has been estimated using a set of analytical expressions for long-channel operated in transparent mode. Parametric studies on aspect ratio of channel, inter-channel separation, beam width, and vertical distance from the source are carried out. They are useful in providing physical picture and optimizing design parameters.

  15. Fuel cell plates with improved arrangement of process channels for enhanced pressure drop across the plates

    DOE Patents [OSTI]

    Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.

    1986-01-01

    A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.

  16. Characteristics of some submarine fan channels, Permian Ecca Group, South Africa

    SciTech Connect (OSTI)

    Bouma, A.H. ); Dev Wickens, H. )

    1991-03-01

    The vary well exposed submarine fan complex in the southwestern part of the Karoo basin permits close examination of channel-fills and in places their associated overbank deposits. The complex comprises five arenaceous fan systems some of which attain 60 m in thickness. The fans are vertically stacked and separated by basinal shale deposits; each system with its own direction of growth. The association of channelized sandstone bodies and thin-bedded sandstone and shale packages in an updip position from predominantly stacked lobe deposits suggest preservation of middle fan settings. A 500 m wide, 20 m thick channel-fill consisting massive amalgamated sandstone beds occupying the channel thalweg occurs in a setting dominated by thin-bedded, ripple-laminated sandstone and shale. Gradual thinning of the channel-fill beds toward the channel edges, lack of internal lateral accretion, and a high width to depth ratio suggests a low sinuous to straight channel. The channel-fill is capped by an abandonment facies characterized by ripple-laminated sandstone and shale. Stacked, laterally offset channel-fill deposits with highly erosional contacts and typical well-bedded overbank deposits form channel-overbank complexes and characterize the mid-fan region of the uppermost fan system. Palaeocurrent directions and gradual diminishing of bed-thickness away from the generally massively bedded, amalgamated channel-fill sandstones confirm a simultaneous channel/overbank origin for these deposits. Levee morphology has not been recognized. Both examples of channel-fills cited reveal part of the complexity of the channelized portions of submarine fans and hence the implications thereof in exploring for hydrocarbon reservoirs.

  17. A Flow-Channel Analysis for the Mars Hopper

    SciTech Connect (OSTI)

    W. Spencer Cooley

    2013-02-01

    The Mars Hopper is an exploratory vehicle designed to fly on Mars using carbon dioxide from the Martian atmosphere as a rocket propellant. The propellent gasses are thermally heated while traversing a radioisotope ther- mal rocket (RTR) engine’s core. This core is comprised of a radioisotope surrounded by a heat capacitive material interspersed with tubes for the propellant to travel through. These tubes, or flow channels, can be manu- factured in various cross-sectional shapes such as a special four-point star or the traditional circle. Analytical heat transfer and computational fluid dynamics (CFD) anal- yses were performed using flow channels with either a circle or a star cross- sectional shape. The nominal total inlet pressure was specified at 2,805,000 Pa; and the outlet pressure was set to 2,785,000 Pa. The CO2 inlet tem- perature was 300 K; and the channel wall was 1200 K. The steady-state CFD simulations computed the smooth-walled star shape’s outlet temper- ature to be 959 K on the finest mesh. The smooth-walled circle’s outlet temperature was 902 K. A circle with a surface roughness specification at 0.01 mm gave 946 K and at 0.1 mm yielded 989 K. The The effects of a slightly varied inlet pressure were also examined. The analytical calculations were based on the mass flow rates computed in the CFD simulations and provided significantly higher outlet temperature results while displaying the same comparison trends. Research relating to the flow channel heat transfer studies was also done. Mathematical methods to geometrically match the cross-sectional areas of the circle and star, along with a square and equilateral triangle, were derived. A Wolfram Mathematica 8 module was programmed to analyze CFD results using Richardson Extrapolation and calculate the grid convergence index (GCI). A Mathematica notebook, also composed, computes and graphs the bulk mean temperature along a flow channel’s length while the user dynam- ically provides the input

  18. Channeling problem for charged particles produced by confining environment

    SciTech Connect (OSTI)

    Chuluunbaatar, O.; Gusev, A. A.; Derbov, V. L.; Krassovitskiy, P. M.; Vinitsky, S. I.

    2009-05-15

    Channeling problem produced by confining environment that leads to resonance scattering of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic dependence of physical parameters on collision energy and/or confining environment due to resonance transmission and total reflection effects is confirmed that can increase the rate of recombination processes. The reduction of the model for two identical charged ions to a boundary problem is considered together with the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.

  19. Charge recombination in the muon collider cooling channel

    SciTech Connect (OSTI)

    Fernow, R. C.; Palmer, R. B.

    2012-12-21

    The final stage of the ionization cooling channel for the muon collider must transversely recombine the positively and negatively charged bunches into a single beam before the muons can be accelerated. It is particularly important to minimize any emittance growth in this system since no further cooling takes place before the bunches are collided. We have found that emittance growth could be minimized by using symmetric pairs of bent solenoids and careful matching. We show that a practical design can be found that has transmission {approx}99%, emittance growth less than 0.1%, and minimal dispersion in the recombined bunches.

  20. Computer simulation of beam steering by crystal channeling

    SciTech Connect (OSTI)

    Biryukov, V.

    1995-04-01

    The Monte Carlo computer program CATCH for the simulation of planar channeling in bent crystals is presented. The program tracks a charged particle through the deformed crystal lattice with the use of the continuous-potential approximation and by taking into account the processes of both single and multiple scattering on electrons and nuclei. The output consists of the exit angular distributions, the energy loss spectra, and the spectra of any close-encounter process of interest. The program predictions for the feed-out and feed-in rates, energy loss spectra, and beam bending efficiency are compared with the recent experimental data.

  1. INTERFACIAL AREA TRANSPORT AND REGIME TRANSITION IN COMBINATORIAL CHANNELS

    SciTech Connect (OSTI)

    Seugjin Kim

    2011-01-28

    . This study investigates the geometric effects of 90-degree vertical elbows and flow configurations in two-phase flow. The study shows that the elbows make a significant effect on the transport characteristics of two-phase flow, which includes the changes in interfacial structures, bubble interaction mechanisms and flow regime transition. The effect of the elbows is characterized for global and local two-phase flow parameters. The global two-phase flow parameters include two-phase pressure, interfacial structures and flow regime transition. In order to characterize the frictional pressure drop and minor loss across the vertical elbows, pressure measurements are obtained across the test section over a wide range of flow conditions in both single-phase and two-phase flow conditions. A two-phase pressure drop correlation analogous to Lockhart-Martinelli correlation is proposed to predict the minor loss across the elbows. A high speed camera is employed to perform extensive flow visualization studies across the elbows in vertical upward, horizontal and vertical downward sections and modified flow regime maps are proposed. It is found that modified flow regime maps immediately downstream of the vertical upward elbow deviate significantly from the conventional flow regime map. A qualitative assessment of the counter-current flow limitation characteristics specific to the current experimental facility is performed. A multi-sensor conductivity probe is used to measure local two-phase flow parameters such as: void fraction, bubble velocity, interfacial area concentration and bubble frequency. The local measurements are obtained for six different flow conditions at ten measurement locations along axial direction of the test section. Both the vertical-upward and vertical-downward elbows have a significant impact on bubble distribution, resulting in, a bimodal distribution along the horizontal radius of the tube cross-section and migration of bubbles towards the inside of the

