Powered by Deep Web Technologies
Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

2

Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid  

DOE Green Energy (OSTI)

The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

2012-08-01T23:59:59.000Z

3

Honda Civic fact sheet  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). The National Renewable Energy Laboratory (NREL) has been directed to conduct projects to evaluate the performance and acceptability of light-duty AFVs. This fact sheet describes the test results on 1998 Honda Civics: one dedicated CNG and a gasoline model as closely matched as possible.

NREL

1999-05-01T23:59:59.000Z

4

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2012 Honda Civic  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Civic GX Honda Civic GX 2010 Hyundai LPI Hybrid front 2010 Hyundai LPI Hybrid rear 2012 Honda Civic GX - front 2012 Honda Civic GX- rear The Honda Civic GX was evaluated as part of the Advanced Vehicle Testing and Evaluation (AVTE) project funded by the US Department of Energy. The vehicle is factory built to run on compressed natural gas, while maintaining the majority of components of the Honda Civic. Key Technology 1.8L SOHC CNG Engine based on Honda Civic R18A1 Gasoline Engine with a 110hp @ 6500rpm, 106lb-ft @ 4300rpm; Higher Compression Ratio of 12.7:1; CNG Port Fuel Injection 5 speed torque converter automatic transmission shared with conventional civic 8.0 GGE CNG tank mounted behind the rear seats charged to 3600psig Report Testing Summary (pdf) Data Download all data (zip)

5

Development and Testing of an UltraBattery-Equipped Honda Civic  

DOE Green Energy (OSTI)

The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

Donald Karner

2012-04-01T23:59:59.000Z

6

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Total miles driven: 161,532 Cumulative MPG: 37.23 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric Motor: 10 kW Battery: Nickel Metal Hydride Seatbelt Positions: Five Payload: 882...

7

Hybrid Electric Vehicle End-of-life Testing on Honda Insights, Honda Gen I Civics, and Toyota Gen I Priuses  

NLE Websites -- All DOE Office Websites (Extended Search)

262 262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses TECHNICAL REPORT James Francfort Donald Karner Ryan Harkins Joseph Tardiolo February 2006 Idaho National Laboratory Operated by Battelle Energy Alliance INL/EXT-06-01262 U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Hybrid Electric Vehicle End-of-Life Testing On Honda Insights, Honda Gen I Civics and Toyota Gen I Priuses James Francfort i Donald Karner and Ryan Harkins ii Joseph Tardiolo iii February 2006 Idaho National Laboratory Transportation Technology Department Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy

8

Gen I 2003 Honda Civic Hybrid electric Fleet and Accelerated...  

NLE Websites -- All DOE Office Websites (Extended Search)

testing during May 2002 in two fleets in Arizona. Two of the Gen I Civic HEVs were driven 25,000 miles each (Fleet testing) and the remaining two were driven until they...

9

HEV America - 2003 Honda Civic Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

inches Rear Window Defroster 1 State-Of-Charge Meter TIRES Low Rolling Resistance Tires Tire Mfg: Dunlop BATTERY Tire Model: SP20 FE Tire Size: 18570R14 Manufacturer: Panasonic EV...

10

Gas Mileage of 2011 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2011 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2011 Honda Civic CNG 24 City 28 Combined 36 Highway 2011 Honda Civic Hybrid 4 cyl, 1.3 L, Automatic...

11

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

12

Gas Mileage of 2013 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

City 44 Combined 44 Highway 2013 Honda Civic Natural Gas 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2013 Honda Civic Natural Gas 27 City 31 Combined 38 Highway 2013 Honda...

13

Gas Mileage of 2008 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Highway 2008 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2008 Honda Civic CNG View MPG Estimates Shared By Vehicle Owners 24 City 28 Combined 36 Highway 2008 Honda...

14

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Civic CNG Accelerated Testing - June 2013 Four model year 2013 Honda Civic compressed natural gas (CNGs) entered Accelerated testing during November 2012 in a fleet in Arizona....

15

Gas Mileage of 2010 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2010 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2010 Honda Civic CNG View MPG Estimates...

16

Gas Mileage of 2009 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 21 City 24 Combined 29 Highway 2009 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2009 Honda Civic CNG View MPG Estimates...

17

Gas Mileage of 2006 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 20 City 23 Combined 29 Highway 2006 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2006 Honda Civic CNG View MPG Estimates...

18

Gas Mileage of 2012 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

City 44 Combined 44 Highway 2012 Honda Civic Natural Gas 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2012 Honda Civic Natural Gas View MPG Estimates Shared By Vehicle Owners 27...

19

Gas Mileage of 2007 Vehicles by Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

MPG Estimates Shared By Vehicle Owners 20 City 23 Combined 29 Highway 2007 Honda Civic CNG 4 cyl, 1.8 L, Automatic 5-spd, CNG Compare 2007 Honda Civic CNG View MPG Estimates...

20

Argonne TTRDC - D3 (Downloadable Dynamometer Database) - 2010 Honda CR-Z  

NLE Websites -- All DOE Office Websites (Extended Search)

CR-Z Hybrid CR-Z Hybrid honda crz Front View - 2010 Honda CR-Z Hybrid The Honda CR-Z hybrid builds upon the Insight/Civic Honda hybrid systems with a sporty angle. The vehicle is marketed as a successor to the CRX 2-seat sport compact. It features a 1.5 L (83 kW) engine (larger than the 1.3 L used in the Insight and Civic HEVs) and is offered with both an automatic (push-belt CVT) and a manual transmission. The battery is similar to the Insight pack at 100.8 nominal voltage. The IMA motor is specified at 13 hp. Key Technology Mild hybrid "Honda IMA" hybrid system 1.5 L (83 kW) engine 100.8-Volt Nickel-Metal-Hydride (NiMH) Features 3 operational modes: "Econ," "Normal," and "Sport" Report Testing Summary (pdf) Data Download all data (zip)

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

22

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

23

Battery Usage and Thermal Performance of the Toyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures: Preprint  

DOE Green Energy (OSTI)

This study describes the results from the National Renewable Energy Laboratory's (NREL) chassis dynamometer testing of a 2000 model year Honda Insight and 2001 model year Toyota Prius. The tests were conducted for the purpose of evaluating the battery thermal performance, assessing the impact of air conditioning on fuel economy and emissions, and providing information for NREL's Advanced Vehicle Simulator (ADVISOR).

Kelly, K. J.; Mihalic, M.; Zolot, M.

2001-11-20T23:59:59.000Z

24

honda.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

HONDA EV PLUS HONDA EV PLUS NIMH BATTERIES SEPTEMBER 1997 Urban Range (On Urban Pomona Loop - see other side for map) Range (mi.) Without Aux. Loads With Aux. Loads 81.7 97.7 105.3 Payload (lb.) Maximum 860 Minimum 140 UR1 UR2 UR 3 UR4 86.9 Test UR1 UR2 UR3 UR4 Payload (lb.) 140 140 860 860 AC kWh Recharge 40 43 40 45 AC kWh/mi. 0.38 0.49 0.41 0.55 Range (mi.) 105.3 86.9 97.7 81.7 Avg. Ambient Temp. 79° F 83° F 84° F 89° F State of Charge Meter (Urban Range Test) 0 20 40 60 80 100 120 0 1 2 3 4 5 6 7 8 9 State of Charge Miles Driven 0 20 40 60 80 100 120 140 Miles Remaining Miles Driven Miles Remaining Start End * * Initial " Miles Remaining" depend on driving economy before recharge Freeway Range (On Freeway Pomona Loop - see other side for map) Range (mi.) Without Aux. Loads With Aux. Loads 90.6 89.1 Maximum 860 Minimum

25

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

26

Test Drive: Honda FCX Clarity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C. | Photo by Sunita Satyapal Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Stepping into the driver's seat of the hydrogen powered Honda FCX Clarity is like stepping into the future. A glowing blue 3-D dashboard displays hydrogen and battery levels and a power button fires up fuel cells that provide electricity. An advanced braking system warns the driver about

27

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

5CE002486 Date Mileage Description Cost 212013 7,892 Changed oil and filter and rotated tires 79.32 3292013 15,816 Changed oil and filter and rotated tires 70.68 5302013...

28

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

0CE002590 Date Mileage Description Cost 1252013 7,925 Changed oil and filter and rotated tires 79.32 3252013 15,641 Changed oil and filter and rotated tires 70.68 5212013...

29

Maintenance Sheet for 2013 Honda Civic CNG  

NLE Websites -- All DOE Office Websites (Extended Search)

7CE000612 Date Mileage Description Cost 1172013 6,327 Changed oil and filter and rotated tires 79.32 362013 15,159 Changed oil and filter and rotated tires 70.68 572013...

30

HEV Fleet Testing - 2003 Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highway travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: None Operating Cost: Purchase Cost:...

31

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.07mile Total Ownership Cost: 0.20mile Operating Performance: Total miles driven: 161,075 Cumulative MPG: 37.32 Engine: 4-cylinder, 70 kW @ 5700 rpm Electric...

32

HEV Fleet Testing - Honda Civic Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

mileage objectives. Mileage accumulated in highway travel was less than 20% of the total miles driven. Major Operations & Maintenance Events: None Operating Cost: Purchase Cost:...

33

Honda Research Institute | Open Energy Information  

Open Energy Info (EERE)

Name Honda Research Institute Place Mountain View, California Sector Biofuels, Solar Product California-based research institute of Honda. The institute conducts research into...

34

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Honda Civic Hybrid VIN: JHMFA3F24AS005577 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Regenerative Braking Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD State of Charge Meter 1 Weights Design Curb Weight: 2877 lb Delivered Curb Weight: 2982 lb Distribution F/R (%): 57/43 GVWR: 3792 lb GAWR F/R: 1973/1841 lb Payload 2 : 810 lb Performance Goal: 400 lb Dimensions Wheelbase: 106.3 in Track F/R: 59.1/60.2 in Length: 177.3 in Width: 69.0 in Height: 56.3 in Ground Clearance: 6.0 in Performance Goal: 5.0 in Tires Manufacturer: Bridgestone

35

Honda motor company's CVCC engine  

DOE Green Energy (OSTI)

Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

Abernathy, W.J.; Ronan, L.

1980-07-01T23:59:59.000Z

36

HEV Fleet Testing - Maintenance Sheet for 2003 Honda Civic Hyrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

53S001603 Date Mileage Description Cost 3272002 7,540 Changed oil, rotated tires 27.00 732002 4,905 Changed oil, rotated tires 27.77 852002 10,129 Changed oil, rotated...

37

Advanced Vehicle Testing Activity: Honda Civic Fleet and Accelerated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fact sheets and maintenance logs for these vehicles give detailed information such as miles driven, fuel economy, operations and maintenance requirements, operating costs,...

38

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

39

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gen II Insight HEV Accelerated Testing - August 2012 Two model year 2010 Honda Generation II Insight hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in...

40

INL/EXT-12-XXXXX  

NLE Websites -- All DOE Office Websites (Extended Search)

7 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk Jeffrey Wishart July 2013 The Idaho National...

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HEV Fleet Testing - 2001 Honda Insight Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Honda Insight Hybrid VIN JHMZE14781T002163 Date Mileage Description Cost 2202002 7,595 Changed oil, rotated tires 27.00 592002 15,119 15K service 160.21 6142002 19,290...

42

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C67BS004466 Electric Machine 1 : 10 kW (peak), permanent magnet...

43

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C64BS002982 Electric Machine 1 : 10 kW (peak), permanent magnet...

44

Honda Soltec Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Soltec Co Ltd Soltec Co Ltd Jump to: navigation, search Name Honda Soltec Co Ltd Place Kikuchi-gun, Kumamoto, Japan Sector Solar Product Japanese distributor of Honda Engineering's CIGS thin-film solar cells and modules. Coordinates 32.887852°, 130.86853° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.887852,"lon":130.86853,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Advanced Vehicle Testing Activity: Honda Accord Hybrid Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accord Hybrid Electric Vehicle Accelerated Reliability Testing - April 2008 to someone by E-mail Share Advanced Vehicle Testing Activity: Honda Accord Hybrid Electric Vehicle...

46

Honda Motor Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Honda Motor Co Ltd Honda Motor Co Ltd Jump to: navigation, search Name Honda Motor Co Ltd Place Tokyo, Tokyo, Japan Zip 107-8556 Sector Vehicles Product Leading global car manufacturer which began research into fuel cell technologies in the 1980s, and has tested several generations of technolgy in its FCX vehicles. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

48

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona. Each Leaf will be operated for 60,000 miles, at which point their traction batteries will be tested before they are retired (one battery is also tested when new)....

49

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Each Malibu will be operated for 195,000 miles, at which point their traction batteries will be tested before they are retired (their traction batteries are also tested...

50

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Each Sonata will be operated for 160,000 miles, at which point their traction batteries will be tested before they are retired (their traction batteries are also tested...

51

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona. Each CRZ will be operated for 160,000 miles, at which point their traction batteries will be tested before they are retired (their traction batteries are also tested...

52

Honda Smart Home to Include Berkeley Lab Ventilation Controller  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda Smart Home to Include Berkeley Lab Ventilation Controller Honda smart home October 2013 October-November Special Focus: Energy Efficiency, Buildings, and the Electric Grid Honda Motor Company Inc is proceeding with plans to build a Smart Home in Davis, California, to demonstrate the latest in renewable energy technologies and energy efficiency. The home is expected to produce more energy than is consumed, demonstrating how the goal of "zero net energy" can be met in the near term future. A ventilation controller developed by researchers at Berkeley Lab's Environmental Energy Technologies Division (EETD) will be included in the smart home. EETD is currently working with the developers of the home control system to integrate its control algorithms.

53

Fuel Economy of the 2013 Honda Fit EV  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Fit EV Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize...

54

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarLink--A Commuter Carhsaring Program  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up todrive clinic with compressed natural gas (CNG) Honda Civics,

Shaheen, Susan

2004-01-01T23:59:59.000Z

55

A Framework for Testing Innovative Transportation Solutions: A Case Study of Carlink—A Commuter Carsharing Program  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up todrive clinic with compressed natural gas (CNG) Honda Civics,

Shaheen, Susan; Novick, Linda

2004-01-01T23:59:59.000Z

56

Happy Valentines Day! February 14, 2007  

E-Print Network (OSTI)

Honda Odyssey minivans ­ 3 Honda Hybrid Civics ­ 1 Honda Element ­ 1 Toyota Tacoma Truck ­ 1 Toyota

Roy, Subrata

57

HEV Fleet Testing - Honda Insight - Maintenance Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

35.96 672002 44,130 Four wheel brake service 177.78 8202002 53,249 Replace 12 volt accessory battery 70.00 11152002 58,228 60,000 mile service and replace 2 tires...

58

Battery construction. [miniaturized batteries  

SciTech Connect

A description is given of a battery having a battery cup and a battery cap which has a ridge portion to provide a battery chamber for accommodating a positive electrode, a negative electrode, and an electrolyte. The battery chamber has a contour at its outer periphery different from that of the sealing flanges of the battery cup and the battery cap. 11 figures.

Nishimura, H.; Nomura, Y.

1977-05-24T23:59:59.000Z

59

Batteries - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

60

Streetlights and Civic Imagery [Standards  

E-Print Network (OSTI)

Today, i t seems we take street­ lights for granted, payingm a n ) ; ornamental street­ light base. Battery Park City,environment; such a street­ light would be more appropriate

Tung, Gregory

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Secretary Chu to Join Representatives Lofgren and Honda at the SLAC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representatives Lofgren and Honda at the SLAC Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford University President John Hennessy at a dedication ceremony for the Linac Coherent Light Source (LCLS). The Recovery Act-funded LCLS produces x-ray pulses millions of times brighter than the world's most powerful synchrotron sources, capable of capturing images of atoms and molecules in motion. The LCLS is led by SLAC National Accelerator Laboratory (SLAC). Operated by

62

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Civic Hybrid Electric Vehicle Accelerated Testing - January 2009 Two model year 2006 (Gen II) Honda Civic hybrid electric vehicles (HEVs) entered Accelerated testing during...

63

Carlink II: A Commuter Carsharing Pilot Program Final Report  

E-Print Network (OSTI)

Dublin/Pleasanton Compressed natural gas Honda Civics Up toalone. Limited Compressed Natural Gas (CNG) Infrastructure:Dublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan; Wipyewski, Kamill; Rodier, Caroline; Novick, Linda; Meyn, Molly Anne; Wright, John

2004-01-01T23:59:59.000Z

64

Toward culture : converging on the civic moment in architecture  

E-Print Network (OSTI)

This thesis is an investigation into physical constituents of civic architecture including some speculation on how civic architecture pertains to cultural awareness. The process of investigation is carried out through ...

Lavery, Ciaran Jonathan

1991-01-01T23:59:59.000Z

65

Model year 2010 Honda insight level-1 testing report.  

