Sample records for honda civic battery

  1. AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results The Vehicle...

  2. 2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  3. Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid

    SciTech Connect (OSTI)

    Sally (Xiaolei) Sun; Tyler Gray; Pattie Hovorka; Jeffrey Wishart; Donald Karner; James Francfort

    2012-08-01T23:59:59.000Z

    The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of a battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.

  4. Honda Civic fact sheet

    SciTech Connect (OSTI)

    NREL

    1999-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). The National Renewable Energy Laboratory (NREL) has been directed to conduct projects to evaluate the performance and acceptability of light-duty AFVs. This fact sheet describes the test results on 1998 Honda Civics: one dedicated CNG and a gasoline model as closely matched as possible.

  5. AVTA: 2013 Honda Civic HEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Honda Civic HEV (a hybrid electric vehicle).

  6. AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Civic hybrid electric vehicle with an advanced experimental ultra-lead acid battery, an experimental vehicle not for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  7. Development and Testing of an UltraBattery-Equipped Honda Civic

    SciTech Connect (OSTI)

    Donald Karner

    2012-04-01T23:59:59.000Z

    The UltraBattery retrofit project DP1.8 and Carbon Enriched project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy (DOE) and the Advanced Lead Acid Battery Consortium (ALABC), are to demonstrate the suitability of advanced lead battery technology in Hybrid Electrical Vehicles (HEVs).

  8. AVTA: 2012 CNG Honda Civic Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2012 Compressed Natural Gas Honda Civic GX. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  9. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  10. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  12. Thermal Evaluation of the Honda Insight Battery Pack: Preprint

    SciTech Connect (OSTI)

    Zolot, M.D.; Kelly, K.; Keyser, M.; Mihalic, M.; Pesaran, A.; Hieronymus, A.

    2001-06-18T23:59:59.000Z

    The hybrid vehicle test efforts at National Renewable Energy Laboratory (NREL), with a focus on the Honda Insight's battery thermal management system, are presented. The performance of the Insight's high voltage NiMH battery pack was characterized by conducting in-vehicle dynamometer testing at Environmental Testing Corporation's high altitude dynamometer test facility, on-road testing in the Denver area, and out-of-car testing in NREL's Battery Thermal Management Laboratory. It is concluded that performance does vary considerably due to thermal conditions the pack encounters. The performance variations are due to both inherent NiMH characteristics, and the Insight's thermal management system.

  13. Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses

    SciTech Connect (OSTI)

    James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

    2006-02-01T23:59:59.000Z

    This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

  14. 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  15. 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  16. 2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  17. 2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS

    SciTech Connect (OSTI)

    Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

    2014-09-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

  18. Battery Usage and Thermal Performance of the Toyota Prius and Honda Insight for Various Chassis Dynamometer Test Procedures: Preprint

    SciTech Connect (OSTI)

    Kelly, K. J.; Mihalic, M.; Zolot, M.

    2001-11-20T23:59:59.000Z

    This study describes the results from the National Renewable Energy Laboratory's (NREL) chassis dynamometer testing of a 2000 model year Honda Insight and 2001 model year Toyota Prius. The tests were conducted for the purpose of evaluating the battery thermal performance, assessing the impact of air conditioning on fuel economy and emissions, and providing information for NREL's Advanced Vehicle Simulator (ADVISOR).

  19. Honda Transmission Technical Center

    High Performance Buildings Database

    Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

  20. AVTA: Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013-2014 Volkswagen Jetta2013 Ford C-Max2013 Chevrolet Malibu2013 Honda Civic2011 Hyundai Sonata2011 Honda CRZ2010 Honda Civic with Advanced Experimental Ultra Lead Acid Battery2010 Mercedes...

  1. Honda Research Institute USA, Inc. http://www.honda-ri.com

    E-Print Network [OSTI]

    Thrun, Sebastian

    Honda Research Institute USA, Inc. http://www.honda-ri.com Call For 2006 Summer Interns The computer science research section of Honda Research Institute USA (HRI-US), located in Mountain View internship will produce working concepts as well as publications, under close collaboration with Honda

  2. Space-Time Stereo James DavisJames Davis Honda Research InstituteHonda Research Institute

    E-Print Network [OSTI]

    O'Brien, James F.

    Space-Time Stereo James DavisJames Davis ­­ Honda Research InstituteHonda Research Institute Ravi ­­ Princeton UniversityPrinceton University DiegoDiego NehabNehab ­­ Honda & PrincetonHonda & Princeton

  3. Mr. Junya Honda1 University of Tokyo

    E-Print Network [OSTI]

    Lin, Xiaodong

    Mr. Junya Honda1 University of Tokyo Friday, July 6th - Time: 1:00 pm 1 Washington Park #1027, such as the family of distributions on the bounded support [0,1]. 1 Junya Honda is a Ph

  4. ON THE HONDA -KANEKO CONGRUENCES P. GUERZHOY

    E-Print Network [OSTI]

    Guerzhoy, Pavel

    ON THE HONDA - KANEKO CONGRUENCES P. GUERZHOY Let q = exp(2i) with () > 0. Consider the Eisenstein several years ago as a result of numerical experiments. In a recent paper by Honda and Kaneko [6

  5. AVTA: 2010 Honda Insight HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Honda Insight hybrid-electric vehicle. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  6. Multiparty Asynchronous Session Types Kohei Honda

    E-Print Network [OSTI]

    Gay, Simon

    Multiparty Asynchronous Session Types Kohei Honda Queen Mary, University of London kohei 2005; Honda et al. 1998; Bonelli and Compagnoni 2008), higher- order processes (Mostrous and Yoshida. 2006, 2007; WS-CDL; Sparkes 2006; Honda et al. 2007a). A basic observation underlying session types

  7. Mike Singleton 65.910 64.338 64.972 65.251Honda S2000 64.338 1616 53.272 Steve Singleton 75.347 73.033 74.939 70.716Honda S2000 70.716 5864 N2 58.553

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    AS Mike Singleton 65.910 64.338 64.972 65.251Honda S2000 64.338 1616 53.272 Steve Singleton 75.347 73.033 74.939 70.716Honda S2000 70.716 5864 N2 58.553 Class Average : 67.527 PAX Multiplier : .828 BS.808Scion xA 71.808 40661 1 55.795 Cory Toyama 82.421 77.158 76.448 75.498Honda Civic 75.498 5977 58

  8. Test Drive: Honda FCX Clarity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drive: Honda FCX Clarity Test Drive: Honda FCX Clarity May 14, 2010 - 10:52am Addthis A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S....

  9. Mike Singleton 60.668 55.746 54.084Honda S2000 54.084 22 44.782 Hiroki Shuto 69.074 65.127 61.303Porsche Boxter S 61.303 29331 50.759

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    AS Mike Singleton 60.668 55.746 54.084Honda S2000 54.084 22 44.782 Hiroki Shuto 69.074 65.127 61.474 Cory Toyama 70.152 66.236 64.654Honda Civic 64.654 26481 50.236 Class Average : 61.651 PAX Multiplier Taro Nobusawa 76.593 63.168 DNFToyota FX-16 63.168 35421 51.924 Gary Kitagawa 67.865 65.217 63.362Honda

  10. Mike Singleton 70.370 68.628 66.695 66.937Honda S2000 66.695 19181 1 55.223 Hiroki Shuto 74.628 72.618 71.212 70.129Porsche Boxter S 70.129 3741 58.067

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    AS Mike Singleton 70.370 68.628 66.695 66.937Honda S2000 66.695 19181 1 55.223 Hiroki Shuto 74.397 56741 60.137 Cory Toyama 85.030 93.469 89.077 82.222Honda Civic 82.222 7588 63.886 Philip Adam Tansey 66.697 David Akimoto DNF DNF 90.934 88.088Honda Odyssey 88.088 93971 68.444 Class Average : 80

  11. HONDA-TATE THEOREM FOR ELLIPTIC CURVES MIHRAN PAPIKIAN

    E-Print Network [OSTI]

    Papikian, Mihran

    HONDA-TATE THEOREM FOR ELLIPTIC CURVES MIHRAN PAPIKIAN 1. Introduction These are the notes from the 2011-12 academic year. Tate's isogeny theorem over finite fields, and the related Honda-Tate theorem theorem and Honda-Tate theorem for elliptic curves, and then to prove these theorems using only tools from

  12. THE THEOREM OF HONDA AND TATE KIRSTEN EISENTRAGER

    E-Print Network [OSTI]

    Eisentraeger, Kirsten

    THE THEOREM OF HONDA AND TATE KIRSTEN EISENTR¨AGER 1. Motivation Consider the following theorem the isomorphism classes of simple objects and, for each class, the endomorphism algebra. The theorems of Honda(F). #12;THE THEOREM OF HONDA AND TATE 3 Lemma 3.2. If R and S are central simple algebras over F, then so

  13. A Uniform Type Structure for Secure Information KOHEI HONDA

    E-Print Network [OSTI]

    Gay, Simon

    A Uniform Type Structure for Secure Information Flow KOHEI HONDA Queen Mary, University of London . . . . . . . . . . . . . . . . . 13 Author's address: K. Honda, Department of Computer Science, Queen Mary, University of London, Mile, Vol. TBD, No. TDB, Month Year, Pages 1--83. #12; 2 · Kohei Honda and Nobuko Yoshida 2.5 Linear

  14. A Uniform Type Structure for Secure Information KOHEI HONDA

    E-Print Network [OSTI]

    Honda, Kohei

    A Uniform Type Structure for Secure Information Flow KOHEI HONDA Queen Mary, University of London . . . . . . . . . . . . . . . . . 13 Author's address: K. Honda, Department of Computer Science, Queen Mary, University of London, Mile. TBD, No. TDB, Month Year, Pages 1­83. #12;2 · Kohei Honda and Nobuko Yoshida 2.5 Linear/Affine Typing

  15. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  16. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  17. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charge Grid Impacts with Renewables and Energy Storage AVTA: Bidirectional Fast Charging Report AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  18. Study of Li-ion Cell Formation Parameters using "Gen3" Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Summary Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  19. Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    previously completed EoL battery testing on two Gen I Prius, two Gen I Civic, and two Honda Insight HEVs - Collected fuel economy, maintenance, depreciation, operations...

  20. AVTA: Honda Insight HEV 2010 Testing Results | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    The following reports describe results of testing done on a 2010 Honda Insight hybrid-electric vehicle. The baseline performance testing provides a point of comparison...

  1. AVTA: 2011 Honda CRZ HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

  2. Honda Engineering Corporation Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania: Energy Resources Jump to:Hon Hai PrecisionHonda

  3. COGS 300 Notes March 11, 2014 Today's "Fun" Example: Honda's ASIMO Robot

    E-Print Network [OSTI]

    Woodham, Robert J.

    COGS 300 Notes March 11, 2014 Today's "Fun" Example: Honda's ASIMO Robot Honda unvealed the newest at http://www.youtube.com/watch?v=lvruMLGiAdI For more video examples, go to http://asimo.honda.com/ Key by 3 km/hour from previous model) Example: Honda's ASIMO Robot (cont'd) The Asimo humanoid robot has

  4. Fleet Testing Advanced Vehicle Testing Activities - 2010 Honda...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Testing Activity Maintenance Sheet for 2010 Honda Insight LX VIN JHMZE2H59AS011748 HEV Fleet Testing Date Mileage Description Cost 842009 5,752 Changed oil and filter...

  5. Secretary Chu to Join Representatives Lofgren and Honda at the...

    Broader source: Energy.gov (indexed) [DOE]

    Lofgren and Honda at the SLAC National Accelerator Laboratory The World's First Free-Electron X-ray Laser Secretary Chu Dedicates World's Most Powerful X-ray Laser Energy...

  6. AVTA: 2010 Honda CR-Z Hybrid Downloadable Dynamometer Database...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Argonne National Laboratory under the funding and guidance of the U.S. Department of Energy (DOE). Honda CR-Z Hybrid (2010) More Documents & Publications AVTA: 2012 Chevrolet...