  2. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR-EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-02-24

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is progressing and nearing completion. Two of three planned horizontal wells have been drilled and completed. The third horizontal well will be replaced by two vertical wells, both of which will be drilled in early 2004. Based on costs and performances of all new wells, it is believed that, in the setting of the East Binger Unit, the benefits of horizontal wells do not justify the additional cost. In addition to the drilling of new wells, the project also includes conversions of producing wells to injection service. Four wells have now been converted, and injection in the pilot area has doubled. A fifth planned conversion has been removed from the project. Overall response to the various projects continues to be very favorable. Gas injection into the pilot area has increased from 4.0 MMscf/d prior to development to 8.0 MMscf/d in November, while gas production has decreased from 4.1 MMscf/d to 3.0 MMscf/d. The nitrogen content of produced gas has dropped from 58% to 45%. This has reduced the nitrogen recycle within the pilot area from 60% to under 20%. Meanwhile, pilot area oil production has increased, from 300 bpd prior to development to over 425 bpd in November 2003. This is down from 600 bopd in September because EBU 63-2H has begun to level off and other wells were temporarily down. This incremental rate will increase with the addition of the two vertical wells.

  3. Modeling of ionizing radiation effects in short-channel MOSFETs

    SciTech Connect (OSTI)

    Wilson, C.L.; Blue, J.L.

    1982-12-01

    The effect of ionizing radiation on short-channel MOSFETs is modeled using a charge-sheet approach. The primary effect of ionizing radiation is the introduction of oxide trapped charge (OTC) and interface trapped charge (ITC). Using a two-dimensional charge-sheet model, transistors with channel lengths between 4.65 ..mu..m and 0.27 ..mu..m were studied. A range of net OTC and ITC values of + 4.0 X 10/sup 11/ cm/sup -2/ corresponding to a dose of approximately 10/sup 6/ rad (SiO/sub 2/) was used to study total dose effects. ITC and OTC cause significant effects in each region of operation. In the subthreshold region, the sensitivity of drain current to these charges is exponential. A more realistic model must include the energy distribution of the ITC charge as well as two-dimensional charge sharing effects. In the triode region, the effects of ITC and OTC are indistinguishable from two-dimensional charge sharing effects.

  4. Fractional quantum Hall junctions and two-channel Kondo models

    SciTech Connect (OSTI)

    Sandler, Nancy P.; Fradkin, Eduardo

    2001-06-15

    A mapping between fractional quantum Hall (FQH) junctions and the two-channel Kondo model is presented. We discuss this relation in detail for the particular case of a junction of a FQH state at {nu}=1/3 and a normal metal. We show that in the strong coupling regime this junction has a non-Fermi-liquid fixed point. At this fixed point the electron Green{close_quote}s function has a branch cut and the impurity entropy is equal to S=1/2ln2. We construct the space of perturbations at the strong coupling fixed point and find that the dimension of the tunneling operator is 1/2. These properties are strongly reminiscent of the non-Fermi-liquid fixed points of a number of quantum impurity models, particularly the two-channel Kondo model. However we have found that, in spite of these similarities, the Hilbert spaces of these two systems are quite different. In particular, although in a special limit the Hamiltonians of both systems are the same, their Hilbert spaces are not since they are determined by physically distinct boundary conditions. As a consequence the spectrum of operators in the two problems is different.

  5. Stationary bubbles and their tunneling channels toward trivial geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Pisin; Domènech, Guillem; Sasaki, Misao; Yeom, Dong-han

    2016-04-07

    In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. Ultimately, this may provide a resolution to the information loss dilemma.« less

  6. Multiple channel coincidence detector and controller for microseismic data analysis

    DOE Patents [OSTI]

    Fasching, George E.

    1976-11-16

    A multiple channel coincidence detector circuit is provided for analyzing data either in real time or recorded data on a magnetic tape during an experiment for determining location and progression of fractures in an oil field or the like while water is being injected at high pressure in wells located in the field. The circuit is based upon the utilization of a set of parity generator trees combined with monostable multivibrators to detect the occurrence of two events at any pair of channel input terminals that are within a preselected time frame and have an amplitude above a preselected magnitude. The parity generators perform an exclusive OR function in a timing circuit composed of monostable multivibrators that serve to yield an output when two events are present in the preselected time frame. Any coincidences falling outside this time frame are considered either noise or not otherwise useful in the analysis of the recorded data. Input pulses of absolute magnitude below the low-level threshold setting of a bipolar low-level threshold detector are unwanted and therefore rejected. A control output is provided for a utilization device from a coincidence hold circuit that may be used to halt a tape search unit at the time of coincidence or perform other useful control functions.

  7. Laser-electron Compton interaction in plasma channels

    SciTech Connect (OSTI)

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO{sub 2} lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider.

  8. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    1990-01-01

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  9. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    2011-03-22

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  10. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, low-sun angles [a0 data is uncalibrated

  11. ARM: Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, VISible channel, high-sun angles [a0 data is uncalibrated

  12. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    SciTech Connect (OSTI)

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  13. Stable formation of ultrahigh power-density 248 nm channels in Xe cluster targets

    SciTech Connect (OSTI)

    Borisov, Alex B.; Racz, Ervin; Khan, Shahab F.; Poopalasingam, Sankar; McCorkindale, John C.; Boguta, John; Longworth, James W.; Rhodes, Charles K.

    2012-07-11

    The optimization of relativistic and ponderomotive self-channeling of ultra-powerful 248 nm laser pulses launched in underdense plasmas with an appropriate longitudinal gradient in the electron density profile located at the initial stage of the self-channeling leads to (1) stable channel formation and (2) highly efficient power compression producing power densities in the 10{sup 19}-10{sup 20} W/cm{sup 3} range. The comparison of theoretical studies with experimental results involving the correlation of (a) Thomson images of the electron density with (b) x-ray images of the channel morphology demonstrates that more than 90% of the incident 248 nm power can be trapped in stable channels and that this stable propagation can be extended to power levels significantly exceeding the critical power of the self-channeling process.

  14. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments

    SciTech Connect (OSTI)

    Rosenberg, Danna; Peterson, Charles G; Dallmann, Nicholas; Hughes, Richard J; Mccabe, Kevin P; Nordholt, Jane E; Tyagi, Hush T; Peters, Nicholas A; Toliver, Paul; Chapman, Thomas E; Runser, Robert J; Mcnown, Scott R

    2008-01-01

    To move beyond dedicated links and networks, quantum communications signals must be integrated into networks carrying classical optical channels at power levels many orders of magnitude higher than the quantum signals themselves. We demonstrate transmission of a 1550-nm quantum channel with up to two simultaneous 200-GHz spaced classical telecom channels, using ROADM (reconfigurable optical <1dd drop multiplexer) technology for multiplexing and routing quantum and classical signals. The quantum channel is used to perform quantum key distribution (QKD) in the presence of noise generated as a by-product of the co-propagation of classical channels. We demonstrate that the dominant noise mechanism can arise from either four-wave mixing or spontaneous Raman scattering, depending on the optical path characteristics as well <1S the classical channel parameters. We quantity these impairments and discuss mitigation strategies.

  15. Channeling Doping Profiles Studies for Small Incident Angle Implantation into Silicon Wafers

    SciTech Connect (OSTI)

    Guo, B.N.; Variam, N.; Jeong, U.; Mehta, S.; Posselt, M.; Lebedev, A.