DOE Green Energy (OSTI)

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

2011-03-22T23:59:59.000Z

66

Battery Types  

Science Conference Proceedings (OSTI)

...and rechargeable batteries (Table 1A battery consists of a negative electrode (anode) from which electrons

67

Building Integrated PV System at Lahaina Civic Center Gymnasium Complex, Maui, Hawaii (MECO)  

Science Conference Proceedings (OSTI)

A 1.2kW building integrated photovoltaic system was designed by Maui Electric Company Ltd (MECO) and installed at the Lahaina Civic Center Gymnasium on the island of Maui, Hawaii. The BIPV structure serves as an extension to an existing covered walkway. The system is powered by the photovoltaic modules and the energy is stored in four gel cell type batteries. An entryway structure was constructed to house the system equipment, an LED display sign and lighted message board. A parking lot light is also pow...

2004-05-03T23:59:59.000Z

68

Model year 2010 Honda insight level-1 testing report.  

SciTech Connect

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

2011-03-22T23:59:59.000Z

69

Battery chargers  

SciTech Connect

A battery charger designed to be installed in a vehicle, and while utilizing a portion of this vehicle's electrical system, can be used to charge another vehicle's battery or batteries. This battery charger has a polarity sensor, and when properly connected to an external battery will automatically switch away from charging the internal battery to charging the external battery or batteries. And, when disconnected from the external battery or batteries will automatically switch back to charging the internal battery, thus making it an automatic vehicle to vehicle battery charger.

Winkler, H.L.

1984-05-15T23:59:59.000Z

70

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

a graphite-free lithium ion battery can be built, usingK (1990) Lithium Ion Rechargeable Battery. Prog. Batteriesion battery configurations, as all of the cycleable lithium

Doeff, Marca M

2011-01-01T23:59:59.000Z

71

Battery Maintenance  

Science Conference Proceedings (OSTI)

... Cranking batteries are not appropriate for extended use since disharging the battery deeply can rapidly destroy the thin plates. ...

72

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

Challenges in Future Li-Battery Research. Phil Trans. RoyalBatteries: Overview of Battery Cathodes Marca M. Doeffduring cell discharge. Battery-a device consisting of one or

Doeff, Marca M

2011-01-01T23:59:59.000Z

73

Battery system  

DOE Patents (OSTI)

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

74

Evaluation of 2005 Honda Accord Hybrid Electric Drive System  

DOE Green Energy (OSTI)

The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

Staunton, R.H.; Burress, T.A.; Marlino, L.D.

2006-09-11T23:59:59.000Z

75

Does the community really matter? : civic environmentalism in brownfield redevelopment  

E-Print Network (OSTI)

This paper analyzes the process of civic environmentalism in brownfield redevelopment. A single "best case" scenario, the Empire Laundry project in Lynn, Massachusetts, illustrates key features of a citizen-led cleanup and ...

Emison, Abigail Harrison

2006-01-01T23:59:59.000Z

76

Battery charger  

SciTech Connect

A battery charging system for charging a battery from an ac source, including control rectifier means for rectifying the charging current, a pulse generator for triggering the rectifier to control the transmission of current to the battery, phase control means for timing the firing of the pulse generator according to the charge on the battery, and various control means for alternatively controlling the phase control means depending upon the charge on the battery; wherein current limiting means are provided for limiting the charging current according to the charge on the battery to protect the system from excessive current in the event a weak battery is being charged, a feedback circuit is provided for maintaining the charge on a battery to compensate for battery leakage, and circuitry is provided for equalizing the voltage between the respective cells of the battery.

Kisiel, E.

1980-12-30T23:59:59.000Z

77

Battery system  

SciTech Connect

This patent describes a battery system for use with a battery powered device. It comprises a battery pack, the battery pack including; battery cells; positive and negative terminals serially coupled to the battery cells, the positive terminal being adapted to deliver output current to a load and receive input current in the direction of charging current; circuit means coupled to the positive and negative terminals and producing at an analog output terminal an analog output signal related to the state of charge of the battery cells; and display means separate from the battery pack and the battery powered device and electrically coupled to the analog output terminal for producing a display indicating the state of charge of the battery cells in accordance with the analog output signal.

Sokira, T.J.

1991-10-15T23:59:59.000Z

78

Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels  

DOE Green Energy (OSTI)

Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

2003-11-01T23:59:59.000Z

79

Battery charger  

SciTech Connect

A battery charger can charge a battery from a primary power source having a peak voltage exceeding the maximum battery voltage independently producible by the battery. The charger has output terminals, a switch and a feedback circuit. The output terminals are adapted for connection to the battery. The switch can periodically couple the primary power source to the output terminals to raise their voltage above the maximum battery voltage. The feedback device is responsive to the charging occuring at the terminals for limiting the current thereto by varying the duty cycle of the switch.

Chernotsky, A.; Satz, R.

1984-10-09T23:59:59.000Z

80

Batteries - Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Modeling Over the last few decades, a broad range of battery technologies have been examined at Argonne for transportation applications. Today the focus is on lithium-ion...

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Battery Only:  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Only: Acceleration 0-60 MPH Time: 57.8 seconds Acceleration 14 Mile Time: 27.7 seconds Acceleration 1 Mile Maximum Speed: 62.2 MPH Battery & Generator: Acceleration 0-60...

82

Battery Recycling  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Battery Recycling. Sponsorship, The Minerals, Metals ...

83

2013 Civic Hacking Day Ideas | OpenEI Community  

Open Energy Info (EERE)

2013 Civic Hacking Day Ideas 2013 Civic Hacking Day Ideas Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 19 April, 2013 - 13:44 Apps challenge hackathon The folks at Rally are considering options to help build a great energy app for Civic Hacking Day in Boulder, Colorado. Perhaps we'll get more folks interested? Here are a few ideas to start the discussion! Please post comments to this thread to follow up. Electric cost app Pictured above; dimensions are iPhone dimensions for a future iOS app, though we'd start with a web version All icons have been created This would use dataset http://en.openei.org/datasets/node/903; this data took ~2.5 months to build out from SAM (sam.nrel.gov) modeling Potential pre-hack day work would create an API so this information

84

Batteries: Overview of Battery Cathodes  

E-Print Network (OSTI)

lithium ion battery can be built, using LiVPO 4 F as both the anode and the cathode!ion battery configurations, as all of the cycleable lithium must originate from the cathode.

Doeff, Marca M

2011-01-01T23:59:59.000Z

85

A Language Model Approach to Keyphrase Extraction Takashi Tomokiyo and Matthew Hurst  

E-Print Network (OSTI)

hybrid 2 honda civic hybrid 3 toyota prius 4 electric motor 5 honda civic 6 fuel cell 7 hybrid cars 8 escape 23 steering wheel 24 toyota prius today 25 electric motors 26 gasoline engine 27 internal

86

Outsourcing and Pass-Through  

E-Print Network (OSTI)

Ford GM Honda Nissan Toyota Source: U.S. Department ofHonda Civic Honda Odyssey Nissan Altima Nissan Maxima ToyotaCamry Toyota Corolla Notes: The dependent variable is the

Hellerstein, Rebecca; Villas-Boas, Sofia B.

2010-01-01T23:59:59.000Z

87

Batteries - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

88

Battery technology handbook  

SciTech Connect

This book is a comprehensive reference work on the types of battery available, their characteristics and applications. Topics considered include introduction, guidelines to battery selection, battery characteristics, battery theory and design, battery performance evaluation, battery applications, battery charging, and battery supplies.

Crompton, T.R.

1987-01-01T23:59:59.000Z

89

Battery separators  

SciTech Connect

Novel, improved battery separators carrying a plurality of polymeric ribs on at least one separator surface. The battery separators are produced by extruding a plurality of ribs in the form of molten polymeric rib providing material onto the surface of a battery separator to bond the material to the separator surface and cooling the extruded rib material to a solidified state. The molten polymeric rib providing material of this invention includes a mixture or blend of polypropylenes and an ethylene propylene diene terpolymer.

Battersby, W. R.

1984-12-25T23:59:59.000Z

90

Battery Recycling  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... By the mid-1990's due to manufacturers changing the composition of ... for electric drive vehicles is dependent battery performance, cost, and ...

91

Carlink II: Research Approach and Early Findings  

E-Print Network (OSTI)

LLNL donated the compressed natural gas (CNG) fuel for thisDublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan

2004-01-01T23:59:59.000Z

92

Research Approach and Early Findings  

E-Print Network (OSTI)

LLNL donated the compressed natural gas (CNG) fuel for thisDublin/Pleasanton Compressed natural gas Honda Civics Up to

Shaheen, Susan A.; Wright, John

2001-01-01T23:59:59.000Z

93

European battery market  

SciTech Connect

The electric battery industry in Europe is discussed. As in any other part of the world, battery activity in Europe is dependent on people, prosperity, car numbers, and vehicle design. The European battery industry is discussed from the following viewpoints: battery performance, car design, battery production, marketing of batteries, battery life, and technology changes.

1984-02-01T23:59:59.000Z

94

Battery loading device  

SciTech Connect

A battery loading device for loading a power source battery, built in small appliances having a battery loading chamber for selectively loading a number of cylindrical unit batteries or a one body type battery having the same voltage as a number of cylindrical unit batteries, whereby the one body type battery and the battery loading chamber are shaped similarly and asymmetrically in order to prevent the one body type battery from being inserted in the wrong direction.

Phara, T.; Suzuki, M.

1984-08-28T23:59:59.000Z

95

Battery pack  

Science Conference Proceedings (OSTI)

A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

1993-07-06T23:59:59.000Z

96

Battery Council International  

SciTech Connect

Forecasts of electric battery use, economic impacts of electric batteries, and battery technology and research were presented at the conference. (GHT)

1980-01-01T23:59:59.000Z

97

Bipolar battery  

SciTech Connect

A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

Kaun, Thomas D. (New Lenox, IL)

1992-01-01T23:59:59.000Z

98

Vehicle battery polarity indicator  

SciTech Connect

Battery jumper cables provide an effective means to connect a charged battery to a discharged battery. However, the electrodes of the batteries must be properly connected for charging to occur and to avoid damage to the batteries. A battery polarity indicator is interposed between a set of battery jumper cables to provide a visual/aural indication of relative battery polarity as well as a safety circuit to prevent electrical connection where polarities are reversed.

Cole, L.

1980-08-12T23:59:59.000Z

99

Battery charging system  

SciTech Connect

A battery charging system designed to charge a battery, especially a nickel-cadmium (Ni-cd) battery from a lead acid power supply without overcharging, and to charge uniformly a plurality of batteries in parallel is described. A non-linear resistance is utilized and is matched to the voltage difference of the power supply battery and the batteries being charged.

Komatsu, K.; Mabuchi, K.

1982-01-19T23:59:59.000Z

100

Thousands of Americans Innovate for Good on the National Day of Civic  

NLE Websites -- All DOE Office Websites (Extended Search)

Thousands of Americans Innovate for Good on the National Day of Civic Thousands of Americans Innovate for Good on the National Day of Civic Hacking Thousands of Americans Innovate for Good on the National Day of Civic Hacking Submitted by Anonymous on Fri, 06/07/2013 - 12:00am Log in to vote 0 This past weekend, more than 11,000 people in 83 cities across America participated in 95 open data hacking events as part of the National Day of Civic Hacking. This huge turnout is an unmistakable mark of the growing interest and enthusiasm of American innovators in applying their tech skills for social good. At events across the country, participants in Civic Hacking Day were set loose on open government data, building tools, apps, and solutions that can help address challenges faced by communities across America and form the basis of products and companies that contribute to our economy.

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

National Day of Civic Hacking at the White House | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

National Day of Civic Hacking at the White House National Day of Civic Hacking at the White House Developer Data Web Services Source Code Challenges Semantic Web Blogs Let's Talk Developers You are here Data.gov » Communities » Developers » Blogs National Day of Civic Hacking at the White House Submitted by Anonymous on Mon, 04/15/2013 - 11:29am Log in to vote 0 On the first weekend in June, civic activists, technology experts, and entrepreneurs around the country will gather together for the National Day of Civic Hacking. By combining their expertise with new technologies and publicly released data, participants hope to build tools that help others in their own neighborhoods and across the United States. It's a great cause and we're excited to take part. On June 1, we'll welcome developers and tech experts to the White House for our second hackathon.

102

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

103

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

104

Shock absorbing battery housing  

SciTech Connect

A portable battery device is provided which dampens shock incident upon the battery device such that an electrical energizable apparatus connected to the battery device is subject to reduced shock whenever the battery device receives an impact. The battery device includes a battery housing of resilient shock absorbing material injection molded around an interconnecting structure which mechanically and electrically interconnects the battery housing to an electrically energizable apparatus.

McCartney, W.J.; Jacobs, J.D.; Keil, M.J.

1984-09-04T23:59:59.000Z

105

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

106

Battery separators  

Science Conference Proceedings (OSTI)

A novel, improved battery separator and process for making the separator. Essentially, the separator carries a plurality of polymeric ribs bonded to at least one surface and the ribs have alternating elevated segments of uniform maxiumum heights and depressed segments along the length of the ribs.

Le Bayon, R.; Faucon, R.; Legrix, J.

1984-11-13T23:59:59.000Z

107

Alkaline battery  

SciTech Connect

A zinc alkaline secondary battery is described having an excellent cycle characteristic, having a negative electrode which comprises a base layer of zinc active material incorporating cadmium metal and/or a cadmium compound and an outer layer made up of cadmium metal and/or a cadmium compound and applied to the surface of the base layer of zinc active material.

Furukawa, N.; Inoue, K.; Murakami, S.

1984-01-24T23:59:59.000Z

108

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

109

Batteries: Overview of Battery Cathodes  

SciTech Connect

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this

Doeff, Marca M

2010-07-12T23:59:59.000Z

110

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

111

Metal-Air Batteries  

Science Conference Proceedings (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

112

Battery charging system  

SciTech Connect

A highly efficient battery charging system is described in which the amperehour discharge of the battery is sensed for controlling the battery charging rate. The battery is charged at a relatively high charge rate during a first time period proportional to the extent of battery discharge and at a second lower rate thereafter.

Bilsky, H.W.; Callen, P.J.

1982-01-26T23:59:59.000Z

113

Secondary battery  

SciTech Connect

Secondary batteries are described with aqueous acid solutions of lead salts as electrolytes and inert electrode base plates which also contain redox systems in solution. These systems have a standard potential of from -0.1 to + 1.4 V relative to a standard hydrogen reference electrode, do not form insoluble compounds with the electrolytes and are not oxidized or reduced irreversibly by the active compositions applied to the electrode base plates, within their range of operating potentials.

Wurmb, R.; Beck, F.; Boehlke, K.

1978-05-30T23:59:59.000Z

114

Battery management system  

SciTech Connect

A battery management system is described, comprising: a main battery; main battery charging system means coupled to the main battery for charging the main battery during operation of the main battery charging system means; at least one auxiliary battery; primary switching means for coupling the auxiliary battery to a parallel configuration with the main battery charging system means and with the main battery, where upon both the main battery and the auxiliary battery are charged by the main battery charging system means, the primary switching means also being operable to decouple the auxiliary battery from the parallel configuration; and sensing means coupled to the primary switching means and operable to sense presence or absence of charging current from the main battery charging system means to the main battery, the sensing means being operable to activate the switching means for coupling the auxiliary battery into the parallel configuration during presence of the charging current, wherein the main battery charging system provides a charging signal to the main battery having an alternating current component, and wherein the sensing means includes transformer means coupled to the charging signal for inducing a voltage, the voltage being applied to a switching circuit of the switching means.

Albright, C.D.

1993-07-06T23:59:59.000Z

115

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

116

Battery separator material  

SciTech Connect

A novel, improved battery separator material particularly adaptable for use in maintenance free batteries. The battery separator material includes a diatomaceous earth filler, an acrylate copolymer binder and a combination of fibers comprising polyolefin, polyester and glass fibers.

Bodendorf, W. J.

1985-07-16T23:59:59.000Z

117

Battery-Recycling Chain  

Science Conference Proceedings (OSTI)

...The battery-recycling chain has changed dramatically over the past ten years. The changes have resulted from environmental regulation, changes in battery-processing technology, changes in battery distribution and sales techniques, changes in lead-smelting...

118

Battery depletion monitor  

SciTech Connect

A cmos inverter is used to compare pacemaker battery voltage to a referenced voltage. When the reference voltage exceeds the measured battery voltage, the inverter changes state to indicate battery depletion.

Lee, Y.S.

1982-01-26T23:59:59.000Z

119

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

3 Automating Battery Management . . . . . . .122 Battery Goal Setting UI . . . . . . . . . . . . . . .Power and Battery Management . . . . . . . . . . . . . . .

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

120

From village to small town in contemporary China : the transformation of civic space  

E-Print Network (OSTI)

With the fast urbanization in contemporary China, "spontaneous" civic spaces rooted in the rural area-the spaces in which local people of different origins and paths of life can commingle without overt control by government, ...

Guo, Ming, M.C.P. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Playing for impact : the design of civic games for community engagement and social action  

E-Print Network (OSTI)

In light of calls that civic participation is declining, efforts are underway to replace outdated, unproductive forms of citizenship. With the majority of Americans now connected to the Internet, community leaders see the ...

Schirra, Steven M. (Steven Michael)

2013-01-01T23:59:59.000Z

122

Battery Standard Scenario  

Science Conference Proceedings (OSTI)

Scenario: Fast Tracking a Battery Standard. ... with developing a new standard specifying quality controls for the development of batteries used in ...