  7. Timberwolves men's basketball face final preseason test PRINCE GEORGE, BC -Men's basketball finish exhibition competition this weekend at the UFV Honda

    E-Print Network [OSTI]

    Northern British Columbia, University of

    exhibition competition this weekend at the UFV Honda Way tournament in Abbotsford, BC. The Honda Way Men

  8. TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY

    E-Print Network [OSTI]

    Viaclovsky, Jeff

    TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY Abstract. We show that Foundation under grant DMS-1105187. Mathematics Subject Classification (2010) 53A30. 1 #12;2 NOBUHIRO HONDA

  9. ON THE FLUX OF PSEUDO-ANOSOV HOMEOMORPHISMS VINCENT COLIN, KO HONDA, AND FRANC OIS LAUDENBACH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ON THE FLUX OF PSEUDO-ANOSOV HOMEOMORPHISMS VINCENT COLIN, KO HONDA, AND FRANC¸ OIS LAUDENBACH HONDA, AND FRANC¸ OIS LAUDENBACH h(Fs , µs ) = (Fs , 1 µs ) and h(Fu , µu ) = (Fu , µu

  10. REMARQUES SUR LE MMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    621 REMARQUES SUR LE MÉMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME. 11 est facile de voir que le plissement des courbes d'aimantation et d'allongement constaté par MM. Nagaoka et Honda et Honda indique un point singulier des alliages, ou s'il s'agit d'un fait fortuit. J'ajou- terai que

  11. A computerassisted study of the LandauNakanishi Naofumi HONDA and Takahiro KAWAI

    E-Print Network [OSTI]

    RIMS­1780 A computer­assisted study of the Landau­Nakanishi geometry By Naofumi HONDA and Takahiro; A computer­assisted study of the Landau­Nakanishi geometry By Naofumi Honda # and Takahiro Kawai ## § 1 Key Words y y # y y ## y y y #12; 2 Naofumi Honda and Takahiro Kawai The incidence number [j : r

  12. American Honda Foundation Since 1984, more than $25 million has been awarded to organizations serving approximately

    E-Print Network [OSTI]

    Berdichevsky, Victor

    American Honda Foundation Since 1984, more than $25 million has been awarded to organizations by American Honda Motor Co., Inc., to commemorate its 25th anniversary in the United States and to show its appreciation of America's support through the years. It is Honda's desire that in every community in which

  13. Grant Title: AMERICAN HONDA FOUNDATION GRANTS Funding Opportunity Number: N/A

    E-Print Network [OSTI]

    Farritor, Shane

    Grant Title: AMERICAN HONDA FOUNDATION GRANTS Funding Opportunity Number: N/A Agency/Department: American Honda Foundation. Area of Research: Youth and scientific education. Release and Expiration: N list of eligible applicants. Summary: The American Honda Foundation engages in grant making

  14. Varits abliennes sur les corps finis: thorme de Tate et classification de Honda-Tate

    E-Print Network [OSTI]

    Wittenberg, Olivier

    Variétés abéliennes sur les corps finis: théorème de Tate et classification de Honda-Tate Olivier Wittenberg 5 décembre 2001 Résumé Le but de cet exposé est de montrer (suivant Tate et Honda) que les classes polynôme minimal sur Q. Le théorème que l'on se propose de démontrer est le suivant. Théorème 1.0.2 (Honda

  15. A computer-assisted study of the Landau-Nakanishi Naofumi HONDA and Takahiro KAWAI

    E-Print Network [OSTI]

    RIMS-1780 A computer-assisted study of the Landau-Nakanishi geometry By Naofumi HONDA and Takahiro computer-assisted study of the Landau-Nakanishi geometry By Naofumi Honda and Takahiro Kawai § 1;2 Naofumi Honda and Takahiro Kawai The incidence number [j : r] for a pair of a vertex Vj and an external

  16. REMARQUES SUR LE TRAVAIL DE MM. NAGAOKA ET HONDA ; Par M. CH.-D. GUILLAUME

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    633 REMARQUES SUR LE TRAVAIL DE MM. NAGAOKA ET HONDA ; Par M. CH.-ÉD. GUILLAUME Les recherches de MM. Nagaolia et Honda sur la inagnéto- striction donnent lieu à deux genres de remarques : les unes que pour une proportion insignifiante dans les résultats énoncés par MM. Nagaoka et Honda, et que les

  17. Quick transport of primary produced organic carbon to the ocean M. C. Honda,1

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    Quick transport of primary produced organic carbon to the ocean interior M. C. Honda,1 H. Kawakami±10%,whichissignificantly higher than that in other oceans. Citation: Honda, M. C., H. Kawakami, K. Sasaoka, S. Watanabe at 150 m that is ca. 50 m below the late winter mixed layer at station K2 (M. C. Honda, unpublished data

  18. Synthesis of Metal-Alloy-Coated Nanowires toward Functional Scanning Probe Microscope Hirofumi KONISHI, Shin-ichi HONDA

    E-Print Network [OSTI]

    Hasegawa, Shuji

    KONISHI, Shin-ichi HONDA Ã , Masaru KISHIDA, Yuya MURATA, Tatsuro YASUDA, Daisuke MAEDA, Kazuhiro TOMITA

  19. Extracting Interpretable Fuzzy Rules from RBF Networks Yaochu Jin (yaochu.jin@hre-ftr.f.rd.honda.co.jp)

    E-Print Network [OSTI]

    Jin, Yaochu

    Extracting Interpretable Fuzzy Rules from RBF Networks Yaochu Jin (yaochu.jin@hre-ftr.f.rd.honda.co.jp) Future Technology Research, Honda R&D Europe(D), 63073 Offenbach/Main, Germany Bernhard Sendhoff (bernhard.sendhoff@hre-ftr.f.rd.honda.co.jp) Future Technology Research, Honda R&D Europe(D), 63073

  20. The Religious Foundations of Civic Virtue 

    E-Print Network [OSTI]

    Maloyed, Christie Leann

    2011-10-21T23:59:59.000Z

    virtue, the place of religious virtues among the civic tradition, and the tensions between using religion to promote civic virtue while protecting individual religious liberty. In the Scottish Enlightenment, I examine the influence of Francis Hutcheson’s...

  1. REMARQUES SUR LE MMOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME.

    E-Print Network [OSTI]

    Boyer, Edmond

    621 REMARQUES SUR LE M�MOIRE DE MM. NAGAOKA ET HONDA; Par CH.-ED. GUILLAUME. 11 est facile de voir que le plissement des courbes d'aimantation et d'allongement constaté par MM. Nagaoka et Honda et Honda indique un point singulier des alliages, ou s'il s'agit d'un fait fortuit. J'ajou- terai que

  2. Test Results and Modeling of the Honda Insight Using ADVISOR: Preprint

    SciTech Connect (OSTI)

    Kelly, K. J.; Zolot, M. (National Renewable Energy Laboratory); Glinsky, G.; Hieronymus, A. (Environmental Testing Corporation)

    2001-08-01T23:59:59.000Z

    Paper describing a series of chassis dynamometer and road tests that NREL conducted on the 2000 model-year Honda Insight.

  3. Service-Learning & Student Civic Engagement

    E-Print Network [OSTI]

    Service-Learning & Student Civic Engagement: Journeys toward Discovery, Contribution & Civic is service-learning? Intentional student engagement that combines community service with academic instruction and/or co-curricular learning that is focused on critical, reflective thinking and civic

  4. CIVIC LEADERSHIP www.pdx.edu/hatfieldschool/

    E-Print Network [OSTI]

    CIVIC LEADERSHIP www.pdx.edu/hatfieldschool/ civic_leadership_minor_info.html Minor Offered: Civic Leadership Sponsored by the: Mark O. Hatfield School of Government Public Administration Division College Leadership minor consists of 34 required credit hours drawn from more than 20 courses throughout the campus

  5. The Honda Point Disaster was the largest peacetime loss of U.S. Navy ships. On the evening

    E-Print Network [OSTI]

    Clarke, Keith

    1 The Honda Point Disaster was the largest peacetime loss of U.S. Navy ships. On the evening of September 8, 1923, seven destroyers, while traveling at 20 knots (37 km/h), ran aground at Honda Point not to slow down. · The dead reckoning was wrong, and the mistakes were fatal. #12;2 #12;3 Honda Point #12;

  6. Symbolism in California’s Early Market for Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2008-01-01T23:59:59.000Z

    that includes the Toyota Prius and Honda Civic Hybrid.The Honda Insight, which Tony deems ‘‘wimpy, ugly, Fig. 2.25 households that purchased a Honda Insight, Honda Civic

  7. Qualifying Vehicles for Low Emitting, Fuel Efficient Vehicle Discount (50 points or better)

    E-Print Network [OSTI]

    Nelson, Tim

    MH batteries) +1 ZEV 2.9 3.3 52 2001 01_TS HONDA INSIGHT 1.0L 3, manual ULEV I 61 68 53 2001 01_TS HONDA INSIGHT 1.0L 3, manual LEV I 61 68 52 2001 02_SUB HONDA CIVIC GX 1.7L 4, auto [CNG] SULEV II 31 34 53 2002 01_TS HONDA INSIGHT 1.0L 3, auto CVT SULEV II 57 56 57 2002 01_TS HONDA INSIGHT 1.0L 3, manual ULEV I

  8. Model year 2010 Honda insight level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H. (Energy Systems)

    2011-03-22T23:59:59.000Z

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Honda Insight was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were tested. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D3). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation when available. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Insight and provide insight into unique features of its operation and design.

  9. J. Vaissire et al.: Final manuscript Vaissire, J., Honda, K., Amelot, A., Maeda, Sh., Crevier-Buchman, L., (in press), "Multisensor platform for speech physiology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    J. Vaissière et al.: Final manuscript 1 Vaissière, J., Honda, K., Amelot, A., Maeda, Sh., Crevier in a phonetics laboratory Jacqueline Vaissière (1) , Kiyoshi Honda (1) , Angélique Amelot (1) , Shinji Maeda (2

  10. (A paratre dans: Saskta-sdhuta: Goodness of Sanskrit. Studies in honour of professor Ashok Aklujkar, sous la direction de Chikafumi Watanabe, Michele Desmairais, et Honda,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Aklujkar, sous la direction de Chikafumi Watanabe, Michele Desmairais, et Honda, Yoshichika, New Delhi: DK Ashok Aklujkar, Chikafumi Watanabe, Michele Desmarais, Yoshichika Honda (Ed.) (2012) 311-329" #12;- 2

  11. *Corresponding author. E-mail address: marc-oliver.gewaltig@hre-ftr.f.rd.honda.co.jp (M.-O. Gewaltig).

    E-Print Network [OSTI]

    *Corresponding author. E-mail address: marc-oliver.gewaltig@hre-ftr.f.rd.honda.co.jp (M Research, HONDA R&D Europe (Deutschland) GmbH, Owenbach, Germany Dept. of Nonlinear Dynamics, Max

  12. Welcome students, employees and alumni of IUPUI! Terry Lee and the staff of Terry Lee Honda are excited to welcome students, employees and

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Welcome students, employees and alumni of IUPUI! Terry Lee and the staff of Terry Lee Honda and as inexpensive as possible! Explanation of Benefits: EmployEE pricing on nEw Honda and UsEd VEHiclEs You will receive the same price on any vehicle we have for sale that an employee of Terry Lee Honda would be given

  13. McMaster University Marauders defeat University of Northern British Columbia Timberwolves, 88-77, on day two of Honda Way Classic

    E-Print Network [OSTI]

    Northern British Columbia, University of

    -77, on day two of Honda Way Classic Abbotsford, BC - The McMaster University Marauders (OUA West) defeated on day two of the second annual Honda Way men's basketball classic. UNBC finishes the tournament at 0 game on day three of the second annual Honda Way men's basketball classic will be held tomorrow

  14. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Electrodes for Lithium Batteries. J. Am. Ceram. Soc. 82:S CIENCE AND T ECHNOLOGY Batteries: Overview of Battery

  15. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27T23:59:59.000Z

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  16. Elicitation, Estimation & Explanation Challenges in Handling Imprecision & Incompleteness in

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    if Civic is considered similar enough to Accord and/or Prelude. Id Make Model Year Color Body Style 1 Honda Civic 2000 red coupe 2 Honda Accord 2004 blue coupe 3 Toyota Camry 2001 silver sedan 4 Honda null 2004 black coupe 5 BMW 3-series 2001 blue convt 6 Honda Civic 2004 green sedan 7 Honda null 2000 white sedan

  17. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

  18. Batteries: Overview of Battery Cathodes

    E-Print Network [OSTI]

    Doeff, Marca M

    2011-01-01T23:59:59.000Z

    used graphite anode. After charging, the batteries are readylithium ion batteries (i.e. , to lithiate graphite anodes soGraphite Electrodes Due to the Deposition of Manganese Ions on Them in Li-Ion Batteries.

  19. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Period

  20. New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliott William

    2009-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Oct-05

  1. Reliable GPS Integer Ambiguity Resolution

    E-Print Network [OSTI]

    Chen, Anning

    2011-01-01T23:59:59.000Z

    a specific vehicle model (e.g, Honda Civic). The higher thethe compact sedans such as the Honda Civic are unlikely toToyota Camry Toyota Prius Honda Accord Nissan Altima Period

  2. Evaluation of 2005 Honda Accord Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Burress, T.A.; Marlino, L.D.

    2006-09-11T23:59:59.000Z

    The Hybrid Electric Vehicle (HEV) program officially began in 1993 as a five-year, cost-shared partnership between the U.S. Department of Energy (DOE) and American auto manufacturers: General Motors, Ford, and Daimler Chrysler. Currently, HEV research and development is conducted by DOE through its FreedomCAR and Vehicle Technologies (FCVT) program. The mission of the FCVT program is to develop more energy efficient and environmentally friendly highway transportation technologies. Program activities include research, development, demonstration, testing, technology validation, and technology transfer. These activities are aimed at developing technologies that can be domestically produced in a clean and cost-competitive manner. The vehicle systems technologies subprogram, which is one of four subprograms under the FCVT program, supports the efforts of the FreedomCAR through a three-phase approach [1] intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subassemblies work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the vehicle systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid electric, plug-in electric, and fuel-cell-powered vehicles.

