Powered by Deep Web Technologies
Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name Penrose Landfill Gas Conversion LLC Place Los Angeles, California Product Owner of landfill gas plant....

2

Penrose Power Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Penrose Power Station Biomass Facility Penrose Power Station Biomass Facility Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Penrose, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Penrose, Colorado: Energy Resources Penrose, Colorado: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.4250001°, -105.0227624° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.4250001,"lon":-105.0227624,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Homes  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) improves home energy performance by developing and demonstrating advanced energy efficiency technologies and practices that make homes in the United States more...

5

Turbines produce energy from L. A. landfill  

Science Conference Proceedings (OSTI)

This article describes one of the Nation's most sophisticated resource recovery projects which began operating in February at the Puente Hills Landfill Methane Energy Station as part of the County Sanitation Districts of Los Angeles County. The project is currently generating 2.8 megawatts of power which would serve the electrical needs of approximately 5600 homes. Future plans for the landfill energy project include generating enough electricity for more than 50,000 homes. Unlike other methane recovery projects that use diesel or gasoline power reciprocating engines, the Puente Hills Landfill Methane Energy Station drives its electrical generators with gas turbines. This is a first for power generation at a landfill site.

Carry, C.W.; Stahl, J.F.; Maguin, S.R.; Friess, P.L.

1984-06-01T23:59:59.000Z

6

Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation Links Home Newsroom About INL Careers Research Programs Facilities Education Distinctive Signature: ICIS Environment, Safety & Health Research Library Technology...

7

The Riemannian Penrose Inequality with Charge for Multiple Black Holes  

E-Print Network (OSTI)

We present a proof of the Riemannian Penrose inequality with charge $r\\leq m + \\sqrt{m^2-q^2}$, where $A=4\\pi r^2$ is the area of the outermost apparent horizon with possibly multiple connected components, $m$ is the total ADM mass, and $q$ the total charge of a strongly asymptotically flat initial data set for the Einstein-Maxwell equations, satisfying the charged dominant energy condition, with no charged matter outside the horizon.

Marcus Khuri; Gilbert Weinstein; Sumio Yamada

2013-08-17T23:59:59.000Z

8

Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Cleanup Project Cleanup Project Search Login Home News News Inside the ICP articles About Us About Us Our Mission Facility Factsheets History of the Site Safety Working with CWI/Property Sales Working with CWI Subcontracting & Small Business Academic Internship Program Property Sales Outreach Community Outreach Stakeholders Education and Research Transfer Program AR-IR Administration Contact Us Industry leader in safe performance CWI's worker-owned safety culture has been the cornerstone for delivering work at the Idaho Cleanup Project. Since contract inception in May 2005, the CWI team has reduced recordable injuries by more than 70 percent. Video Feature: Waste Management Treatment of sodium-contaminated waste using a distillation process (9:47) Terms Of Use Privacy Statement If you have a disability and need an

9

Home > Home  

NLE Websites -- All DOE Office Websites (Extended Search)

or the information, products or services contained therein by the DOE Oak Ridge Office. Home Home Contact Infomation Background Reference Documents Pre-Solicitation Notice Final...

10

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173"...

11

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

12

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

13

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

14

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

15

Rodefeld Landfill Ga Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Rodefeld Landfill Ga Biomass Facility Jump to: navigation, search Name Rodefeld Landfill Ga Biomass Facility Facility Rodefeld Landfill Ga Sector Biomass Facility Type Landfill Gas...

16

Energy potential of modern landfills  

DOE Green Energy (OSTI)

Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

Bogner, J.E.

1990-01-01T23:59:59.000Z

17

M-theory PP-Waves, Penrose Limits and Supernumerary Supersymmetries  

E-Print Network (OSTI)

We study supersymmetric pp-waves in M-theory, their dimensional reduction to D0-branes or pp-waves in type IIA, and their T-dualisation to solutions in the type IIB theory. The general class of pp-waves that we consider encompass the Penrose limits of AdS_p\\times S^q with (p,q)=(4,7), (7,4), (3,3), (3,2), (2,3), (2,2), but includes also many other examples that can again lead to exactly-solvable massive strings, but which do not arise from Penrose limits. All the pp-waves in D=11 have 16 "standard" Killing spinors, but in certain cases one finds additional, or "supernumerary," Killing spinors too. These give rise to linearly-realised supersymmetries in the string or matrix models. A focus of our investigation is on the circumstances when the Killing spinors are independent of particular coordinates (x^+ or transverse-space coordinates), since these will survive at the field-theory level in dimensional reduction or T-dualisation.

Cvetic, M; Pope, C N

2002-01-01T23:59:59.000Z

18

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

19

U. S. landfill gas research  

DOE Green Energy (OSTI)

This paper surveys US landfill gas RandD programs and presents some technical details of work being conducted at Argonne National Laboratory (Argonne, Illinois) through the support of the US Department of Energy. The two projects at Argonne include (1) a study of bidirectional gas movement through landfill cover materials and (2) development of standardized techniques to assay gas production from landfilled refuse (including qualitative microbiology of refuse assays).

Bogner, J.; Vogt, M.; Piorkowski, R.; Rose, C.; Hsu, M.

1988-01-01T23:59:59.000Z

20

On the Riemannian Penrose inequality with charge and the cosmic censorship conjecture  

E-Print Network (OSTI)

We note an area-charge inequality orignially due to Gibbons: if the outermost horizon $S$ in an asymptotically flat electrovacuum initial data set is connected then $|q|\\leq r$, where $q$ is the total charge and $r=\\sqrt{A/4\\pi}$ is the area radius of $S$. A consequence of this inequality is that for connected black holes the following lower bound on the area holds: $r\\geq m-\\sqrt{m^2-q^2}$. In conjunction with the upper bound $r\\leq m + \\sqrt{m^2-q^2}$ which is expected to hold always, this implies the natural generalization of the Riemannian Penrose inequality: $m\\geq 1/2(r+q^2/r)$.

Marcus A Khuri; Sumio Yamada; Gilbert Weinstein

2013-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

22

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

23

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Jump to: navigation, search Name Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass...

24

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

25

Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional  

E-Print Network (OSTI)

We study the structure of the constrained minimizers of the Gates-Lebowitz-Penrose free-energy functional ${\\mathcal F}_{\\rm GLP}(m)$, non-local functional of a density field $m(x)$, $x\\in {\\mathcal T}_L$, a $d$-dimensional torus of side length $L$. At low temperatures, ${\\mathcal F}_{\\rm GLP}$ is not convex, and has two distinct global minimizers, corresponding to two equilibrium states. Here we constrain the average density $L^{-d}\\int_{{\\cal T}_L}m(x)\\dd x$ to be a fixed value $n$ between the densities in the two equilibrium states, but close to the low density equilibrium value. In this case, a "droplet" of the high density phase may or may not form in a background of the low density phase, depending on the values $n$ and $L$. We determine the critical density for droplet formation, and the nature of the droplet, as a function of $n$ and $L$. The relation between the free energy and the large deviations functional for a particle model with long-range Kac potentials, proven in some cases, and expected to be true in general, then provides information on the structure of typical microscopic configurations of the Gibbs measure when the range of the Kac potential is large enough.

E. A. Carlen; M. C. Carvalho; R. Esposito; J. L. Lebowitz; R. Marra

2009-05-21T23:59:59.000Z

26

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

operations with natural gas: Fuel composition implications,of Natural gas testing LANDFILL GAS COMPOSITION Tapping into

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

27

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Simulated Landfill Gas Intake Diagram STEADY STATE OPERATIONlandfill gas. Expanding the understanding of HCCI mode of engine operation

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

28

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

Biomass Capture and Utilisation of Landfill Gas What is the potential for additional utilisation of landfill gas in the USA and around the world? By Nickolas Themelis and Priscilla Ulloa, Columbia University. In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were

Columbia University

29

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

30

Witness trees in the Moser-Tardos algorithmic Lovsz Local Lemma and Penrose trees in the hard core lattice gas  

E-Print Network (OSTI)

We point out a close connection between the Moser-Tardos algorithmic version of the Lov\\'asz Local Lemma, a central tool in probabilistic combinatorics, and the cluster expansion of the hard core lattice gas in statistical mechanics. We show that the notion of witness trees given by Moser and Tardos is essentially coincident with that of Penrose trees in the Cluster expansion scheme of the hard core gas. Such an identification implies that the Moser Tardos algorithm is successful in a polynomial time if the Cluster expansion converges.

Rogrio Gomes Alves; Aldo Procacci

2013-06-14T23:59:59.000Z

31

BCP Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Boulder Canyon Project Remarketing Effort HOME Home Page Image WELCOME Boulder Canyon Information Module Federal Register Notices Public Forums Correspondence and Presentations...

32

EERE: Homes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RENEWABLE ENERGY AND BEING ENERGY EFFICIENT AT HOME Incentives Tax Credits, Rebates, and Savings Save Money and Energy at Home Appliances Energy Assessments Water Heating Using...

33

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

34

Landfill Gas-to-Electricity Demonstration Project  

DOE Green Energy (OSTI)

Medium Btu methane gas is a naturally occurring byproduct of anaerobic digestion of landfilled municipal solid waste. The energy potential of landfill gas in New York State is estimated to be 61 trillion Btu's per year or the equivalent of 10% of the natural gas used annually in the state. The 18-month Landfill Gas-to-Electricity Demonstration Project conducted at the Fresh Kills Landfill in Staten Island, New York conclusively demonstrated that landfill gas is an acceptable fuel for producing electricity using an internal combustion engine/generator set. Landfill gas proved to be a reliable and consistent fuel source during a six-month field test program. Engine exhaust emissions were determined to be comparable to that of natural gas and no unusually high corrosion rates on standard pipeline material were found.