123

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

124

Portable battery powered system  

SciTech Connect

In a exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor is permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S. E.

1985-11-12T23:59:59.000Z

125

battery2.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND2006-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. Submitting Organization Sandia National Laboratories PO Box 5800, MS 1033 Albuquerque, NM...

126

Piezonuclear battery  

DOE Patents (OSTI)

This invention, a piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material ({sup 252}Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluroethylene.

Bongianni, W.L.

1990-01-01T23:59:59.000Z

127

Piezonuclear battery  

SciTech Connect

A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

Bongianni, Wayne L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

128

Battery cell soldering apparatus  

SciTech Connect

A battery cell soldering apparatus for coupling a plurality of battery cells within a battery casing comprises a support platform and a battery casing holder. The support platform operatively supports a soldering block including a plurality of soldering elements coupled to an electrical source together with a cooling means and control panel to control selectively the heating and cooling of the soldering block when the battery cells within the battery casing are held inverted in operative engagement with the plurality of soldering elements by the battery casing holder.

Alvarez, O.E.

1979-09-25T23:59:59.000Z

129

Battery life extender  

SciTech Connect

A battery life extender is described which comprises: (a) a housing disposed around the battery with terminals of the battery extending through top of the housing so that battery clamps can be attached thereto, the housing having an access opening in the top thereof; (b) means for stabilizing temperature of the battery within the housing during hot and cold weather conditions so as to extend operating life of the battery; and (c) a removable cover sized to fit over the access opening in the top of the housing so that the battery can be serviced without having to remove the housing or any part thereof.

Foti, M.; Embry, J.

1989-06-20T23:59:59.000Z

130

Safety Hazards of Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

131

Battery Balancing at Xtreme Power.  

E-Print Network (OSTI)

??Battery pack imbalance is one of the most pressing issues for companies involved in Battery Energy Storage. The importance of Battery Balancing with respect to… (more)

Ganesan, Rahul

2012-01-01T23:59:59.000Z

132

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

133

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name Optima Batteries Place Milwaukee, WI Website http:www.optimabatteries.com References Optima Batteries1 Information About...

134

Hybrid Electric Vehicles - HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

and component levels. A very detailed battery design model is used to establish these costs for different Li-Ion battery chemistries. The battery design model considers the...

135

The role of DCU Sport Heart Smart in Civic Engagement Overall, the strength of DCU Sport's commitment to civic engagement lies in the diversity of programmes on offer to the community.  

E-Print Network (OSTI)

The role of DCU Sport Heart Smart in Civic Engagement Overall, the strength of DCU Sport's commitment to civic engagement lies in the diversity of programmes on offer to the community. Heart Smart most vulnerable. The fact that three of the biggest hospitals in Dublin view Heart Smart

Humphrys, Mark

136

Portable battery powered system  

SciTech Connect

In an exemplary embodiment, a battery monitoring system includes sensors for monitoring battery parameters and a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle, and by monitoring battery current thereafter during operation, a relatively accurate measure of remaining battery capacity becomes available. The battery monitoring system may include programmed processor circuitry and may be secured to the battery so as to receive operating power therefrom during storage and handling; thus, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters.

Koenck, S.E.

1984-06-19T23:59:59.000Z

137

Auxiliary battery charging terminal  

SciTech Connect

In accordance with the present invention there is provided an auxiliary battery charging terminal that may selectively engage battery charging circuitry inside a portable radio pager. There is provided a current conducting cap having a downwardly and outwardly flared rim that deforms to lock under the crimped edge an insulating seal ring of a standard rechargeable cell by application of a compressive axial force. The auxiliary battery charging terminal is further provided with a central tip axially projecting upwardly from the cap. The auxiliary terminal may be further provided with a cap of reduced diameter to circumferentially engage the raised battery cathode terminal on the battery cell. A mating recess in a remote battery charging receptacle may receive the tip to captivate the battery cell against lateral displacement. The tip may be further provided with a rounded apex to relieve localized frictional forces upon insertion and removal of the battery cell from the remote battery charging receptacle.

Field, H.; Richter, R. E.

1985-04-23T23:59:59.000Z

138

Vehicle Technologies Office: Fact #242: November 11, 2002 Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact Cars Toyota Prius 4 cyl, 1.5 L, Automatic (Variable), Regular 52 45 Honda Civic Hybrid 4 cyl, 1.3 L, Manual (5), Regular 46 51 Most Efficient Midsize Cars Honda Accord 4...

139

Rechargeable electric battery system  

SciTech Connect

A rechargable battery, system and method for controlling its operation and the recharging thereof in order to prolong the useful life of the battery and to optimize its operation is disclosed. In one form, an electronic microprocessor is provided within or attached to the battery for receiving and processing electrical signals generated by one or more sensors of battery operational variable and for generating output signals which may be employed to control the charge of the battery and to display one or more variables concerned with the battery operation.

Lemelson, J.H.

1981-09-15T23:59:59.000Z

140

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solar battery energizer  

SciTech Connect

A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

Thompson, M. E.

1985-09-03T23:59:59.000Z

142

Battery charger polarity circuit control  

SciTech Connect

A normally open polarity sensing circuit is interposed between the charging current output of a battery charger and battery terminal clamps connected with a rechargeable storage battery. Normally open reed switches, closed by battery positive terminal potential, gates silicon controlled recitifiers for battery charging current flow according to the polarity of the battery.

Santilli, R.R.

1982-11-30T23:59:59.000Z

143

Modeling & Simulation - Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

144

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

145

Dual battery system  

Science Conference Proceedings (OSTI)

A dual battery system is described, comprising: a primary first battery having a first open circuit voltage, the first battery including a first positive electrode, a first negative electrode, and a first electrolyte; a second battery having a second open circuit voltage less than the first open circuit voltage, the second battery including a second positive electrode, a second negative electrode, and a second electrolyte stored separately and isolated from the first electrolyte; a pair of positive and negative terminals; and electrical connections connecting the first and second batteries in parallel to the terminals so that, as current is drawn from the batteries, the amount of current drawn from each respective battery at a constant voltage level varies with the magnitude of the current.

Wruck, W.J.

1993-06-29T23:59:59.000Z

146

Battery cell feedthrough apparatus  

DOE Patents (OSTI)

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

147

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

148

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

149

BEST for batteries  

Science Conference Proceedings (OSTI)

The Battery Energy Storage Test (BEST) Facility, Hillsborough Township, New Jersey, will investigate advanced battery performance, reliability, and economy and will verify system characteristics and performance in an actual utility environment.

Lihach, N.

1981-05-01T23:59:59.000Z

150

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

151

Anodes for Batteries  

SciTech Connect

The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

Windisch, Charles F.

2003-01-01T23:59:59.000Z

152

SLA battery separators  

SciTech Connect

Since they first appeared in the early 1970's, sealed lead acid (SLA) batteries have been a rapidly growing factor in the battery industry - in rechargeable, deep-cycle, and automotive storage systems. The key to these sealed batteries is the binderless, absorptive glass microfiber separator which permits the electrolyte to recombine after oxidation. The result is no free acid, no outgassing, and longer life. The batteries are described.

Fujita, Y.

1986-10-01T23:59:59.000Z

153

Nickel/zinc batteries  

SciTech Connect

A review of the design, components, electrochemistry, operation and performance of nickel-zinc batteries is presented. 173 references. (WHK)

McBreen, J.

1982-07-01T23:59:59.000Z

154

Primary and secondary ambient temperature lithium batteries  

Science Conference Proceedings (OSTI)

These proceedings collect papers on the subject of batteries. Topics include: lithium-oxygen batteries, lithium-sulphur batteries, metal-metal oxide batteries, metal-nonmetal batteries, spacecraft power supplies, electrochemistry, and battery containment materials.

Gabano, J.P.; Takehara, Z.; Bro, P.

1988-01-01T23:59:59.000Z

155

battery, map parcel, med  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

156

Servant dictionary battery, map  

E-Print Network (OSTI)

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key. [2] Need new torch battery (see [4]) to enter. Then get painting. [3] To please aunt, must move

Rosenthal, Jeffrey S.

157

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

158

Recycle of battery materials  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials.

Pemsler, J.P.; Spitz, R.A.

1981-01-01T23:59:59.000Z

159

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

160

A Framework for Testing Innovative Transportation Solutions: A Case Study of Carlink—A Commuter Carsharing Program  

E-Print Network (OSTI)

with compressed natural gas (CNG) Honda Civics, smartcards,startup delays, and limited CNG infrastructure (3). Thesmartcards alone. Limited CNG Infrastructure: During CarLink

Shaheen, Susan; Novick, Linda

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Framework for Testing Innovative Transportation Solutions: A Case Study of CarLink--A Commuter Carhsaring Program  

E-Print Network (OSTI)

with compressed natural gas (CNG) Honda Civics, smartcards,startup delays, and limited CNG infrastructure (3). Thesmartcards alone. Limited CNG Infrastructure: During CarLink

Shaheen, Susan

2004-01-01T23:59:59.000Z

162

MaintenanceRecords  

NLE Websites -- All DOE Office Websites (Extended Search)

3CE000672 Maintenance Sheet for 2013 Honda Civic CNG Advanced Vehicle Testing Activity HEV Fleet Testing Date Mileage Description Cost 6102013 7,426...

163

Advanced Vehicle Testing Activity- Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles What's New 2012 Honda Civic CNG Baseline Performance Testing (PDF 292KB) 2013 Volkswagen Jetta TDI Baseline Performance Testing (PDF...

164

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 Honda Civic VIN: JHMFA36216S019329 Seatbelt Positions: Five Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Space...

165

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

166

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network (OSTI)

by Hybrid Civic and Prius Drivers . 66Fusion Toyota Camry Toyota Prius Honda Accord Nissan AltimaCamry Toyota Camry Toyota Prius Toyota Prius Toyota Prius

Martin, Elliott William

2009-01-01T23:59:59.000Z

167

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network (OSTI)

by Hybrid Civic and Prius Drivers . 66Fusion Toyota Camry Toyota Prius Honda Accord Nissan AltimaCamry Toyota Camry Toyota Prius Toyota Prius Toyota Prius

Martin, Elliot William

2009-01-01T23:59:59.000Z

168

Reliable GPS Integer Ambiguity Resolution  

E-Print Network (OSTI)

by Hybrid Civic and Prius Drivers . 66Fusion Toyota Camry Toyota Prius Honda Accord Nissan AltimaCamry Toyota Camry Toyota Prius Toyota Prius Toyota Prius

Chen, Anning

2011-01-01T23:59:59.000Z

169

Carlink - A Smart Carsharing System Field Test Report  

E-Print Network (OSTI)

Laboratory CNG: Compressed natural gas STRENGTHS ANDof 12 Honda Civic compressed natural gas (CNG) vehicles. 4were fueled by compressed natural gas (CNG). During the

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

170

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink-A Smart Carsharing System  

E-Print Network (OSTI)

are fueled with compressed natural gas (CNG). 5. What isCarLink fleet. Compressed natural gas (CNG) vehicles woulddeployed with 12 compressed natural gas (CNG) Honda Civic

Shaheen, Susan A.

1999-01-01T23:59:59.000Z

171

CARLINK-A SMART CARSHARING SYSTEM FIELD TEST REPORT  

E-Print Network (OSTI)

Laboratory CNG: Compressed natural gas STRENGTHS ANDof 12 Honda Civic compressed natural gas (CNG) vehicles. 4were fueled by compressed natural gas (CNG). During the

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

172

Dynamics in Behavioral Adaptation to a Transportation Innovation: A Case Study of Carlink–A Smart Carsharing System  

E-Print Network (OSTI)

are fueled with compressed natural gas (CNG). 5. What isCarLink fleet. Compressed natural gas (CNG) vehicles woulddeployed with 12 compressed natural gas (CNG) Honda Civic

Shaheen, Susan

2004-01-01T23:59:59.000Z

173

Battery condition indicator  

SciTech Connect

A battery condition indicator is described for indicating both the charge used and the life remaining in a rechargeable battery comprising: rate multiplying and counting means for indirectly measuring the charge useed by the battery between charges; means for supplying variable rate clock pulse to the rate multiplying and counting means, the rate of the clock pulses being a function of whether a high current consumption load is connected to the battery or not; timing means for measuring the total time in service of the battery; charge used display means responsive to the rate multiplying and counting means for providing an indication of the charge remaining in the battery; and age display means responsive to the timing means for providing an indication of the life or age of the battery.

Fernandez, E.A.

1987-01-20T23:59:59.000Z

174

Industrial battery stack  

SciTech Connect

A novel industrial battery stack is disclosed, wherein positive plates which have been longitudinally wrapped with a perforate or semi-perforate material are accurately aligned with respect to the negative plates and separators in the stack during the stacking operation. The novel spacing members of the present invention have a generally U-shaped cross section for engaging through the wrapping a portion of the positive plate adjacent to the longitudinal edges of that plate. Projections protruding substantially from the base of the ''U'' provide the proper distance between the edge of the wrapped plate and an adjacent longitudinal surface. During the stacking and burning operation, this longitudinal surface comprises the back wall of a novel industrial battery plate holder. Following the burning of the battery stack and its subsequent assembly into an appropriate industrial battery case, the spacing member or members act to protect the positive battery plates and retain them in their proper alignment during the operation of the battery. Applicants have also provided a novel apparatus and method for stacking, aligning and burning industrial battery stacks which comprises a battery stack holder having several upstanding walls which define a stacking column having a coplanar terminus. An adjustably locatable partition within said stacking column may be disposed at any of a plurality of positions parallel with respect to the coplanar terminus so that the battery stack holder may be adjusted for any of a variety of given sizes of plates and separators. The battery plates and separators may then be stacked into the battery stack holder so that only the plate lugs extrude beyond the coplanar terminus. A dam is insertable along the top of the battery plates and across the top of the upstanding side walls of the battery stack holder to facilitate the rapid efficient burning of the industrial battery stack.

Digiacomo, H.L.; Sacco, J.A.

1980-08-19T23:59:59.000Z

175

Collecting battery data with Open Battery Gareth L. Jones1  

E-Print Network (OSTI)

Collecting battery data with Open Battery Gareth L. Jones1 and Peter G. Harrison2 1,2 Imperial present Open Battery, a tool for collecting data on mobile phone battery usage, describe the data we have a useful tool in future work to describe mobile phone battery traces. 1998 ACM Subject Classification D.4

Imperial College, London

176

Batteries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

177

Battery utilizing ceramic membranes  

SciTech Connect

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

178

Lithium battery management system  

SciTech Connect

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

179

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle types, configurations, and use strategies - Accounting for the added utility, battery wear, and infrastructure costs of range-extension techniques (battery swap, fast...

180

Mesoporous Block Copolymer Battery Separators  

E-Print Network (OSTI)

is ~1-2 $ kg -1 , the cost of battery separators is ~120-240greatly reduce the cost of battery separators. Our approach1-2 $ kg -1 , the cost of a typical battery separator is in

Wong, David Tunmin

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feature - Lithium-air Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Develop Lithium-Air Battery Li-air Li-air batteries hold the promise of increasing the energy density of Li-ion batteries by as much as five to 10 times. But that potential will...

182

Energy Materials: Battery Technologies  

Science Conference Proceedings (OSTI)

... batteries of miniature electronic devices to large power source of electric vehicles. ... process developments on electrodes and separators and safety design.

183

Electronically configured battery pack  

DOE Green Energy (OSTI)

Battery packs for portable equipment must sometimes accommodate conflicting requirements to meet application needs. An electronically configurable battery pack was developed to support two highly different operating modes, one requiring very low power consumption at a low voltage and the other requiring high power consumption at a higher voltage. The configurable battery pack optimizes the lifetime and performance of the system by making the best use of all available energy thus enabling the system to meet its goals of operation, volume, and lifetime. This paper describes the cell chemistry chosen, the battery pack electronics, and tradeoffs made during the evolution of its design.

Kemper, D.

1997-03-01T23:59:59.000Z

184

Zinc-Nickel Battery  

The short lifetime of the conventional zinc-nickel oxide battery has been the primary factor limiting its commercial use, ... Higher voltage, lower co ...

185

Battery Photo Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Photo Archive The following images may be used freely as long as they are accompanied...

186

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References Prieto Battery1 LinkedIn Connections CrunchBase...

187

Redox Flow Batteries: a Review  

NLE Websites -- All DOE Office Websites (Extended Search)

1137-1164 Date Published 102011 ISSN 1572-8838 Keywords Flow battery, Flow cell, Redox, Regenerative fuel cell, Vanadium Abstract Redox flow batteries (RFBs) are enjoying a...

188

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Phylion Battery Jump to: navigation, search Name Phylion Battery Place Suzhou, Jiangsu Province,...

189

Nanowire Lithium-Ion Battery  

Science Conference Proceedings (OSTI)

... workings of Li-ion batteries, they either lack the nanoscale spatial resolution commensurate with the morphology of the active battery materials and ...

2012-10-02T23:59:59.000Z

190

How Green Is Battery Recycling?  