    2003-08-26

    Traditional de-channeling dopant profiles in the silicon crystal wafers have been achieved by tilting the wafer away from the incident beam. As feature sizes of device shrink, the advantages for channeled doping profiles for implants with small or near zero degree incident angles are being recognized. For example, high-energy CMOS well spacing limitations caused by shadowing and encroachment of the ion beam by photoresist mask can be avoided for near zero degree incident implants. Accurate models of channeled profiles are essential to predict the device performance. This paper mainly discusses the damage effect on channeled dopant profiles. Especially, damage effects on channeled dopant profiles are correlated to ThermaWave (TW) measurements. It is demonstrated that there is a critical dose at which the damage effects have to be considered for channeled dopant profile evolvements.

  16. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO{sub 2} in horizontal macro-tubes

    SciTech Connect (OSTI)

    Oh, Hoo-Kyu; Son, Chang-Hyo

    2010-11-15

    The heat transfer coefficient during gas cooling process of supercritical CO{sub 2} without lubricating oil in horizontal macro-tubes has experimentally investigated. Investigation has done on two stainless steel circular tubes having inside-diameter of 4.55 mm and 7.75 mm and carried out for CO{sub 2} mass fluxes of 200-600 kg/m{sup 2} s, inlet fluid pressures of 7.5-10.0 MPa, and the inlet fluid temperatures of 90-100 C. The experimental results indicate that the gas cooling pressure, the inner tube diameter, the mass flux and the temperature of CO{sub 2} have significant effects on the heat transfer coefficient, especially near pseudo-critical region. The heat transfer coefficient decreases as the cooling pressure increases otherwise increases as mass flux increases. At any temperatures, smaller inner tube diameter shows higher heat transfer coefficient. In comparison between present experimental data and existing correlations from references, most of supercritical heat transfer correlations show large deviations with this present experimental data. Therefore, based on experimental data obtained in this present work, a new correlation is proposed to predict more accurate heat transfer coefficient of supercritical CO{sub 2} in horizontal macro-tubes under cooling conditions. The majority of the experimental values are within 13% of the values predicted by the new correlation. (author)

  17. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  18. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir--East Binger (Marchand) Unit

    SciTech Connect (OSTI)

    Joe Sinner

    2005-09-15

    A significant work program was implemented from 2002 to 2004 in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work included the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area, though limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, and has increased 70% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area is now only about 32%, far below the 72% recycle prior to initiation of the project. Poor areal sweep efficiency appears to be the primary cause of nitrogen cycling. Four vertical and three horizontal wells have been drilled in the pilot area throughout the project, and most have had initial produced gas oil ratios and gas nitrogen contents significantly below the field averages. Additional vertical well drilling is planned due to the success of wells drilled to date.

  19. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2003-05-30

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Significant advances with the reservoir simulation model have led to changes in the program. One planned horizontal well location, EBU 44-3H, has been eliminated from the program, and another, EBU 45-3H, has been deferred, and may be replaced by a vertical well or completely eliminated at a future date. A new horizontal well location, EBU 63-2H, has been added. EBU 74G-2, the one new injection well planned for the project, was completed and brought on production. It will be produced for a period of time before converting it to injection. Performance is exceeding expectations. Work also continued on projects aimed at increasing injection in the pilot area. EBU 65-1 was converted to injection service. The project to add compression and increase injection capacity at the nitrogen management facility is nearing completion. Additional producer-to-injector conversions will follow.

  20. JLab's YouTube Channel Attracts 100,000 Subscribers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab's YouTube Channel Attracts 100,000 Subscribers JLab's YouTube Channel Attracts 100,000 Subscribers In roughly six years, Jefferson Lab's YouTube channel has attracted 100,000 subscribers and has been viewed more than 30 million times. To celebrate this milestone, achieved on Feb. 8, Science Education posted an episode of Frostbite Theater, titled 100,000 Subscribers! (And some liquid nitrogen!). To mark the event, Frostbite Theater hosts Steve Gagnon, Science Education administrator, and

  1. DNS as a Covert Channel Within Protected Networks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DNS as a Covert Channel Within Protected Networks DNS as a Covert Channel Within Protected Networks This whitepaper discusses ways to detect DNS exfiltration attempts based on current known methods, and provides recommendations for mitigation of this exposure. DNS as a Covert Channel Within Protected Networks (994.64 KB) More Documents & Publications ProActive DNS Blacklisting Good Practice Guide on Firewall Deployment for SCADA and Process Control Networks Introduction SCADA Security for

  2. Measurement of the top quark mass in the dilepton channel

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.

    2006-09-01

    We present a measurement of the top quark mass in the dilepton channel based on approximately 370 pb{sup -1} of data collected by the D0 experiment during Run II of the Fermilab Tevatron collider. We employ two different methods to extract the top quark mass. We show that both methods yield consistent results using ensemble tests of events generated with the D0 Monte Carlo simulation. We combine the results from the two methods to obtain a top quark mass m{sub t} = 178.1 {+-} 8.2 GeV. The statistical uncertainty is 6.7 GeV and the systematic uncertainty is 4.8 GeV.

  3. Single transmission line interrogated multiple channel data acquisition system

    DOE Patents [OSTI]

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  4. Conductance matrix of multiterminal semiconductor devices with edge channels

    SciTech Connect (OSTI)

    Danilovskii, E. Yu. Bagraev, N. T.

    2014-12-15

    A method for determining the conductance matrix of multiterminal semiconductor structures with edge channels is proposed. The method is based on the solution of a system of linear algebraic equations based on Kirchhoff equations, made up of potential differences U{sub ij} measured at stabilized currents I{sub kl}, where i, j, k, l are terminal numbers. The matrix obtained by solving the system of equations completely describes the structure under study, reflecting its configuration and homogeneity. This method can find wide application when using the known Landauer-Buttiker formalism to analyze carrier transport in the quantum Hall effect and quantum spin Hall effect modes. Within the proposed method, the contribution of the contact area resistances R{sub c} to the formation of conductance matrix elements is taken into account. The possibilities of practical application of the results obtained in developing analog cryptographic devices are considered.

  5. Multi-channel detector readout method and integrated circuit

    DOE Patents [OSTI]

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2004-05-18

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  6. Multi-channel detector readout method and integrated circuit

    DOE Patents [OSTI]

    Moses, William W.; Beuville, Eric; Pedrali-Noy, Marzio

    2006-12-12

    An integrated circuit which provides multi-channel detector readout from a detector array. The circuit receives multiple signals from the elements of a detector array and compares the sampled amplitudes of these signals against a noise-floor threshold and against one another. A digital signal is generated which corresponds to the location of the highest of these signal amplitudes which exceeds the noise floor threshold. The digital signal is received by a multiplexing circuit which outputs an analog signal corresponding the highest of the input signal amplitudes. In addition a digital control section provides for programmatic control of the multiplexer circuit, amplifier gain, amplifier reset, masking selection, and test circuit functionality on each input thereof.

  7. Method of multi-channel data readout and acquisition

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.; Popov, Vladimir E.