  3. Updated 3/15/2011 Civic Engagement Awards

    E-Print Network [OSTI]

    Bertini, Robert L.

    Updated 3/15/2011 Civic Engagement Awards Four Award Categories: I. Excellence in Community-Based Teaching and Learning - These $250 awards will be given to faculty members who utilize exemplary community in Departmental Civic Engagement - This $250 award will be given to a department or program that makes engagement

  4. An explicit formula for the Hilbert symbol for Honda groups in a multidimensional local field

    SciTech Connect (OSTI)

    Vostokov, S V [St. Petersburg State University, St. Petersburg (Russian Federation); Lorenz, F [Universitat Munster, Munster (Germany)

    2003-02-28T23:59:59.000Z

    Based on the pairing on Cartier curves explicitly constructed in the previous paper of the authors, an explicit formula for the Hilbert symbol is constructed in a multidimensional local field of characteristic zero with residue field of positive characteristic on the formal module of a one-dimensional Honda formal group. In the proof a Shafarevich basis on the formal module is constructed, and so-called integer {mu}-modules in two-dimensional local rings of a special form ( {mu}-rings) are studied.

  5. The Norwegian Academy of Science and Letters 2005 Zoologica Scripta, 35, 1, January 2006, pp8595 85 Honda, M., Ota, H., Murphy, R. W. & Hikida, T. (2006). Phylogeny and biogeography of

    E-Print Network [OSTI]

    Murphy, Bob

    2006-01-01T23:59:59.000Z

    ­95 85 Honda, M., Ota, H., Murphy, R. W. & Hikida, T. (2006). Phylogeny and biogeography of water skinks to have occurred twice in parallel as an adaptation to saxicolous habitats. Masanao Honda, Faculty of the genus Tropidophorus (Reptilia: Scincidae): a molecular approach MASANAO HONDA, HIDETOSHI OTA, ROBERT W

  6. Does the community really matter? : civic environmentalism in brownfield redevelopment

    E-Print Network [OSTI]

    Emison, Abigail Harrison

    2006-01-01T23:59:59.000Z

    This paper analyzes the process of civic environmentalism in brownfield redevelopment. A single "best case" scenario, the Empire Laundry project in Lynn, Massachusetts, illustrates key features of a citizen-led cleanup and ...

  7. Campus Environmental Factors Influencing Student Leadership Development and Civic Engagement

    E-Print Network [OSTI]

    Boren, Laura

    2012-02-14T23:59:59.000Z

    for the study. The researcher determined from participant responses that peer and mentor relationships, community identity, personal identity, and democratic experiences were key environmental factors influencing student leadership development and civic...

  8. Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 6th, 2005 Semantic Geometric Features

    E-Print Network [OSTI]

    Tappert, Charles

    . All computations were performed using Matlab. C6.1 #12;Honda Accord Sedan 2005 Honda Civic Coupe 2005 Height Honda Accord Civic Coupe 2005 103.1 66.7 175.4 55.1 Honda Accord Sedan 2005 107.9 71.5 189.5 57 Length RD Angle Mirror Length Mirror Honda Accord Civic Coupe 2005 148 123 33 0 0 51 50 Honda Accord

  9. Cold-Start and Warm-Up Driveability Performance of Hybrid Electric Vehicles Using Oxygenated Fuels

    SciTech Connect (OSTI)

    Thornton, M.; Jorgensen, S.; Evans, B.; Wright, K.

    2003-11-01T23:59:59.000Z

    Provides analysis and results of the driveability performance testing from four hybrid electric vehicles--Honda Civic, Toyota Prius, and two Honda Insights--that used oxygenated fuels.

  10. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  11. Solid Electrolyte Batteries

    Broader source: Energy.gov (indexed) [DOE]

    Present Li-ion Batteries Insertion compounds have limited capacity Li Air batteries are inefficient if used for electrical energy storage Li S batteries have too...

  12. Measuring and Modeling Emissions from Extremely Low-Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J N

    2006-01-01T23:59:59.000Z

    Make Model Odometer Chevrolet Malibu Honda Accord LX DodgeNeon Ford Focus Honda Accord LX Mazda Protégé Volkswagen3.2TL Buick Regal Ford Mustang Honda Civic Mitsubishi Galant

  13. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01T23:59:59.000Z

    as the Toyota Prius and Honda Civic Hybrid. The objectiveof performance HEVs (such as the Honda Accord Hybrid) andin the HEV. For this owner, the Honda Accord Hybrid offered

  14. Sipping fuel and saving lives: increasing fuel economy without sacrificing safety

    E-Print Network [OSTI]

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2008-01-01T23:59:59.000Z

    impacting fuel economy. Honda Motor Company, October 4.some automakers—VW and Honda, for example—are designinga 37 percent fuel savings; Honda Civic DX (29 mpg) to the

  15. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    their halo effect on Toyota and Honda have spurred a contesteconomy by a few percent. The Honda Civic Hybrid is a “mild”performance” HEVs, like the Honda Accord, focus as much on

  16. Measuring and Modeling Emissions from Extremely Low Emitting Vehicles

    E-Print Network [OSTI]

    Barth, M; Collins, J F; Scora, G; Davis, N; Norbeck, J M

    2006-01-01T23:59:59.000Z

    Make Model Odometer Chevrolet Malibu Honda Accord LX DodgeNeon Ford Focus Honda Accord LX Mazda Protégé Volkswagen3.2TL Buick Regal Ford Mustang Honda Civic Mitsubishi Galant

  17. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Volt PHEV (MY11) 2 Nissan Leaf BEV (MY11) 4 Honda Civic CNG 4 VW Jetta Turbo Diesel 4 Chevrolet Volt PHEV (MY13) 4 Chevrolet Malibu ECO 4 Honda Civic...

  18. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    battery configuration. Lead-acid batteries do not shuttleincluding lead-acid, nickel-based, and lithium-ion batteries

  19. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12T23:59:59.000Z

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

  20. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01T23:59:59.000Z

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  1. Resilient Science: The civic epistemology of disaster risk reduction

    E-Print Network [OSTI]

    Donovan, A. R.; Oppenheimer, Clive

    2015-06-17T23:59:59.000Z

    and Oppenheimer, 2014, 2015; Fearnley, 2013; see also for example Owens, 2005; Jasanoff, 2005). It 105 is, however, more time-critical in environmental crises than it is in relation to biotechnology or 106 nuclear technology – and the timescale is set... biotechnological discourses in the UK, US and Germany. She 72 analyses six “dimensions” of civic epistemology – styles of public knowledge-making; public 73 accountability; public demonstration; objectivity registers; expertise; and the visibility of expert 74...

  2. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1995-01-01T23:59:59.000Z

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  3. battery materials | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

  4. The Center on Civic Literacy Sheila Kennedy, JD; Erin Braun; Nichole Davis; Michael Marsala

    E-Print Network [OSTI]

    Zhou, Yaoqi

    to an alarming "civics recession" (Quigley, 2011). Annenberg Public Policy Center. 2007. "Annenberg Public Policy://www.thedailybeast.com/newsweek/2011/03/20/how-dumb-are-we.html Quigley, Charles. "National Assessment Governing Board ­ Newsroom ­ Press Releases ­2010 NAEP Civics Report ­ Charles N. Quigley's Statement." National Assessment Governing

  5. College of Agriculture and Life Sciences Civic Agriculture and Food Systems Minor

    E-Print Network [OSTI]

    Virginia Tech

    College of Agriculture and Life Sciences Civic Agriculture and Food Systems Minor The proposed Civic Agriculture and Food Systems (CAFS) minor within the College of Agriculture and Life Sciences agriculture and food system that relies on local resources and serves local markets and citizens. The minor

  6. COLLEGE OF AGRICULTURE AND LIFE SCIENCES CHECKSHEET for a MINOR in CIVIC AGRICULTURE AND FOOD SYSTEMS

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES CHECKSHEET for a MINOR in CIVIC AGRICULTURE AND FOOD SYSTEMS Offered by Academic Programs in the College of Agriculture and Life Sciences Effective for Students Graduating 2015 The minor in Civic Agriculture and Food Systems embodies a commitment

  7. Mike Singleton 64.615 76.073 65.955Honda S2000 64.615 13171 53.501 Class Average : 64.615 PAX Multiplier : .828

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    AS Mike Singleton 64.615 76.073 65.955Honda S2000 64.615 13171 53.501 Class Average : 64.615 PAX Multiplier : .837 DSP Gary Kitagawa 67.970 66.733 66.047Honda Prelude 66.047 1621 54.092 Greg Takahashi 67.502 68.224 67.350Honda Prelude 67.350 28271 55.160 Elliot Loo DNF 68.615 72.401VW GTI 68.615 37381 3 56

  8. AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries...

    Energy Savers [EERE]

    DC Fast Charging's Effects on PEV Batteries AVTA: Battery Testing - DC Fast Charging's Effects on PEV Batteries The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

  9. NREL: Energy Storage - Battery Ownership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

  10. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  11. National Day of Civic Hacking | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy Information National AllianceDay of Civic

  12. Quick charge battery

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  13. California Lithium Battery, Inc.

    Broader source: Energy.gov [DOE]

    California Lithium Battery (CaLBattery), based in Los Angeles, California, is developing a low-cost, advanced lithium-ion battery that employs a novel silicon graphene composite material that will substantially improve battery cycle life. When combined with other advanced battery materials, it could effectively lower battery life cycle cost by up to 70 percent. Over the next year, CALBattery will be working with Argonne National Laboratory to combine their patented silicon-graphene anode material process together with other advanced ANL cathode and electrolyte battery materials.

  14. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14T23:59:59.000Z

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  15. Action path : a location-based tool for civic reflection and engagement

    E-Print Network [OSTI]

    Graeff, Erhardt (Erhardt Charles)

    2014-01-01T23:59:59.000Z

    Many platforms for civic engagement, whether online or offline, require that citizens leave the places they normally inhabit physically or virtually and commit to a separate space and set of processes. Examples include ...

  16. Mike Singleton 64.457 60.651 58.819 60.438Honda S2000 58.819 15182 1 1 48.702 Mark Pacpaco 74.678 62.697 62.825 61.523Subaru Impreza 61.523 35326 2 2 1 50.941

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    AS Mike Singleton 64.457 60.651 58.819 60.438Honda S2000 58.819 15182 1 1 48.702 Mark Pacpaco 74.818Mitsubishi Evo VIII 64.818 52513 2 53.669 Wendel Penetrante DNF 74.269 69.581 68.209Honda S2000 68.209 68661.573 61.566 59.763Honda Prelude 59.763 1825 48.946 Greg Takahashi 63.318 60.783 60.450 62.425Honda Prelude

  17. Mark Pacpaco 60.674 60.544 DNF 60.098Subaru Impreza 60.098 20261 1 49.761 Mike Singleton 63.321 62.280 63.628 60.589Honda S2000 60.589 28291 1 50.168

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    .321 62.280 63.628 60.589Honda S2000 60.589 28291 1 50.168 Mark Lane 73.305 71.353 67.528 66.564Honda S.712BMW Z3 57.712 1151 48.940 James Nomura 74.038 63.998 59.104 59.421Honda S2000 59.104 26135 1 50.415Honda Prelude 59.415 9161 48.661 Keid Matsumoto DNF 68.673 65.150 61.651Toyota Solara 61.651 31403 1 50

  18. Mark Pacpaco 62.518 62.877 60.241 73.220Subaru Impreza 60.241 9111 10 49.880 Mike Singleton DNF 61.271 DNF 61.391Honda S2000 61.271 1718 50.732

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    61.271 DNF 61.391Honda S2000 61.271 1718 50.732 Wendel Penetrante DNF DNF 72.530 71.703Honda S2000 71.682 63.535 63.296Honda Prelude 63.296 3032 51.839 Jaren Takamatsu 73.903 67.854 70.129 67.450Nissan 240SX.246 66.415 63.285 62.423Honda Accord 62.423 18241 50.750 Woody Williams 67.135 65.948 63.045 65.328BMW

  19. Sandia National Laboratories: Batteries & Energy Storage Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

  20. Negative Electrodes for Li-Ion Batteries

    E-Print Network [OSTI]

    Kinoshita, Kim; Zaghib, Karim

    2001-01-01T23:59:59.000Z

    on New Sealed Rechargeable Batteries and Supercapacitors, B.10. S. Hossain, in Handbook of Batteries, Second Edition, D.Workshop on Advanced Batteries (Lithium Batteries), February

  1. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    of a Rechargeable Lithium Battery," J. Power Sources, 24,Wada, "Rechargeable Lithium Battery Based on Pyrolytic Car-Li-Ion Battery," Lithium Battery Symposium, Electrochemical

  2. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  3. Citizenship education in American schools and its role in developing civic engagement: a review of the research

    E-Print Network [OSTI]

    Lin, Alex Romeo

    2013-01-01T23:59:59.000Z

    service-learning, political simulations, and civicPolitical simulations and service-learning programmes arepolitical simulations and, (3) service-learning programmes.