NLE Websites -- All DOE Office Websites (Extended Search)

Gaines Center for Transportation Research Argonne National Laboratory How Green Is Battery Recycling? 28 th International Battery Seminar and Exhibit Ft. Lauderdale, FL March...

191

Argonne to Advise Battery Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

and Analysis Computing Center Working With Argonne Contact TTRDC Argonne to advise battery alliance Lithium ion batteries are anticipated to replace gasoline as a major source...

192

Advanced Flow-Battery Systems  

Science Conference Proceedings (OSTI)

Presentation Title, Advanced Flow-Battery Systems ... Abstract Scope, Flow- battery systems (FBS) were originally developed over 30 years ago and have since ...

193

Lithium-Ion Battery Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Ion Battery Issues IEA Workshop on Battery Recycling Hoboken, Belgium September 26-27, 2011 Linda Gaines Center for Transportation Research Argonne National Laboratory...

194

Condition responsive battery charging circuit  

SciTech Connect

A battery charging circuit includes a ferroresonant transformer having a rectified output for providing a constant output voltage to be supplied to a battery to be charged. Battery temperature is sensed providing an input to a control circuit which operates a shunt regulator associated with the ferroresonant transformer to provide battery charge voltage as a function of battery temperature. In response to a high battery temperature the controller functions to lower the output voltage to the battery, and in response to a low battery temperature, operates to provide a higher output voltage, with suitable control for any battery temperature between minus 10* and plus 150* fahrenheit. As the battery approaches full charge and battery acceptance current falls below a predetermined level, a charge cycle termination control allows charging to continue for a period preset by the operator, at the end of which period, line voltage is removed from the charger thereby terminating the charge cycle.

Reidenbach, S.G.

1980-06-24T23:59:59.000Z

195

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

196

Battery paste expander material  

SciTech Connect

Battery paste expander material for the negative plate of a lead--acid storage battery had the following composition: finely divided carbon; barium sulfate; lignosulfonic acid; sulfur; carbohydrates; and Ca/sup 2 +/, Na/sup +/, and NH/sub 4//sup +/ ions. (RWR)

Limbert, J.L.; Procter, H.G.; Poe, D.T.

1971-10-26T23:59:59.000Z

197

Battery capacity measurement and analysis using lithium coin cell battery  

Science Conference Proceedings (OSTI)

Keywords: DC/DC converter, battery, coin cell, data acquisition, embedded system, energy estimation, power estimation

Sung Park; Andreas Savvides; Mani Srivastava

2001-08-01T23:59:59.000Z

198

Food Battery Competition Sponsored by  

E-Print Network (OSTI)

Food Battery Competition Sponsored by: The University of Tennessee, Materials Research Society (MRS growing populations and energy needs forever. Batteries have evolved a great deal and when you compare the bulky, heavy, toxic car lead batteries to the novel and outstanding lithium-ion batteries, you can

Tennessee, University of

199

Substation battery-maintenance procedures  

SciTech Connect

The frequency of substation battery failures is gratifyingly low. One trouble spot appears to be extraneous short circuits that drain an otherwise healthy battery. Use of the lead--calcium battery promises to reduce substantially the amount of maintenance that substation batteries need.

Timmerman, M.H.

1976-05-15T23:59:59.000Z

200

Assessment of battery technologies for electric vehicles  

SciTech Connect

This document, Part 2 of Volume 2, provides appendices to this report and includes the following technologies, zinc/air battery; lithium/molybdenum disulfide battery; sodium/sulfur battery; nickel/cadmium battery; nickel/iron battery; iron/oxygen battery and iron/air battery. (FI)

Ratner, E.Z. (Sheladia Associates, Inc., Rockville, MD (USA)); Henriksen, G.L. (ed.) (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

PNGV battery test manual  

DOE Green Energy (OSTI)

This manual defines a series of tests to characterize aspects of the performance or life cycle behavior of batteries for hybrid electric vehicle applications. Tests are defined based on the Partnership for New Generation Vehicles (PNGV) program goals, although it is anticipated these tests may be generally useful for testing energy storage devices for hybrid electric vehicles. Separate test regimes are defined for laboratory cells, battery modules or full size cells, and complete battery systems. Some tests are common to all three test regimes, while others are not normally applicable to some regimes. The test regimes are treated separately because their corresponding development goals are somewhat different.

NONE

1997-07-01T23:59:59.000Z

202

Polymeric battery separators  

SciTech Connect

Configurations of cross-linked or vulcanized amphophilic or quaternized block copolymer of haloalkyl epoxides and hydroxyl terminated alkadiene polymers are useful as battery separators in both primary and secondary batteries, particularly nickel-zinc batteries. The quaternized block copolymers are prepared by polymerizing a haloalkyl epoxide in the presence of a hydroxyl terminated 1,3-alkadiene to form a block copolymer that is then reacted with an amine to form the quaternized or amphophilic block copolymer that is then cured or cross-linked with sulfur, polyamines, metal oxides, organic peroxides and the like.

Minchak, R. J.; Schenk, W. N.

1985-06-11T23:59:59.000Z

203

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

204

Battery utilizing ceramic membranes  

DOE Patents (OSTI)

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

205

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network (OSTI)

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

206

honda accord maintenance sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

10242005 38,262 Changed oil, rotated tires 28.44 12132005 48,397 Purchased spare tire not included with the vehicle 206.03 12192005 49,472 45K service 234.53 1132006...

207

honda accord mainenance sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

29.29 8252005 23,025 Changed oil, rotated tires 30.49 922005 23,938 Replaced one tire 106.79 9192005 27,346 Changed oil, replaced one tire 115.73 10182005 31,403...

208

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

209

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

Ethylene Carbonate for Lithium Ion Battery Use. Journal oflithium atoms in lithium-ion battery electrolyte. Chemicalcapacity fading of a lithium-ion battery cycled at elevated

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

210

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 1...

211

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research to someone by E-mail Share Vehicle Technologies Office: Applied Battery Research on Facebook Tweet about Vehicle Technologies Office: Applied Battery...

212

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name Aerospatiale Batteries (ASB) Place France Product Research, design and manufacture of Thermal Batteries. References...

213

Battery SEAB Presentation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Battery SEAB Presentation Battery SEAB Presentation Battery SEAB Presentation More Documents...

214

Automating Personalized Battery Management on Smartphones  

E-Print Network (OSTI)

get the new available battery capacity that can be assignedof expected lifetime of 1% battery capacity in minutes. Forof energy supply (battery capacity) and demand on cell

Falaki, Mohamamd Hossein

2012-01-01T23:59:59.000Z

215

What's Next for Batteries? - Energy Innovation Portal  

What's Next for Batteries? July 30, 2013. What will batteries look like in the future? How will they work? Argonne National Laboratory battery research experts ...

216

Batteries Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

models (trailers with engine or battery for long drives) "Out-of-the-Box" Ideas * High voltage packs> 600V Packs (getting rid of high current components) * Cars driven on...

217

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

218

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, Hsu-Chi (Albuquerque, NM); Cheng, Yung-Sung (Albuquerque, NM)

1984-08-07T23:59:59.000Z

219

Parallel flow diffusion battery  

DOE Patents (OSTI)

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

220

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vanadium Redox Flow Batteries  

Science Conference Proceedings (OSTI)

The vanadium redox flow battery, sometimes abbreviated as VRB, is an energy storage technology with significant potential for application in a wide range of contexts. Vanadium redox batteries have already been used in a number of demonstrations in small-scale utility-scale applications, and it is believed that the technology is close to being viable for more widespread use. This report examines the vanadium redox technology, including technical performance and cost issues that drive its application today...

2007-03-30T23:59:59.000Z

222

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

223

Battery disconnect sensing circuit for battery charging systems  

SciTech Connect

This patent describes a battery disconnect sensing circuit for battery charging systems which have a pair of cables adapted to be connected to a battery to charge it. The sensing circuit contains a first R-C circuit adapted to connect across the cables and a second R-C circuit adapted to connect across the cables. The time constant of the first R-C circuit is substantially greater than that of the second R-C circuit. Also means connected to the RC circuits produced a momentary control signal in response to disconnection of the cables from a battery being charged. Included in a battery charging system is a source of charging current whose voltage output is controlled at a predetermined value when connected to a battery. It increases to a higher value when disconnected from the battery. Controller means connected with the source activate the battery charging system automatically in response to electrical connection of the battery. The improvement consists of: means for momentarily effecting reversal of the higher voltage value, and battery disconnect sensing means connected the charging source and to the controller means for sensing the reversed higher voltage upon disconnection of the battery charger system from the battery and for responding by automatically deactivating the battery charging system.

Dattilo, D.P.

1986-01-28T23:59:59.000Z

224

Side Reactions in Lithium-Ion Batteries  

E-Print Network (OSTI)

Model for Aging of Lithium-Ion Battery Cells. Journal of TheSalts Formed on the Lithium-Ion Battery Negative Electrodeion batteries In a lithium ion battery, positively charged

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

225

Advances in lithium-ion batteries  

E-Print Network (OSTI)

current reviews of the lithium ion battery literature byof view of the lithium ion battery scientist and engineer,lithium ion batteries. The chapter on aging summarizes the effects of the chemistry on the battery

Kerr, John B.

2003-01-01T23:59:59.000Z

226

Means for controlling battery chargers  

SciTech Connect

A battery charger control device is described that senses the placement of a battery across control terminals and utilizes the voltage thereof to place into conduction a transistor which actuates a relay which turns on a battery charger, which thereafter, monitors the the charge condition of the battery as determined by the voltage supplied to a voltage following circuit from the control terminals, and which actuates an electronic switch after the elapse of a predetermined period of time after the battery has attained a fully charged condition as determined by the voltage of the battery as presented to the voltage following circuit.

Ballman, G.C.

1980-09-16T23:59:59.000Z

227

Maintenance-free automotive battery  

SciTech Connect

Two types of maintenance-free automotive batteries were developed by Japan Storage Battery Co. to obtain a maintenance-free battery for practical use and to prevent deterioration of the battery during long storage and/or shipment. Design considerations included a special grid alloy, the separator, plate surface area, vent structure, and electrolyte. Charge characteristics, overcharge characteristics, life characteristics under various conditions, and self-discharge characteristics are presented. The characteristics of the maintenance-free battery with a Pb-Ca alloy grid are superior to those of a conventional battery. 10 figures, 1 table. (RWR)

Kano, S.; Ando, K.

1978-01-01T23:59:59.000Z

228

Systems approach to rechargeable batteries  

SciTech Connect

When selecting a rechargeable battery for an application, consideration must be given to the total system. Electrical load requirements, mechanical restrictions, environmental conditions, battery life, and charging must be considered to assure satisfactory battery performance. Meeting the electrical requirements involves selecting a battery that will deliver adequate voltage, run time and power. The mechanical aspects are largely a matter of resolving volume and weight. The charger must be capable of returning the battery to full charge in an allotted time. But of greater importance, the charge control method should be chosen carefully to maximize the operational life of the battery. 4 refs.

Mullersman, F.H.

1980-09-01T23:59:59.000Z

229

Battery venting system and method  

SciTech Connect

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

230

Battery Vent Mechanism And Method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

231

Battery venting system and method  

DOE Patents (OSTI)

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

232

Energizing the batteries for electric cars  

SciTech Connect

This article reports of the nickel-metal-hydride battery and its ability to compete with the lead-acid battery in electric-powered vehicles. The topics of the article include development of the battery, the impetus for development in California environmental law, battery performance, packaging for the battery's hazardous materials, and the solid electrolyte battery.

O' Connor, L.

1993-07-01T23:59:59.000Z

233

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents (OSTI)

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

234

Circulating current battery heater  

SciTech Connect

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

235

Battery charging and testing circuit  

SciTech Connect

A constant current battery charging circuit is provided by which the battery receives a full charge until the battery voltage reaches a threshold. When the battery voltage is above the threshold, the battery receives a trickle charge. The actual battery voltage is compared with a reference voltage to determine whether the full charge circuit should be in operation. Hysteresis is provided for preventing a rapid on/off operation around the threshold. The reference voltage is compensated for temperature variations. The hysteresis system and temperature compensation system are independent of each other. A separate test circuit is provided for testing the battery voltage. During testing of the battery, the full charge circuit is inoperative.

Wicnienski, M. F.; Charles, D. E.

1984-01-17T23:59:59.000Z

236

Battery conditioning system having communication with battery parameter memory means in conjunction with battery conditioning  

SciTech Connect

In an exemplary embodiment, a battery conditioning system monitors battery conditioning and includes a memory for storing data based thereon; for example, data may be stored representative of available battery capacity as measured during a deep discharge cycle. With a microprocessor monitoring battery operation of a portable unit, a measure of remaining battery capacity can be calculated and displayed. Where the microprocessor and battery conditioning system memory are permanently secured to the battery so as to receive operating power therefrom during storage and handling, the performance of a given battery in actual use can be accurately judged since the battery system can itself maintain a count of accumulated hours of use and other relevant parameters. In the case of a non-portable conditioning system, two-way communication may be established with a memory associated with the portable unit so that the portable unit can transmit to the conditioning system information concerning battery parameters (e.g. rated battery capacity) and/or battery usage (e.g. numbers of shallow discharge and recharge cycles), and after a conditioning operation, the conditioning system can transmit to the portable unit a measured value of battery capacity, for example. 27 figs.

Koenck, S.E.

1994-01-11T23:59:59.000Z

237

Battery Recycling - Programmaster.org  

Science Conference Proceedings (OSTI)

The symposium will cover all aspects of battery recycling from legislation, collection, safety issues & transportation regulations and current recycling ...

238

Battery Cahrging at the EVRS  

NLE Websites -- All DOE Office Websites (Extended Search)

ETA-NTP008 Revision 4 Effective December 1, 2004 Battery Charging Prepared by Electric Transportation Applications Prepared by: Date:...

239

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

240

Safe battery solvents  

SciTech Connect

An ion transporting solvent maintains very low vapor pressure, contains flame retarding elements, and is nontoxic. The solvent in combination with common battery electrolyte salts can be used to replace the current carbonate electrolyte solution, creating a safer battery. It can also be used in combination with polymer gels or solid polymer electrolytes to produce polymer batteries with enhanced conductivity characteristics. The solvents may comprise a class of cyclic and acyclic low molecular weight phosphazenes compounds, comprising repeating phosphorus and nitrogen units forming a core backbone and ion-carrying pendent groups bound to the phosphorus. In preferred embodiments, the cyclic phosphazene comprises at least 3 phosphorus and nitrogen units, and the pendent groups are polyethers, polythioethers, polyether/polythioethers or any combination thereof, and/or other groups preferably comprising other atoms from Group 6B of the periodic table of elements.

Harrup, Mason K. (Idaho Falls, ID); Delmastro, Joseph R. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID); Luther, Thomas A. (Idaho Falls, ID)

2007-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Paintable Battery Neelam Singh1  

E-Print Network (OSTI)

Paintable Battery Neelam Singh1 , Charudatta Galande1 , Andrea Miranda1 , Akshay Mathkar1 , Wei Gao Belgium. If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary

Ajayan, Pulickel M.

242

Seal for sodium sulfur battery  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

1980-01-01T23:59:59.000Z

243

Battery switch for downhole tools  

Science Conference Proceedings (OSTI)

An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

Boling, Brian E. (Sugar Land, TX)

2010-02-23T23:59:59.000Z

244

New Developments in Battery Chargers  

E-Print Network (OSTI)

Abstract: Electronic equipment is increasingly becoming smaller, lighter, and more functional, thanks to the push of technological advancements and the pull from customer demand. The result of these demands has been rapid advances in battery technology and in the associated circuitry for battery charging and protection. For many years, nickel-cadmium (NiCd) batteries have been the standard for small electronic systems. A few larger systems, such as laptop computers and high-power radios, operated on "gel-cell " lead-acid batteries. Eventually, the combined effects of environmental problems and increased demand on the batteries led to the development of new battery technologies: nickel-metal hydride (NiMH), rechargeable alkaline, lithium ion (Li+), and lithium polymer. These new battery technologies require more sophisticated charging and protection circuitry to maximize performance and ensure safety. NiCd and NiMH Batteries NiCd has long been the preferred technology for rechargeable batteries in portable electronic equipment, and in some ways, NiCd batteries still outperform the newer technologies. NiCd batteries have less capacity than Li+ or NiMH types, but their low impedance is attractive in applications that require high current for short periods. Power tools, for example, will continue to use NiCd battery packs indefinitely.

unknown authors

2011-01-01T23:59:59.000Z

245

The changing battery industry  

SciTech Connect

This report provides an economic and technological assessment of the electrical battery industry, highlighting major trends. Among those systems considered are lithium-based, sodium-sulfur nickel-zinc, nickel-iron, nickel-hydrogen, zinc-chloride, conductive polymer, and redox cells. Lead-acid, nickel-cadmium, and manganese dioxide-based batteries and direct solar power and fuel cells are discussed in relation to these new techniques. New applications, including electric vehicles, solar power storage, utility load leveling, portable appliances, computer power and memory backup, and medical implants are discussed. Predictions and development scenarios for the next twenty years are provided for the U.S. market.