Not Available

1982-10-01T23:59:59.000Z

35

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network (OSTI)

trench c) Liner Deployment d) Seaming Double Hot wedge Fillet Extrusion Seam properties ­ ASTM D6392 e-wise construction of landfill #12;Daily cell, cover, lift & phase of a landfill #12;Operational Points Provisions (contd) Check for compatibilities of different wastes. Divide landfill into cells. Non

Columbia University

36

Mixed Waste Landfill Integrated Demonstration; Technology summary  

SciTech Connect

The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

NONE

1994-02-01T23:59:59.000Z

37

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

38

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

Appendix B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2011 Monthly Inspection -...

39

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

40

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE EM Landfill Workshop and Path Forward - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill...

42

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

43

Challenge Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Challenge Home DOE Challenge Home Sam Rashkin Building Technologies Office samuel.rashkin@ee.doe.gov/202-2897-1994 April 3, 2013 DOE Challenge Home: Leveraging Our Nation's Investment in High-Performance Home Innovations 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The U.S. Housing industry is extremely slow to adopt proven innovations from DOE's Building America program that provide compelling benefits to

44

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

46

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

48

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

51

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Conference Proceedings (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

53

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

54

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

55

Challenge Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Innovations 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: The U.S. Housing industry is extremely slow to adopt...

56

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

57

Understanding landfill gas generation and migration  

DOE Green Energy (OSTI)

Landfill gas research in the US Department of Energy (DOE) from Municipal Waste (EMW) Program is focusing on two major areas of investigation: (1) Landfill gas migration processes; and (2) Landfill gas generation. With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site with clay cover and a semiarid site with sand cover--have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that: (1) concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; (2) based on average methane gradients in soil gas and a simple diffusion model, up to 10E5 g methane m/sup /minus /2/ yr/sup /minus/1/ are vented through the cover materials at the humid site (area of 17 ht); and (3) during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM).

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1988-01-01T23:59:59.000Z

58

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

59

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

60

Passive drainage and biofiltration of landfill gas: Australian field trial  

SciTech Connect

In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

Dever, S.A. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia) and GHD Pty. Ltd., 10 Bond Street, Sydney, NSW 2000 (Australia)]. E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. [School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)]. E-mail: r.stuetz@unsw.edu.au

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Home Page  

Gasoline and Diesel Fuel Update (EIA)

Electronic Access and Related Reports The AEO98 will be available on CD-ROM and the EIA Home Page on the Internet (http:www.eia.govoiafaeo98homepage.html), including text,...

62

Investigations of natural attenuation in groundwater near a landfill and implications for landfill post-closure  

E-Print Network (OSTI)

-closure phase. During the post-closure phase, landfill operators need to convince environmental authorities treatment of residual greenhouse gas emissions (e.g. Scheutz et al., 2009). From an operator's perspective to be a source of cost. Therefore during the post-closure phase, landfill operators need to convince

Paris-Sud XI, Université de

63

Photovoltaics on Landfills in Puerto Rico  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

Salasovich, J.; Mosey, G.

2011-01-01T23:59:59.000Z

64

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

65

Using landfill gas for energy: Projects that pay  

Science Conference Proceedings (OSTI)

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

66

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network (OSTI)

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

67

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

Science Conference Proceedings (OSTI)

The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

68

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

69

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

70

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

71

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

2006 Abstract Methane gas is a by-product of landfilling municipal solid wastes (MSW). Most tonnes of methane annually, 70% of which is used to generate heat and/or electricity. The landfill gas. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

72

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

73

US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site  

Science Conference Proceedings (OSTI)

This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

Not Available

1993-06-01T23:59:59.000Z

74

Landfill stabilization focus area: Technology summary  

SciTech Connect

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

75

Home Automation  

E-Print Network (OSTI)

In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

Ahmed, Zeeshan

2010-01-01T23:59:59.000Z

76

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

77

Methane Gas Utilization Project from Landfill at Ellery (NY)  

DOE Green Energy (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

78

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

DOE Green Energy (OSTI)

gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

79

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

80

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BCP Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Boulder Canyon Project Information Module Boulder Canyon Project Information Module HOME MODULE OVERVIEW LEGISLATION TIMELINE TIMELINE SUMMARY CASE LAW PROJECT HISTORY MISC. DOCUMENTS RELATED LINKS Home Page Image Welcome Hoover Dam is the highest and third largest concrete dam in the United States. The dam, power plant, and high-voltage switchyards are located in the Black Canyon of the Colorado River on the Arizona-Nevada state line. Lake Mead, the reservoir behind the dam, will hold the average two-year flow of the Colorado River. Hoover Dam´s authorized purposes are: first, river regulation, improvement of navigation, and flood control; second, delivery of stored water for irrigation and other domestic uses; and third, power generation. This Page was last modified on : 05-12-2009

82

Homes Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

homes-blog Office of Energy Efficiency & Renewable homes-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Mississippi Adopts New Rules to Save Energy, Money http://energy.gov/eere/articles/mississippi-adopts-new-rules-save-energy-money-0 Mississippi Adopts New Rules to Save Energy, Money

83

Landfill gas recovery: a technology status report  

DOE Green Energy (OSTI)

Landfill gas, which consists mainly of methane and carbon dioxide, can be recovered and used as a fuel. Processing will upgrade it to a high-Btu gas of pipeline quality. There are more than a dozen commercial landfill-gas recovery facilities in the US at present, all at relatively large sites. The amount of gas produced by a given site is a function of size, composition, and age of the landfill. Various techniques can be used to enhance gas production and yield, including controlled addition of moisture and nutrients; bacterial seeding and pH control also appear useful. Several computer models have been developed to examine the effects of various parameters on gas production and yield; these can aid in predicting optimum gas recovery and in maintaining the proper chemical balance within the producing portion of the landfill. Economically, a site's viability depends on its location and potential users, current competing energy costs, and legislation governing the site's operation. Legal problems of site operation can occur because of environmental and safety issues, as well as from questions of gas ownership, liability, and public utility commission considerations. Currently, R and D is under way to improve present recovery techniques and to develop new technologies and concepts. Cost comparisons and potential environmental impacts are being examined. Additional research is needed in the areas of gas enhancement, decompositional analysis, computer modeling, gas characterization, instrumentation, and engineering cost analysis. 77 references, 11 figures, 23 tables.

Zimmermann, R.E.; Lytwynyshyn, G.R.; Wilkey, M.L.

1983-08-01T23:59:59.000Z

84

Turning waste into energy beats landfilling  

E-Print Network (OSTI)

Turning waste into energy beats landfilling By Christopher Hume The Hamilton Spectator (Nov 16 it in Europe, "waste-to-energy," this is a technology that is needed. Objections to it are based on information lots, perhaps $300 million. But what Miller and others fail to understand is that energy-to-waste

Columbia University

85

Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors  

Science Conference Proceedings (OSTI)

In this study we present a neural network model for predicting the methane fraction in landfill gas originating from field-scale landfill bioreactors. Landfill bioreactors were constructed at the Odayeri Sanitary Landfill, Istanbul, Turkey, and operated ... Keywords: Anaerobic digestion, Landfill gas, Leachate, Methane fraction, Modeling, Neural network

Bestamin Ozkaya; Ahmet Demir; M. Sinan Bilgili

2007-06-01T23:59:59.000Z

86

DOE - Office of Legacy Management -- Shpack Landfill - MA 06  

Office of Legacy Management (LM)

Shpack Landfill - MA 06 Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5 MA.06-6 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MA.06-7 MA.06-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shpack Landfill, NY MA.06-1 - DOE Memorandum; Meyers to Hart; Subject: Shpack Landfill,

87

At Home  

NLE Websites -- All DOE Office Websites (Extended Search)

21, 1997 21, 1997 Number 6 A profile of the Fermilab user community At Home and Loved by Judy Jackson, Fermilab Office of Public Affairs They come from Texas and from Turkey; from Colombia the country and Columbia the university; from as nearby as Elmhurst, Illinois and as far away as Beijing, China; from Oxford, England to Oxford, Mississippi; from university groups as large as 50 and as small as one. Figures recently released by the Laboratory's Office of Program Planning show Fermilab's users as a diverse and growing community of physicists and students engaged in a range of experiments aimed at discovering the fundamental nature of matter at the frontiers of particle physics research. What is a user? It seems obvious, but defining a labora- tory user is harder than it looks. Different

88

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

Not Available

1981-01-01T23:59:59.000Z

89

Modeling Analysis of Biosparging at the Sanitary Landfill  

Science Conference Proceedings (OSTI)

This report presents the results of a groundwater modeling study that evaluates the performance of the biosparging system at the Sanitary Landfill.

Jackson, D.

1998-11-25T23:59:59.000Z

90

Mill Seat Landfill Bioreactor Renewable Green Power (NY)  

DOE Green Energy (OSTI)

for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

Barton & Loguidice, P.C.

2010-01-07T23:59:59.000Z

91

Texas Mandate Landfill Gas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Texas Mandate Landfill Gas Biomass Facility Jump to: navigation, search Name Texas Mandate...

92

Manhattan Project truck unearthed at landfill cleanup site  

NLE Websites -- All DOE Office Websites (Extended Search)

Phonebook Calendar Video Newsroom News Releases News Releases - 2011 April Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL...