    2010-06-15

    A method for dealing with the problem of simultaneous continuous readout of large number of data channels from the set of multiple sensors in instances where the use of multiple amplitude-to-digital converters is not practical or causes undesirable extra noise and distortion in the data. The new method uses sensor front-end s and subsequent electronics to transform the analog input signals and encode them into a series of short pulses that can be transmitted to a long distance via a high frequency transmission line without information loss. Upon arrival at a destination data decoder and analyzer device, the series of short pulses can be decoded and transformed back, to obtain, store, and utilize the sensor information with the required accuracy.

  8. MHK Projects/San Juan Channel Tidal Energy Project | Open Energy...

    Open Energy Info (EERE)

    Juan Channel Tidal Energy Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","...

  9. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect (OSTI)

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  10. Coolant Sub-Channel and Smeared-Cracking Models in BISON | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Coolant Sub-Channel and Smeared-Cracking Models in BISON Coolant Sub-Channel and Smeared-Cracking Models in BISON January 29, 2013 - 10:45am Addthis Coolant Sub-Channel and Smeared-Cracking Models in BISON A single-pin coolant sub-channel model was implemented in BISON, the pin-scale simulation code. This enables BISON to compute the heat transfer coefficient and coolant temperature as a function of axial position along the fuel pin (rather than requiring this information to be

  11. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    SciTech Connect (OSTI)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a “step-composition gradient channel.” We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (−3.7 V) and good instability characteristics with a reduced threshold voltage shift (Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm{sup 2}/V s. We presented a unique active layer of the “step-composition gradient channel” in the oxide TFTs and explained the mechanism of adequate channel design.

  12. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOE Patents [OSTI]

    Fasching, George E.

    1987-01-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  13. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOE Patents [OSTI]

    Fasching, G.E.

    1985-02-22

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  14. Apparatus and method for selectively channeling a fluid

    DOE Patents [OSTI]

    Rightley, Michael Joseph

    2008-01-01

    An apparatus for selectively channeling a high temperature fluid without chemically reacting with the fluid. The apparatus includes an inlet and a membrane positioned adjacent to the inlet, each composed of a chemically inert material. The membrane is formed by compressive preloading techniques. The apparatus further includes a seat disposed on the inlet adjacent to the membrane. The seat is composed of a heat resistant and chemically inert material. Operation of the apparatus requires that the temperature of the fluid remains below the chemical characteristic melting point of the seat. The apparatus further includes an actuator coupled to the membrane for rendering the membrane in an open and a closed position with respect to the seat. Specifically, the actuator supplies a load in the normal direction to the membrane to selectively engage the membrane in a plurality of predetermined configurations. Operatively, the apparatus receives the fluid at the inlet. The fluid is received at a high temperature and is directed from the inlet to the membrane. In the closed position, the actuator engages the membrane to prevent the fluid from flowing from the inlet between the membrane and the seat. Alternatively, in the open position, the actuator engages the membrane to permit fluid flow from the inlet between the membrane and the seat to at least one outlet provided by the apparatus. In one exemplary embodiment, the fluid may be discharged from the at least one outlet to a sensor in fluid communication with the at least one outlet. Accordingly, the sensor may measure the fluid channeled through the heat resistant and chemically inert environment provided by the apparatus.

  15. Analytical models of calcium binding in a calcium channel

    SciTech Connect (OSTI)

    Liu, Jinn-Liang; Eisenberg, Bob

    2014-08-21

    The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na{sup +} and Ca{sup 2+} for [CaCl{sub 2}] ranging from 10{sup −8} to 10{sup −2} M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.

  16. Turbulence structure in free-surface channel flows

    SciTech Connect (OSTI)

    Rashidi, M.; Banerjee, S.

    1988-09-01

    A turbulence structure in horizontal liquid streams bounded by a free surface and a wall has been investigated using 10--25 ..mu..m oxygen bubbles as tracers. High speed video movies indicate that the dominant flow structure is caused by the periodic ejection of intensely turbulent fluid with low streamwise momentum from the wall region into the relatively quiescent bulk fluid which it displaces and mixes with slowly. The motion of these bursts is constrained by the free interface. Between bursts and the interface a high speed region with a steep velocity gradient develops as a consequence. This in turn causes progress of the burst fluid toward the interface to slow down and eventually to turn back toward the wall, giving rise to characteristic rolling structures, which rotate clockwise if the flow is viewed as going from left to right. To complement the video studies, quantitative data were obtained by analyzing bubble streak lines generated by photography of optically chopped flashes. These data show that in the vicinity of the interface the velocity fluctuations normal to it are damped whereas those parallel to it are enhanced. Analysis of conditional samples of the data indicate that fluid with relatively low streamwise momentum tends to move toward the interface while fluid with high momentum moves away giving rise to rotating structures that roll along with the flow in agreement with the video studies. A high degree of correlation between ejection events near the wall and the fluid motion near the interface also confirm that the bursts extend across the flow stream. This has important implications for surface renewal theories of turbulent transport at fluid--fluid interfaces.

  17. DNA Extraction by Isotachophoresis in a Microfluidic Channel

    SciTech Connect (OSTI)

    Stephenson, S J

    2011-08-10

    electrolyte ions. Conversely, the trailing electrolyte ions have a slow electrophoretic mobility, so they lag behind the sample, thus trapping the species of interest between the LE and TE streams. In a typical isotachophoresis configuration, the electric field is applied in a direction parallel to the direction of flow. The species then form bands that stretch across the width of the channel. A major limitation of that approach is that only a finite amount of sample can be processed at once, and the sample must be processed in batches. For our purposes, a form of free-flow isotachophoresis is more convenient, where the DNA forms a band parallel to the edges of the channel. To achieve this, in our chip, the electric field is applied transversely. This creates a force perpendicular to the direction of flow, which causes the different ions to migrate across the flow direction. Because the mobility of the DNA is between the mobility of the leading and the trailing electrolyte, the DNA is focused in a tight band near the center of the channel. The stream of DNA can then be directed to a different output to produce a highly concentrated outlet stream without batch processing. One hurdle that must be overcome for successful ITP is isolating the electrochemical reactions that result from the application of high voltage for the actual process of isotachophoresis. The electrochemical reactions that occur around metal electrodes produce bubbles and pH changes that are detrimental to successful ITP. The design of the chips we use incorporates polyacrylamide gels to serve as electrodes along the central channel. For our design, the metal electrodes are located away from the chip, and high conductivity buffer streams carry the potential to the chip, functioning as a 'liquid electrode.' The stream then runs alongside a gel barrier. The gel electrode permits ion transfer while simultaneously isolating the separation chamber from any contaminants in the outer, 'liquid electrode' streams. The

  18. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    SciTech Connect (OSTI)

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  19. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    SciTech Connect (OSTI)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated immobile

  20. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    DOE Patents [OSTI]

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  1. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code: Preprint

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2012-04-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. It summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30 degrees of yaw.

  2. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect (OSTI)

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  3. Investigating the Influence of the Added Mass Effect to Marine Hydrokinetic Horizontal-Axis Turbines Using a General Dynamic Wake Wind Turbine Code

    SciTech Connect (OSTI)

    Maniaci, D. C.; Li, Y.