Not Available

1987-01-01T23:59:59.000Z

246

Batteries - EnerDel Lithium-Ion Battery  

NLE Websites -- All DOE Office Websites (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

247

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

248

Current balancing for battery strings  

SciTech Connect

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

249

Battery testing for photovoltaic applications  

SciTech Connect

Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

Hund, T.

1996-11-01T23:59:59.000Z

250

Zinc alkaline secondary battery  

SciTech Connect

A zinc alkaline secondary battery with improved service life in which a multi-layer separator is interposed between the negative and positive electrodes and the quantity of the alkaline electrolyte in the layer of the separator adjacent to the negative electrode is less than that of the electrolyte in the layer of the separator adjacent to the positive electrode.

Furukawa, N.; Nishizawa, N.

1983-03-29T23:59:59.000Z

251

Battery electrode growth accommodation  

DOE Patents (OSTI)

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

252

Lithium Rechargeable Batteries  

DOE Green Energy (OSTI)

In order to obviate the deficiencies of currently used electrolytes in lithium rechargeable batteries, there is a compelling need for the development of solvent-free, highly conducting solid polymer electrolytes (SPEs). The problem will be addressed by synthesizing a new class of block copolymers and plasticizers, which will be used in the formulation of highly conducting electrolytes for lithium-ion batteries. The main objective of this Phase-I effort is to determine the efficacy and commercial prospects of new specifically designed SPEs for use in electric and hybrid electric vehicle (EV/HEV) batteries. This goal will be achieved by preparing the SPEs on a small scale with thorough analyses of their physical, chemical, thermal, mechanical and electrochemical properties. SPEs will play a key role in the formulation of next generation lithium-ion batteries and will have a major impact on the future development of EVs/HEVs and a broad range of consumer products, e.g., computers, camcorders, cell phones, cameras, and power tools.

Robert Filler, Zhong Shi and Braja Mandal

2004-10-21T23:59:59.000Z

253

Thin-film Lithium Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

254

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

255

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics  

E-Print Network (OSTI)

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics QingQing Wu,Wu, Qinru VoltageAnalysis of Optimal Supply Voltage Design of Interleaved DualDesign of Interleaved Dual--Battery PowerBattery Power SupplySupply ConclusionsConclusions #12;Batteries in Mobile/Portable ElectronicsBatteries

Pedram, Massoud

256

US advanced battery consortium in-vehicle battery testing procedure  

DOE Green Energy (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

257

Smart battery controller for lithium/sulfur dioxide batteries  

Science Conference Proceedings (OSTI)

Each year, the U.S. Army purchases millions of lithium sulfur dioxide batteries for use in portable electronics equipment. Because of their superior rate capability and service life over a wide variety of conditions, lithium batteries are the power source of choice for military equipment. There is no convenient method of determining the available energy remaining in partially used lithium batteries; hence, users do not take full advantage of all the available battery energy. Currently, users replace batteries before each mission, which leads to premature disposal, and results in the waste of millions of dollars in battery energy every year. Another problem of the lithium battery is that it is necessary to ensure complete discharge of the cells when the useful life of the battery has been expended, or when a hazardous condition exists; a hazardous condition may result in one or more of the cells venting. The Electronics Technology and Devices Laboratory has developed a working prototype of a smart battery controller (SBC) that addresses these problems.

Atwater, T.; Bard, A.; Testa, B.; Shader, W.

1992-08-01T23:59:59.000Z

258

Vulnerability assessment of medieval civic towers as a tool for retrofitting design  

Science Conference Proceedings (OSTI)

The seismic vulnerability of an ancient civic bell-tower is studied. Rather than seeing it as an intermediate stage toward a risk analysis, the assessment of vulnerability is here pursued for the purpose of optimizing the retrofit design. The vulnerability curves are drawn by carrying out a single time history analysis of a model calibrated on the basis of experimental data. From the results of this analysis, the medians of three selected performance parameters are estimated, and they are used to compute, for each of them, the probability of exceeding or attaining the three corresponding levels of light, moderate and severe damage. The same numerical model is then used to incorporate the effects of several retrofitting solutions and to re-estimate the associated vulnerability curves. The ultimate goal is to provide a numerical tool able to drive the optimization process of a retrofit design by the comparison of the vulnerability estimates associated with the different retrofitting solutions.

Casciati, Sara [ASTRA Department, University of Catania, Siracusa (Italy); Faravelli, Lucia [Department of Structural Mechanics, University of Pavia, Pavia, Pavia (Italy)

2008-07-08T23:59:59.000Z

259

The environmentally safe battery  

SciTech Connect

There are three aspects to an environmentally safe battery. The first deals with the manufacturing process, the second with the use of environmentally friendly materials, and the third with the disposal and/or recycling of spent units. In this paper, several ongoing programs at Sandia National Laboratories that relate to the environmentally conscious manufacturing of batteries, are discussed. The solvent substitution/elimination program is a two-pronged effort, aimed at identifying new solvents which are compatible with the environment, while at the same time developing dry process cleaning technology. The joining program is evaluating new solvents for flux removal as well as the development of fluxless soldering processes. In the area of welding, new cleaning processes are under study. Chemical microsensors are under development that are capable of identifying and quantifying single chemical species. These sensors have been used to monitor and improve processes using toxic/hazardous solvents. 1 ref., 1 fig.

Levy, S.C.; Brown, N.E.

1991-01-01T23:59:59.000Z

260

Advanced Batteries for PHEVs  

Science Conference Proceedings (OSTI)

This report describes testing conducted on two different types of batteriesVARTA nickel-metal hydride and SAFT lithium ionused in the Plug-in Hybrid Electric Vehicle (PHEV) Sprinter program. EPRI and DaimlerChrysler developed a PHEV concept for the Sprinter Van to reduce the vehicle's emissions, fuel consumption, and operating costs while maintaining equivalent or superior functionality and performance. The PHEV Sprinter was designed to operate in both a pure electric mode and a charge-sustaining hybrid ...

2009-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Civic Lessons  

E-Print Network (OSTI)

focus group interview as a technique for data collection.group interview: An underutilized research technique for

Fine, Michelle

2002-01-01T23:59:59.000Z

262

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

The LiNiOiCarbon Lithium-Ion Battery," S. S. lonics, 69,238-the mid-1980's, the lithium-ion battery based on a carboncommercialization of the lithium-ion battery, several other

Doyle, C.M.

2010-01-01T23:59:59.000Z

263

AGM Batteries Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Place United Kingdom Product Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References AGM Batteries Ltd1 LinkedIn Connections CrunchBase Profile...

264

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network (OSTI)

to increase the battery's capacity (j n u J per unit volume.to estimate the battery capacity by relating the dischargealso the specific capacity of current battery systems. It is

Doyle, C.M.

2010-01-01T23:59:59.000Z

265

BATTERY INDUSTRIAL, LEAD ACID TYPE  

Science Conference Proceedings (OSTI)

... between the cell cover and the cell container, and all openings on the top of the battery other than the filling vents shall be gas tight and effectively ...

266

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 3800 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

267

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage limits (see Note 2) at 50% depth of discharge (DOD). 2013 Chevrolet Malibu ECO Hybrid - VIN 7249 Advanced Vehicle Testing - Beginning-of-Test Battery Testing Results...

268

Nanofilm Coatings Improve Battery Performance  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The ...

269

Argonne TTRDC - Experts - Battery Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Analysis Computing Center Working With Argonne Contact TTRDC Battery Technologies Experts Click on a highlighted name to see a full rsum. Jeff...

270

Battery Testing in the US  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S.-China EV and Battery Workshop Joint Vehicle Demonstrations and Standards Development August 24, 2012 Session Chairmen: Keith Hardy, Argonne National Laboratory Li Jianqiu,...

271

New Life for EV Batteries  

Science Conference Proceedings (OSTI)

Apr 15, 2013 ... Five used Chevrolet Volt batteries are at the heart of the Oak Ridge National Laboratory's (ORNL) effort to determine the feasibility of a ...

272

Rechargeable Batteries, Photochromics, Electrochemical Lithography...  

NLE Websites -- All DOE Office Websites (Extended Search)

employed to explore in detail fundamental interfacial processes. Using current-sensing atomic forcemicroscopy (CSAFM), small variations in the electronic conductance of battery...

273

Flow Batteries: A Historical Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Marvin Warshay *1976 Shunt Current Model, Paul Prokopius *1976 Interfaced an RFB with solar cells *1977 Electrode-Membrane-Flow Battery Testing *Largest polarization @ negative...

274

Attempting clairvoyance with battery performance  

E-Print Network (OSTI)

The light-weight, long-lasting, high-performance attributes of cellular phones and laptop computers, among other equally impressive portable devices currently in the marketplace, are responsible for igniting the overwhelming growth of the battery-powered electronics industry. The demand for smaller and longer lasting solutions, in fact, is only increasing, and key to this success is the battery, which can range from single-use alkaline and zinc-air to rechargeable nickel-cadmium, nickel-metal hydride, lithium-ion, and lithium-polymer technologies. Unfortunately, however, advancements in circuit and system integration have outpaced energy and power density improvements in the battery. Consequently, as batteries conform to the size constraints of portable applications, capacity and output power are necessarily compromised. Degradation in battery performance over time not only affects functionality but also operational life, proving inadequate the traditional assumption that the battery is an ideal voltage source. Including the effects of the battery on state-of-theart systems during the design phase is therefore of increasing importance for optimal life and performance. The problem is securing a suitable Cadence-compatible model. Battery Models State-of-the-art electrical models for batteries are either Thevenin-, impedance-, or runtime-based. Thevenin- and impedance-based models, shown in Figures 1(a)-(b), assume both open-circuit voltage and capacity or state-of-charge (SOC) are constant and approximate loading and ac/transient effects with an impedance network of passive devices for

A. Rincón-mora; Min Chen

2005-01-01T23:59:59.000Z

275

Method for charging a storage battery  

SciTech Connect

A method is disclosed for charging a lead-acid storage battery, the method comprising the steps of charging the battery at an initially high rate during an initial stage of the charging cycle, monitoring the internal battery voltage, charging the battery at a lower, finishing rate after a preselected battery voltage has been monitored, and periodically interrupting the finishing charge until the battery is recharged.

Fallon, W.H.; Kirby, D.W.; Neukirch, E.O.; Schober, W.R.

1983-07-19T23:59:59.000Z

276

Self-Regulating, Nonflamable Rechargeable Lithium Batteries ...  

Rechargeable lithium batteries are superior to other rechargeable batteries due to their ability to store more energy per unit size and weight and to operate at ...

277

Battery Life Predictor Model - Energy Innovation Portal  

Energy Analysis Battery Life Predictor Model ... Technology Marketing Summary Batteries are one of the leading cost drivers of any electric vehicle ...

278

Better Batteries with a Conducting Polymer Binder  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries with a Conducting Polymer Binder Conductive polymer binder for Lithium ion battery June 2013 Berkeley Lab scientists have invented a new material for use in...

279

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Ford Electric Battery Group Jump to: navigation, search Name Ford Electric Battery Group Place Dearborn, MI Information About Partnership with NREL Partnership with NREL Yes...

280

Energy - Green battery | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy - Green battery By substituting lignin for highly engineered, expensive graphite to make battery electrodes, researchers have developed a process that requires fewer steps...

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced battery modeling using neural networks.  

E-Print Network (OSTI)

??Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the… (more)

Arikara, Muralidharan Pushpakam

2012-01-01T23:59:59.000Z

282

Battery-Size Regenerative Fuel Cells  

ORNL 2010-G01073/jcn UT-B ID 201002378 Battery-Size Regenerative Fuel Cells Technology Summary A battery-size regenerative fuel cell with energy ...

283

Vehicle Technologies Office: Applied Battery Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for...

284

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Kayo Battery Industries Group Jump to: navigation, search Name Kayo Battery Industries Group Place...

285

Battery Recycling by Hydrometallurgy: Evaluation of Simultaneous ...  

Science Conference Proceedings (OSTI)

Presentation Title, Battery Recycling by Hydrometallurgy: Evaluation of ... of spent batteries using the same process, in order to overcome the high costs and ...

286

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon American Battery Charging Inc Jump to: navigation, search Name American Battery Charging Inc Place...

287

Battery Wireless Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Battery Wireless Solutions Inc Jump to: navigation, search Name Battery & Wireless Solutions...

288

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvancedLightSource Home Science Highlights Industry @ ALS Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23...

289

China BAK Battery Inc | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon China BAK Battery Inc Jump to: navigation, search Name China BAK Battery Inc Place Shenzhen, Guangdong...

290

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Edit with form History Share this page on Facebook icon Twitter icon Advanced Battery Factory Jump to: navigation, search Name Advanced Battery Factory Place Shen Zhen...

291

Lithium-Ion Batteries: Possible Materials Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne, IL Abstract The transition to plug-in hybrid vehicles and possibly pure battery electric vehicles will depend on the successful development of lithium-ion batteries....

292

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Ovonic Battery Company Inc Jump to: navigation, search Name Ovonic Battery Company Inc Place...

293

Carbon Micro Battery LLC | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Carbon Micro Battery LLC Jump to: navigation, search Name Carbon Micro Battery, LLC Place California...

294

Beijing Tianruichi Battery TRC | Open Energy Information  

Open Energy Info (EERE)

form History Share this page on Facebook icon Twitter icon Beijing Tianruichi Battery TRC Jump to: navigation, search Name Beijing Tianruichi Battery (TRC) Place China...

295

Block copolymer electrolytes for lithium batteries  

E-Print Network (OSTI)

in the energy equation, battery capacity, is defined as theperformance and capacity fading of a lithium-ion batteryof large-capacity lithium- ion battery systems. With new

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

296

Nanofilm Coatings Improve Battery Performance - Energy Innovation ...  

Recent advances in battery technology are expected to more than double consumer demand for electric vehicles within the next five years. The lithium-ion battery is an ...

297

Five rules for longer battery life  

SciTech Connect

The fundamentals of proper lead-acid battery care are given, including five basic maintenance rules, and the reasoning behind them, for longer battery life.

1971-09-01T23:59:59.000Z

298

Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report  

SciTech Connect

Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

Pemsler, P.

1981-02-01T23:59:59.000Z

299

Battery resource assessment. Interim report No. 1. Battery materials demand scenarios  

DOE Green Energy (OSTI)

Projections of demand for batteries and battery materials between 1980 and 2000 are presented. The estimates are based on existing predictions for the future of the electric vehicle, photovoltaic, utility load-leveling, and existing battery industry. Battery demand was first computed as kilowatt-hours of storage for various types of batteries. Using estimates for the materials required for each battery, the maximum demand that could be expected for each battery material was determined.

Sullivan, D.

1980-12-01T23:59:59.000Z

300

Principles of an Atomtronic Battery  

E-Print Network (OSTI)

An asymmetric atom trap is investigated as a means to implement a "battery" that supplies ultracold atoms to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a non-dissipative atom trap proposed by Roos et al.(Europhysics Letters V61, 187 (2003)). The trap is defined by longitudinal and transverse trap frequencies and corresponding trap energy heights. The battery's ability to supply power to a load is evaluated as a function of an input atom flux and power. For given trap parameters and input flux the battery is shown to have a resonantly optimum value of input power. The battery behavior can be cast in terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of a Th\\'{e}venin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum power that can be supplied to a circuit, the heat that will be generated by the battery, and that noise will be imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented by a Th\\'{e}venin equivalent and that its performance will likewise be determined by an internal resistance.

Alex A. Zozulya; Dana Z. Anderson

2013-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nanofilm Coatings Improve Battery Performance  

demand for electric vehicles within the next five years. The lithium-ion battery is an attractive candidate for use in such vehicles because of its light weight and high energy density. At present, however, lithium-ion batteries are not ...

302

The INEL battery data base  

SciTech Connect

The Department of Energy (DOE) has established a Battery Data Base for electric vehicle applications at the Idaho National Engineering Laboratory (INEL). The objectives of the Data Base are to collect, store, and make available to the electric vehicle community battery data from the INEL. Argonne National Laboratory, Sandia National Laboratory, and DOE battery contractors in forms appropriate for evaluating the batteries in electric vehicles. The Data Base currently includes data from over 500 test on 15 batteries of 5 different types. The data (over 120 MB) is stored on a 760 MB harddisk attached to a MicroVax 2. PC-based software to access the data has been developed on the IBM PS/2 using dBASE 4. The initial version of the Data Base to be distributed on a single floppy disk is nearly complete. The first release will include the physical characteristics of the batteries, summary tables showing the test results for each cycle of the battery test programs, and some constant power discharge data for the batteries. Later versions of the Data Base will include second-by-second peak power and SFUDS data, which will require several floppy of Bernoulli disks to store the data. 2 refs., 4 figs.

Burke, A.F.; Hardin, J.E.; Kiser, D.M.

1990-01-01T23:59:59.000Z

303

Lithium batteries for pulse power  

DOE Green Energy (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

304

A Desalination Battery Mauro Pasta,  

E-Print Network (OSTI)

A Desalination Battery Mauro Pasta, Colin D. Wessells, Yi Cui,,§ and Fabio La Mantia, although its high energy consumption, and thus high cost, call for new, efficient technology. Here, we demonstrate the novel concept of a "desalination battery", which operates by performing cycles in reverse

Cui, Yi

305

Battery system with temperature sensors  

SciTech Connect

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

306

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-01-01T23:59:59.000Z

307

ATOMIC BATTERY AND TEST INSTRUMENT  

SciTech Connect

A portable nuclear battery is designed which can be adjusted to vary the output. The battery comprises a Sr/sup 90/ peactivated phosphor light source and photocells housed in a shielding structure. The output may be varied by rotating elements between the light source and the photocells. (D.L.C.)