93

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

Facebook icon Twitter icon UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

94

Case study: City of Industry landfill gas recovery operation  

DOE Green Energy (OSTI)

Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

None

1981-11-01T23:59:59.000Z

95

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

96

Going Home Again  

E-Print Network (OSTI)

Wolfe, T. 1940. You cant go home again. New York: HarperSusan J. 2007. You Cant Go Home Again: Homesickness andwork, and as such, I cannot go home. William Riggs is a PhD

Riggs, William

2010-01-01T23:59:59.000Z

97

Review of home phototherapy  

E-Print Network (OSTI)

Moderate to severe psoriasis: Home UVB equipment. 2010 [Phototherapy Units for Home Use. 2010 [cited 2010 May 1];]94. UVBioTek. Home Phototherapy Equipment. 2010 [cited 2010

Rajpara, Anand N; O'Neill, Jenna L; Nolan, Bridgit V; Yentzer, Brad A; Feldman, Steven R

2010-01-01T23:59:59.000Z

98

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

99

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

conference, and provides training and information on cost-effectively implementing home energy savings. American Society of Home Inspectors (ASHI) - some homeinspectors have...

100

Comparison of models for predicting landfill methane recovery. Final report  

DOE Green Energy (OSTI)

Landfill methane models are tools used to project methane generation over time from a mass of landfilled waste. These models are used for sizing landfill gas (LFG) collection systems, evaluations and projections of LFG energy uses, and regulatory purposes. The objective of this project was to select various landfill methane models and to provide a comparison of model outputs to actual long-term gas recovery data from a number of well managed and suitable landfills. Another objective was to use these data to develop better estimates of confidence limits that can be assigned to model projections. This project assessed trial model forms against field data from available landfills where methane extraction was maximized, waste filling history was well-documented, and other pertinent site information was of superior quality. Data were obtained from 18 US landfills. Four landfill methane models were compared: a zero-order, a simple first order, a modified first order, and a multi-phase first order model. Models were adjusted for best fit to field data to yield parameter combinations based on the minimized residual errors between predicted and experienced methane recovery. The models were optimized in this way using two data treatments: absolute value of the differences (arithmetic error minimization) and absolute value of the natural log of the ratios (logarithmic error minimization).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Augenstein, D. [Institute for Environmental Management, Palo Alto, CA (United States)

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Supercritical water oxidation of landfill leachate  

Science Conference Proceedings (OSTI)

Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

Wang Shuzhong, E-mail: s_z_wang@yahoo.cn [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Guo Yang [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China); Chen Chongming [Hebei Electric Power Research Institute, Shijizhuang, Hebei 050021 (China); Zhang Jie; Gong Yanmeng; Wang Yuzhen [School of Energy and Power Engineering of Xi' an Jiao Tong University, Xi'an 710049 (China)

2011-09-15T23:59:59.000Z

102

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

103

Sandia National Laboratories: No More Green Waste in the Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

104

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

112

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

113

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66  

Office of Legacy Management (LM)

Pfohl Brothers Landfill - NY 66 Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents Related to Pfohl Brothers Landfill Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

120

Planning document for the Advanced Landfill Cover Demonstration  

SciTech Connect

The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ``low-permeability`` cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Center for Ecological Risk Assessment & Management; Bostick, K.V. [Los Alamos National Lab., NM (United States). Environmental Science Group

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Masco Home Services/WellHome | Open Energy Information  

Open Energy Info (EERE)

Masco Home ServicesWellHome Jump to: navigation, search Name Masco Home ServicesWellHome Place Taylor, MI Website http:www.mascohomeserviceswe References Masco Home Services...

123

Admin@TMS Home  

Science Conference Proceedings (OSTI)

TMS BOARD OF DIRECTORS TMS TECHNICAL DIVISIONS COMMITTEE HOME PAGES. TOOLS AND RESOURCES. TECHNICAL COMMITTEE TOOLKIT.

124

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

125

Bidirectional gas movement through landfill cover materials, Volume 1: Instrumentation and preliminary site investigations at Mallard North Landfill, Dupage County, Illinois  

DOE Green Energy (OSTI)

Since the first commercial landfill gas recovery system was installed in 1975 at the Palos Verdes Landfill in southern California (Zimmerman et al., 1983), there have been few systematic research efforts aimed at understanding gas dynamics in the landfill and, in particular, gas exchange between the landfill and the atmosphere through the cover materials. To maximize the amount of landfill gas available to a recovery system, the impact of processes by which gas is vented or consumed in near-surface zones must be minimized. This report describes a project undertaken to monitor the flow of gas in a landfill. Data from the observations are presented. 32 refs., 12 figs., 3 tabs.

Bogner, J.; Brubaker, K.; Tome, C.; Vogt, M.; Gartman, D.

1988-02-01T23:59:59.000Z

126

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

B B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF Maintenance 2011 Project remained in good condition. Vegetation on the landfill cover including the seep areas remains dormant. OLF Cover Lower OLF Cover Facing East Upper OLF Cover Facing East

127

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

128

Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report  

DOE Green Energy (OSTI)

The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

None

1983-09-01T23:59:59.000Z

129

Understanding natural and induced gas migration through landfill cover materials: the basis for improved landfill gas recovery  

DOE Green Energy (OSTI)

Vertical pressure and concentration gradients in landfill cover materials are being examined at the Mallard North Landfill in Dupage County, IL. The goal of this project is to understand venting of landfill gas and intrusion of atmospheric gases into the landfill in response to changing meteorological conditions (particularly barometric pressure and precipitation) and pumping rates at recovery wells. Nests of probes for directly measuring soil gas pressures have been installed in areas of fractured and unfractured silty clay till cover materials. The probes are at three depths: shallow (0.6 m), intermediate (1.2 m), and deep (in the top of the refuse). Preliminary results from fall 1985 suggest that soil gas pressures respond quickly to changes in barometric pressure but that concentrations of methane, carbon dioxide, nitrogen, and oxygen respond more slowly to changing soil moisture conditions. An important near-surface process that limits the total amount of methane available to a gas recovery system is the activity of methanotrophs (methane-oxidizing bacteria) in oxygenated cover materials. The results of this project will be used to quantify landfill mass balance relations, improve existing predictive models for landfill gas recovery systems, and improve landfill cover design for sites where gas recovery is anticipated.

Bogner, J.E.

1986-01-01T23:59:59.000Z

130

Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Homes Science & Innovation » Energy Efficiency » Homes Homes New Savings Projects provide step-by-step instructions on home energy efficiency improvements. Learn how to weatherstrip double-hung (or sash) windows. Also check out our guide to sealing air leaks with caulk. New Savings Projects provide step-by-step instructions on home energy efficiency improvements. Learn how to weatherstrip double-hung (or sash) windows. Also check out our guide to sealing air leaks with caulk. Our homes are a major source of energy use in the U.S. Improving the

131

Feasibility study of landfill gas recovery at seven landfill sites, Adams County/Commerce City, Colorado. Final report  

DOE Green Energy (OSTI)

This report documents the findings of a major landfill gas recovery study conducted in Adams County, Colorado. The study was performed during the period from August 1979 through September 1980. The study was broad in scope, involving a technical, economic, and institutional feasibility analysis of recovering landfill-generated methane gas from seven sanitary landfills in southwestern Adams County. The study included: field extraction testing at the seven sistes; detailed legislative research and activity; a market survey, including preliminary negotiations; and preliminary design and cost estimates for gas recovery systems at all seven sites.

Not Available

1984-07-01T23:59:59.000Z

132

Home Energy Yardstick : ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Home Improvement > Home Energy Yardstick Home > Home Improvement > Home Energy Yardstick Home Energy Yardstick Assess the energy efficiency of your home and see how it measures up: EPA's Home Energy Yardstick provides a simple assessment of your home's annual energy use compared to similar homes. By answering a few basic questions about your home, you can get: Your home's Home Energy Yardstick score (on a scale of 1 to 10); Insights into how much of your home's energy use is related to heating and cooling versus other everyday uses like appliances, lighting, and hot water; Links to guidance from ENERGY STAR on how to increase your home's score, improve comfort, and lower utility bills; and An estimate of your home's annual carbon emissions. Learn more about how the Home Energy Yardstick works.

133

Development of computer simulations for landfill methane recovery  

DOE Green Energy (OSTI)

Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

Massmann, J.W.; Moore, C.A.; Sykes, R.M.

1981-12-01T23:59:59.000Z

134

An overview of the Mixed Waste Landfill Integrated Demonstration  

SciTech Connect

The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ``in-situ`` characterization, monitoring, remediation, and containment of landfills in and environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies. Key goals of the MWLID are routine use of these technologies by Environmental Restoration Groups throughout the DOE complex and commercialization of these technologies to the private sector. The MWLID is demonstrating technologies at hazardous waste landfills located at Sandia National Laboratories and on Kirtland Air Force Base. These landfills have been selected because they are representative of many sites throughout the Southwest and in other and climates.

Williams, C.V.; Burford, T.D.; Betsill, J.D.

1994-07-01T23:59:59.000Z

135

Briefing: Summary and Recommendations of EM Landfill Workshop...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the summary and recommendations of the EM Landfill Workshop help in October 2008. By: Craig H. Bendson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal...

136

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Polls Polls Poll questions What kind of energy improvements have you done on your home? If you have a ceiling fan, how many hours per day do you use it? (average summer and winter) Have you tried LED lights in your home? What is your experience using spray foam insulation? How often do you use a home clothesdryer (rather than air drying)? Do you think your home's energy efficiency influences its resale value? More ... Poll questions What kind of energy improvements have you done on your home? If you have a ceiling fan, how many hours per day do you use it? (average summer and winter) Have you tried LED lights in your home? What is your experience using spray foam insulation? How often do you use a home clothesdryer (rather than air drying)? Do you think your home's energy efficiency influences its resale value?