    2011-10-01

    This paper describes a recent study to investigate the applicability of a horizontal-axis wind turbine (HAWT) structural dynamics and unsteady aerodynamics analysis program (FAST and AeroDyn respectively) to modeling the forces on marine hydrokinetic (MHK) turbines. This paper summarizes the added mass model that has been added to AeroDyn. The added mass model only includes flow acceleration perpendicular to the rotor disc, and ignores added mass forces caused by blade deflection. A model of the National Renewable Energy Laboratory's (NREL) Unsteady Aerodynamics Experiment (UAE) Phase VI wind turbine was analyzed using FAST and AeroDyn with sea water conditions and the new added mass model. The results of this analysis exhibited a 3.6% change in thrust for a rapid pitch case and a slight change in amplitude and phase of thrust for a case with 30{sup o} of yaw.

  4. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay

  5. Control of focusing forces and emittances in plasma-based accelerators using near-hollow plasma channels

    SciTech Connect (OSTI)

    Schroeder, C. B.; Esarey, E.; Benedetti, C.; Leemans, W. P.

    2013-08-15

    A near-hollow plasma channel, where the plasma density in the channel is much less than the plasma density in the walls, is proposed to provide independent control over the focusing and accelerating forces in a plasma accelerator. In this geometry the low density in the channel contributes to the focusing forces, while the accelerating fields are determined by the high density in the channel walls. The channel also provides guiding for intense laser pulses used for wakefield excitation. Both electron and positron beams can be accelerated in a nearly symmetric fashion. Near-hollow plasma channels can effectively mitigate emittance growth due to Coulomb scattering for high-energy physics applications.

  6. Structure of the Transmembrane Regions of a Bacterial Cyclic Nucleotide-Regulated Channel

    SciTech Connect (OSTI)

    Clayton,G.; Latieri, S.; Heginbotham, L.; Unger, V.; Morais-Cabral, J.

    2008-01-01

    The six-transmembrane helix (6 TM) tetrameric cation channels form the largest ion channel family, some members of which are voltage-gated and others are not. There are no reported channel structures to match the wealth of functional data on the non-voltage-gated members. We determined the structure of the transmembrane regions of the bacterial cyclic nucleotide-regulated channel MlotiK1, a non-voltage-gated 6 TM channel. The structure showed how the S1-S4 domain and its associated linker can serve as a clamp to constrain the gate of the pore and possibly function in concert with ligand-binding domains to regulate the opening of the pore. The structure also led us to hypothesize a new mechanism by which motions of the S6 inner helices can gate the ion conduction pathway at a position along the pore closer to the selectivity filter than the canonical helix bundle crossing.

  7. Dartmouth Stellar Evolution Database and the ACS Survey of Galactic Globular Clusters II. Stellar Evolution Tracks, Isochrones, Luminosity Functions, and Synthetic Horizontal-Branch Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dotter, A; Chaboyer, B; Jevremovic, D; Kostov, V; Baron, E; Ferguson, J; Sarajedini, A; Anderson, J

    The Dartmouth Stellar Evolution Database is a collection of stellar evolution tracks and isochrones that spans a range of [Fe/H] from -2.5 to +0.5, [a/Fe] from -0.2 to +0.8 (for [Fe/H]<=0) or +0.2 (for [Fe/H]>0), and initial He mass fractions from Y=0.245 to 0.40. Stellar evolution tracks were computed for masses between 0.1 and 4 Msolar, allowing isochrones to be generated for ages as young as 250 Myr. For the range in masses where the core He flash occurs, separate He-burning tracks were computed starting from the zero age horizontal branch. The tracks and isochrones have been transformed to the observational plane in a variety of photometric systems including standard UBV(RI)C, Stromgren uvby, SDSS ugriz, 2MASS JHKs, and HST ACS/WFC and WFPC2. The Dartmouth Stellar Evolution Database is accessible through a Web site at http://stellar.dartmouth.edu/~models/ where all tracks, isochrones, and additional files can be downloaded. [Copied from online abstract of paper titled "Darmouth Stellar Evolution Database" authored by Dotter, Chaboyer, Jevremovic, Kostov, Baron, Ferguson, and Jason. Abstract is located at http://adsabs.harvard.edu/abs/2008ApJS..178...89D] Web tools are also available at the home page (http://stellar.dartmouth.edu/~models/index.html). These tools allow users to create isochrones and convert them to luminosity functions or create synthetic horizontal branch models.

  8. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    SciTech Connect (OSTI)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  9. MICROLENSING BINARIES DISCOVERED THROUGH HIGH-MAGNIFICATION CHANNEL

    SciTech Connect (OSTI)

    Shin, I.-G.; Choi, J.-Y.; Park, S.-Y.; Han, C.; Gould, A.; Gaudi, B. S.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Dominik, M.; Allen, W.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Hung, L.-W.; Janczak, J.; Kaspi, S.; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2012-02-20

    Microlensing can provide a useful tool to probe binary distributions down to low-mass limits of binary companions. In this paper, we analyze the light curves of eight binary-lensing events detected through the channel of high-magnification events during the seasons from 2007 to 2010. The perturbations, which are confined near the peak of the light curves, can be easily distinguished from the central perturbations caused by planets. However, the degeneracy between close and wide binary solutions cannot be resolved with a 3{sigma} confidence level for three events, implying that the degeneracy would be an important obstacle in studying binary distributions. The dependence of the degeneracy on the lensing parameters is consistent with a theoretical prediction that the degeneracy becomes severe as the binary separation and the mass ratio deviate from the values of resonant caustics. The measured mass ratio of the event OGLE-2008-BLG-510/MOA-2008-BLG-369 is q {approx} 0.1, making the companion of the lens a strong brown dwarf candidate.

  10. Control system devices : architectures and supply channels overview.

    SciTech Connect (OSTI)

    Trent, Jason; Atkins, William Dee; Schwartz, Moses Daniel; Mulder, John C.

    2010-08-01

    This report describes a research project to examine the hardware used in automated control systems like those that control the electric grid. This report provides an overview of the vendors, architectures, and supply channels for a number of control system devices. The research itself represents an attempt to probe more deeply into the area of programmable logic controllers (PLCs) - the specialized digital computers that control individual processes within supervisory control and data acquisition (SCADA) systems. The report (1) provides an overview of control system networks and PLC architecture, (2) furnishes profiles for the top eight vendors in the PLC industry, (3) discusses the communications protocols used in different industries, and (4) analyzes the hardware used in several PLC devices. As part of the project, several PLCs were disassembled to identify constituent components. That information will direct the next step of the research, which will greatly increase our understanding of PLC security in both the hardware and software areas. Such an understanding is vital for discerning the potential national security impact of security flaws in these devices, as well as for developing proactive countermeasures.

  11. Rivulet Flow In Vertical Parallel-Wall Channel

    SciTech Connect (OSTI)

    D. M. McEligot; G. E. Mc Creery; P. Meakin

    2006-04-01

    In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.

  12. Non-nuclear Electron Transport Channels in Hollow Molecules

    SciTech Connect (OSTI)

    Zhao, Jin; Petek, Hrvoje

    2014-08-15

    Electron transport in inorganic semiconductors and metals occurs through delocalized bands formed by overlapping electron orbitals. Strong correlation of electronic wave functions with the ionic cores couples the electron and lattice motions, leading to efficient interaction and scattering that degrades coherent charge transport. By contrast, unoccupied electronic states at energies near the vacuum level with diffuse molecular orbitals may form nearly-free-electron bands with density maxima in non-nuclear interstitial voids, which are subject to weaker electron-phonon interaction. The position of such bands typically above the frontier orbitals, however, renders them unstable with respect to electronic interband relaxation and therefore unsuitable for charge transport. Through electronic-structure calculations, we engineer stable, non-nuclear, nearly-free-electron conduction channels in low-dimensional molecular materials by tailoring their electrostatic and polarization potentials. We propose quantum structures of graphane-derived Janus molecular sheets with spatially isolated conducting and insulating regions that potentially exhibit emergent electronic properties, as a paradigm for molecular-scale non-nuclear charge conductors; we also describe tuning of their electronic properties by application of external fields and calculate their electron–acoustic-phonon interaction.