Viszlocky, N.

1962-09-11T23:59:59.000Z

308

EXAFS studies of battery materials  

SciTech Connect

X-ray absorption spectroscopy (XAS) has been used at extensively at Brookhaven National Laboratory (BNL) to study materials and electrodes of several battery systems. The power and the general applicability of the technique is illustrated by studies of several battery materials such as PEO-salt complexes, PbO{sub 2}, and in situ studies of mossy zinc deposition in alkaline electrolyte.

McBreen, J.

1991-12-31T23:59:59.000Z

309

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

310

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementnot dominate the total battery cost. Note that in generalsuch as cycle life and battery cost and battery management

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

311

Battery conditioning system having communication with battery parameter memory means in conJunction with battery conditioning  

SciTech Connect

This patent describes a battery conditioning system. It comprises: rechargeable battery means for supplying operating current during a number of hours of portable operation so as to become progressively discharged as a result, memory and communications means for operative association with the rechargeable battery means and receiving power from the rechargeable battery means during portable operation, and battery conditioning system means for coupling with the rechargeable batter means and with the memory and communications means, for conditioning of the battery means after a period of portable operation and for the transmission of data concerning the rechargeable battery means.

Koenck, S.E.

1989-12-05T23:59:59.000Z

312

Recombinant electric storage battery  

SciTech Connect

This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

Flicker, R.P.; Fenstermacher, S.

1989-10-10T23:59:59.000Z

313

Overview of the Batteries for Advanced Transportation  

E-Print Network (OSTI)

cobaltate batteries have been in commercial use since 1991. A new lithium-ion battery with different cathodeMn2O4 cathode in lithium ion batteries by using surface modification. Since one of the main reasons cathode material for rechargeable lithium ion batteries because of its high voltage, low cost, and safety

Knowles, David William

314

Waste Toolkit A-Z Battery recycling  

E-Print Network (OSTI)

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must make their own arrangements through a registered hazardous waste carrier. Batteries must not be put

Melham, Tom

315

Battery-Powered Digital CMOS Massoud Pedram  

E-Print Network (OSTI)

1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro in the VLSI circuit Y The battery system is assumed to be an ideal source that delivers a fixed amount

Pedram, Massoud

316

Charging system for nickel-zing batteries  

SciTech Connect

A source of constant current or constant power supplies charging current to a nickel-zinc battery to produce a generally S-shaped battery voltage waveform. To improve battery life, charging is terminated at the inflection point where the slope of the battery voltage changes from increasing to decreasing.

Jones, R. A.; Reoch, W. D.

1985-03-05T23:59:59.000Z

317

Battery Thermal Management System Design Modeling (Presentation)  

DOE Green Energy (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

318

Method and apparatus for rapid battery charging  

SciTech Connect

A method and apparatus for charging electrical storage batteries having a known nominal amperage are described. The method consists in discharging the battery to a predetermined value and then charging the battery with a charging current initially several times greater than the nominal battery amperage. The charging current decreases exponentially from the initial charging current to a charging current much less than the nominal battery amperage when the battery is fully charged. The apparatus uses the discharge rate of an RC circuit to control the charging current applied to the battery. 3 figures, 1 table.

Samsioe, P.E.

1979-12-18T23:59:59.000Z

319

Method and apparatus for battery charging  

SciTech Connect

This patent describes a method of charging a battery and terminating the charging thereof upon determination of the existence of a prescribed condition comprising the steps of: applying charging current to the battery; measuring the battery voltage soon after the charging current is applied; determining, on the basis of the battery voltage measurement, the knee voltage of the charging characteristic of the particular battery being charged; calculating a battery voltage limit beyond which no further charging current is to be applied, the voltage limit being the point at which the instantaneous battery voltage is a pre-determined value greater than the knee voltage of the battery's charging characteristic; continued measuring of the battery voltage as the charging current is applied; and terminating the application of charging current when the battery voltage limit is reached.

Westhaver, L.A.; Ruksznis, R.E.

1987-01-27T23:59:59.000Z

320

Extended shelf-life battery  

SciTech Connect

A lead-acid battery having extended shelf-life is described comprising: a battery housing containing positive and negative lead-acid electrode elements and separators; sulfuric acid electrolyte contained within the housing in a quantity sufficient to maintain the electrode elements in a damp, but not flooded, condition; a desiccant within the housing located out of contact with the elements and in a position to absorb water vapor present in the housing the desiccant being located in container at least a portion of water is permeable to water vapor; the electrode positive and negative materials being formed - that a charge exists on the battery and so that self-discharge reactions will occur within the housing producing water vapor; the electrolyte having a specific gravity ranging from about 1.015 to about 1.320 and the quantity of the desiccant being sufficient to absorb the water vapor created during the self-discharge reactions to maintain the specific gravity of the electrolyte within the range. A method for extending the storage life of a lead-acid battery comprising the steps of: preparing a formed, lead-acid battery including electrode elements and a flooding quantity of sulfuric acid electrolyte; removing from the battery a substantial quantity of the electrolyte to leave damp elements; placing in the battery a quantity of desiccant in a container, at least a portion of which is permeable to water vapor, the container being in a position to absorb water vapor generated in the battery during self-discharge and at a location out of contact with the electrode elements; and controlling the specific gravity of the electrolyte remaining in the battery after the removal step within a range of about 1.015 and 1.320 during discharge reactions by absorbing water vapor produced thereby in the desiccant.

Bullock, N.K.; Symumski, J.S.

1993-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method and apparatus for providing sterile charged batteries  

SciTech Connect

A method is described of providing sterile, charged batteries for use in a sterile field comprising the steps of: sterilizing at least one battery and a battery charger, the battery and battery charger being adapted to withstand exposure to the environment present during such sterilizating step; transferring the battery and the battery charger in a sterile state to the sterile field; and charging the battery to a desired voltage with the battery charger in the sterile field.

Pascaloff, J.H.

1987-02-03T23:59:59.000Z

322

Battery monitoring and charger control system  

SciTech Connect

A battery cell controlled charging system, consisting of a display unit, battery cell probes, a battery charger and circuitry for controlling the charger, monitors the specific gravity, electrolyte level and temperature control of each cell in a multi-cell lead-acid battery and uses the information to automatically charge the battery when a cell or cells become out of specification while restricting overcharging which is damaging to cells.

Barry, G.H.; Dahl, E.A.

1983-06-14T23:59:59.000Z

323

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

324

Anti-stratification battery separator  

Science Conference Proceedings (OSTI)

This patent describes a separator for an electric storage battery comprising a thin microporous sheet for suppressing dendrite growth between adjacent plates of the battery. The sheet has top, bottom and lateral edges defining the principal face of the separator and ribs formed on the surface of the face. The improvement described here comprises: the ribs each (1) having a concave shape, (2) being superposed one over another and (3) extending laterally across the face substantially from one the lateral edge to the other the lateral edge for reducing the accumulation of highly concentrated electrolyte at the bottom of the battery during recharge.

Stahura, D.W.; Smith, V.V. Jr.

1986-10-28T23:59:59.000Z

325

Cell for making secondary batteries  

DOE Patents (OSTI)

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

326

Solid polymer battery electrolyte and reactive metal-water battery  

SciTech Connect

In one implementation, a reactive metal-water battery includes an anode comprising a metal in atomic or alloy form selected from the group consisting of periodic table Group 1A metals, periodic table Group 2A metals and mixtures thereof. The battery includes a cathode comprising water. Such also includes a solid polymer electrolyte comprising a polyphosphazene comprising ligands bonded with a phosphazene polymer backbone. The ligands comprise an aromatic ring containing hydrophobic portion and a metal ion carrier portion. The metal ion carrier portion is bonded at one location with the polymer backbone and at another location with the aromatic ring containing hydrophobic portion. The invention also contemplates such solid polymer electrolytes use in reactive metal/water batteries, and in any other battery.

Harrup, Mason K. (Idaho Falls, ID); Peterson, Eric S. (Idaho Falls, ID); Stewart, Frederick F. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

327

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

3 2.1.2 Lithium ion Battery2.2 Schematic of lithium ion battery operating principles (be rechargeable. The lithium ion battery is often referred

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

328

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

and J. Newman, Proc. Syrup. Battery Design and Optimization,123, 1364 (1976). Symp, Battery Design and Optimization, S.~ALUMINUM, IRON SULFIDE BATTERY Contents ACKNOWLEDGEMENTS

Pollard, Richard

2012-01-01T23:59:59.000Z

329

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

cell (Altairnano data) Battery cost considerations It is ofnot dominate the total battery cost. Note that in generala detailed lithium battery cost model that is applicable to

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

330

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

331

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network (OSTI)

could double Chevy Volt battery capacity. ” http://could-double-chevy-volt-battery-capacity/chevy-volt3-4/; “Volt’s Battery Capacity Could Double. ” http://

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

332

Battery Aging, Diagnosis, and Prognosis of Lead-Acid Batteries for Automotive Application.  

E-Print Network (OSTI)

??New battery technologies have been emerging into today’s market and frequenting headlines; however, the lead-acid battery overwhelmingly remains the most common automotive battery. Because of… (more)

Picciano, Nicholas I.

2009-01-01T23:59:59.000Z

333

Battery SEAB Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

334

NUCLEAR BATTERY POWERED TIMERS  

SciTech Connect

During the period from May 1957 to July 1958, four nuclear batiery powered timers were fabricated and tested from two basic designs in the time ranges of onesecond, three-second, annd half-hour intervals. The timers were temperature-tested over a range of -65 to +165 F with accuracics over this temperature range from plus or minus 10 perceat to plus or minus 15 percent. Each unit has a volume of 10 cubic inches, and the timer can be initiated either by an explosive squib or a pull-out wire. At the end of the timing interval, the timer has ann output of 30,000 ergs. The cost of the program was ,000. From the results of this development program, it appears quite feasible to build operable nuclear battery powered timers on a production basis. (auth)

DesJardin, R.L.

1958-09-19T23:59:59.000Z

335

Optimization of blended battery packs  

E-Print Network (OSTI)

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

336

The search for better batteries  

Science Conference Proceedings (OSTI)

To handle small, power-hungry electronic systems, manufacturers of rechargeable batteries are exploring at least five technologies: nickel-cadmium, nickel-metal hydride, lithium-ion, lithium-solid polymer electrolyte, and zinc-air. The author describes ...

M. J. Riezenman

1995-05-01T23:59:59.000Z

337

Advanced batteries for electric vehicles  

SciTech Connect

The idea of battery-powered vehicles is an old one that took on new importance during the oil crisis of 1973 and after California passed laws requiring vehicles that would produce no emissions (so-called zero-emission vehicles). In this overview of battery technologies, the authors review the major existing or near-term systems as well as advanced systems being developed for electric vehicle (EV) applications. However, this overview does not cover all the advanced batteries being developed currently throughout the world. Comparative characteristics for the following batteries are given: lead-acid; nickel/cadmium; nickel/iron; nickel/metal hydride; zinc/bromine; sodium/sulfur; sodium/nickel chloride; zinc/air; lithium/iron sulfide; and lithium-polymer.

Henriksen, G.L.; DeLuca, W.H.; Vissers, D.R. (Argonne National Lab., IL (United States))

1994-11-01T23:59:59.000Z

338

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

339

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

340

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rechargeable Battery Circuit Modeling and Analysis of the Battery Characteristic in Charging and Discharging Processes.  

E-Print Network (OSTI)

??In this thesis, an issue is post at the beginning, that there is limited experience in connecting a battery analytical model with a battery circuit… (more)

Kong, Dexinghui

2012-01-01T23:59:59.000Z

342

Battery management system for Li-Ion batteries in hybrid electric vehicles.  

E-Print Network (OSTI)

??The Battery Management System (BMS) is the component responsible for the effcient and safe usage of a Hybrid Electric Vehicle (HEV) battery pack. Its main… (more)

Marangoni, Giacomo

2010-01-01T23:59:59.000Z

343

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

DOE Green Energy (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

344

Metal-air battery assessment  

DOE Green Energy (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

345

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

346

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

347

Lithium battery safety and reliability  

DOE Green Energy (OSTI)

Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

Levy, S.C.

1991-01-01T23:59:59.000Z

348

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

349

Alkali metal/sulfur battery  

SciTech Connect

Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

Anand, Joginder N. (Clayton, CA)

1978-01-01T23:59:59.000Z

350

Thermal Batteries for Electric Vehicles  

Science Conference Proceedings (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

351

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

352

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

353

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

354

Mapping Particle Charges in Battery Electrodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

355

B#: A battery emulator and power-profiling instrument  

E-Print Network (OSTI)

simulator for lithium-ion battery cells, to model the emu-Current (A) er than the lithium-ion battery’s cutoff voltageresponse time of lithium-ion battery to changes in current

Park, C S; Liu, J F; Chou, P H

2005-01-01T23:59:59.000Z

356

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

portion of the battery’s total energy capacity is used—knownelectricity from a battery which—(i) has a capacity of notassumed battery mass. Second, energy capacity requirements

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

357

Optimal management of batteries in electric systems  

DOE Patents (OSTI)

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

358

MaintenanceRecords  

NLE Websites -- All DOE Office Websites (Extended Search)

0CE002590 Maintenance Sheet for 2013 Honda Civic CNG Advanced Vehicle Testing Activity HEV Fleet Testing Date Mileage Description Cost 1252013 7,925 Changed oil and filter and...

359

MaintenanceRecords  

NLE Websites -- All DOE Office Websites (Extended Search)

7CE000612 Maintenance Sheet for 2013 Honda Civic CNG Advanced Vehicle Testing Activity HEV Fleet Testing Date Mileage Description Cost 1172013 6,327 Changed oil and filter and...

360

Carlink - A Smart Carsharing System Field Test Report  

E-Print Network (OSTI)

enjoyed driving the Honda CNG Civics, and reported havingLivermore National Laboratory CNG: Compressed natural gasAt LLNL (see first page) b. CNG refueling (see first page)

Shaheen, Susan; Wright, John; Dick, David; Novick, Linda

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

under Clean Cities FOA-DE-PS26-09NT01236, AOI4. Activities include purchase of five CNG factory built vehicles, 2010 Honda Civic GX Sedans. 05 24 2011 Kay L. Kelly Digitally...

362

MaintenanceRecords  

NLE Websites -- All DOE Office Websites (Extended Search)

5CE002486 Maintenance Sheet for 2013 Honda Civic CNG Advanced Vehicle Testing Activity HEV Fleet Testing Date Mileage Description Cost 212013 7,892 Changed oil and filter and...

363

Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use  

E-Print Network (OSTI)

stated “Build more hybrid cars or hydrogen fuel celledmoney to developing hybrid electric cars, mini-vans, SUV's;the Honda Civic Hybrid, are marketed as “green” cars and the

Flamm, Bradley John

2006-01-01T23:59:59.000Z

364

Vehicle Technologies Office: Fact #503: January 28, 2008 EPA...  

NLE Websites -- All DOE Office Websites (Extended Search)

30 MPG or Greater, Model Year 2007 and 2008 CAR LINE COMBINED MPG 2008 Model Year 1 TOYOTA PRIUS 46 2 HONDA CIVIC HYBRID 42 3 CAMRY HYBRID 34 4 NISSAN ALTIMA HYBRID 34 5 TOYOTA...

365

Symbolism and the Adoption of Fuel-Cell Vehicles  

E-Print Network (OSTI)

the most popular HEV, the Toyota Prius, now exceed 100,000Honda Civic Hybrid, or Toyota Prius. In discussion withwere attracted to the Toyota Prius because of its unique

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2007-01-01T23:59:59.000Z

366

Symbolism in California’s Early Market for Hybrid Electric Vehicles  

E-Print Network (OSTI)

speci?c product (Toyota Prius) to a more general class ofcouple regularly assigns the Prius to whoever has the mostthat includes the Toyota Prius and Honda Civic Hybrid. The

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2008-01-01T23:59:59.000Z

367

EERE Template for Microsoft Word Document Landscape Cover and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Civic Hybrid VIN JHMFA36216S019329 Date Mileage Description Cost 7202006 5,230 Changed oil 38.96 822006 5,238 Repair front left fender and radiator support bar (Tom's...

368

SiC Power Module  

NLE Websites -- All DOE Office Websites (Extended Search)

and long-term cost savings. Figure 11.1. The images depicted are a Honda Civic hybrid-electric motor and a fictional Audi electric vehicle from the movie "I Robot." These images...

369

High Rate Performing lithium-ion Batteries - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Rechargeable Batteries and for Supercapacitors, II. Presentation Title, High Rate Performing lithium-ion Batteries.

370

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance: Total miles driven: 68,287 Cumulative MPG: 47.10 * Purchase includes dealer price with options plus taxes. It does not include title, license, registration, extended...