137

EERE: Multimedia Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Digg Find More places to share EERE: Multimedia Home Page on AddThis.com... Home Animations Photographs Videos Audio Contacts On this site you'll find links to the animations,...

138

Processing Poultry at Home  

E-Print Network (OSTI)

With hot water for scalding, ice water for chilling and a sharp knife, poultry can be processed at home for dressed poultry shows or home consumption. This publication discusses facilities and equipment, New York dressing, evisceration, chilling, packing and skinning.

Davis, Michael

2006-01-04T23:59:59.000Z

139

David Gates home page  

NLE Websites -- All DOE Office Websites (Extended Search)

Gates home page http:www.pppl.gov%7EdgatesSiteDr.DavidA.Gates.html (1 of 4) 8302012 9:47:58 AM David Gates home page Dr. David A. Gates Princeton Plasma Physics...

140

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

The State of the Art Home performance contractor A small but growing cadre of "Home Performance Professionals" is rising to the challenge of putting america back on the energy...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Saver Awards and Accolades Media Coverage and other references to the Home Energy Saver. 2010 R&D 100 award R&D 100 Logo R&D 100: One of the best 100 inventions of 2009...

142

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of the Home Energy Saver (HES) Do-it-Yourself Home Energy Audit Developed primarily with DOE funding, HES is the first and most widely used on-line energy audit and...

143

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Footprint Footprint Map | Carbon-IQ Nationally: the Zip-code pins summarize Home Energy Saver user results for 6 homes by Zip. The individual house-shaped pins display...

144

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Over 6 million visits Save money, live better, help the earth Go Look up zip code Import Home Energy Score Inputs Case Studies "Home Energy Saver helped me save thousands of...

145

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

146

Smart Home Concepts: Current Trends  

E-Print Network (OSTI)

bills), improved security, upgradeable home appliances,and smart homes could introduce new security holes notsmart home features are in the area of safety and security (

Venkatesh, Alladi

2003-01-01T23:59:59.000Z

147

A finite element simulation of biological conversion processes in landfills  

Science Conference Proceedings (OSTI)

Landfills are the most common way of waste disposal worldwide. Biological processes convert the organic material into an environmentally harmful landfill gas, which has an impact on the greenhouse effect. After the depositing of waste has been stopped, current conversion processes continue and emissions last for several decades and even up to 100 years and longer. A good prediction of these processes is of high importance for landfill operators as well as for authorities, but suitable models for a realistic description of landfill processes are rather poor. In order to take the strong coupled conversion processes into account, a constitutive three-dimensional model based on the multiphase Theory of Porous Media (TPM) has been developed at the University of Duisburg-Essen. The theoretical formulations are implemented in the finite element code FEAP. With the presented calculation concept we are able to simulate the coupled processes that occur in an actual landfill. The model's theoretical background and the results of the simulations as well as the meantime successfully performed simulation of a real landfill body will be shown in the following.

Robeck, M., E-mail: markus.robeck@uni-due.de [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Ricken, T. [Institute of Mechanics/Computational Mechanics, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, R. [Department of Water and Waste Management, Building Sciences, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2011-04-15T23:59:59.000Z

148

Committee Home Page - TMS  

Science Conference Proceedings (OSTI)

The committee home pages are designed to facilitate communication among committee members while simultaneously educating all members about the...

149

TMS Proceedings Home Page  

Science Conference Proceedings (OSTI)

TMS Proceedings Home. This site contains all the information and support material relevant to publishing symposium proceedings volumes, textbooks, and

150

TMS Publications Home  

Science Conference Proceedings (OSTI)

TMS Publications Home. TMS publishes numerous journals, conference proceedings volumes, textbooks, and other print and electronic publications designed...

151

TMS Continuing Education Home  

Science Conference Proceedings (OSTI)

TMS Continuing Education Home. TMS is dedicated to encouraging the lifelong education of materials science and engineering professionals through...

152

Albany Interim Landfill gas extraction and mobile power system: Using landfill gas to produce electricity. Final report  

DOE Green Energy (OSTI)

The Albany Interim Landfill Gas Extraction and Mobile Power System project served three research objectives: (1) determination of the general efficiency and radius of influence of horizontally placed landfill gas extraction conduits; (2) determination of cost and effectiveness of a hydrogen sulfide gas scrubber utilizing Enviro-Scrub{trademark} liquid reagent; and (3) construction and evaluation of a dual-fuel (landfill gas/diesel) 100 kW mobile power station. The horizontal gas extraction system was very successful; overall, gas recovery was high and the practical radius of influence of individual extractors was about 50 feet. The hydrogen sulfide scrubber was effective and its use appears feasible at typical hydrogen sulfide concentrations and gas flows. The dual-fuel mobile power station performed dependably and was able to deliver smooth power output under varying load and landfill gas fuel conditions.

NONE

1997-06-01T23:59:59.000Z

153

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

154

Strategy Guideline: Demonstration Home  

SciTech Connect

This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

Savage, C.; Hunt, A.

2012-12-01T23:59:59.000Z

155

Home Network Security  

E-Print Network (OSTI)

Home computers that are connected to the Internet are under attack and need to be secured. That process is relatively well understood, even though we do not have perfect solutions today and probably never will. Meanwhile, however, the home computing environment is evolving into a home network of multiple devices, which will also need to be secured. We have little experience with these new home networks and much research needs to be done in this area. This paper gives a view of the requirements and some of the techniques available for securing home networks.

Technology Journal Interoperable; Carl M. Ellison; Corporate Technology Group; Intel Corporation

2002-01-01T23:59:59.000Z

156

Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homes Homes Homes EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

157

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQs FAQs Most answers to questions about home energy use depend heavily on details for the specific home in question - the climate where the home is located, it's energy usage patterns, home size, configuration and features. For this reason, we can give general guidance here, but for a more definitive answer use the Home Energy Saver. Not finding what you need here? Try DOE's Information Center. General How can I save energy in my second home, which is unoccupied a large part of the year? What's the most common mistake people make in trying to save energy around the house? We don't own a home; we rent an apartment. What can we do? We have an older house. Which should we do first: insulate or replace the furnace? My neighbor's bills are much lower than mine, even though they have

158

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Questions and Answers about the Home Energy Saver Questions and Answers about the Home Energy Saver What is the Home Energy Saver? Home Energy Saver is a Web site for homeowners and renters who want to reduce their energy bills. This home energy information resource employs advanced simulation software with an easy-to-use interface that tells the user how much money he or she spends on the house's energy bills, and how much he or she could save by installing energy-efficient measures and technology. Home Energy Saver is the first site of its kind on the Internet. The site also provides links to many other Web sites to help make these improvements happen, and an email link to experts at the Department of Energy who can answer home energy-related questions. What is the Web site address? http://HES.lbl.gov

159

MetTrans Journal Home  

Science Conference Proceedings (OSTI)

Metallurgical and Materials Transactions Home Page ... MET. TRANS. HOME Journal descriptions and information [MORE]; SUBMIT A PAPER Review author...

160

Landfill gas generation and migration: Review of current research II  

DOE Green Energy (OSTI)

With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The overall purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites--a humid site, with vegetated clay cover and a semiarid site with unvegetated sandy silt cover--have been instrumented to examine vertical gas movement through cover materials. Results from the past year's work at the semiarid site indicates that rates of CH/sub 4/ flux out of the landfill surface may be as high as 2 /times/ 10/sup /minus/6/ g cm/sup /minus/2/ sec/sup /minus/1/ (6.3 /times/ 10/sup 2/ Kg m/sup /minus/1/ yr/sup /minus/1/) during dry soil conditions. Such high rates represent both the loss of an energy resource and a significance factor in global warming trends since atmospheric CH/sub 4/ contributes to the greenhouse effect. An independent estimate has suggested that 8--15% of global atmospheric CH/sub 4/ is attributable to landfill sources. The second project is addressing landfill gas generation. The major goal is to develop simple assay techniques to examine the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations. Triplicate assays of unamended refuse (controls) are compared to assays with added moisture, nutrients, and bacterial seed. To date, moisture addition is the single most important variable in stimulating gas production, particularly in samples with visible soil content. 56 refs., 2 figs., 3 tabs.

Bogner, J.; Vogt, M.; Piorkowski, R.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Aerobic attached growth biofilter using tire chips and mixed broken glass as media for landfill leachate treatment.  

E-Print Network (OSTI)

??Ontario regulations can necessitate expensive leachate treatment plants in large landfills. Lower-cost technologies may suit rural landfills due to lower waste toxicity and less proximity (more)

Smith, Daniel

2009-01-01T23:59:59.000Z

162

Aerobic Attached Growth Biofilter Using Tire Chips And Mixed Broken Glass As Media For Landfill Leachate Treatment.  

E-Print Network (OSTI)

??Ontario regulations can necessitate expensive leachate treatment plants in large landfills. Lower-cost technologies may suit rural landfills due to lower waste toxicity and less proximity (more)

Smith, Daniel

2009-01-01T23:59:59.000Z

163

Survey of Landfill Gas Generation Potential: 2-MW Molten Carbonate Fuel Cell  

Science Conference Proceedings (OSTI)

Molten carbonate fuel cells can operate almost as efficiently on landfill gas as on natural gas. This study identified 749 landfills in the United States having the potential to support a total of nearly 3000 2-MW fuel cells.