  4. Remote Control Inserting the batteries

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Top View Rear View Inserting the batteries 1 3Press in on the arrow mark and slide in the direction of the arrow to remove the battery cover. 2 Insert two AA size batteries, making sure their polarities match the and marks inside the battery compartment. Insert the side tabs of the battery cover into their slots

  5. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

    1994-01-01T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

  6. Lithium battery management system

    DOE Patents [OSTI]

    Dougherty, Thomas J. (Waukesha, WI)

    2012-05-08T23:59:59.000Z

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  7. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid. Summary Researchers from the...

  8. Boosting batteries | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way for widespread adoption of lithium ion batteries for applications such as powering electric vehicles and storing renewable energy on the grid. The Science Rechargeable...

  9. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  10. EMSL - battery materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

  11. Redox Flow Batteries, a Review

    E-Print Network [OSTI]

    Weber, Adam Z.

    2013-01-01T23:59:59.000Z

    P. C. Butler, "Advanced Batteries for Electric Vehicles andIntroduction," in Hnadbook of Batteries, 3rd Edition, D.T. B. Reddy, Handbook of Batteries, 2002). [67] R. Zito, US

  12. The role of DCU Sport Heart Smart in Civic Engagement Overall, the strength of DCU Sport's commitment to civic engagement lies in the diversity of programmes on offer to the community.

    E-Print Network [OSTI]

    Humphrys, Mark

    The role of DCU Sport Heart Smart in Civic Engagement Overall, the strength of DCU Sport's commitment to civic engagement lies in the diversity of programmes on offer to the community. Heart Smart most vulnerable. The fact that three of the biggest hospitals in Dublin view Heart Smart

  13. Servant dictionary battery, map

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  14. battery, map parcel, med

    E-Print Network [OSTI]

    Rosenthal, Jeffrey S.

    Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

  15. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    ion batteries In current lithium ion battery technology,ion batteries The first commercialized lithium-ion batteryfirst lithium-ion battery. Compared to the other batteries,

  16. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  17. Battery utilizing ceramic membranes

    DOE Patents [OSTI]

    Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

    1994-08-30T23:59:59.000Z

    A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

  18. SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery

    E-Print Network [OSTI]

    Lehman, Brad

    SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

  19. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  20. Aluminum ion batteries: electrolytes and cathodes

    E-Print Network [OSTI]

    Reed, Luke

    2015-01-01T23:59:59.000Z

    Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.Anodes for Aluminum-Air Batteries. J. Electrochem. Soc.ALLOYS FOR ALUMINUM AIR BATTERIES. J. Electrochem. Soc.

  1. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

  2. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature 414, 359-367 (lithium and lithium-ion batteries. Solid State Ionics 135,electrolytes for lithium-ion batteries. Advanced Materials

  3. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    their use in lithium-ion batteries. However, applications atresponse of lithium rechargeable batteries,” Journal of therechargeable lithium batteries (Preliminary report, Sept.

  4. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca

    2014-01-01T23:59:59.000Z

    Company-v3832/Lithium-Ion-Batteries- Outlook-Alternative-Anodes for Sodium Ion Batteries Marca M. Doeff * , Jordirechargeable sodium ion batteries, particularly for large-

  5. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Secondary Lithium Batteries. Journal of the Electrochemicalin Rechargeable Lithium Batteries for Overcharge Protection.G. M. in Handbook of Batteries (eds Linden, D. & Reddy, T.

  6. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  7. Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes for Sodium Ion Batteries Identification of a suitabledevelopment of sodium ion batteries, because graphite, theanode for lithium ion batteries, does not undergo sodium

  8. Sodium Titanate Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for  Sodium  Ion  Batteries   One   of   the   challenges  of   sodium   ion   batteries   is   identification   of  for   use   in   batteries.   Our   recent   work   has  

  9. Sodium Titanate Anodes for Dual Intercalation Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    for Dual Intercalation Batteries Lithium supply securityinterest in sodium-ion batteries. These devices operate muchsodium-ion or lithium-ion batteries that utilize them as

  10. Vehicle Technologies Office: Advanced Battery Development, System...

    Broader source: Energy.gov (indexed) [DOE]

    materials and applied battery research into full battery systems for vehicles. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and...

  11. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    K. M. Directions in secondary lithium battery research-and-runaway inhibitors for lithium battery electrolytes. Journalrunaway inhibitors for lithium battery electrolytes. Journal

  12. Lithium Metal Anodes for Rechargeable Batteries. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

  13. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

  14. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  15. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

  16. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

  17. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

  18. Better Battery Performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the study could pave the way for the practical application of several high-energy-density battery systems for powering electric vehicles and storing renewable energy on the grid....

  19. Parallel flow diffusion battery

    DOE Patents [OSTI]

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01T23:59:59.000Z

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  20. Battery Charger Efficiency

    Office of Environmental Management (EM)

    Marine Battery Banks don't look like power tools Marine and RV Chargers Differ from Automotive Chargers * The core strategy in the CEC standard is to shut down the charger when...

  1. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric [The German Engineering Federation (VDMA), Battery Production Industry Group, Lyoner Str. 18, 60528 Frankfurt am Main (Germany)

    2014-06-16T23:59:59.000Z

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  2. Battery SEAB Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from

  3. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  4. Commercial Vehicle Classification System using Advanced Inductive Loop Technology

    E-Print Network [OSTI]

    Tok, Yeow Chern Andre

    2008-01-01T23:59:59.000Z

    transformation (right) of control vehicles BMW 325is-1 and BMW 325is-2.. 140 xiNo. Honda Civic SPRINTS COSTS BMW 325is SPRINTS Length

  5. Mike Singleton 65.372 66.086 63.568 93.245Honda S2000 63.568 593 52.634 Mark Pacpaco 73.573 DNF 67.183 66.052Subaru Impreza 66.052 22204 1 1 54.691

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    AS Mike Singleton 65.372 66.086 63.568 93.245Honda S2000 63.568 593 52.634 Mark Pacpaco 73.573 DNF.751 69.293BMW Z3 67.000 33271 56.816 James Nomura 71.664 72.723 67.986 69.664Honda S2000 67.986 41312 1 1 57.652 Elton Fujii 73.311 80.735 70.486 76.943Honda S2000 70.486 4743 59.772 Class Average : 68

  6. A User Programmable Battery Charging System

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    Rechargeable batteries are found in almost every battery powered application. Be it portable, stationary or motive applications, these batteries go hand in hand with battery charging systems. With energy harvesting being targeted in this day and age...

  7. Nickel coated aluminum battery cell tabs

    DOE Patents [OSTI]

    Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

    2014-07-29T23:59:59.000Z

    A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

  8. New sealed rechargeable batteries and supercapacitors

    SciTech Connect (OSTI)

    Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

    1993-01-01T23:59:59.000Z

    This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

  9. Testimonials- Partnerships in Battery Technologies- CalBattery

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  10. Battery venting system and method

    DOE Patents [OSTI]

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  11. Battery venting system and method

    DOE Patents [OSTI]

    Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

    1999-01-05T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  12. Battery Vent Mechanism And Method

    DOE Patents [OSTI]

    Ching, Larry K. W. (Littleton, CO)

    2000-02-15T23:59:59.000Z

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  13. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

  14. Electrocatalysts for Nonaqueous Lithium–Air Batteries:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

  15. Testimonials - Partnerships in Battery Technologies - Capstone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

  16. Circulating current battery heater

    DOE Patents [OSTI]

    Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

    2001-01-01T23:59:59.000Z

    A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

  17. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOE Patents [OSTI]

    Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

    2012-05-22T23:59:59.000Z

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  18. Mechanical design of flow batteries

    E-Print Network [OSTI]

    Hopkins, Brandon J. (Brandon James)

    2013-01-01T23:59:59.000Z

    The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

  19. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March 31,

  20. Batteries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries An error occurred. Try watching this

  1. Food Battery Competition Sponsored by

    E-Print Network [OSTI]

    Tennessee, University of

    and outstanding lithium-ion batteries, you can recognize the progress. Lithium provides good voltages and powerFood Battery Competition Sponsored by: The University of Tennessee, Materials Advantage (MA not have enough natural resources to support our growing populations and energy needs forever. Batteries

  2. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  3. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Energy Savers [EERE]

    More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

  4. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

  5. Battery testing for photovoltaic applications

    SciTech Connect (OSTI)

    Hund, T.

    1996-11-01T23:59:59.000Z

    Battery testing for photovoltaic (PV) applications is funded at Sandia under the Department of Energy`s (DOE) Photovoltaic Balance of Systems (BOS) Program. The goal of the PV BOS program is to improve PV system component design, operation, reliability, and to reduce overall life-cycle costs. The Sandia battery testing program consists of: (1) PV battery and charge controller market survey, (2) battery performance and life-cycle testing, (3) PV charge controller development, and (4) system field testing. Test results from this work have identified market size and trends, PV battery test procedures, application guidelines, and needed hardware improvements.

  6. Current balancing for battery strings

    DOE Patents [OSTI]

    Galloway, James H. (New Baltimore, MI)

    1985-01-01T23:59:59.000Z

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  7. Battery electrode growth accommodation

    DOE Patents [OSTI]

    Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

    1992-01-01T23:59:59.000Z

    An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

  8. Method and apparatus for smart battery charging including a plurality...

    Office of Scientific and Technical Information (OSTI)

    Re-direct Destination: A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger...

  9. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Energy Savers [EERE]

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

  10. Interpreting Civic Education in American Educational Thought from Progressivism Through Multiculturalism

    E-Print Network [OSTI]

    Williams, Jeremy Kelton

    2012-10-19T23:59:59.000Z

    .S.,” The entity from which ERIC acquires the content, including journal, organization, and conference names, or by means of online submission from the author.Theory and 7 civic purposes of education. Certainly there was debate over how students would... and 32 Katherine A. Foster, Tina Heafner, and Eric Groce, “Advocating for Social Studies: Documenting the Decline and Doing Something About It,” Social Education 71, no. 5 (2007): 255-260. Susie Burroughs, Eric C. Groce, and Mary L. Webeck, “Social...

  11. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  12. Applying the Battery Ownership Model in Pursuit of Optimal Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 Analysis of Electric Vehicle Battery Performance...

  13. North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy

    E-Print Network [OSTI]

    hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic Hybrid 1.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

  14. North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy

    E-Print Network [OSTI]

    city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

  15. United States Advanced Battery Consortium

    Broader source: Energy.gov (indexed) [DOE]

    of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

  16. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1986-01-07T23:59:59.000Z

    This self-charging solar battery consists of: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing (with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof), a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, and a diode means mounted in the battery housing and comprising an anode and a cathode. The solar battery also has: a first means for connecting the positive terminal of the photo-voltaic cell means to the anode and for connecting the cathode to the positive terminal of the battery cell means, a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means, and cap means for closing each end of the battery housing.

  17. Self-charging solar battery

    SciTech Connect (OSTI)

    Curiel, R.F.

    1987-03-03T23:59:59.000Z

    This patent describes a flashlight employing a self-charging solar battery assembly comprising: a flashlight housing formed at least partially of a transparent material, an open-ended cylindrical battery housing formed at least partially of a transparent material, a rechargeable battery cell means mounted in the battery housing with its transparent material positioned adjacent the transparent material of the flashlight housing and comprising positive and negative terminals, one at each end thereof, a solar electric panel comprising photo-voltaic cell means having positive and negative terminals, the panel being mounted within the battery housing with the photo-voltaic cell means juxtapositioned to the transparent material of the battery housing such that solar rays may pass through the transparent material of the flashlight housing and the battery housing and excite the photo-voltaic cell means, a first means for connecting the positive terminal of the photo-voltaic cell means to the positive terminal of the battery cell means, and a second means for connecting the negative terminal of the battery cell means to the negative terminal of the photo-voltaic cell means.

  18. Mapping Particle Charges in Battery Electrodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Electrodes Print Friday, 26 July 2013 14:18 The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone...

  19. Advanced battery modeling using neural networks

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  20. Advanced battery modeling using neural networks 

    E-Print Network [OSTI]

    Arikara, Muralidharan Pushpakam

    1993-01-01T23:59:59.000Z

    Batteries have gained importance as power sources for electric vehicles. The main problem with the battery technology available today is that the design of the battery system has not been optimized for different applications. No comprehensive...