  13. Method for making circular tubular channels with two silicon wafers

    DOE Patents [OSTI]

    Yu, C.M.; Hui, W.C.

    1996-11-19

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si{sub 3}N{sub 4}) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO{sub 3}/CH{sub 3}COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary. 11 figs.

  14. Method for making circular tubular channels with two silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M.; Hui, Wing C.

    1996-01-01

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.

  15. Superradiance in a two-channel quantum wire

    SciTech Connect (OSTI)

    Tayebi, A.; Zelevinsky, V.

    2014-10-15

    A one-dimensional, two-channel quantum wire is studied in the effective non-Hermitian Hamiltonian framework. Analytical expressions are derived for the band structure of the isolated wire. Quantum states and transport properties of the wire coupled to two ideal leads at the edges are studied in detail. The width distribution of the quasistationary states varies as a function of the coupling strength to the environment. At weak coupling, all the eigenenergies uniformly acquire small widths. The picture changes entirely at strong coupling, a certain number of states (“super-radiant”) are greatly broadened, while the rest remain long-lived states, a pure quantum mechanical effect as a consequence of quantum interference. The transition between the two regimes greatly influences the transport properties of the system. The maximum transmission through the wire occurs at the super-radiance transition. We consider also a realistic situation with energy-dependent coupling to the continuum due to the existence of decay threshold where super-radiance still plays a significant role in transport properties of the system.

  16. Coupled cluster channels in the homogeneous electron gas

    SciTech Connect (OSTI)

    Shepherd, James J. E-mail: jamesjshepherd@gmail.com; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-03-28

    We discuss diagrammatic modifications to the coupled cluster doubles (CCD) equations, wherein different groups of terms out of rings, ladders, crossed-rings, and mosaics can be removed to form approximations to the coupled cluster method, of interest due to their similarity with various types of random phase approximations. The finite uniform electron gas (UEG) is benchmarked for 14- and 54-electron systems at the complete basis set limit over a wide density range and performance of different flavours of CCD is determined. These results confirm that rings generally overcorrelate and ladders generally undercorrelate; mosaics-only CCD yields a result surprisingly close to CCD. We use a recently developed numerical analysis [J. J. Shepherd and A. Grneis, Phys. Rev. Lett. 110, 226401 (2013)] to study the behaviours of these methods in the thermodynamic limit. We determine that the mosaics, on forming the Brueckner one-body Hamiltonian, open a gap in the effective one-particle eigenvalues at the Fermi energy. Numerical evidence is presented which shows that methods based on this renormalisation have convergent energies in the thermodynamic limit including mosaic-only CCD, which is just a renormalised MP2. All other methods including only a single channel, namely, ladder-only CCD, ring-only CCD, and crossed-ring-only CCD, appear to yield divergent energies; incorporation of mosaic terms prevents this from happening.

  17. High-energy channeling and its applications. Progress report for period May 1, 1981-December 1, 1981

    SciTech Connect (OSTI)

    Gibson, W.M.; Sun, C.R.

    1981-12-01

    Progress is reported in these areas; proton channeling through bent crystals at GeV energies; gamma radiation from 10 GeV positrons channeled in silicon monocrystal; and other publications during the year reported. (GHT)

  18. Interplay between Appearance and Disappearance Channels for Precision Measurements of θ₂₃ and δ

    SciTech Connect (OSTI)

    Coloma, Pilar; Minakata, Hisakazu; Parke, Stephen J.

    2014-11-01

    We discuss how the CP violating phase δ and the mixing angle θ₂₃ can be measured precisely in an environment where there are strong correlations between them. This is achieved by paying special attention to the mutual roles and the interplay between the appearance and the disappearance channels in long-baseline neutrino oscillation experiments. We analyze and clarify the general structure of the θ₂₃ - θ₁₃ - δ degeneracy for both the appearance and disappearance channels in a more complete fashion than what has previously been discussed in the literature. A full understanding of this degeneracy is of vital importance if θ₂₃ is close to maximal mixing. The relative importance between the appearance and disappearance channels depends upon the particular setup and how close to maximal mixing Nature has chosen the value for θ₂₃. For facilities that operate with a narrow band beam or a wide band beam centered on the first oscillation extremum, the contribution of the disappearance channel depends critically on the systematic uncertainties assumed for this channel. Whereas for facilities that operate at energies above the first oscillation extremum or at the second oscillation extremum the appearance channels dominate. On the other hand, for δ we find that the disappearance channel usually improves the sensitivity, modestly for facilities around the first oscillation extremum and more significantly for facilities operating at an energy above the first oscillation extremum, especially near δ ~ ± π/2.

  19. Apparatus and methods for high resolution separation of sample components on microfabricated channel devices

    DOE Patents [OSTI]

    Mathies, Richard A.; Paegel, Brian; Simpson, Peter C.; Hutt, Lester

    2005-07-05

    Sample component separation apparatus and methods are described. An exemplary sample component separation apparatus includes a separation channel having a turn portion configured to reduce band-broadening caused by passage of a sample through the turn portion. To reduce band broadening caused by passage of a sample through a turn portion, the turn portion may be constructed and arranged to have a sample transport characteristic that is different from the corresponding sample transport characteristic of a substantially straight portion of the separation channel. For example, the turn portion may be configured with an effective channel width that is smaller than the effective channel widths of the substantially straight portion of the separation channel. The actual channel width of the turn portion may be smaller than the channel widths of the substantially straight portion; the effective channel width of the turn portion may be reduced by placing one or more sample transport barriers or constrictions in the turn portion of the channel. Alternatively, the sample velocity through the turn portion may be controlled so as to reduce band broadening. For example, sample transport barriers may be disposed in the turn portion so that sample components of a given band travel through the turn portion at substantially the same effective rate, whereby the band orientation remains substantially aligned along radial directions characteristic of the turn portion. Other a sample transport characteristics, such as electrical resistance or fluid flow resistance, of the turn portion may be adapted to reduce band broadening caused by passage of the sample through the turn portion.

  20. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    1990-01-01

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  1. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    2011-03-22

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  2. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, high-sun angles [a0 data is uncalibrated

  3. ARM: Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Albert Mendoza; Yan Shi; Connor Flynn

    Shortwave Array Spectroradiometer-Hemispheric, Near-InfraRed channel, low-sun angles [a0 data is uncalibrated

  4. Nonlinear study of an ion-channel guiding free-electron laser

    SciTech Connect (OSTI)

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2015-04-15

    A nonlinear model and simulations of the output power of an ion-channel guiding free-electron laser (FEL) are presented in this paper. Results show that the nonlinear output power of an ion-channel guiding FEL is comparable to that of an axial guide magnetic field FEL. Compared to an axial guide magnetic field FEL, an ion-channel guiding FEL substantially weakens the negative effect of the electron-beam energy spread on the output power due to its advantageous focusing mechanism on the electron motion.