1992-10-01T23:59:59.000Z

164

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

165

Estimation of landfill emission lifespan using process oriented modeling  

SciTech Connect

Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

Ustohalova, Veronika [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)]. E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim [Institute of Mechanics, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Widmann, Renatus [Institute of Waste Management, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany)

2006-07-01T23:59:59.000Z

166

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Hidden Cost of Home Energy Use Hidden Cost of Home Energy Use By improving your home's energy efficiency, you can profit in three ways: save money, improve your life, and help the earth, and making your home safer and more comfortable. Annual Carbon Dioxide Emissions from the Average House vs. the Average Car: Each year the average house releases over twice as much greenhouse gases as the typical car. House: 22,000 lbs/CO2 Car: 10,000 lbs/CO2 Many people believe that their car is the largest single source of air pollution for which they are personally responsible. But in fact, the average home causes the emission of more than twice as much carbon dioxide-the principal greenhouse gas-as the average car. This is because most of the energy consumed in our homes is produced by burning fossil fuels like coal, oil, and natural gas. This pollution is actually a

167

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Coverage and Other References to the Home Energy Saver Media Coverage and Other References to the Home Energy Saver Following are examples of the media coverage being received by the Home Energy Saver (HES). A large number of organizations and blogs link to the Home Energy Saver from their web sites. These include media companies, consumer-oriented web sites, energy utilities, state energy offices, educational institutions, and energy consulting firms. Print and Other Media MSN Real Estate - February Home-Maintenance Checklist, February 3, 2012 [PDF] GreenBuildingAdvisor.com - Weighing the Merits of Spray-Foam Insulation, January 23, 2012 [PDF] Bing - The Sun Rises on Solar Power, January 19, 2012 [PDF] Mother Nature Network - How to Save Energy at Home, January 17, 2012 [PDF] Case Remodeling - 10 Green Analysis Online Tools and Job

168

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

What's New at the Home Energy Saver What's New at the Home Energy Saver Home Energy Saver 2.0! We have relaunched the Home Energy Saver. Enjoy the new-and-improved user interface, major data updates, and a ten-times improvement in run time. Keep your eyes open for new features in the coming months. We're on cloud 9(99999999): We have migrated all HES infrastructure to a cloud computing platform, which provides virtually perfect reliability, scalability, and improved performance. Runtime cut 90%. Thanks to our crack programmers, the 40-second runtimes that HES users may have become (somewhat) used to, have been slashed to about 4 seconds. 6 million and counting. The 6-millionth person visited HES in January 2010. Home Energy Saver Pro: We have created a new version of Home Energy Saver for building professionals: HESpro. It currently has limited functionality,

169

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Readings Readings No-Regrets Remodeling Selected excerpts from the book DIY from Home Energy magazine Roofs: Snowy and icy indicators of wasted money. Benchmarking: Compare a home's energy usage to that of similar homes. Air Sealing: Frozen pipe dilemnas. Refrigeration: Eight year olds burn a lot of energy. Walls and Windows: Sealing up a home's leaks. Energy Myths: Special web preview from Home Energy magazine Sept./Oct. 2001. Optimizing Your Ceiling Fan: Be more comfortable and save energy. Better Breathing: How to avoid mold, mildew, and that cave-like feeling. Beware the Closed Bedroom Door: It seems like such a simple act, but carbon monixde poisoning, smoke, and mold may follow. Sucking in Health Hazards: Does a house smell like a sewer? Energy Efficient Lighting: Can homes save money with compact

170

Feasibility of methane-gas recovery at the St. John's Landfill  

DOE Green Energy (OSTI)

All facets reviewed in assessing the feasibility of a commercial landfill gas recovery system at the St. Johns Landfill in Portland, Oregon are discussed. Included are: landfill operational history, step-by-step descriptions of the field testing (and all results therein), landfill gas production/recovery predictions, results of the preliminary market research, cost matrices for primary utilization modes, and conclusions and recommendations based on analysis of the data gathered. Tables and figures are used to illustrate various aspects of the report.

Not Available

1983-03-01T23:59:59.000Z

171

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

icicles), that will eventually cause serious roof damage. Source: Home Energy magazine (DIY section, homeenergy.org) A roof with extremely large icicles. Severe rooftop...

172

TMS 2011: Exhibit Home  

Science Conference Proceedings (OSTI)

Technical Program Home Exhibit Info Housing and Travel ... Benefits include the following: Company listing and hypertext link on this Web sitea $500 value!

173

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

174

tms web events home  

Science Conference Proceedings (OSTI)

TMS Web events make authoritative research, technical applications and novel solutions available to you without leaving your home or office. The following Web

175

The Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

The Home Energy Saver: Interactive Energy Information and Calculations on the Web The Internet is an important new resource for information about energy efficiency. While many...

176

Homes | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

One Milwaukee Homeowner Shares Her Experience Milwaukee solar installers putting in a rooftop solar energy system on Dr. Paula Papanek's home. | Photo courtesy of Dr. Paula...

177

TMS 2012: Exhibit Home  

Science Conference Proceedings (OSTI)

Meeting Home Meeting Registration Housing and Travel Exhibit Info ... name and booth number; aisle carpeting; security throughout the exhibition (setup, show...

178

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

(HES) Licensing Information The Home Energy Saver is a web-based residential energy calculator and web service that provides customized estimates of residential energy use, energy...

179

The Home Stretch - CECM  

E-Print Network (OSTI)

The Home Stretch. [Annotate] [Shownotes]. Around 1980, we purchased a share in a VAX-11/780 with the intention of running long mathematical programs...

180

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving high levels of energy efficiency during constuction or remodeling of a home requires careful planning, attention to details, and skilled workmanship. In-the-know...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

When I Get Home.  

E-Print Network (OSTI)

??"When I Get Home" is a collection of essays that intertwines the personal narrative of the author's relationship with place, change, statis, and movement. Told (more)

Button, Rachael

2011-01-01T23:59:59.000Z

182

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Product recycling Weatherization Assistance Program for Low-Income Persons Low-Income Home EnergyAssistance Program Searchable databases of incentives Database of State...

183

TMS Membership Home  

Science Conference Proceedings (OSTI)

TMS Membership The Professional Home for Materials Scientists and Engineers. The TMS membership is comprised of a select group of 12,000 professionals...

184

TMS Membership Home  

Science Conference Proceedings (OSTI)

TMS Membership Home. The Minerals, Metals & Materials Society (TMS) is a member-driven professional society consisting largely of scientists and engineers

185

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy NewsWire Energy Savers Blog ENERGY STAR podcasts Twitter feed from Home Energy magazine Readings & Resources Readings No-Regrets Remodeling Energy NewsWire Wikipedia...

186

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Heater Heat Pumps Replacing Your Electric Furnace and CAC with a Heat Pump Sealing Home Air Leaks LPG Furnaces Efficient LPG-fired Water Heaters Oil Furnaces Efficient...

187

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Resources Readings ACEEE Consumer Guide to Home Energy Savings Appliance energy use by model number (from the Federal Trade Commission) CoolCalifornia.org - A comprehensive...

188

Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE  

Science Conference Proceedings (OSTI)

A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

Kirkeby, Janus T.; Birgisdottir, Harpa [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark); Bhander, Gurbakash Singh; Hauschild, Michael [Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 424, DK-2800 Lyngby (Denmark); Christensen, Thomas H. [Environment and Resources, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: thc@er.dtu.dk

2007-07-01T23:59:59.000Z

189

Preliminary Evaluation of a Newly Isolated Microalga Scenedesmus sp. CHX1 for Treating Landfill Leachate  

Science Conference Proceedings (OSTI)

This study aims to evaluate the feasibility of landfill leach ate treatment using micro algae. The growth and nutrients removal efficiency of a newly isolated micro alga Scenedesmus sp. CHX1 were monitored when the strain grew in landfill leach ate at ... Keywords: Scenedesmus sp. CHX1, Growth, Landfill leachate, Nutrients removal

Hai-Xiang Cheng, Guang-Ming Tian

2013-01-01T23:59:59.000Z

190

Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

SciTech Connect

This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

Bechtel Nevada

1998-08-31T23:59:59.000Z

191

IEA-Renewable Energy Technologies, Bioenergy Agreement Task 37: Energy from Biogas and Landfill Gas  

E-Print Network (OSTI)

and Landfill Gas Teknologiområde: Anvendt forskning og udvikling, herunder viden formidling, -udveksling og-Bioenergy, Task 37- Energy from Biogas and Landfill Gas", via samarbejde, informationsudveksling, fælles analyser and landfill gas. I dette tidsinterval er en række aktiviteter blevet gennemført, herunder deltagelse til task

192

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

193

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

194

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

196

DOE EM Landfill Workshop and Path Forward - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal practice of the future. - Obtain input from experts within and outside of DOE. Panels: Waste subsidence: prediction and impacts Waste forecasting: predicting volumes and WACs Final covers: long-term performance and monitoring Liners: role and need Workshop Approach and Structure * Objective: - Discuss each issue - Evaluate the merits of each issue - Create a prioritized list of technologies needs for Office of

197

GREEN HOMES LONG ISLAND  

E-Print Network (OSTI)

developed a program that enables residents to make improvements that will decrease their home energy usage energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes

Kammen, Daniel M.