  1. Energy Storage & Battery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage & Battery Leading the charge in battery R&D Argonne National Laboratory is a global leader in the development of advanced battery technologies and has a portfolio of...

  2. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    D. Thin-film lithium and lithium-ion batteries. Solid StateH. Polymer electrolytes for lithium-ion batteries. AdvancedReviews, 2010). Ozawa, K. Lithium-ion rechargeable batteries

  3. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vantolerance of these batteries this is a curious omission andmysteries of lithium ion batteries. The book begins with an

  4. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    simulate those in a lithium battery. Chapter 3 TransientModel for Aging of Lithium-Ion Battery Cells. Journal of TheRole in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

  5. Good upkeep adds to battery life

    SciTech Connect (OSTI)

    Jackson, D.

    1983-01-01T23:59:59.000Z

    The care and maintenance of underground mine batteries is discussed. A guide to motive power battery manufacturers in USA is included, plus a list of definitions of battery terms.

  6. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    to Thermal Rise in Lead-Acid Batteries Used in Electricon Advances in Lead-Acid Batteries, The Electrochemicalbattery market is for lead-acid batteries for SLI (starting,

  7. Sandia National Laboratories: Evaluating Powerful Batteries for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

  8. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes...

  9. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    experimental data from plastic lithium ion cells. Journal ofelectrolyte additive for lithium-ion batteries. Elec-A. Aging Mechanisms in Lithium-Ion Batteries. Journal of

  10. Progress in Grid Scale Flow Batteries

    E-Print Network [OSTI]

    2011Year #12;Flow Battery Research at PNNL and Sandia #12 with industries and universities New Generation Redox Flow Batteries, PNNL Developed new generation redox flow

  11. 'Thirsty' Metals Key to Longer Battery Lifetimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed. In all three cases, today's batteries simply do not hold enough charge. Replacing lithium with other metals with multiple charges could greatly increase battery capacity....

  12. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    molten salts as lithium battery electrolyte,” ElectrochimicaFigure 15. Rechargeable lithium-ion battery. Figure 16 showsbattery. It is essential that an ionic liquid – lithium salt

  13. Upgrading the Vanadium Redox Battery | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

  14. Disordered Materials Hold Promise for Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

  15. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Energy Savers [EERE]

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  16. Promising Magnesium Battery Research at ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery...

  17. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    lithium-ion battery is the most advanced rechargeable battery technology in use today. These batteries

  18. PHEV Battery Cost Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49,PHEV Battery Cost

  19. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  20. Redox Flow Batteries, a Review

    SciTech Connect (OSTI)

    U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

    2011-07-15T23:59:59.000Z

    Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

  1. Recombinant electric storage battery

    SciTech Connect (OSTI)

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10T23:59:59.000Z

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  2. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Lithium-ion battery modules for testing Table 2: BatteriesBatteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Battery

  3. Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel

    E-Print Network [OSTI]

    , nickel cadmium (Nicad), nickel metal hydride, lithium ion, silver button, mercury, magnesium carbon. Recycling rechargeable batteries Rechargeable batteries are often referred to as nickel cadmium, nickel Battery Per Bag Please sort the batteries by battery type, using a separate receptacle for nickel cadmium

  4. Zipcar for U.Va Departments What is Zipcar?

    E-Print Network [OSTI]

    Acton, Scott

    .50 Monday-Friday: $69 Saturday-Sunday: $77 Basic Sedan or Hatchback - Honda Civic - Honda Insight (Hybrid - Honda CR-V Monday-Friday: $9.50 Saturday-Sunday: $10.50 Monday-Friday: $77 Saturday-Sunday: $83 Where are the Zipcars? Current as of November 2013 Alderman Library (McCormick Road): 1 Honda CR-V, 1 Ford Focus

  5. Block copolymer electrolytes for lithium batteries

    E-Print Network [OSTI]

    Hudson, William Rodgers

    2011-01-01T23:59:59.000Z

    battery electrolytes; we also describe a general approach toward performing fundamental in situ characterization

  6. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    CHARACTERIZATION ON HIGHLY ORIENTED PYROLYTIC GRAPHITE cator of electrode passivation in realistic battery

  7. Waste Toolkit A-Z Battery recycling

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

  8. Battery-Powered Digital CMOS Massoud Pedram

    E-Print Network [OSTI]

    Pedram, Massoud

    (submarines) Stationary batteries 250 Wh~5 MWh Emergency power supplies, local energy storage, remote relay1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro

  9. Batteries, mobile phones & small electrical devices

    E-Print Network [OSTI]

    , mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

  10. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, S.J.; Liu, M.; DeJonghe, L.C.

    1992-11-10T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

  11. Cell for making secondary batteries

    DOE Patents [OSTI]

    Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

    1992-01-01T23:59:59.000Z

    The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

  12. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    electrochemical characterization, and battery performance ofthe battery cell for electrochemical characterization. TheBattery Highlights 13 2.3 Electrochemical Characterization ..

  13. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Characteristics of Lithium-ion Batteries of VariousMiller, M. , Emerging Lithium-ion Battery Technologies forSymposium on Large Lithium-ion Battery Technology and

  14. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    electrode in lithium-ion batteries: AFM study in an ethylenelithium-ion rechargeable batteries. Carbon 1999, 37, 165-batteries. J. Electrochem. Soc. 2001,

  15. EES and Batteries: The Basics | University of Texas Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EES AND BATTERIES: THE BASICS Virtually all portable electronic devices, including cell phones, PDAs and laptop computers, rely on chemical energy stored in batteries. Batteries...

  16. Sodium Titanates as Anodes for Sodium Ion Batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2014-01-01T23:59:59.000Z

    Anodes  for  Sodium  Ion  Batteries   Marca  M.  Doeff,  dual   intercalation   batteries   based   on   sodium  future   of   sodium  ion  batteries  will  be  discussed  

  17. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    The UC Davis Emerging Lithium Battery Test Project Andrewto evaluate emerging lithium battery technologies for plug-vehicles. By emerging lithium battery chemistries were meant

  18. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  19. Developing Next-Gen Batteries With Help From NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

  20. EV Everywhere Batteries Workshop - Next Generation Lithium Ion...

    Energy Savers [EERE]

    Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

  1. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  2. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

  3. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

  4. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

  5. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

  6. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

  7. Making Li-air batteries rechargeable: material challenges. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

  8. Optimization of blended battery packs

    E-Print Network [OSTI]

    Erb, Dylan C. (Dylan Charles)

    2013-01-01T23:59:59.000Z

    This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

  9. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  10. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A. (Albuquerque, NM)

    2003-04-08T23:59:59.000Z

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  11. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  12. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01T23:59:59.000Z

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  13. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  14. Carbon-enhanced VRLA batteries.

    SciTech Connect (OSTI)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01T23:59:59.000Z

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  15. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  16. Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

    2012-05-01T23:59:59.000Z

    This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

  17. Model based control of a coke battery

    SciTech Connect (OSTI)

    Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

    1997-12-31T23:59:59.000Z

    This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

  18. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

  19. Optimal management of batteries in electric systems

    DOE Patents [OSTI]

    Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

    2002-01-01T23:59:59.000Z

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  20. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    commercial Li-ion batteries today use graphite or a mixturein certain primary batteries). Graphite has a potential of

  1. Batteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    ;Lithium-ion battery Modern Li-ion Battery Cathode:Anode: e-e- u o b e y e- Electrolyte LiPF6 in Ethylene Electronic Li-ion Batteries Theoretical Energy Density Source: TIAX, LLC #12;Lithium-ion battery BatteryBatteries for Vehicular Applications Venkat SrinivasanVenkat Srinivasan Staff Scientist Lawrence

  2. An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Pedram, Massoud

    An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

  3. Michael Thackery on Lithium-air Batteries

    ScienceCinema (OSTI)

    Michael Thackery

    2010-01-08T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  4. Michael Thackery on Lithium-air Batteries

    SciTech Connect (OSTI)

    Michael Thackery

    2009-09-14T23:59:59.000Z

    Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  5. Khalil Amine on Lithium-air Batteries

    SciTech Connect (OSTI)

    Khalil Amine

    2009-09-14T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  6. Khalil Amine on Lithium-air Batteries

    ScienceCinema (OSTI)

    Khalil Amine

    2010-01-08T23:59:59.000Z

    Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

  7. Batteries for Vehicular Applications Venkat Srinivasan

    E-Print Network [OSTI]

    Knowles, David William

    of the range and charging-time issues. INTRODUCTION TO BATTERIES Several electrical energy storage be achieved by a high-energy Li-ion cell (similar to the batteries used in the Tesla Roadster).a However

  8. Batteries lose in game of thorns | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries lose in game of thorns Batteries lose in game of thorns Released: January 30, 2013 Scientists see how and where disruptive structures form and cause voltage fading Images...

  9. Hierarchically Structured Materials for Lithium Batteries. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric...

  10. Design and Simulation of Lithium Rechargeable Batteries

    E-Print Network [OSTI]

    Doyle, C.M.

    2010-01-01T23:59:59.000Z

    Design and Simulation of Lithium Rechargeable Batteries by Christopher Marc Doyle Doctor of Philosophy in Chemical EngineeringDesign and Simulation of Lithium Rechargeable Batteries I C. Marc Doyle Department of Chemical Engineering

  11. Side Reactions in Lithium-Ion Batteries

    E-Print Network [OSTI]

    Tang, Maureen Han-Mei

    2012-01-01T23:59:59.000Z

    Model for the Graphite Anode in Li-Ion Batteries. Journal ofgraphite Chapters 2-3 have developed a method using ferrocene to characterize the SEI in lithium- ion batteries.

  12. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  13. Adaptive Battery Charge Scheduling with Bursty Workloads

    E-Print Network [OSTI]

    Wu, Jie

    of the low power battery status until nodes start to fail. Moreover, it requires extra time and effort

  14. Electrochemically controlled charging circuit for storage batteries

    DOE Patents [OSTI]

    Onstott, E.I.

    1980-06-24T23:59:59.000Z

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  15. Ionic liquids for rechargeable lithium batteries

    E-Print Network [OSTI]

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

    2008-01-01T23:59:59.000Z

    M. Armand, “Room temperature molten salts as lithium batteryZ. Suarez, “Ionic liquid (molten salt) phase organometallic

  16. Battery Thermal Modeling and Testing (Presentation)

    SciTech Connect (OSTI)

    Smith, K.

    2011-05-01T23:59:59.000Z

    This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

  17. Battery Thermal Management System Design Modeling

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.

    2006-11-01T23:59:59.000Z

    Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

  18. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Hope, Mark E. (Marshall, MI); Zou, Zhanjiang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-02-10T23:59:59.000Z

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  19. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04T23:59:59.000Z

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  20. Battery Chargers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine March

  1. Mike Honda | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQATRUPACT---III Q uickoftheMike

  2. Battery Model for Embedded Systems , Gaurav Singhal

    E-Print Network [OSTI]

    Navet, Nicolas

    Battery Model for Embedded Systems Venkat Rao , Gaurav Singhal , Anshul Kumar , Nicolas Navet in embedded systems. It describes the prominent battery models with their advantages and draw- backs of the battery. With the tremendous increase in the comput- ing power of hardware and the relatively slow growth

  3. Overview of the Batteries for Advanced Transportation

    E-Print Network [OSTI]

    Knowles, David William

    Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Venkat Srinivasan of the DOE/EERE FreedomCAR and Vehicle Technologies Program to develop batteries for vehicular applications double the energy density of presently available Li batteries · HEV: low-T operation, cost, and abuse

  4. Battery charging in float vs. cycling environments

    SciTech Connect (OSTI)

    COREY,GARTH P.

    2000-04-20T23:59:59.000Z

    In lead-acid battery systems, cycling systems are often managed using float management strategies. There are many differences in battery management strategies for a float environment and battery management strategies for a cycling environment. To complicate matters further, in many cycling environments, such as off-grid domestic power systems, there is usually not an available charging source capable of efficiently equalizing a lead-acid battery let alone bring it to a full state of charge. Typically, rules for battery management which have worked quite well in a floating environment have been routinely applied to cycling batteries without full appreciation of what the cycling battery really needs to reach a full state of charge and to maintain a high state of health. For example, charge target voltages for batteries that are regularly deep cycled in off-grid power sources are the same as voltages applied to stand-by systems following a discharge event. In other charging operations equalization charge requirements are frequently ignored or incorrectly applied in cycled systems which frequently leads to premature capacity loss. The cause of this serious problem: the application of float battery management strategies to cycling battery systems. This paper describes the outcomes to be expected when managing cycling batteries with float strategies and discusses the techniques and benefits for the use of cycling battery management strategies.