371

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance: Total miles driven: 160,091 Cumulative MPG: 44.98 * Purchase includes dealer price with options plus taxes. It does not include title, license, registration, extended...

372

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.22mile Total Ownership Cost: 1.30mile Operating Performance: Total miles driven: 8,962 Cumulative MPG: 46.38 * Purchase includes dealer price with options...

373

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.12mile Total Ownership Cost: 0.65mile Operating Performance: Total miles driven: 18,612 Cumulative MPG: 49.36 * Purchase includes dealer price with options...

374

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.14mile Total Ownership Cost: 0.79mile Operating Performance: Total miles driven: 15,746 Cumulative MPG: 44.38 * Purchase includes dealer price with options...

375

HEV Fleet Testing - Honda Insight  

NLE Websites -- All DOE Office Websites (Extended Search)

Operating Cost: 0.07mile Total Ownership Cost: 0.29mile Operating Performance: Total miles driven: 145,902 Cumulative MPG: 44.05 Engine: 3-cylinder, 48 kW @ 5700 rpm Electric...

376

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network (OSTI)

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

377

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery")  

E-Print Network (OSTI)

SEXUAL BATTERY/RAPE LAWS (In Florida, "rape" is called "sexual battery") ACCORDING TO FLORIDA LAW: Sexual Battery/ Rape is the:"Oral, anal or vaginal penetration by, or union with a sexual organ is not required to physically fight back. Florida Sexual Battery Statutes: www.leg.state.fl.us/Statutes (Chapter

Meyers, Steven D.

378

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

379

Argonne Software Licensing: Battery Production for ...  

Battery Production for Manufacturing (BatPro) BatPro is a software package that permits you to input any of the hundreds of parameters used anywhere in a battery ...

380

BLE: Battery Life Estimator | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Life Estimator (BLE) software is a state-of-the-art tool kit for fitting battery aging data and for battery life estimation. It was designed to make life-cycle estimates...

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Battery compatibility with photovoltaic charge controllers  

SciTech Connect

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

382

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents (OSTI)

A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-02-10T23:59:59.000Z

383

Intermetallic electrodes for lithium batteries - Energy ...  

This invention relates to intermetallic negative electrode compounds for non-aqueous, electrochemical lithium cells and batteries. More specifically, ...

384

Toward a Na-Ion Battery  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

385

Battery Technology for Hybrid Vehicles Marshall Miller  

E-Print Network (OSTI)

Battery Technology for Hybrid Vehicles Marshall Miller May 13, 2008 H2 #12;Energy Storage Lithium-ion Batteries Battery manufact. Electrode chemistry Voltage range Ah Resist. mOhm Wh/kg W/kg 95 hydride 7.2-5.4 6.5 11.4 46 208 1.04 1.8 #12;Comparisons of Lithium Battery Chemistries Technology type

California at Davis, University of

386

Electrochemically controlled charging circuit for storage batteries  

DOE Patents (OSTI)

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

387

Battery Thermal Modeling and Testing (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

388

Graphene Fabrication and Lithium Ion Batteries Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

389

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture autogenicpressurereactions...

390

Metal-Air Battery - Energy Innovation Portal  

Partially alleviate gas accumulation and cathode consumption issues typical of primary alkaline batteries; Increases mechanical integrity; Suitable ...

391

Lithium Iron Phosphate Composites for Lithium Batteries  

The materials can be added at low cost without changing current scalable cathode ... Lithium Iron Phosphate Composites for Lithium Batteries ...

392

Battery Thermal Management System Design Modeling  

SciTech Connect

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

393

Battery Materials and Electrochemical Processes I - Programmaster ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Mesoscale Computational Materials Science of Energy Materials: Battery Materials and Electrochemical Processes I Sponsored by: TMS ...

394

Electrochemical Shock of Lithium Battery Materials - Programmaster ...  

Science Conference Proceedings (OSTI)

Symposium, Mesoscale Computational Materials Science of Energy Materials. Presentation Title, Electrochemical Shock of Lithium Battery Materials. Author(s) ...

395

Hybrids for Batteries and Fuel Cells  

Science Conference Proceedings (OSTI)

Hybrid Organic: Inorganic Materials for Alternative Energy: Hybrids for Batteries and Fuel Cells Program Organizers: Andrei Jitianu, Lehman College, City ...

396

Ionic liquids for rechargeable lithium batteries  

E-Print Network (OSTI)

M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

397

Stationery Battery Monitoring by Internal Ohmic Measurements  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a viable method of performance monitoring for stationary batteries. These measurements have demonstrated the ability to identify degraded cells and to baseline the general health of a battery. This final report presents the results of a research effort to determine if any correlation exists between battery capacity and internal ohmic measurements. Also, the project sought to provide guidance for consistently obtaining data, using and/or evaluating the data, and a...

2002-12-16T23:59:59.000Z

398

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

such as cycle life and battery cost and battery managementsuch as cycle life and battery cost and battery managementof the battery. The battery size and cost will vary markedly

Burke, Andrew

2009-01-01T23:59:59.000Z

399

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

400

DS1922/DS1923 Battery Gas Gauge  

E-Print Network (OSTI)

Abstract: Tracking remaining available energy is critical for battery-operated equipment. Energy consumption depends on the temperature and usage history of the product. With temperature loggers, this data is largely a byproduct of normal use. This application note shows how to estimate the energy consumed during a mission and how to use the OneWireViewer to maintain a battery "gas gauge " in the memory of the logger. Motivation—The Need to Know The reliability of portable equipment depends on the status of the energy source. The best equipment cannot function properly with a low battery. For rechargeable batteries as in cell phones, sophisticated battery monitors are now the norm. Is there a way to determine the remaining charge of a conventional battery? In the case of a temperature logger, how can one know whether there is enough power for the next mission? Precondition Batteries lose energy over time through self-discharge (aging) and through normal use when the equipment is switched on. Both the rate of battery self-discharge and the energy consumption of a silicon chip strongly depend on the temperature. The higher the temperature, the higher the energy consumption. If one knows the charge of a fresh battery, the temperature history, and the discharge rate during normal use, one has all the data needed to estimate the battery's remaining charge. The initial battery charge, measured in mAh, is found in battery data sheets. The challenging

unknown authors

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network (OSTI)

Transparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo in capillaries. Adv Mater 8:245­247. 24. Kim DK, et al. (2008) Spinel LiMn2O4 nanorods as lithium ion battery voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteries

Cui, Yi

402

Batteries for Vehicular Applications Venkat Srinivasan  

E-Print Network (OSTI)

Office of Technology Transfer Structurally Integrated Composite Cathodes for Lithium-Ion Batteries) to commercial equipment (e.g., backup-power systems and power tools), lithium-ion battery's Advanced Photon Source, researchers load a lithium-ion battery pouch into an insertion device x

Knowles, David William

403

Battery Model for Embedded Systems , Gaurav Singhal  

E-Print Network (OSTI)

Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet.iitd.ernet.in, nnavet@loria.fr Abstract This paper explores the recovery and rate capacity ef- fect for batteries used in embedded systems. It describes the prominent battery models with their advantages and draw- backs

Navet, Nicolas

404

Electrothermal Analysis of Lithium Ion Batteries  

DOE Green Energy (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

405

Adaptive Battery Charge Scheduling with Bursty Workloads  

E-Print Network (OSTI)

1 Adaptive Battery Charge Scheduling with Bursty Workloads Dylan Lexie , Shan Lin, and Jie Wu.wu@temple.edu Abstract--Battery-powered wireless sensor devices need to be charged to provide the desired functionality after deployment. Task or even device failures can occur if the voltage of the battery is low

Wu, Jie

406

Progress in Grid Scale Flow Batteries  

E-Print Network (OSTI)

all necessary requirements for disconnecting means. Section 690-14(C) is added in a separate proposal lead-acid battery (VRLA) or any other types of sealed batteries that may require steel cases for proper reasons. This proposal does not apply to any type of valve regulated lead-acid battery (VRLA) or any other

407

Review of storage battery system cost estimates  

DOE Green Energy (OSTI)

Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

Brown, D.R.; Russell, J.A.

1986-04-01T23:59:59.000Z

408

Battery charging in float vs. cycling environments  

SciTech Connect

In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

COREY,GARTH P.

2000-04-20T23:59:59.000Z

409

Application-level prediction of battery dissipation  

Science Conference Proceedings (OSTI)

Mobile, battery-powered devices such as personal digital assistants and web-enabled mobile phones have successfully emerged as new access points to the world's digital infrastructure. However, the growing gap between device capabilities and battery technology ... Keywords: application-level prediction, battery life estimation, resource-restricted devices

Chandra Krintz; Ye Wen; Rich Wolski

2004-08-01T23:59:59.000Z

410

Plug-In Electric Vehicle Lithium-Ion Battery Cost and Advanced Battery Technologies Forecasts  

Science Conference Proceedings (OSTI)

Batteries are a critical cost factor for plug-in electric vehicles, and the current high cost of lithium ion batteries poses a serious challenge for the competitiveness of Plug-In Electric Vehicles (PEVs). Because the market penetration of PEVs will depend heavily on future battery costs, determining the direction of battery costs is very important. This report examines the cost drivers for lithium-ion PEV batteries and also presents an assessment of recent advancements in the growing attempts to ...

2012-12-12T23:59:59.000Z

411

Battery Performance Monitoring by Internal Ohmic Measurements: Application Guidelines for Stationary Batteries  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a viable method of performance monitoring for stationary batteries. Ohmic measurements have demonstrated the ability to identify degraded cells and to baseline the general health of a battery. This report presents the results of research to correlate battery capacity with internal ohmic measurements. The report provides guidelines to assist users with the implementation of this relatively new battery test technology.

1997-12-31T23:59:59.000Z

412

The aborted Green dam-youth escort censor-ware project in China: A case study of emerging civic participation in China's internet policy-making process  

Science Conference Proceedings (OSTI)

The educated and affluent Internet users in China have posed great threats to the stability and legitimacy of Chinese communist's regime where the access of non-government dominated information become a possibility. To restrain Chinese citizens' access ... Keywords: China, Civic participation, Green dam-youth escort censor-ware project, Internet censorship policy, Thematic analysis

Kenneth C. C. Yang

2011-05-01T23:59:59.000Z

413

25-26). Everyday Creativity as Civic Engagement: A Cultural Citizenship View of New Media. Paper presented at the Communications Policy & Research Forum  

E-Print Network (OSTI)

In the policy imagination, the practice of citizenship has conventionally been separated from entertainment, leisure and consumption activities. This interpretation is based on a traditional but narrow view of the public sphere that focuses on political and civic rights and responsibilities. According to this view, the cultural dimensions of citizenship are usually

Jean Burgess; Marcus Foth; Helen Klaebe

2006-01-01T23:59:59.000Z

414

Survey of rechargeable battery technology  

SciTech Connect

We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

1993-07-01T23:59:59.000Z

415

Phase controlled rectifier circuit for rapidly charging batteries  

SciTech Connect

An improved battery charger circuit for rapidly charging a battery by increasing the rate of battery charge acceptance through periodic battery discharge during the charging process includes a pair of first and second controlled rectifier circuits coupled to an ac source and adapted for coupling to a battery. The first controlled rectifier circuit is rendered conductive during the charging intervals to supply the battery with charge current from the ac source. The second controlled rectifier circuit is rendered conductive during battery discharge intervals to discharge the battery in a substantially lossless manner by conducting battery discharge current through the ac source, thus realizing a highly efficient battery charger.

Steigerwald, R. L.

1981-02-24T23:59:59.000Z

416

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network (OSTI)

as cathode materials for lithium ion battery. ElectrochimicaCapacity, High Rate Lithium-Ion Battery Electrodes Utilizinghours. 1.4 Lithium Ion Batteries Lithium battery technology

Wilcox, James D.

2010-01-01T23:59:59.000Z

417

Advanced batteries for electric vehicle applications  

SciTech Connect

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

418

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network (OSTI)

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

419

Redox flow batteries: a review  

Science Conference Proceedings (OSTI)

Redox flow batteries (RFBs) are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of RFBs with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

Weber, Adam Z. [Lawrence Berkeley National Laboratory (LBNL); Mench, Matthew M [ORNL; Meyers, Jeremy [University of Texas, Austin; Ross, Philip N. [Lawrence Berkeley National Laboratory (LBNL); Gostick, Jeffrey T. [McGill University, Montreal, Quebec; Liu, Qinghua [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

420

Thick-thin battery jar  

Science Conference Proceedings (OSTI)

A battery jar is described comprised of side, end and bottom walls wherein the side and end walls are divided into upper, middle and lower sections with the wall thickness in each section being T, T1 and T2, respectively, wherein T2 is greater than T1 and less than T.

Hardigg, J.S.

1988-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cathode for molten salt batteries  

DOE Patents (OSTI)

A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

Mamantov, Gleb (Knoxville, TN); Marassi, Roberto (Camerino, IT)

1977-01-01T23:59:59.000Z

422

Cathode material for lithium batteries  

DOE Patents (OSTI)

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

423

Promising Magnesium Battery Research at ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

424

Vehicle Battery Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

425

Separators for absorbed electrolyte recombinant batteries  

SciTech Connect

Starved electrolyte gas recombinant batteries are a fast growing segment of the lead-acid market. There is a great deal of development being carried out using the recombinant technology. New batteries of this design have been commercialized this year and more will probably be introduced next year. All of these batteries are sealed so that they can operate above atmospheric pressure, and all of them contain a highly porous, and partially saturated glass microfiber separator. The separator is white, pliable, and ribless. The separator is the key element of these batteries since it permits gas recombination to take place. The recombination of gas within the battery makes it possible to seal the battery. The operation of these batteries is discussed.

Wandzy, K.J.; Taylor, G.W.

1986-07-01T23:59:59.000Z

426

Battery research at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

Thackeray, M.M.

1997-10-01T23:59:59.000Z

427

Routing Protocols to Maximize Battery Efficiency  

E-Print Network (OSTI)

In this paper we propose a routing protocol for wireless ad hoc networks whose nodes are largely battery powered. The battery capacity of the nodes is viewed as a common resource of the system and its use is to be optimized. Results from a previous study on battery management have shown that: (1) pulsed current discharge outperforms constant current discharge, (2) battery capacity can be improved by using a bursty discharge pattern due to charge recovery effects that take place during idle periods, (3) given a certain value of current drawn off the battery, higher current impulses degrade battery performance, even if the percentage of higher current impulses is relatively small. We develop a network protocol based on these findings. This protocol favors routes whose links have a low energy cost. We also distribute multihop traffic in a manner that allows all nodes a good chance to recover their battery energy reserve.

Carla F. Chiasserini; Ramesh R. Rao

2000-01-01T23:59:59.000Z

428

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

2010-08-01T23:59:59.000Z

429

A User Programmable Battery Charging System  

E-Print Network (OSTI)

Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system, have to be replenished or recharged once their energy is depleted. Battery charging systems must perform this replenishment by using very fast and efficient methods to extend battery life and to increase periods between charges. In this regard, they have to be versatile, efficient and user programmable to increase their applications in numerous battery powered systems. This is to reduce the cost of using different battery chargers for different types of battery powered applications and also to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal serial bus (USB) and an energy harvesting system. The proposed charging system consists of three main building blocks, i.e. a pulse charger, a step down DC to DC converter and a switching network system, to extend the number of applications it can be used for. The switching network system is to allow charging of a battery via an energy harvesting system, while the step down converter is used to provide an initial supply voltage to kick start the energy harvesting system. The pulse charger enables the battery to be charged from a wall outlet or a USB network. It can also be reconfigured to charge a Nickel Metal Hydride battery. The final design is implemented on an IBM 0.18µm process. Experimental results verify the concept of the proposed charging system. The pulse charger is able to be reconfigured as a trickle charger and a constant current charger to charge a Li-ion battery and a Nickel Metal Hydride battery, respectively. The step down converter has a maximum efficiency of 90% at an input voltage of 3V and the charging of the battery via an energy harvesting system is also verified.

Amanor-Boadu, Judy M

2013-05-01T23:59:59.000Z

430

Batteries - Next-generation Li-ion batteries Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

431

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

Science Conference Proceedings (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

432

Battery-Aware Power Management Based on Markovian Decision  

E-Print Network (OSTI)

Battery-Aware Power Management Based on Markovian Decision Processes Battery-Aware Power Management of Southern California Nov. 13, 2002 ICCAD-02 OutlineOutline ! Introduction ! Battery Characteristics, Models and Management Policies ! Modeling a Battery-powered Electronic System ! The Proposed Battery-aware Power

Pedram, Massoud

433

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network (OSTI)

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

434

Galvanic battery. [tape wrapping to seal against moisture loss  

SciTech Connect

A galvanic battery comprises rigid battery components and a wrapping of insulating material. The wrapping consists of a length of thin, extensible plastic tape wound in successive laps under lengthwise stretch around the battery and having its outer end secured to a preceeding layer of tape. The tape in combination with the rigid battery components effectively seals the battery against loss of moisture.

Tamminen, P.J.