198

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Saver(tm) (HES) empowers homeowners and renters to save Saver(tm) (HES) empowers homeowners and renters to save money, live better, and help the earth by reducing energy use in their homes. HES recommends energy-saving upgrades that are appropriate to the home and make sense for the home's climate and local energy prices. The money invested in these upgrades commonly earns "interest" in the form of energy bill savings, at an annual rate of 20% or more (see examples). HES also estimates the home's carbon footprint and shows how much it can be reduced. For professional users, we also offer HESpro and teachers and students can check out Energized Learning. The upgrades recommended by HES offer other benefits as well. Depending on the type of improvement made, the home can achieve better comfort (warmer

199

The Homing Instinct  

NLE Websites -- All DOE Office Websites (Extended Search)

Homing Instinct Homing Instinct Nature Bulletin No. 515-A February 2, 1974 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE HOMING INSTINCT We share with our dogs, cats and other domestic animals an attachment to a place we both regard as home. If one of these animals strays, or is sold to a new owner, or is carried away and abandoned, it acts lost and homesick as it struggles to grope its way back. This is easy to see in pets and among livestock on farms. Surprisingly, many such displaced animals do find their way home, often through miles of strange country. Less commonly known is the remarkable ability of a wide variety of wild creatures to navigate unknown territory with pinpoint accuracy -- birds, bats, mice, turtles, fish, insects, and many others.

200

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

No-Regrets Remodeling No-Regrets Remodeling Excerpts from No-Regrets Remodeling by the people at Home Energy magazine. Note: This book was published in 1997. While most of the information is timeless, some items may be out-dated. Your Kitchen Cooking Appliances Electric or Gas Kitchen Ranges? Refrigerators Your Home Office Home Office Equipment Power Ratings of Office Equipment Your Heating Heating: General Home Performance Contractors Oil System Upgrades Combined (Indirect) Hot Water & Heating Systems Combined (Integrated) Space & Water Heating The Thermostat is in Control Time for an Energy Switch? Your Cooling Tips for Buying a New Air Conditioner Cool Roofs for Hot Climates Evaporative Cooler Tips Ventilation, Ducts, Moisture, and Air Leakage Common Air Leakage Sites in the Home

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of a purpose built landfill system for the control of methane emissions from municipal solid waste  

E-Print Network (OSTI)

of landfill gas (LFG). Economic feasibility of the proposed system has been tested by comparing unit cost with gas recovery option. In the present paper, a methodology called purpose build landfill system (PBLF of the proposed system. A purpose built landfill system (PBLS) is a semi-engi- neered landfill with gas recovery

Columbia University

202

Designs for Home Life A. J. Brush  

E-Print Network (OSTI)

to computer and social scientists. Author Keywords Home life, home-based IT, domestic technology, home- based

Hunt, Galen

203

EERE: Roofus' Solar and Efficient Home Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Roofus' Solar and Efficient Home Illustration showing Roofus' home. Roofus, a golden retriever wearing a baseball cap, sunglasses, and large gold dog tag, is sitting on a couch...

204

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Homes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes Energy-Saving Homes, Buildings, and Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions...

205

Predictors of Nursing Home Placement for Home Care Consumers.  

E-Print Network (OSTI)

??The purpose of this study was to identify predictors of nursing home placement for individuals receiving home care services through a locally funded levy program. (more)

Nelson, Ian M

2004-01-01T23:59:59.000Z

206

A Study of Home Builder Advertising for Smart Home Technologies.  

E-Print Network (OSTI)

??The purpose of this research is to discover if home builders along the Wasatch Front in Utah are advertising smart home technologies. Research was conducted (more)

Bingham, Jared Don 1975-

2006-01-01T23:59:59.000Z

207

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

208

PermanganateCandlesClean ContaminationatFormerCozadLandfill  

E-Print Network (OSTI)

PermanganateCandlesClean ContaminationatFormerCozadLandfill U N I V E R S I T Y O F N E B R A S K'sNotes.............................................2 2011AquiferTour..........................................4 Center director Lorrie Benson, who brought them off seamlessly and worked tirelessly to bring- in the right slate

Nebraska-Lincoln, University of

209

The landfill methane balance: Model and practical applications  

SciTech Connect

A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

Bogner, J.; Spokas, K.

1995-10-01T23:59:59.000Z

210

Economic aspects of the rehabilitation of the Hiriya landfill  

SciTech Connect

The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

Ayalon, O. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel)]. E-mail: agofira@tx.technion.ac.il; Becker, N. [Department of Natural Resources and Environmental Management and NRERC, Haifa University, 32000 Haifa (Israel); Department of Economics and Management, Tel Hai College and NRERC, University of Haifa, Haifa (Israel); Shani, E. [Dan Region Association of Towns, Sanitation and Waste Disposal (Israel)

2006-07-01T23:59:59.000Z

211

Monitoring the Fixed FGD Sludge Landfill--Conesville, Ohio  

Science Conference Proceedings (OSTI)

Three years of extensive monitoring of the first full-scale application of the fixed flue gas desulfurization sludge process proved it technically sound. This new disposal method offers utilities leachate control in a landfill that allows diverse use of disposal sites in the future.

1984-10-01T23:59:59.000Z

212

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network (OSTI)

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

213

Potatoes in the Home Garden  

E-Print Network (OSTI)

would be in the minority of home gardeners. Most gardenersin the small garden and that home grown potatoes dont tasteGrowing Potatoes in the Home Garden latitudes compensate for

Martin, Orin

2008-01-01T23:59:59.000Z

214

Comparison of slope stability in two Brazilian municipal landfills  

SciTech Connect

The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

Gharabaghi, B. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: bgharaba@uoguelph.ca; Singh, M.K. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Inkratas, C. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: cinkrata@uoguelph.ca; Fleming, I.R. [Department of Civil and Geological Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada)], E-mail: ian.fleming@usask.ca; McBean, E. [School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)], E-mail: emcbean@uoguelph.ca

2008-07-01T23:59:59.000Z

215

Home Energy Audits: Making Homes More Energy Efficient and Comfortable |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Audits: Making Homes More Energy Efficient and Home Energy Audits: Making Homes More Energy Efficient and Comfortable Home Energy Audits: Making Homes More Energy Efficient and Comfortable March 21, 2013 - 12:00pm Q&A Have a story about improving your home's energy efficiency? Share your story with us & it could be the next one we profile on energy.gov! Share your story Addthis Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Rebecca Matulka Rebecca Matulka

216

Home Energy Audits: Making Homes More Energy Efficient and Comfortable |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Audits: Making Homes More Energy Efficient and Home Energy Audits: Making Homes More Energy Efficient and Comfortable Home Energy Audits: Making Homes More Energy Efficient and Comfortable March 21, 2013 - 12:00pm Q&A Have a story about improving your home's energy efficiency? Share your story with us & it could be the next one we profile on energy.gov! Share your story Addthis Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Learn how a home energy audit is helping Seth Budick and his family save money on their energy bills, reduce their carbon footprint and make their home more comfortable. | Photo courtesy of Seth Budick. Rebecca Matulka Rebecca Matulka

217

Landfill gas generation and migration: Review of current research  

DOE Green Energy (OSTI)

With regard to gas migration, a field investigation is examining bidirectional gas movement through landfill cover materials by processes of pressure and diffusional flow. The purpose of the study is to quantify gas loss from the landfill reservoir by natural venting and air influx due to pumping on recovery wells. Two field sites - a humid site with clay cover and a semiarid site with sand cover - have been instrumented to examine vertical gas movement through cover materials. Results from the humid site indicate that concentrations of methane, carbon dioxide, oxygen and nitrogen in soil gas vary seasonally with soil moisture; up to 10E5 g methane m/sup -2/ yr/sup -1/ are vented through the cover materials at the humid site (area of 17 ht); and during prolonged wet weather, pressure gradients of more than 2 kPa may develop between the cover materials and top of refuse, indicating that pressure flow is periodically an important mechanism for gas transport. Addressing landfill gas generation, the goal is to develop simple assay techniques to examined the gas production potential of landfilled refuse. Refuse samples extracted from various depths in a landfill are being leached by three different methods to separate microbial mass and substrate. The leachates are being subjected to Biochemical Methane Production (BMP) assays with periodic qualitative examination of microbial populations using fluorescence microscopy of live cultures and scanning electron microscopy (SEM). Triplicate assays of the leachates that produce insignificant quantities of biogas after 90 days incubation are being amended with sucrose, a nutrient broth, or a bacterial seed. Response of gas production to each of the three amendments was similar across all samples, regardless of the leaching method originally employed, with nutrient addition producing the most stable long-term biogas production with the highest methane content. 23 refs., 6 figs., 3 tabs.

Bogner, J.; Rose, C.; Vogt, M.; Gartman, D.

1987-01-01T23:59:59.000Z

218

EERE: Energy Analysis Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis Search Search Help Energy Analysis HOME ABOUT FEATURED CONTENT EERE Energy Analysis Printable Version Share this resource Send a link to EERE: Energy Analysis Home Page...

219

Home Energy Saver for Professionals  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Saver for Professionals The Home Energy Saver(tm) (HES) pro offers similar residential energy-saving upgrade recommendations for energy auditors, inspectors, and...