  5. Jeff Chamberlain on Lithium-air batteries

    ScienceCinema (OSTI)

    Chamberlain, Jeff

    2013-04-19T23:59:59.000Z

    Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  6. Michael Thackeray on Lithium-air Batteries

    ScienceCinema (OSTI)

    Thackeray, Michael

    2013-04-19T23:59:59.000Z

    Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

  7. Propagation testing multi-cell batteries.

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

    2014-10-01T23:59:59.000Z

    Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

  8. Electrothermal Analysis of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

    2006-03-01T23:59:59.000Z

    This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

  9. Transparent lithium-ion batteries , Sangmoo Jeongb

    E-Print Network [OSTI]

    Cui, Yi

    voltage window. For example, LiCoO2 and graphite, the most common cathode and anode in Li-ion batteriesTransparent lithium-ion batteries Yuan Yanga , Sangmoo Jeongb , Liangbing Hua , Hui Wua , Seok Woo, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices

  10. STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Wilcox, James D.

    2010-01-01T23:59:59.000Z

    facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

  11. Evaluating benefits of slope rounding

    E-Print Network [OSTI]

    Liu, Jichuan

    1993-01-01T23:59:59.000Z

    of Unrounded Option, d?= 0 ft (0 m) 2. HVOSM Simulation of Constant Rounding, d, = 2 ft (0. 61 m) 15 16 3. HVOSM Simulation of Optimum Rounding 17 4. HVOSM Simulation of Unrounded Option, Honda Civic with a "Return-to-the-Road" Steer Angle of 8 Degrees 24... 5. HVOSM Simulation of 2 ft (0. 61 m) Constant Rounding, Honda Civic with a "Return-to-the-Road" Steer Angle of 8 Degrees 25 6. HVOSM Simulation of 4 ft (1. 22 m) Constant Rounding, Honda Civic with a "Return-to-the-Road" Steer Angle of 8 Degrees...

  12. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01T23:59:59.000Z

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  13. Cathode material for lithium batteries

    DOE Patents [OSTI]

    Park, Sang-Ho; Amine, Khalil

    2013-07-23T23:59:59.000Z

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  14. Battery research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Thackeray, M.M.

    1997-10-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has, for many years, been engaged in battery-related R and D programs for DOE and the transportation industry. In particular, from 1973 to 1995, ANL played a pioneering role in the technological development of the high-temperature (400 C) lithium-iron disulfide battery. With the emphasis of battery research moving away from high temperature systems toward ambient temperature lithium-based systems for the longer term, ANL has redirected its efforts toward the development of a lithium-polymer battery (60--80 C operation) and room temperature systems based on lithium-ion technologies. ANL`s lithium-polymer battery program is supported by the US Advanced Battery Consortium (USABC), 3M and Hydro-Quebec, and the lithium-ion battery R and D efforts by US industry and by DOE.

  15. A Herschel Study of D/H in Water in the Jupiter-Family Comet 45P/Honda-Mrkos-Pajdusakova and Prospects for D/H Measurements with CCAT

    E-Print Network [OSTI]

    Lis, D C; Bockelee-Morvan, D; Hartogh, P; Bergin, E A; Blake, G A; Crovisier, J; de Val-Borro, N; Jehin, E; Kuppers, M; Manfroid, J; Moreno, R; Rengel, M; Szutowicz, S

    2013-01-01T23:59:59.000Z

    We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdusakova. No HDO emission is detected, with a 3 sigma upper limit of 2.0 10-4 for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 10-4 measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5 sigma level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.

  16. A HERSCHEL STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA-MRKOS-PAJDUSAKOVA AND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT

    SciTech Connect (OSTI)

    Lis, D. C.; Blake, G. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Biver, N.; Bockelee-Morvan, D.; Crovisier, J.; Moreno, R., E-mail: dcl@caltech.edu, E-mail: gab@gps.caltech.edu, E-mail: nicolas.biver@obspm.fr, E-mail: dominique.bockelee@obspm.fr, E-mail: jacques.crovisier@obspm.fr, E-mail: raphael.moreno@obspm.fr [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris-Diderot, Meudon (France); and others

    2013-09-01T23:59:59.000Z

    We present Herschel observations of water isotopologues in the atmosphere of the Jupiter-family comet 45P/Honda-Mrkos-Pajdusakova. No HDO emission is detected, with a 3{sigma} upper limit of 2.0 Multiplication-Sign 10{sup -4} for the D/H ratio. This value is consistent with the earlier Herschel measurement in the Jupiter-family comet 103P/Hartley 2. The canonical value of 3 Multiplication-Sign 10{sup -4} measured pre-Herschel in a sample of Oort-cloud comets can be excluded at a 4.5{sigma} level. The observations presented here further confirm that a diversity of D/H ratios exists in the comet population and emphasize the need for additional measurements with future ground-based facilities, such as CCAT, in the post-Herschel era.

  17. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

  18. Molten Air -- A new, highest energy class of rechargeable batteries

    E-Print Network [OSTI]

    Licht, Stuart

    2013-01-01T23:59:59.000Z

    This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

  19. Health status and sulfur dioxide exposure of nickel smelter workers and civic laborers

    SciTech Connect (OSTI)

    Broder, I.; Smith, J.W.; Corey, P.; Holness, L.

    1989-04-01T23:59:59.000Z

    We examined a group of 143 nickel smelter workers who processed a high sulfide ore, and compared their health status with that of 117 civic laborers. All subjects were studied over the first four days of a week of work, administering a health questionnaire on day 1, measuring their pulmonary function on the morning of day 1 and day 4, and monitoring their personal exposure to SO/sub 2/ and particulates over the same period. The smelter workers were exposed to an average of 0.374 mg/m/sup 3/ of respirable particulates, a threefold higher level than the controls, and to 0.67 ppm of sulfur dioxide, a 40-fold greater amount than the controls, but were found to show no excess of chronic respiratory symptoms and did not differ from the controls either in their baseline pulmonary function or in their change from the morning of day 1 to day 4. However, there were several indicators of a healthy worker effect in the smelter worker group.

  20. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    DOE Patents [OSTI]

    Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2014-10-28T23:59:59.000Z

    Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  1. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    SciTech Connect (OSTI)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03T23:59:59.000Z

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  2. Battery-Aware Power Management Based on Markovian Decision

    E-Print Network [OSTI]

    Pedram, Massoud

    ] " Electrical circuit model: A spice model of the lithium-ion batteries [Gold-97] " Electro-chemical model: Generic dual-foil lithium-ion battery model [Doyle-94] ! Battery Management " Discharge rate-based policyBattery-Aware Power Management Based on Markovian Decision Processes Battery-Aware Power Management

  3. LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA

    E-Print Network [OSTI]

    Ruina, Andy L.

    LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how. Battery Pack 1 · Cycle 1 : 2334 mAh · Cycle 2: 2312 mAh #12;LITHIUM-ION BATTERY CHARGING REPORT 3 · Cycle to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specifications

  4. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

    1985-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  5. Recombination device for storage batteries

    DOE Patents [OSTI]

    Kraft, H.; Ledjeff, K.

    1984-01-01T23:59:59.000Z

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  6. Cascade redox flow battery systems

    DOE Patents [OSTI]

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22T23:59:59.000Z

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  7. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01T23:59:59.000Z

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  8. Electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05T23:59:59.000Z

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  9. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04T23:59:59.000Z

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  10. EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)

    Broader source: Energy.gov [DOE]

    Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

  11. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-01-01T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  12. Household batteries: Evaluation of collection methods

    SciTech Connect (OSTI)

    Seeberger, D.A.

    1992-12-31T23:59:59.000Z

    While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

  13. Preliminary Design of a Smart Battery Controller for SLI Batteries Xiquan Wang and Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    Automotive start, light, ignition (SLI) lead acid batteries are prone to capacity loss due to low for using the fuzzy logic methodology for determining the SOC/SOH of an automotive SLI lead acid battery controller. Introduction Automotive start, light ignition (SLI) lead acid batteries are the most widely used

  14. Ultracapacitors and Batteries in Hybrid Vehicles

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Zolot, M.; Sprik, S.

    2005-08-01T23:59:59.000Z

    Using an ultracapacitor in conjunction with a battery in a hybrid vehicle combines the power performance of the former with the greater energy storage capability of the latter.

  15. Celgard and Entek - Battery Separator Development

    Broader source: Energy.gov (indexed) [DOE]

    Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

  16. Panasonic Corporation Energy Company formerly Matsushita Battery...

    Open Energy Info (EERE)

    to: navigation, search Name: Panasonic Corporation Energy Company (formerly Matsushita Battery Industrial Co) Place: Moriguchi, Osaka, Japan Zip: 570-8511 Product: Producer of...

  17. Batteries for energy storage: part 2

    SciTech Connect (OSTI)

    Douglas, D.L.; Birk, J.R.

    1983-02-01T23:59:59.000Z

    Explores 4 large battery RandD programs. Two are individual electrochemical systems for electric utility energy storage: zinc-chlorine and sodium sulfur. The third is a high-temperature battery, lithium-iron sulfide, which is expected to be applicable in electric vehicles. Reviews the nearer term EV battery development programs, which include zinc-nickel oxide, iron-nickel oxide, and lead-acid batteries. Suggests that batteries appear to be an ideal companion to coal- and nuclear power-derived electrical energy, to play a key role in electrical generation and distribution networks and to power vehicles. Batteries could augment solarderived electrical energy to attain continuity and reliability of power. Battery systems now under development represent a broad range of possible approaches encompassing extremes of the periodical table, a wide variety of operating temperatures, and limitless design concepts. Along with substantial international emphasis on battery development, this range of approaches suggests that one or more candidate systems can be demonstrated to have commercial viability. While commercial viability can be demonstrated, actual implementation will be deterred by high capital cost, substantial commercialization costs, and buyer reluctance. Concludes that because oil has an unstable future, legislation or regulation coupled with personal inconvenience (rationing or waiting in gas lines) can override the economics of utility battery energy storage.

  18. Coordination Chemistry in magnesium battery electrolytes: how...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited...

  19. Advanced Battery Materials Characterization: Success stories...

    Broader source: Energy.gov (indexed) [DOE]

    Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Dr. E. Andrew Payzant, ORNL Project ID lmp02payzant This...

  20. Sandia National Laboratories: lithium-ion battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ion battery Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Aspiring...

  1. Anodes for rechargeable lithium batteries - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories News Events Find More Like This Return to Search Anodes for rechargeable lithium batteries United States Patent Patent Number: 6,528,208 Issued: March 4, 2003...

  2. Manganese Oxide Composite Electrodes for Lithium Batteries |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese Oxide Composite Electrodes for Lithium Batteries Technology available for licensing: Improved spinel-containing "layered-layered" lithium metal oxide electrodes Materials...

  3. Sandia National Laboratories: thin-film battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March 20, 2013, in Energy Storage Systems,...

  4. Ambient Operation of Li/Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

    2010-07-01T23:59:59.000Z

    In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

  5. In situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High...

  6. In Situ Characterizations of New Battery Materials and the Studies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Situ Characterizations of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High...

  7. Benefits of battery-uItracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

  8. A Bayesian nonparametric approach to modeling battery health

    E-Print Network [OSTI]

    Doshi-Velez, Finale

    The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

  9. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.PROTECTION IN LITHIUM BATTERIES T. J. Richardson* and P. N.in lithium and lithium ion batteries are now available. The

  10. Coated Silicon Nanowires as Anodes in Lithium Ion Batteries

    E-Print Network [OSTI]

    Watts, David James

    2014-01-01T23:59:59.000Z

    for advanced lithium-ion batteries. J. Power Sources 174,for lithium rechargeable batteries. Angew. Chem. Int. Ed.anodes for lithium-ion batteries. J. Mater. Chem. A 1,

  11. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    Costs of Lithium-Ion Batteries for Vehicles, (ANL/ESD- 42) .Linden, D. , Handbook of Batteries, McGraw-Hill Companies,2012). Lithium Use in Batteries, U.S. Geological Survey (

  12. Batteries as they are meant to be seen | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries as they are meant to be seen Batteries as they are meant to be seen Released: December 26, 2013 The search for long-lasting, inexpensive rechargeable batteries...