  5. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    DOE Patents [OSTI]

    Ledbetter, Micah P.; Savukov, Igor M.; Budker, Dmitry; Shah, Vishal K.; Knappe, Svenja; Kitching, John; Michalak, David J.; Xu, Shoujun; Pines, Alexander

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  6. Orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films Citation Details In-Document Search Title: Orbital two-channel Kondo effect in epitaxial ferromagnetic L10-MnAl films The orbital two-channel Kondo effect displaying exotic non-Fermi liquid behaviour arises in the intricate scenario of two conduction electrons compensating a pseudo-spin-1/2 impurity of two-level system. Despite extensive efforts for several decades,

  7. Non-cross talk multi-channel photomultiplier using guided electron multipliers

    DOE Patents [OSTI]

    Gomez, J.; Majewski, S.; Weisenberger, A.G.

    1995-09-26

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics. 28 figs.

  8. Non cross talk multi-channel photomultiplier using guided electron multipliers

    DOE Patents [OSTI]

    Gomez, Javier; Majewski, Stanislaw; Weisenberger, Andrew G.

    1995-01-01

    An improved multi-channel electron multiplier is provided that exhibits zero cross-talk and high rate operation. Resistive material input and output masks are employed to control divergence of electrons. Electron multiplication takes place in closed channels. Several embodiments are provided for these channels including a continuous resistive emissive multiplier and a discrete resistive multiplier with discrete dynode chains interspaced with resistive layers-masks. Both basic embodiments provide high gain multiplication of electrons without accumulating surface charges while containing electrons to their proper channels to eliminate cross-talk. The invention can be for example applied to improve the performance of ion mass spectrometers, positron emission tomography devices, in DNA sequencing and other beta radiography applications and in many applications in particle physics.

  9. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  10. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOE Patents [OSTI]

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  11. MHK ISDB/Instruments/ChannelMaster H-ADCP | Open Energy Information

    Open Energy Info (EERE)

    ChannelMaster H-ADCP < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help Under...

  12. Edge-channel interferometer at the graphene quantum Hall pn junction

    SciTech Connect (OSTI)

    Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-04

    We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

  13. ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Torres, R.; Mendez-Torres, A.; Lam, P.

    2011-06-09

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  14. ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Mendez-Torres, A.; Torres, R.; Lam, P.

    2011-07-15

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  15. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  16. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect (OSTI)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  17. Ultra-short channel GaN high electron mobility transistor-like...

    Office of Scientific and Technical Information (OSTI)

    based on the velocity-field dependence of two-dimensional electron gas (2-DEG) channel accounting for the ballistic electron acceleration and the inter-valley transfer. In...

  18. Darcy Flow in a Wavy Channel Filled with a Porous Medium

    SciTech Connect (OSTI)

    Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S

    2013-05-17

    Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.

  19. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    SciTech Connect (OSTI)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, K.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We report here on the study of the charge separator that created the simulated particles.

  20. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    SciTech Connect (OSTI)

    Kim, Jin-Mok Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/?Hz @ 100 Hz.

  1. Conditions for uniqueness of product representations for separable quantum channels and separable quantum states

    SciTech Connect (OSTI)

    Cohen, Scott M.

    2014-06-15

    We give a sufficient condition that an operator sum representation of a separable quantum channel in terms of product operators is the unique product representation for that channel, and then provide examples of such channels for any number of parties. This result has implications for efforts to determine whether or not a given separable channel can be exactly implemented by local operations and classical communication. By the Choi-Jamiolkowski isomorphism, it also translates to a condition for the uniqueness of product state ensembles representing a given quantum state. These ideas follow from considerations concerning whether or not a subspace spanned by a given set of product operators contains at least one additional product operator.

  2. Gating of the proton-gated ion channel from Gloeobacter violaceus...

    Office of Scientific and Technical Information (OSTI)

    Title: Gating of the proton-gated ion channel from Gloeobacter violaceus at pH 4 as revealed by X-ray crystallography Authors: Gonzalez-Gutierrez, Giovanni ; Cuello, Luis G. ; ...

  3. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-01-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  4. Dispersion of seed vapor and gas ionization in an MHD second stage combustor and channel

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Bouillard, J.X.

    1992-07-01

    An approach is introduced for the simulation of a magnetohydrodynamic system consisting of a second stage combustor, a convergent nozzle, and a channel. The simulation uses an Argonne integral combustion flow computer code and another Argonne channel computer code to predict flow, thermal and electric properties in the seed particle laden reacting flow in the system. The combustion code is a general hydrodynamics computer code for two-phase, two-dimensional, turbulent, and reacting flows, based on mass, momentum, and energy conservation laws for gaseous and condensed phases. The channel code is a multigrid three-dimensional computer code for compressible flow subject to magnetic and electric interactions. Results of this study suggests that (1) the processes of seed particle evaporation, seed vapor dispersion, and gas ionization in the reacting flow are critical to the evaluation of the downstream channel performance and (2) particle size, loading, and inlet profile have strong effects on wall deposition and plasma temperature development.

  5. Test results of a 90 MHZ integrated circuit sixteen channel analog pipeline for SSC detector calorimetry

    SciTech Connect (OSTI)

    Kleinfelder, S.A.; Levi, M.; Milgrome, O.

    1990-10-01

    A sixteen channel analog transient recorder with 128 cells per channel has been fabricated as an integrated circuit and tested at speeds of up to 90 MHz. The circuit uses a switched capacitor array technology to achieve a simultaneous read and write capability and twelve bit dynamic range. The high performance of this part should satisfy the demanding electronics requirements of calorimeter detectors at the SSC. The circuit parameters and test results are presented. 2 refs., 3 figs., 1 tab.

  6. Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inventors Andrey Zhmoginov and Nathaniel Fisch | Princeton Plasma Physics Lab Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror Machines Inventors Andrey Zhmoginov and Nathaniel Fisch Maintaining fuel ions hotter than electrons would greatly facilitate controlled nuclear fusion. Alpha channeling is a technique that can potentially extract energy from fusion alpha particles before the energy is lost to the electrons, through collisions and transfer to the background fuel ions,

  7. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer J. C. Liljegren Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Radiometrics Corporation has developed a twelve-channel microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions (Solheim et al. 1998a). Since

  8. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOE Patents [OSTI]

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  9. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOE Patents [OSTI]

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  10. Validation of Simplified Load Equations through Loads Measurement and Modeling of a Small Horizontal-Axis Wind Turbine Tower; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Dana, S.; Damiani, R.; vanDam, J.

    2015-05-18

    As part of an ongoing effort to improve the modeling and prediction of small wind turbine dynamics, NREL tested a small horizontal axis wind turbine in the field at the National Wind Technology Center (NWTC). The test turbine was a 2.1-kW downwind machine mounted on an 18-meter multi-section fiberglass composite tower. The tower was instrumented and monitored for approximately 6 months. The collected data were analyzed to assess the turbine and tower loads and further validate the simplified loads equations from the International Electrotechnical Commission (IEC) 61400-2 design standards. Field-measured loads were also compared to the output of an aeroelastic model of the turbine. Ultimate loads at the tower base were assessed using both the simplified design equations and the aeroelastic model output. The simplified design equations in IEC 61400-2 do not accurately model fatigue loads. In this project, we compared fatigue loads as measured in the field, as predicted by the aeroelastic model, and as calculated using the simplified design equations.