220

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Seasons of Life Seasons of Life Changes in life mean changes in energy use, and opportunities to use that energy more efficiently. Looking for a rental: Just because you don't own a home doesn't mean you can't expect it to be efficient. Ask your prospective landlord what the energy costs are, and find out which forms of energy you pay for. Ask if any energy-efficiency upgrades are planned. A "free" appliance provided by your landlord may not be such a good deal if energy use is high. Use the appliances wisely: Manage your thermostat well Pay attention to dishwasher, clothes washer, and water heater settings.Meanwhile, lights, computers, televisions, and other devices you own and bring into the home are important energy users - shop wisely when you buy them. Home purchase: For most of us, buying a home is our greatest investment,

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Good Contractor Choosing a Good Contractor If your project goes much beyond replacing lights and a few appliances, you would probably benefit from using a home performance contractor. The book No-Regrets Remodeling provides a good definition if this emerging specialty: Because the whole-house, or systems, approach to homes is a fairly new concept, not everyone in the building trades is familiar with it. And it goes against traditional building practice, which is based on specialty trades. You probably already know how that goes: a different contractor for every task. And none of them has any idea what the other is doing. This is changing with the emergence of the home performance contractor, a person trained and equipped to test homes to see where problems exist. These

222

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

(responses based on survey responses from 3500 users) Here are some examples of how non-household users have utilized the site: US Air Force The US Air Force has used the Home...

223

PSFCP -- Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

find all documents that are related to this acquisition. List of Supporting Documents (weblink) http:www.directives.doe.gov To return to the Home Page, click on the NNSA logo....

224

The Ren Group - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Ren Group Home Research Members Publications ContactsLinks NEWS Dec 15, 2012 Host an Electron Tomography Workshop with Peter Ercius at NCEM from Jan. 16-18th, 2013. Nov 20, 2012...

225

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

some press materials issued by Berkeley Lab, including the press release announcing Home Energy Saver and a Q-and-A. The "About" page should tell you everything you need to...

226

Fermilab | LBNE Reconfiguration | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Fermilab Fermilab: Skip over navigation to main content Home Help Press Room Phone Book Fermilab at Work Search Go Skip over navigation to main...

227

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

computer software that will help families "surf the web" all the way to the bank. Our "Home Energy Saver" software will help homeowners and renters identify the best technologies...

228

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

What kind of energy improvements have you done on your home? Zero-cost changes (e.g., turning off lights) Efficient lighting Install more-efficient appliances More efficient...

229

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Statement Mission Statement This page describes the overall mission of the Home Energy Saver project as well as ways in which private sector software developers and others can tap our content and calculation engine. Mission The Home Energy Saver web site (HES, http://HomeEnergySaver.lbl.gov) is an interactive do-it-yourself home energy assessment tool, combined with extensive decision-support content. Its aims are support national initiatives to increase consumer interest in energy efficiency and to foster market activities that capture those opportunities. The site is developed and maintained by the Lawrence Berkeley National Laboratory with sponsorship from the U.S. Department of Energy (DOE) and others. HES supports the federal energy mission by helping to build national

230

Home Energy Score Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Score Program Home Energy Score Program Peer Review April 3, 2013 Joan Glickman, US DOE Norm Bourassa, LBNL joan.glickman@ee.doe.gov, 202-586-5607 njbourassa@lbl.gov, 510-495-2677 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Significant underinvestment in energy efficiency in residential sector * High costs of traditional energy audits and ratings * No standard method for understanding and comparing the energy efficiency

231

Home Energy Score Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Score Program Home Energy Score Program Peer Review April 3, 2013 Joan Glickman, US DOE Norm Bourassa, LBNL joan.glickman@ee.doe.gov, 202-586-5607 njbourassa@lbl.gov, 510-495-2677 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Significant underinvestment in energy efficiency in residential sector * High costs of traditional energy audits and ratings * No standard method for understanding and comparing the energy efficiency

232

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

233

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes  

E-Print Network (OSTI)

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes Residential, or PNNL, has purchased two custom, factory-built, double-wide homes to conduct energy research. These "Lab Homes" are a project test-bed for PNNL and its research partners who aim to achieve highly energy

234

Measurements of particulate matter concentrations at a landfill site (Crete, Greece)  

Science Conference Proceedings (OSTI)

Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

Chalvatzaki, E.; Kopanakis, I. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Kontaksakis, M. [Municipal Company of Solid Waste Management, Chania 73100, Crete (Greece); Glytsos, T.; Kalogerakis, N. [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece); Lazaridis, M., E-mail: lazaridi@mred.tuc.g [Department of Environmental Engineering, Technical University of Crete, Chania 73100, Crete (Greece)

2010-11-15T23:59:59.000Z

235

Flexible management of smart homes  

Science Conference Proceedings (OSTI)

An approach is presented for flexible management of smart homes, covering both home automation and telecare. The aim is to allow end users to manage their homes without requiring detailed technical knowledge or programming ability. This is achieved at ... Keywords: Component framework, goal refinement, home automation, open services gateway initiative, policy-based management, sensor network, telecare

Kenneth J. Turner

2011-04-01T23:59:59.000Z

236

Trace-chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

A summary is presented of the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate, and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1982-10-01T23:59:59.000Z

237

Trace chemical characterization of pollutants occurring in the production of landfill gas from the shoreline regional park sanitary landfill, Mountain View, California  

DOE Green Energy (OSTI)

This report summarizes the results of sampling and analysis of ambient and process gas streams, and liquid and solid samples taken at different locations from the Pacific Gas and Electric Company Landfill Gas Recovery Plant in Mountain View, California. The purpose of this study is to identify environmental pollutants and characterize the trace chemistry of landfill gas recovered from the Mountain View Sanitary (Class II) Landfill. Gaseous samples, liquid condensate and other plant products were analyzed for their trace chemical constituents, and the results indicate that certain organic and inorganic pollutants inherent to the landfill are emitted into the ambient environment and also become involved in the methane recovery process. Incorporation of condensate traps, molecular seive and charcoal filtration was found to significantly reduce both the organic and inorganic component burdens in the product gas. The environmental significances of the landfill gas recovery to the surrounding area and to worker safety are presented.

Flynn, N.W.; Guttman, M.; Hahn, J.; Payne, J.R.

1981-04-01T23:59:59.000Z

238

Home Equity Insurance  

E-Print Network (OSTI)

Home equity insurance policiespolicies insuring homeowners against declines in the prices of their homes would bear some resemblance both to ordinary insurance and to nancial hedging vehicles. A menu of choices for the design of such policies is presented here, and conceptual issues are discussed. Choices include pass-through futures and options, in which the insurance company in effect serves as a retailer to homeowners of short positions in real estate futures markets or of put options on real estate indices. Another choice is a life-event-triggered insurance policy, in which the homeowner pays regular xed insurance premia and is entitled to a claim if both a sufcient decline in the real estate price index and a specied life event (such as a move beyond a certain geographical distance) occur. Pricing of the premia to cover loss experience is derived, and tables of break-even policy premia are shown, based on estimated models of Los Angeles housing prices from 1971 to 1994. Key Words: real estate risk, insurance, hedging, mortgages In this article we propose insurance policies to enable individuals to protect themselves against the risks of declines in the prices of their homes. As far as we have been able to determine, there is no precedent for true insurance policies on home price. 1 And yet, despite the neglect of such home equity insurance policies in the past, these policies could

Robert J. Shiller; Allan N. Weiss; Cowles Foundation; Paper No; Robert J. Shiller; Allan N. Weiss

1999-01-01T23:59:59.000Z

239

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

240

Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

Bechtel Nevada

1998-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sanitary landfill groundwater monitoring report. First Quarter 1995  

SciTech Connect

This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

NONE

1995-06-01T23:59:59.000Z

242

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

243

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools of the Trade Tools of the Trade Clockwise: IR thermograph, IR camera, Air flow measurement, Blower door, Combustion test for water heater A hammer and a saw used to be the key tools for home contractors. Today, the best-in-breed also use high-tech equipment while performing a professional energy audit or verifying that construction has been done correctly. Infrared cameras can "see" heat loss and find hidden energy savings opportunities. PFT tests or blower door tests measure a homes air leakage and tell you when sealing has been successful. Combustion monitoring equipment and indoor-air pollution detectors ensure that a heating system is not only efficient but also not dumping dangerous pollutants into the home. All of these practices should be conducted with a

244

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Profitability of Energy Efficiency Upgrades Profitability of Energy Efficiency Upgrades Application of these 10 energy efficiency measures in a typical home yields nearly $600 in annual bill savings, and an impressive 16% overall return on investment. Diagram providing a representative view of the high profitability of energy efficiency upgrades This diagram provides a representative view of the high profitability of energy efficiency upgrades. Note that the home evaluated here is located in an average U.S. climate and has a heat pump, electric water heater, clothes washer, clothes dryer, and dishwasher. The example cost-effectively surpasses the 30% savings target for existing homes under PATH (The Partnership for Advancing Technology in Housing). In fact, all of these measures yield a higher return on investment than an

245

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

User's Guide User's Guide 5 STEPS TO SAVINGS & SUSTAINABILITY: Begin by entering your zip code or previous session number to see a typical home's baseline energy use and potential savings. Provide more information to estimate energy cost, consumption, and greenhouse-gas emissions for a specific home and to receive a detailed list of savings recommendations. Visit the Learn area for information to help implement the recommendations. See typical energy use in a specific zip code Describe a home Compare current use with potential savings View recommended energy saving actions Learn about measuring & reducing energy use Input your zip code or existing session ID. Once you've entered the information and selected "Go", you will receive a breakdown of the energy

246

Site hydrogeologic/geotechnical characterization report for Site B new municipal solid waste landfill  

Science Conference Proceedings (OSTI)

This Site Hydrogeologic/Geotechnical Characterization Report (SHCR) presents the results of a comprehensive study conducted on a proposed solid waste landfill site, identified herein as Site B, at the Savannah River Site (SRS). This report is intended to satisfy all requirements of the South Carolina Department of Health and Environmental Control (SCDHEC) with regard to landfill siting requirements and ground water and environmental protection. In addition, this report provides substantial geotechnical data pertinent to the landfill design process.