1962-04-24T23:59:59.000Z

435

Method for the manufacture of lead-acid batteries and an associated apparatus and associated lead-acid battery  

SciTech Connect

A method for the manufacture of lead-acid batteries and associated apparatus and a lead-acid battery design resulting therefrom is disclosed. The method involves providing a battery grid and pasting the grid with a battery paste such that a profiled and tapered battery plate is formed. This battery plate is wrapped onto a coil and cured in curing apparatus. A battery element is formed using coils of the finished plate stock, separator material, and winged end plate. After this, several battery elements are then placed into a battery container. 31 figs.

Wheadon, E.G.; Forrer, L.L.

1994-01-11T23:59:59.000Z

436

Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage  

SciTech Connect

GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

2010-10-01T23:59:59.000Z

437

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

438

Recombination device for storage batteries  

DOE Patents (OSTI)

A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

Kraft, H.; Ledjeff, K.

1984-01-01T23:59:59.000Z

439

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Composite electrodes for lithium batteries.  

DOE Green Energy (OSTI)

The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

1999-02-03T23:59:59.000Z

442

Recombination device for storage batteries  

SciTech Connect

A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

1985-01-01T23:59:59.000Z

443

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

444

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

445

Solar radiation powered battery reclaimer and charger  

SciTech Connect

A solar powered battery reclaiming and charging circuit is provided having a high frequency section (a bistable multi-vibrator, relaxation blocking bistable multi-vibrator or an oscillator inverter circuit) which is solar powered and output coupled by a close coupled RF transformer to the battery connected output section. The transformer has a secondary winding producing a current-voltage full wave output sharply defined through a two diode rectifying circuit to a multi-frequency 10 KHz to 100 KHz pulse output. The sharp pulse outputs with RF content in the 2--10 megahertz frequency range have specific frequencies equal to natural resonant frequencies of the specific electrolytes used in respective batteries. These resulting high frequency RF output signals in each pulse envelope structure are capable of reclaiming, maintaining and charging batteries that possess a liquid electrolyte or jell electrolyte and are beneficial to dry cell batteries as well in extending battery life. 9 figs.

Gali, C.E.

1994-01-04T23:59:59.000Z

446

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

447

California Lithium Battery, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

448

Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

2013-06-01T23:59:59.000Z

449

Primer on lead-acid storage batteries  

DOE Green Energy (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

450

Batteries for Electric Drive Vehicles - Status 2005  

Science Conference Proceedings (OSTI)

Commercial availability of advanced battery systems that meet the cost, performance, and durability requirements of electric drive vehicles (EDVs) is a crucial challenge to the growth of markets for these vehicles. Hybrid electric vehicles (HEVs) are a subset of the family of EDVs, which include battery electric vehicles (BEVs), power assist hybrid electric vehicles, plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles. This study evaluates the state of advanced battery technology, presents u...

2005-11-29T23:59:59.000Z

451

Control circuit for automatic battery chargers  

SciTech Connect

An improved battery charger apparatus having a control circuit providing different charging periods which are automatically correlated with the type of battery connected to the charge for charging the connected battery to a preselected full charge state. The apparatus has a charging circuit for charging the battery, a sensing circuit for sensing the state of the battery during charging thereof by the charging circuit and a circuit for determining first and second predetermined reference voltage/current states. The apparatus causes the charging of the battery at a preselected initial charging level for an initial time period and establishes a first finish time period. The apparatus further determines a first time at which the state of the battery reaches the first predetermined referenced voltage/current state during the initial time period, and causes the charging circuit to continue to charge the battery at a preselected first charging level after the determination of the first time for a first finish time period. The apparatus further establishes a second finish time period and determines a second time at which the state of the battery reaches the second predetermined referenced voltage/current state during the first finish time period. The apparatus terminates charging of the battery if the state of the battery does not reach the second predetermined referenced voltage/current state during the first finish time period, and causes the charging circuit to continue to charge the battery at a preselected second charging level after the determination of the second time for a second finish time period.

Lambert, F.J.; Bosack, D.J.; Johansen, D.K.

1984-05-22T23:59:59.000Z

452

Zhuhai Hange Battery Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhuhai Hange Battery Tech Co Ltd Jump to: navigation, search Name Zhuhai Hange Battery Tech Co, Ltd Place China Product ZhuHai City - based maker of Lithium Polymer batteries....

453

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network (OSTI)

Miller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology andAltairnano EIG Lithium-ion battery modules available for

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

454

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

battery” since lithium ions migrate back and forth between the anode and cathodelithium ions batteries. 54 This battery, which consists of mesocarbon microbeads (MCMB) anode and MoO y S z cathode

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

455

Constructing battery-aware virtual backbones in wireless sensor networks  

Science Conference Proceedings (OSTI)

A critical issue in battery-powered sensor networks is to construct energy efficient virtual backbones for network routing. Recent study in battery technology reveals that batteries tend to discharge more power than needed and reimburse the overdischarged ...

Chi Ma; Yuanyuan Yang; Zhenghao Zhang

2007-01-01T23:59:59.000Z

456

B#: A battery emulator and power-profiling instrument  

E-Print Network (OSTI)

Batter- ies,” Proc. 12th Ann. Battery Conf. Applications andal. , “A Discrete-Time Battery Model for High- Level Power6. D. Panigrahi et al. , “Battery Life Estimation for Mobile

Park, C S; Liu, J F; Chou, P H

2005-01-01T23:59:59.000Z

457

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network (OSTI)

of a Lithium-Polymer Battery. J. Power Sources 2006, 163,of a Lithium-Polymer Battery. J. Power Sources 2008, 180,Up of a Lithium-Ion Polymer Battery. J. Power Sources 2009,

Liu, Jun

2010-01-01T23:59:59.000Z

458

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network (OSTI)

This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

Toksoz, Tuna

459

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network (OSTI)

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

460

Learning policies for battery usage optimization in electric vehicles  

Science Conference Proceedings (OSTI)

The high cost, limited capacity, and long recharge time of batteries pose a number of obstacles for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery with supercapacitors are currently one of the most ...

Stefano Ermon; Yexiang Xue; Carla Gomes; Bart Selman

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Bayesian nonparametric approach to modeling battery health  

E-Print Network (OSTI)

The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

Doshi-Velez, Finale

462

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

2 and 10 seconds Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

463

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

at higher SOC. Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

464

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

2 and 10 seconds Fourth, battery cost is cited as one of thegeneral, current advanced battery costs range from $800/kWhpersists that battery technology and cost remain as barriers

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

465

Battery aware dynamic scheduling for periodic task graphs  

Science Conference Proceedings (OSTI)

Battery lifetime, a primary design constraint for mobile embedded systems, has been shown to depend heavily on the load current profile. This paper explores how scheduling guidelines from battery models can help in extending battery capacity. It then ...

Venkat Rao; Nicolas Navet; Gaurav Singhal; Anshul Kumar; G. S. Visweswaran

2006-04-01T23:59:59.000Z

466

Three-dimensional batteries using a liquid cathode  

E-Print Network (OSTI)

of 100mM LiS 12 battery Capacity loss due to coulombicof 0.899 cm –2 . All battery capacity and energy densitycathode. 56 This battery displays capacities of 8.93 mA·h·

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

467

Battery Performance Monitoring by Internal Ohmic Measurements: Emergency Lighting Unit Batteries  

Science Conference Proceedings (OSTI)

Battery internal ohmic measurements offer a less expensive and technically superior alternative to the 8-hour discharge test, now required to demonstrate capacity. This report documents the initial results of internal ohmic testing on three emergency battery lighting (EBL) unit types used in nuclear power plants. In two of the three EBL unit types tested, internal ohmic measurements could replace battery capacity discharge tests.

1996-12-01T23:59:59.000Z

468

Organic Materials for Electrodes in Rechargeable Batteries  

Science Conference Proceedings (OSTI)

Phase Change Thermal Energy Storage and Recovery in a Complex-Shaped Double Pipe Heat Exchanger · Sodium Sulfur (NaS) Battery Research in Korea: ...

469

Li-ion Batteries and Beyond  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... Energy Nanomaterials: Li-ion Batteries and Beyond Sponsored by: The Minerals, Metals and Materials Society, TMS Materials Processing and ...

470

Ultracapacitors and Batteries in Hybrid Vehicles  

DOE Green Energy (OSTI)

Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

2005-08-01T23:59:59.000Z

471

Electrothermal Battery Pack Modeling and Simulation.  

E-Print Network (OSTI)

??Much attention as been given to the study of Li-Ion batteries for their use in automotive applications such as Hybrid Electric Vehicles (HEV), Plug In… (more)

Yurkovich, Benjamin J.

2010-01-01T23:59:59.000Z

472

Ambient Operation of Li/Air Batteries  

Science Conference Proceedings (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

473

Energy Storage & Battery | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

in Electrochemical Devices Composite Electrodes for Rechargeable Lithium-Ion Batteries Device and Method for Fluidizing and Coating of Ultrafine Particles Economical...

474

Storage battery and method of manufacturing  

Science Conference Proceedings (OSTI)

This patent describes a storage battery. It comprises a battery case having a top, a bottom, a pair of side walls, and a pair of end walls; parallel partitions within the battery case extending from one side wall to the opposite wall to divide the battery case into a plurality of fluid tight cells; spaced, parallel rest ups extending upward from the bottom of the battery case and perpendicular to the partitions to form receptacles between the rest ups and the side walls; stacks of positive and negative battery plates, one stack being located in each cell and having a lower edge resting on the rest ups within the cell; clips, wherein one clip is attached to each end of the lower edge of each stack, each clip is located in a receptacle, and one of the clips on each stack is in electrical contact with the positive plates in the stack and the other clip on each stack is in electrical contact with the negative plates in the stack; electrically conductive contacts, each contact extending through a partition at alternate ends of the partitions to provide electrical paths between clips in adjacent pairs of receptacles; a pair of terminals extending through the battery case; a pair of electrically conductive straps, each strap extending between one of the terminals and one of the clips attached to the stack in one of the cells; and an electrolytic solution within the battery case in contact with the battery plates.

Eberle, W.J.

1991-03-19T23:59:59.000Z

475

Surface Modification Agents for Lithium Batteries  

Increased safety and life of lithium-ion batteries, ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

476

Lithium-Ion Batteries - Energy Innovation Portal  

Understanding the impact of hot and cold domains on ion transport within the battery can lead to significant ... This model takes into account cell .. ...

477

Battery testing at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

478

Batteries for energy storage: part 2  

SciTech Connect

Explores 4 large battery RandD programs. Two are individual electrochemical systems for electric utility energy storage: zinc-chlorine and sodium sulfur. The third is a high-temperature battery, lithium-iron sulfide, which is expected to be applicable in electric vehicles. Reviews the nearer term EV battery development programs, which include zinc-nickel oxide, iron-nickel oxide, and lead-acid batteries. Suggests that batteries appear to be an ideal companion to coal- and nuclear power-derived electrical energy, to play a key role in electrical generation and distribution networks and to power vehicles. Batteries could augment solarderived electrical energy to attain continuity and reliability of power. Battery systems now under development represent a broad range of possible approaches encompassing extremes of the periodical table, a wide variety of operating temperatures, and limitless design concepts. Along with substantial international emphasis on battery development, this range of approaches suggests that one or more candidate systems can be demonstrated to have commercial viability. While commercial viability can be demonstrated, actual implementation will be deterred by high capital cost, substantial commercialization costs, and buyer reluctance. Concludes that because oil has an unstable future, legislation or regulation coupled with personal inconvenience (rationing or waiting in gas lines) can override the economics of utility battery energy storage.

Douglas, D.L.; Birk, J.R.

1983-02-01T23:59:59.000Z

479

DOE battery program for weapon applications  

SciTech Connect

This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

Clark, R.P.; Baldwin, A.R.

1992-11-01T23:59:59.000Z

480

DOE battery program for weapon applications  

SciTech Connect

This report discusses the Department of Energy (DOE) Weapons Battery program which originates from Sandia National Laboratories (SNL) and involves activities ranging from research, design and development to testing, consulting and production support. The primary customer is the DOE/Office of Defense Programs, although work is also done for various Department of Defense agencies and their contractors. The majority of the SNL activities involve thermal battery (TB) and lithium ambient temperature battery (LAMB)technologies. Smaller efforts are underway in the areas of silver oxide/zinc and nickel oxide/cadmium batteries as well as double layer capacitors.

Clark, R.P.; Baldwin, A.R.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "honda civic battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Microsoft Word - Vehicle Battery EA_BASF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lithium-ion battery industry and, more specifically, the electric drive vehicle (EDV) and hybrid-electric vehicle industry (HEV). If approved, DOE would provide approximately 50...

482

Lithium Ion Batteries: Materials Processing and Mechanical ...  

Science Conference Proceedings (OSTI)

Assessing Cast Alloys for Use in Advanced Ultra-supercritical Steam Turbines · Cathode/Anode Selection and Full Cell Performance for Stationary Li-ion Battery

483

Flow, Li-Air, and Other Batteries  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Large-scale energy storage technologies like redox flow batteries have been sought for renewable integration and smart grid applications.

484

Tutorial Luncheon: Advanced Rechargeable Batteries: A Materials ...  

Science Conference Proceedings (OSTI)

Batteries for these applications need to satisfy a range of requirements, including high energy density, low materials and processing costs, and avoidance of ...

485

Available Technologies: Battery Electrode Materials Based on ...  

Lower cost; Durable; Compatible with lithium ... they could also be developed as lower cost electrodes for the high capacity lithium-ion batteries ...

486

Argonne Software Licensing: Battery Life Estimation Software  

Battery Life Estimation. Rising gasoline and diesel fuel prices have resulted in a resurgence of interest in hybrid electric and plug-in hybrid ...

487

Batteries with Orthorhombic Sodium Manganese Oxide Cathodes  

Berkeley National Laboratory researchers have discovered a low-cost, low-toxicity manganese oxide for rechargeable lithium and sodium batteries.

488

Lower Cost, Nanoporous Block Copolymer Battery Separator ...  

Although the polyolefin polymer material often used for lithium battery separators costs approximately $1.30/kg, the difficult process used to make it ...

489

High Energy Density Secondary Lithium Batteries  

High Energy Density Secondary Lithium Batteries Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

490

Battery Hardware-in-the-Loop (HIL)  

NLE Websites -- All DOE Office Websites (Extended Search)

optimized for PHEV operation, while also meeting the market expectations for cost and battery life. Objective Engineers in Argonne National Laboratory's Center for Transportation...

491

Vehicle Battery Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and...

492

Lithium Polymer (LiPo) Battery Usage Lithium polymer batteries are now being widely used in hobby and UAV applications. They work  

E-Print Network (OSTI)

Lithium Polymer (LiPo) Battery Usage 1 Lithium polymer batteries are now being widely used in hobby nickel metal and ni-cad batteries. But with this increase in battery life come potential hazards. Use batteries with a battery charger specifically designed for lithium polymer batteries. As an example, you

Langendoen, Koen

493

Rechargeable battery with separate charging terminal contact ring  

SciTech Connect

A generally cylindrical rechargeable battery is provided leaving a pair of power terminals for delivering energy to an energy-using device. The battery further includes a charging terminal contact spaced apart from the power terminals and extending substantially around the circumference of the battery whereby charging contact on the battery may engage a corresponding charging contact in the energy-using device to charge the battery in all rotational positions of the battery.

Beachy, R. W.

1984-12-18T23:59:59.000Z

494

Rembolsos de Impestos Federales para VehĂ­culos de Combustible Alternativo  

NLE Websites -- All DOE Office Websites (Extended Search)

Rembolsos de Impestos Federales para Rembolsos de Impestos Federales para Vehíclulos de Combustibles Alternativos ¡Rembolsos de Impuestos Federales de hasta $4000! Vehíclulo de Combustibles Alternativo Vehículos de combustible alternativo (AFV) que califican que fueron comprados ó puestos en servicio entre Enero 1, 2005 y Diciembre 31, 2010 podrían ser elegibles para un rembolso de impuesto federal de hasta $4,000. Vehículos Combustible Alternativo (VCA) Certificados para Rembolsos de Impuestos Federales Modelo y Marca de Vehículo Combustible Cantidad del Reembolso Honda Honda Civic GX 2005-11 Honda Civic GX CNG $4,000 Fuentes: American Honda Motor Company, Inc - Automóviles de Combustible Alternativos Elegibles (IRS, 5 de octubre del 2010) Vehículos Honda Certificados para funcionar con Gas Natural Comprimido

495

Building Technologies Office: Battery Chargers and External Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

496

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to...

497

Energy and Materials Issues That Affect Electric Vehicle Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

leaching processes on the spent battery (without smelting). Argonne has published several papers on Ni-MH batteries. Energy and Materials Issues That Affect Electric Vehicle...

498

Environmental Assessment of Li-CNT Battery Production  

Science Conference Proceedings (OSTI)

These batteries are expected to be widely used in hybrid-cars, satellites, and cellphones to extend battery lifetime, decrease power consumption, offer weight ...

499

Building Technologies Office: Battery Chargers and External Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies...

500

Anodes Improve Safety and Performance in Lithium-ion Batteries ...  

Rechargeable lithium-ion batteries have become the battery of choice for everything from cell phones to electric cars, but there is still much room ...