  11. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-06-03

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project is complete. Two additional vertical infill wells were drilled, completed, and brought on production during the reporting period. These were the last two of five wells to be drilled in the pilot area. Additional drilling is planned for Budget Period 3. Overall response to the various projects continues to be very favorable. Nitrogen injection into the pilot area had doubled prior to unrelated nitrogen supply problems, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has dropped from 60% to 20%. Meanwhile, pilot area oil production has increased from 300 bpd prior to development to an average of 435 bpd for January through March 2004. March production was the highest at 542 bpd due to the addition of the two new vertical wells. Production performances of the new wells continue to support the current opinion that horizontal wells do not provide sufficient additional production over vertical wells to justify their incremental cost.

  12. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR--EAST BINGER (MARCHAND) UNIT

    SciTech Connect (OSTI)

    Joe Sinner

    2004-12-22

    A significant work program has been implemented in the East Binger Unit (''EBU'') miscible nitrogen injection project in an effort to reduce gas cycling and economically increase ultimate oil recovery. This work includes the drilling of new wells, both horizontal and vertical, as well as pattern realignment through producer-to-injector conversions. Monitoring of overall performance of the pilot area continues. Response to the various projects continues to be very favorable. Injection into the pilot area has nearly doubled, while gas production and nitrogen content of produced gas have both decreased. Nitrogen recycle within the pilot area has increased to 23% in recent months, but this is still far below the 58% recycle prior to initiation of the project. Two additional wells--EBU 65-2 and EBU 67-2--were brought on line during this reporting period. EBU 65-2 was successfully sidetracked after encountering thin pay on the edge of the reservoir, and is awaiting conversion to nitrogen injection service. The early performance of EBU 67-2 has been as predicted.

  13. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    SciTech Connect (OSTI)

    Liu, Xuhai; Kasemann, Daniel Leo, Karl

    2015-03-09

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  14. Buoyant instabilities in downward flow in a symmetrically heated vertical channel

    SciTech Connect (OSTI)

    Evans, G.; Greif, R.

    1996-07-01

    This study of the downward flow of nitrogen in a tall, partially heated vertical channel (upstream isothermal at T{sub in}*, heated region isothermal at T{sub s}* downstream adiabatic) shows the strong effects of buoyancy even for small temperature differences. Time-dependent oscillations including periodic flow reversals occur along the channel walls. Although the flow and heat transfer are asymmetric, the temperature and axial component of velocity show symmetric reflections at two times that are half a period apart and the lateral component of velocity shows antisymmetric reflections at the two times. There is strong interaction between the downward flow in the central region of the channel and the upward flow along the heated channel walls. At the top of the heated region, the upward buoyant flow turns toward the center of the channel and is incorporated into the downward flow. Along the channel centerline there are nonmonotonic variations of the axial component of velocity and temperature and a large lateral component of velocity that reverses direction periodically. Results are presented for Re = 219.7 and Gr/Re{sup 2} = 1.83, 8.0, and 13.7. The heat transfer and the frequency of the oscillations increases and the flow and temperature fields become more complex as Gr/Re{sup 2} increases. The results have applications to fiber drying, food processing, crystal growth, solar energy collection, cooling of electronic circuits, ventilation, etc.

  15. Scanning electron microscopy and x-ray photoelectron spectroscopy evaluation of MHD channel electrodes

    SciTech Connect (OSTI)

    Martello, D.V.; Baltrus, J.P.; Diehl, J.R.; Makovsky, L.E.

    1994-12-31

    Anode elements from the coal-fired Magnetohydrodynamic (MHD) channel at the Component Development and Integration Facility (CDIF) in Butte, Montana have been selected for study of the effects of localized phase morphology and chemistry on anode degradation. The platinum/tungsten/copper anode elements from the 1A{sub 4} channel were examined with scanning electron microscopy and X-ray photoelectron spectroscopy following testing in the MHD channel, and the results compared to those for unexposed anodes. Evidence suggests that the surface of the tungsten anode is chemically attacked by a potassium-rich slag to form a fine-grained crystalline reaction product layer that is covered by a fused, glassy slag during channel operation. Examination of a mechanically separated, partially delaminated platinum cap and polished cross-sections of anode segments showed evidence of chemical attack along the braze used to join the two caps. Interface porosity may provide a path for slag penetration and diffusion of corrosive gases and liquids during channel operation, leading to delamination. The microstructure of the brazed joint cross-sections were similar, independent of exposure severity in the MHD channel. The primary mechanism of tungsten degradation appears to be grain exfoliation due to severe grain boundary attack.

  16. Photos placed in horizontal position

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    File s ystem Lustre Panasas TradiAonal Network F ile S ystem ( NFS), E xtended F ile s ystem ( EXT), e tc. 4 Tri---Lab t ools Parallel F ile T...

  17. Horizontal and Vertical Erosion Flume

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drilling fluid flowing up the borehole would apply a hydrodynamic shear stress to the ... uphole with the drilling fluid, radionuclides could possibly escape the repository. ...

  18. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    SciTech Connect (OSTI)

    Fedorko, Wojciech T.; /Chicago U.

    2008-09-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of {radical}s = 1.96 TeV collisions with integrated luminosity of 1.9 fb{sup -1} collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t{bar t} pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: M{sub top} = 171.9 {+-} 1.7 (stat. + JES) {+-} 1.1 (other sys.) GeV/c{sup 2} = 171.9 {+-} 2.0 GeV/c{sup 2}. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  19. K+ block is the mechanism of functional asymmetry in bacterial Nav channels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ngo, Van; Wang, Yibo; Haas, Stephan; Noskov, Sergei Y.; Farley, Robert A.; Weinstein, Harel

    2016-01-04

    Crystal structures of several bacterial Nav channels have been recently published and molecular dynamics simulations of ion permeation through these channels are consistent with many electrophysiological properties of eukaryotic channels. Bacterial Nav channels have been characterized as functionally asymmetric, and the mechanism of this asymmetry has not been clearly understood. To address this question, we combined non-equilibrium simulation data with two-dimensional equilibrium unperturbed landscapes generated by umbrella sampling and Weighted Histogram Analysis Methods for multiple ions traversing the selectivity filter of bacterial NavAb channel. This approach provided new insight into the mechanism of selective ion permeation in bacterial Nav channels.more » The non-equilibrium simulations indicate that two or three extracellular K+ ions can block the entrance to the selectivity filter of NavAb in the presence of applied forces in the inward direction, but not in the outward direction. The block state occurs in an unstable local minimum of the equilibrium unperturbed free-energy landscape of two K+ ions that can be ‘locked’ in place bymodest applied forces. In contrast to K+, three Na+ ions move favorably through the selectivity filter together as a unit in a loose “knock-on” mechanism of permeation in both inward and outward directions, and there is no similar local minimum in the two-dimensional free-energy landscape of two Na+ ions for a block state. The useful work predicted by the non-equilibrium simulations that is required to break the K+ block is equivalent to large applied potentials experimentally measured for two bacterial Nav channels to induce inward currents of K+ ions. Here, these results illustrate how inclusion of non-equilibrium factors in the simulations can provide detailed information about mechanisms of ion selectivity that is missing from mechanisms derived from either crystal structures or equilibrium unperturbed free

  20. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    SciTech Connect (OSTI)

    Rowland, Joel C; Dietrich, William E; Day, Geoff; Parker, Gary

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.