  13. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  14. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01T23:59:59.000Z

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  15. Improved Positive Electrode Materials for Li-ion Batteries

    E-Print Network [OSTI]

    Conry, Thomas Edward

    2012-01-01T23:59:59.000Z

    T. , Tozawa, K. Prog. Batteries Solar Cells 1990, 9, 209. E.Costs of Lithium-Ion Batteries for Vechicles. ” Center forin Solids: Solid State Batteries and Devices, Ed. by W. vn

  16. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01T23:59:59.000Z

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  17. Visualization of Charge Distribution in a Lithium Battery Electrode

    E-Print Network [OSTI]

    Liu, Jun

    2010-01-01T23:59:59.000Z

    Charge Distribution in a Lithium Battery Electrode Jun Liu,Modeling of a Lithium-Polymer Battery. J. Power SourcesBehavior of a Lithium-Polymer Battery. J. Power Sources

  18. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    Passivation of Aluminum in Lithium-ion Battery Electrolytesin commercially available lithium-ion battery electrolytes,

  19. Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

    2013-06-01T23:59:59.000Z

    This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

  20. Car Make and Model Recognition using 3D Curve Alignment Krishnan Ramnath, Sudipta N. Sinha, Richard Szeliski

    E-Print Network [OSTI]

    Gupta, Abhinav

    . Steps in constructing our 3D car model for a 2011 Honda Civic Sedan: (top) three of the images used to generate the visual hull; (middle) the visual hull; (bottom) 3D space curves projected onto the visual hull

  1. Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use

    E-Print Network [OSTI]

    Flamm, Bradley John

    2006-01-01T23:59:59.000Z

    stated “Build more hybrid cars or hydrogen fuel celledmoney to developing hybrid electric cars, mini-vans, SUV's;the Honda Civic Hybrid, are marketed as “green” cars and the

  2. Fact #812: January 13, 2014 The Number of Models Achieving 40...

    Broader source: Energy.gov (indexed) [DOE]

    Combined MPG or MPG(e) Class Combined MPG or MPG(e) Class Combined MPG or MPG(e) Class BMW Active E 102 Subcompact Toyota Prius 46 Midsize 50 Midsize 50 Midsize Honda Civic...

  3. Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Zhu, Jianxin

    2014-01-01T23:59:59.000Z

    and characterization of spinel Li 4 Ti 5 O 12 nanoparticles anode materials for lithium ion battery.Li-ion battery performance. Figure 34. Characterization of

  4. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov...

  5. Characterization of Li-ion Batteries using Neutron Diffraction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

  6. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL)

    1998-01-01T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

  7. Factors Affecting the Battery Performance of Anthraquinone-based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials....

  8. Development of Computer-Aided Design Tools for Automotive Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9han2012o.pdf More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

  9. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  10. New imaging capability reveals possible key to extending battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lifetime and capacity, opening a path to wider use of these batteries in conjunction with renewable energy sources. Lithium ion batteries power mobile devices and electric cars and...

  11. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Energy Savers [EERE]

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  12. Three-dimensional batteries using a liquid cathode

    E-Print Network [OSTI]

    Malati, Peter Moneir

    2013-01-01T23:59:59.000Z

    for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

  13. Linking Ion Solvation and Lithium Battery Electrolyte Properties...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and...

  14. Polymer Electrolytes for High Energy Density Lithium Batteries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes for High Energy Density Lithium Batteries Ashoutosh Panday Scott Mullin Nitash Balsara Proposed Battery anode (Li metal) Li Li + + e - e - Li salt in a hard solid...

  15. Development of Polymer Electrolytes for Advanced Lithium Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  16. Batteries - Simulation software aids design ... | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries - Simulation software aids design ... Designers of safe high-performance batteries for electric vehicles are getting a hand with a new computational toolset created by a...

  17. USABC Development of Advanced High-Performance Batteries for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel Cells...

  18. alkaline storage battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  19. alkaline storage batteries: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

  20. aerospace flight battery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

  1. alkaline zinc batteries quarterly: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

  2. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  3. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  4. Diagnostic and Prognostic Analysis of Battery Performance & Aging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

  5. Diagnostic Studies on Lithium Battery Cells and Cell Components...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  6. advanced battery systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Systems - Part I: SOC Estimation S. J- cles and renewable energy resources is battery energy storage. Advanced battery systems represent Krstic, Miroslav 2 PDE...

  7. 2008 Annual Merit Review Results Summary - 4. Exploratory Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Exploratory Battery Research 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview4.pdf More...

  8. Overview and Progress of United States Advanced Battery Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric...

  9. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success...

  10. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

  11. Overview of the Batteries for Advanced Transportation Technologies...

    Energy Savers [EERE]

    the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the U.S....

  12. Development of High Energy Lithium Batteries for Electric Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

  13. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

  14. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  15. Two Studies Reveal Details of Lithium-Battery Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

  16. Manipulating the Surface Reactions in Lithium Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

  17. Fact Sheet: Vanadium Redox Flow Batteries (October 2012) | Department...

    Energy Savers [EERE]

    Batteries (October 2012) Fact Sheet: Vanadium Redox Flow Batteries (October 2012) DOE's Energy Storage Program is funding research to develop next-generation vanadium redox flow...

  18. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) International Battery Presentation - Keeping The Lights On: Smart Storage...

  19. Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

  20. 2008 Annual Merit Review Results Summary - 3. Battery Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3. Battery Development, Testing, Simulation, Analysis 2008 Annual Merit Review Results Summary - 3. Battery Development, Testing, Simulation, Analysis DOE Vehicle Technologies...

  1. Overview of the Batteries for Advanced Transportation Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Material BATT and the Battery Industry Block copolymer electrolytes for Li-metal batteries (Balsara) being commercialized by Seeo, Inc. Advanced cathode materials (Manthiram)...

  2. Battery Company Puts New Nanowire Technology into Production...

    Office of Environmental Management (EM)

    batteries for niche market applications. Silicon offers a number of advantages over pure graphite, the current material of choice for lithium ion batteries. In particular,...

  3. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    of the Electric Fuel Zinc-Air Battery System for EVs,of the Electric Fuel Zinc-air battery for electric vehicles,

  4. Fault-tolerant battery system employing intra-battery network architecture

    DOE Patents [OSTI]

    Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

    2000-01-01T23:59:59.000Z

    A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

  5. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

    2009-12-15T23:59:59.000Z

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  6. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01T23:59:59.000Z

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  7. Self-Charging Battery Project

    SciTech Connect (OSTI)

    Yager, Eric

    2007-07-25T23:59:59.000Z

    In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

  8. Sandia Energy - Battery Calorimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalystsMolten-SaltAssessmentBattery

  9. Optima Batteries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social Jump to:OpenOptima Batteries

  10. Battery Ventures | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPower SystemsRhode Island:Battery Ventures

  11. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    Electrode for Sodium Ion Batteries. Chemistry of Materialsnickel fluoride in Li ion batteries. Electrochimica Actafor advanced lithium ion batteries. Materials Science and

  12. Battery requirements for urban electric vans

    SciTech Connect (OSTI)

    Patil, P.G.; Walsh, W.J.

    1986-01-01T23:59:59.000Z

    The Department of Energy (DOE) has carried out an intensive study of battery requirements for electric vans, and developed a mission-directed goals package for each of the principal battery contenders for this application. These goals were based on the assumption that vehicle range and acceleration must be fully met throughout each battery discharge. Under this assumption, the design point is the end-of-life condition, defined as the last cycle in which both power and energy requirements can be fulfilled. A light-weight, low-rolling-resistance van with an improved version of the ac powertrain being developed by Eaton was chosen as the hypothetical baseline vehicle. A modified FUDS cycle was selected along with assumptions of 3 M/sup 2/ frontal area, 0.37 drag coefficient, and a rolling resistance of 0.008. State-of-art characteristics and design interrelationships were developed for each battery technology, and the degree of advance expected by 1995 was projected. For each battery candidate, a least-cost combination of performance and operating characteristics was determined. The analysis included the peak power vs specific energy and depth-of-discharge (DOD), cycle life vs DOD, cost vs onboard energy and power, and kWh size effects. The resultant R and D goals for the electric van battery are presented, including early-in-life and end-of-life energy over the drive cycle, peak power, battery weight and volume, battery life, costs, and allowable frequency of repair.

  13. Bimetallic Cathode Materials for Lithium Based Batteries

    E-Print Network [OSTI]

    Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

  14. A User Programmable Battery Charging System 

    E-Print Network [OSTI]

    Amanor-Boadu, Judy M

    2013-05-07T23:59:59.000Z

    to provide the convenience of rare battery replacement and extend the periods between charges. This thesis proposes a user programmable charging system that can charge a Lithium ion battery from three different input sources, i.e. a wall outlet, a universal...

  15. Alloys of clathrate allotropes for rechargeable batteries

    DOE Patents [OSTI]

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09T23:59:59.000Z

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  16. Paper Submitted to 2002 Annual Conference of the Transportation Association of

    E-Print Network [OSTI]

    Hellinga, Bruce

    of projected 2011 emissions. Significant reductions could be achieved through the implementation of hybrid to their high cost. The implementation of E10 fuels could lead to reductions of up to 23 percent of projected (Honda Canada, 2002). Honda also plans to begin sales of a hybrid Civic sedan in May 2003 #12;R. Mc

  17. The BATINTREC process for reclaiming used batteries

    SciTech Connect (OSTI)

    Xia Yueqing; Li Guojian

    2004-07-01T23:59:59.000Z

    The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

  18. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11T23:59:59.000Z

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  19. State of charge indicators for a battery

    DOE Patents [OSTI]

    Rouhani, S. Zia (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  20. Multi-cell storage battery

    DOE Patents [OSTI]

    Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

    2000-01-01T23:59:59.000Z

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  1. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  2. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Batteries, Advanced Automotive Battery and Ultracapacitor Conference, Fourth International Symposium on Large Lithium-ion Batterybatteries with Nano-Li4Ti5O12 electrodes, Advanced Automotive Battery and Ultracapacitor Conference, Third International Symposium on Large Lithium-ion Battery

  3. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  4. Last Revised: 10/2013 Battery Waste Collection Request

    E-Print Network [OSTI]

    Wilcock, William

    Labpack 113 ENV XX MCID: 51618 Chem Id: 317 Codes: None Lead Acid Batteries Recycle 114 ACI XX MCID: 51620 batteries into Mixed, Lithium (button batteries) or Lead Acid. We can collect all types at the same timeLast Revised: 10/2013 Battery Waste Collection Request www.ehs.washington.edu/forms/epo/1943.pdf

  5. Mechanical Properties of Lithium-Ion Battery Separator Materials

    E-Print Network [OSTI]

    Petta, Jason

    -ion batteries like on the inside Anode Separator Cathode 500 nm 20 um20 um Anode: Graphite SeparatorMechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

  6. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01T23:59:59.000Z

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  7. Hierarchically Structured Materials for Lithium Batteries

    SciTech Connect (OSTI)

    Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

    2013-09-25T23:59:59.000Z

    Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

  8. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect (OSTI)

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2014-02-28T23:59:59.000Z

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  9. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01T23:59:59.000Z

    Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cellrevenue – cost). Peak power Battery, full function Battery,sources of distributed power; battery-EDVs, fuel cell EDVs,

  10. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

    1998-01-01T23:59:59.000Z

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  11. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    DOE Patents [OSTI]

    King, R.D.; DeDoncker, R.W.A.A.

    1998-01-20T23:59:59.000Z

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

  12. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01T23:59:59.000Z

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  13. Method of making a sodium sulfur battery

    DOE Patents [OSTI]

    Elkins, P. E.

    1981-09-22T23:59:59.000Z

    A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another. 3 figs.

  14. Battery Chargers | Electrical Power Conversion and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromofBatteries from Brine Batteries from Brine MarchBattery

  15. 1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries

    E-Print Network [OSTI]

    Lehman, Brad

    1600 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 22, NO. 5, SEPTEMBER 2007 Solar Battery Chargers for NiMH Batteries Florent Boico, Brad Lehman, Member, IEEE, and Khalil Shujaee Abstract--This paper proposes new solar battery chargers for NiMH batteries. First, it is shown that existing charge

  16. Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies

    E-Print Network [OSTI]

    Popov, Branko N.

    . Introduction Hybrid energy storage devices are more efficient than a battery in supplying the total powerCapacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge

  17. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    array on the performance for a diesel/battery/inverter/pv system. It seeks to determine whetherThe Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 k

  18. Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

    E-Print Network [OSTI]

    Singh, Pritpal

    dreisner@usnanocorp.com Abstract Automotive starting, lighting, and ignition (SLI) lead acid batteries of SLI lead acid batteries. Since 1997, Villanova University and US Nanocorp, Inc. have collaborated1 Fuzzy Logic-Based Smart Battery State-of-Charge (SOC) Monitor for SLI Batteries Pritpal Singh

  19. Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /

    E-Print Network [OSTI]

    Lee, Dae Hoe

    2013-01-01T23:59:59.000Z

    graphite negative electrode for lithium-ion batteries.batteries. The Na anode materials must not be overlooked since graphite-

  20. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    SciTech Connect (OSTI)

    NONE

    1999-09-01T23:59:59.000Z

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  1. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  2. Measuring Energy Efficiency Improvements in Industrial Battery Chargers

    E-Print Network [OSTI]

    Matley, R.

    Measuring Energy Efficiency Improvements in Industrial Battery Chargers Ryan Matley, Sr. Program Manager, Pacific Gas and Electric Company, San Francisco, CA ABSTRACT Industrial battery chargers have provided the energy requirements... to 100 GWh per year. There are three areas of energy losses in the battery and charger system: ? Power Conversion Efficiency (energy out of charger vs. energy into charger) ? Charge Return (energy out of battery vs. energy into battery): some...

  3. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Miller, M. , Emerging Lithium-ion Battery Technologies forCharacteristics of Lithium-ion Batteries of Variousand Simulation Results with Lithium-ion Batteries, paper

  4. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  5. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01T23:59:59.000Z

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  6. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    in Secondary Lithium Batteries Guoying Chen, Karen E.protection agents in lithium batteries is relatively new,rechargeable lithium batteries with a variety of different

  7. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    The Electrochemical Society (Batteries and Energy ConversionDeposition for Lithium Batteries Seung-Wan Song, a, * Ronaldrechargeable lithium batteries. Introduction Sb-containing

  8. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    of thin- film Li-ion batteries under flexural deflection,”thin-film solar cells and batteries (2) Characterizesolar cells and batteries for multifunctional performance (

  9. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

  10. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  11. Experimental Validation of Voltage-Based State-of-Charge Algorithm for Power Batteries

    E-Print Network [OSTI]

    Jia, Zhuo

    2013-01-01T23:59:59.000Z

    for nickel metal hydride batteries including hysteresis” ,Control of Lithium-Ion Batteries”, Control Systems, IEEE,modeling of lead acid batteries”, Applied Power Electronics

  12. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    Whether any of the lithium battery chemistries can meetgeneral the higher cost lithium battery chemistries have thecosts for various lithium battery chemistries Electrode

  13. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Copolymer: Application in Lithium Battery Electrodes. Angew.Schematic of the Proposed lithium battery electrode with aBlock Copolymers for Lithium Battery Electrodes By Shrayesh

  14. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    the solid state thin-film lithium battery S8-ES ( Front EdgeLithium-Ion Polymer Battery ..Mikhaylik, "Lithium-Sulfur Secondary Battery: Chemistry and

  15. MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR

    E-Print Network [OSTI]

    Pollard, Richard

    2012-01-01T23:59:59.000Z

    composition profiles in lithium/sulfur battery analogues hasTHE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATICthe Lithium-Aluminum, Iron Sulfide Battery I. Galvanostatic

  16. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    J. Østergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

  17. The use of NTA and EDTA for lead phytoextraction from soil from a battery recycling site

    E-Print Network [OSTI]

    Freitas, Eriberto; Nascimento, Clistenes; Silva, Airon

    2009-01-01T23:59:59.000Z

    lead smelting and battery recycling. Areas near Pb recyclingof soil with lead. A battery recycling site is a locationnear an automobile battery recycling facility. The soil was

  18. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Yang, Li

    2014-01-01T23:59:59.000Z

    References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

  19. Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

  20. Studies of ionic liquids in lithium-ion battery test systems

    E-Print Network [OSTI]

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-01-01T23:59:59.000Z

    are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

  1. Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries

    E-Print Network [OSTI]

    Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

    2005-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

  2. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01T23:59:59.000Z

    the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

  3. Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes

    E-Print Network [OSTI]

    Patel, Shrayesh

    2013-01-01T23:59:59.000Z

    Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

  4. A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries

    E-Print Network [OSTI]

    Stone, Gregory Michael

    2012-01-01T23:59:59.000Z

    for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

  5. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01T23:59:59.000Z

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

  6. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    E-Print Network [OSTI]

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-01-01T23:59:59.000Z

    Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

  7. Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage

    E-Print Network [OSTI]

    Wang, Zuoqian

    2013-01-01T23:59:59.000Z

    Performance for Lithium Batteries,” J. Electrochem. Soc. ,developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of Power

  8. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

  9. Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature

    E-Print Network [OSTI]

    Chen, Guoying

    2010-01-01T23:59:59.000Z

    Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

  10. Develop high energy high power Li-ion battery cathode materials : a first principles computational study

    E-Print Network [OSTI]

    Xu, Bo; Xu, Bo

    2012-01-01T23:59:59.000Z

    of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

  11. Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries

    E-Print Network [OSTI]

    Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

    2003-01-01T23:59:59.000Z

    Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

  12. Improved layered mixed transition metal oxides for Li-ion batteries

    E-Print Network [OSTI]

    Doeff, Marca M.

    2010-01-01T23:59:59.000Z

    for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

  13. Major advances in battery and energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advances in battery and energy storage technologies play a vital role in the efforts to transform our nation's energy economy and reduce our dependence on fossil fuels in the...

  14. How Advanced Batteries Are Energizing the Economy

    Broader source: Energy.gov [DOE]

    Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

  15. A monolithically integrated thermo-adsorptive battery

    E-Print Network [OSTI]

    McKay, Ian Salmon

    2014-01-01T23:59:59.000Z

    A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150 kJ/L) applications. In the thermal ...

  16. Advances in lithium-ion batteries

    E-Print Network [OSTI]

    Kerr, John B.

    2003-01-01T23:59:59.000Z

    Advances in Lithium-Ion Batteries Edited by Walter A. vanbook is intended for lithium-ion scientists and engineersof the state of the Lithium-ion art and in this they have

  17. California Lithium Battery, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the...

  18. Composite Battery Boost | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to...

  19. Battery components employing a silicate binder

    SciTech Connect (OSTI)

    Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

    2011-05-24T23:59:59.000Z

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  20. From corrosion to batteries: Electrochemical interface studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

  1. Sexual Battery Your Rights and Services

    E-Print Network [OSTI]

    Sura, Philip

    Sexual Battery Your Rights and Services If you need support in the healing process from a sexual. · To not be asked or required to take a polygraph examination as a condition of going ahead with the investigation

  2. Sandia National Laboratories: self-charging battery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    self-charging battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March 20, 2013, in Energy...

  3. Membrane-less hydrogen bromine flow battery

    E-Print Network [OSTI]

    Braff, William A.

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

  4. Intercalation dynamics in lithium-ion batteries

    E-Print Network [OSTI]

    Burch, Damian

    2009-01-01T23:59:59.000Z

    A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

  5. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30T23:59:59.000Z

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  6. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16T23:59:59.000Z

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  7. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01T23:59:59.000Z

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  8. Negative Electrodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01T23:59:59.000Z

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  9. High-discharge-rate lithium ion battery

    SciTech Connect (OSTI)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22T23:59:59.000Z

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  10. Anti-Idling Battery for Truck Applications

    SciTech Connect (OSTI)

    Keith Kelly

    2011-09-30T23:59:59.000Z

    In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

  11. Multicell Li/SOCl/sub 2/ reserve battery

    SciTech Connect (OSTI)

    Baldwin, A.R.; Garoutte, K.F.

    1984-01-01T23:59:59.000Z

    Recent development work on reserve lithium thionyl chloride (RLTC) batteries at SNLA and Honeywell has included safety and performance evaluations. The RLTC battery is being considered for applications that have traditionally been fulfilled by state-of-the-art thermal batteries and reserve silver oxide zinc electrochemical systems. These applications typically demand a reserve battery having a rapid voltage rise, high reliability, operational safety and useful active lifetime ranging from minutes to hours. The RLTC work reported here was directed toward a power battery capable of meeting or exceeding the design requirements. Performance and safety test data indicate that the RLTC battery may be better suited than thermal batteries for some long-life applications. Table II presents a comparison between a Li(Si)/FeS/sub 2/ thermal battery and an RLTC battery, both of which were designed to fulfill the requirements.

  12. Process for the reclamation of battery acid and fluid from expended lead-acid batteries

    SciTech Connect (OSTI)

    Spitz, R.A.

    1990-11-20T23:59:59.000Z

    This patent describes a method for recycling contaminated sulfuric acid from lead acid batteries to reclaimed sulfuric acid fore reuse in the batteries by removing contaminating iron impurities. It comprises: diluting the contaminated sulfuric acid to a concentration between 150 and 230 grams per liter; filtering the sulfuric acid through a first filter means to remove solid impurities.

  13. Battery Management for Grid-Connected PV Systems with a Battery

    E-Print Network [OSTI]

    Pedram, Massoud

    components such as the PV array and PV inverters. The mainstream research is related to maxi- mum power pointBattery Management for Grid-Connected PV Systems with a Battery Sangyoung Park1, Yanzhi Wang2}@usc.edu ABSTRACT Photovoltaic (PV) power generation systems are one of the most promising renewable power sources

  14. Making Li-air batteries rechargeable: material challenges

    SciTech Connect (OSTI)

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25T23:59:59.000Z

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  15. New flow battery to keep cities lit, green and safe | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New flow battery to keep cities lit, green and safe New flow battery to keep cities lit, green and safe Smaller, cheaper battery's energy density exceeds other flow batteries...

  16. Zinc-chlorine battery plant system and method

    DOE Patents [OSTI]

    Whittlesey, Curtis C. (Birmingham, MI); Mashikian, Matthew S. (Huntington Woods, MI)

    1981-01-01T23:59:59.000Z

    A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.

  17. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Metal Oxides Cathodes for Lithium-ion Batteries Kinson C.storage using rechargeable lithium-ion batteries has become

  18. Studies of Local Degradation Phenomena in Composite Cathodes for Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kerlau, M.; Marcinek, M.; Srinivasan, V.; Kostecki, R.M.

    2008-01-01T23:59:59.000Z

    Composite Cathodes for Li-ion Batteries Marie Kerlau, Marekfrom commercial Li-ion batteries and mode cells which

  19. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Cathodes for Lithium-ion Batteries Kinson C. Kam and Marcarechargeable lithium-ion batteries has become an integral

  20. Passivation of Aluminum in Lithium-ion Battery Electrolytes with LiBOB

    E-Print Network [OSTI]

    Zhang, Xueyuan; Devine, Thomas M.

    2008-01-01T23:59:59.000Z

    of Aluminum in Lithium-ion Battery Electrolytes with LiBOBin commercially available lithium-ion battery electrolytes,

  1. Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries

    E-Print Network [OSTI]

    Kam, Kinson

    2012-01-01T23:59:59.000Z

    Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

  2. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01T23:59:59.000Z

    include low cost lead-acid batteries. There are several wayscould include low cost lead-acid batteries. Establishing a

  3. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01T23:59:59.000Z

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  4. Comparison of various battery technologies for electric vehicles

    E-Print Network [OSTI]

    Dickinson, Blake Edward

    1993-01-01T23:59:59.000Z

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing...

  5. Overview of Computer-Aided Engineering of Batteries (CAEBAT)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Overview of Computer-Aided Engineering...

  6. Microfabricated thin-film batteries : technology and potential applications

    E-Print Network [OSTI]

    Greiner, Julia

    2006-01-01T23:59:59.000Z

    High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

  7. The assessment of battery-ultracapacitor hybrid energy storage systems

    E-Print Network [OSTI]

    He, Yiou

    2014-01-01T23:59:59.000Z

    Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

  8. Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

    E-Print Network [OSTI]

    Hu, Qichao

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

  9. How Advanced Batteries Are Energizing the Economy | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Advanced Batteries Are Energizing the Economy How Advanced Batteries Are Energizing the Economy August 11, 2011 - 7:15pm Addthis Thanks in part to a 300 million grant through...

  10. Design and implementation of an automated battery management platform

    E-Print Network [OSTI]

    Toksoz, Tuna

    2012-01-01T23:59:59.000Z

    This thesis describes the design and the implementation of the hardware platform for automated battery management with battery changing/charging capability for autonomous UAV missions with persistency requirement that ...

  11. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

    1989-01-01T23:59:59.000Z

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  12. Three-Dimensional Lithium-Ion Battery Model (Presentation)

    SciTech Connect (OSTI)

    Kim, G. H.; Smith, K.

    2008-05-01T23:59:59.000Z

    Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

  13. High power bipolar battery/cells with enhanced overcharge tolerance

    DOE Patents [OSTI]

    Kaun, T.D.

    1998-04-07T23:59:59.000Z

    A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.

  14. The Superpower behind Iron Oxyfluoride Battery Electrodes | Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to drive advances in lithium-ion batteries-the state-of-the-art in rechargeable energy storage. While many different battery components contribute to their performance, the...

  15. NREL/CCSE PEV Battery Second Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2011-09-01T23:59:59.000Z

    This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

  16. Lithium-ion battery modeling using non-equilibrium thermodynamics

    E-Print Network [OSTI]

    Ferguson, Todd R. (Todd Richard)

    2014-01-01T23:59:59.000Z

    The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

  17. Water and Gold: A Promising Mix for Future Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

  18. Modeling the operating voltage of liquid metal battery cells

    E-Print Network [OSTI]

    Newhouse, Jocelyn Marie

    2014-01-01T23:59:59.000Z

    A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

  19. The UC Davis Emerging Lithium Battery Test Project

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01T23:59:59.000Z

    initial and life cycle costs of the battery. As indicatedbattery chemistries have the potential for longer cycle life which on a life cycle costLife cycle data for the Altairnano 50Ah cell (Altairnano data) Battery cost

  20. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01T23:59:59.000Z

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.