Reynolds, R.; Nowacki, P.

1991-04-01T23:59:59.000Z

247

Sodium Dichromate Barrel Landfill expedited response action proposal  

SciTech Connect

The US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) prepare an expedited response action (ERA) for the Sodium Dichromate Barrel Landfill. The Sodium Dichromate Barrel Disposal Site was used in 1945 for disposal of crushed barrels. The site location is the sole waste site within the 100-IU-4 Operable Unit. The Waste Information Data System (WIDS 1992) assumes that the crushed barrels contained 1% residual sodium dichromate at burial time and that only buried crushed barrels are at the site. Burial depth is shallow since visual inspection finds numerous barrel debris on the surface. A non-time-critical ERA proposal includes preparation of an engineering evaluation and cost analysis (EE/CA) section. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the landfill is the only waste site within the operable unit, the ERA will present a final remediation of the 100-IU-4 operable unit.

Not Available

1993-09-01T23:59:59.000Z

248

Home Energy Rebate Option (HERO) - Existing Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Home Energy Rebate Option (HERO) - Existing Homes Program Home Energy Rebate Option (HERO) - Existing Homes Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate $3,000 Program Info Funding Source American Recovery and Reinvestment Act Expiration Date 06/11/2013 State Louisiana Program Type State Rebate Program Rebate Amount 20% of improvement costs Provider Louisiana Department of Natural Resources '''''NOTE: All HERO program funding has been allocated as of December 6, 2012. Important dates related to the closure of the program have been announced. Please see summary below for more information. '''''

249

INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

Science Conference Proceedings (OSTI)

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

W.C. Adams

2010-07-21T23:59:59.000Z

250

Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned  

Science Conference Proceedings (OSTI)

This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

Larney, C.; Heil, M.; Ha, G. A.

2006-12-01T23:59:59.000Z

251

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT  

SciTech Connect

INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

W.C. Adams

2010-05-24T23:59:59.000Z

252

NETL: News Release - DOE-Sponsored Process Enhances Use of Landfill...  

NLE Websites -- All DOE Office Websites (Extended Search)

December 11, 2001 DOE-Sponsored Process Enhances Use of Landfill Gas, Improves Air Quality Energy Secretary Abraham Commends Small Business for Innovative Concept Being Showcased...

253

Generating CO{sub 2}-credits through landfill in situ aeration  

Science Conference Proceedings (OSTI)

Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO{sub 2-eq}. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the 'Avoidance of landfill gas emissions by in situ aeration of landfills' (). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

Ritzkowski, M., E-mail: m.ritzkowski@tu-harburg.d [Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Harburger Schlossstr. 36, D-21079 Hamburg (Germany); Stegmann, R. [Consultants for Waste Management, Prof. R. Stegmann and Partner, Schellerdamm 19-21, D-21079 Hamburg (Germany)

2010-04-15T23:59:59.000Z

254

Mining the Midden: Dynamic Waste Harvesting at the Cedar Hills Regional Landfill.  

E-Print Network (OSTI)

??Mining the Midden intends to re-frame the sanitary landfill as a new typology of public land containing an embodied energy of cultural and material value. (more)

Allan, Aaron Marshall

2012-01-01T23:59:59.000Z

255

Home Energy Saver for Consumers  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Saver for Consumers Home Energy Saver for Consumers The Home Energy Saver(tm) (HES) empowers homeowners and renters to save money, live better, and help the earth by reducing energy use in their homes. HES recommends energy-saving upgrades that are appropriate to the home and make sense for the home's climate and local energy prices. The money invested in these upgrades commonly earns "interest" in the form of energy bill savings, at an annual rate of 20% or more. Depending on the type of improvement made, the home can achieve better comfort (warmer in winter, cooler in summer), fewer drafts, lower maintenance costs, and improved security and fire safety-all of which improve life and increase the home's value. HES computes a home's energy use on-line in a matter of seconds based on

256

Home, Home (Video) on the Range: Reflections on Small-Town Video Stores in 2010  

E-Print Network (OSTI)

Home,Home (Video) on the Range Reflections on Small-Town VideoFields Journal no. 1 (2010) Home, Home (Video) on the Range

Herbert, Daniel

2010-01-01T23:59:59.000Z

257

Broadband in the Home  

Science Conference Proceedings (OSTI)

Despite the fact that well over half the population is now served by ADSL-equipped exchanges (at March 2002 there were 1010 exchanges enabled for broadband), the take-up of broadband, particularly in the home, is very low. By March 2002 there were 145 ...

K. E. Nolde

2002-04-01T23:59:59.000Z

258

Home Energy Score: Information for Home Energy Assessors | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Assessors Home Energy Assessors Home Energy Score: Information for Home Energy Assessors To offer the Home Energy Score to homeowners, Qualified Assessors work directly with Home Energy Score Partners and must be certified as a Building Performance Institute (BPI) Building Analyst or a Residential Energy Services Network (RESNET) HERS Rater, and receive a passing grade on DOE's Home Energy Scoring Tool test. DOE provides interested assessors with access to training materials and after being qualified, access to the online Scoring Tool and data collection sheet. Training Opportunities In April 2013, DOE began to develop a 3-D immersive simulation training and testing (3-DISTT) software program for interested Home Energy Score assessors. The 3-DISTT software uses computer-based simulations to recreate

259

Home Energy Solutions for Existing Homes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Solutions for Existing Homes Home Energy Solutions for Existing Homes Home Energy Solutions for Existing Homes < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info Funding Source Public Benefits Fund State Oregon Program Type State Rebate Program Rebate Amount Air Sealing: $150 Duct Insulation: 50% of cost up to $100 Gas Boiler: $200 Direct Vent Gas Fireplace: $200-$250 Direct Vent Gas Unit Heater: $100 Heat Pumps: $250 - $450, depending on efficiency and previous heating system Heat Pump Test: $150 Heat Pump Advanced Controls: $250 Ductless Heat Pump: $800

260

Improved methodology to assess modification and completion of landfill gas management in the aftercare period  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States); Crest, Marion, E-mail: marion.crest@suez-env.com [Suez Environnement, 38 rue du President Wilson, 78230 Le Pecq (France); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Spokas, Kurt A., E-mail: kurt.spokas@ars.usda.gov [United States Department of Agriculture - Agricultural Research Service, 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 (United States); Akerman, Anna, E-mail: anna.akerman@sita.fr [SITA France, Tour CB 21, 16 Place de l'Iris, 92040 Paris La Defense Cedex (France); Yuan, Lei, E-mail: lyuan@geosyntec.com [Geosyntec Consultants, 10220 Old Columbia Road, Suite A, Columbia, MD 21046 (United States)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ThinkHome energy efficiency in future smart homes  

Science Conference Proceedings (OSTI)

Smart homes have been viewed with increasing interest by both home owners and the research community in the past few years. One reason for this development is that the use of modern automation technology in the home or building promises considerable ...

Christian Reinisch; Mario J. Kofler; Flix Iglesias; Wolfgang Kastner

2011-01-01T23:59:59.000Z

262

Digital homes on wheels: designing for the unimagined home  

Science Conference Proceedings (OSTI)

Design for the digital home is often predicated on an ideal, imagined domestic space that is expansive, stable, occupied by a "busy" nuclear family, and does not always match existing, real-life digital homes. Using American retirees living full time ... Keywords: Design, Digital Home, Ethnography, Mobility, Recreational vehicle

Alexandra Zafiroglu; Michele Chang

2007-06-01T23:59:59.000Z

263

Home Weatherization | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization Weatherization Home Weatherization A home energy audit is the first step to saving energy and money. Our Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. Explore the full infographic now. A home energy audit is the first step to saving energy and money. Our Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. Explore the full infographic now. From air sealing to improving ventilation to adding insulation, home weatherization helps consumers save money by saving energy. Weatherization

264

DOE Challenge Home Student Competition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenge Home Challenge Home Student Competition April 2013 Contents Background ................................................................................................................................. 3 Summit Participants .................................................................................................................... 4 Key Results .................................................................................................................................. 5 Proposed Framework .................................................................................................................. 6 Suggestions for Submittal Requirements/Scoring Criteria ............................................................ 8 Suggested Competition Prize Options .......................................................................................... 9

265

DOE Challenge Home Label Methodology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 1 October 2012 1 Label Methodology DOE Challenge Home Label Methodology October 2012 DOE Challenge Home October 2012 2 Label Methodology Contents Background ............................................................................................................................................... 3 Methodology ............................................................................................................................................. 5 Comfort/Quiet .......................................................................................................................................... 5 Healthy Living ........................................................................................................................................... 7

266

Solar home heating in Michigan  

Science Conference Proceedings (OSTI)

This booklet presents the fundamentals of solar heating for both new and existing homes. A variety of systems for space heating and household water heating are explained, and examples are shown of solar homes and installations in Michigan.

Not Available

1984-01-01T23:59:59.000Z

267

LEED for Homes Program Review  

E-Print Network (OSTI)

Are you ready to enter the rapidly growing green building market? Attend the LEED for Homes Program Review presented by the U.S. Green Building Council. Gain the knowledge needed for successful participation in the LEED for Homes initiative. WHY LEARN ABOUT LEED? LEED for Homes is a voluntary rating system that promotes the design and construction of high performance "green " homes. A green home uses less energy, water, and natural resources; creates less waste; and is healthier and more comfortable for the occupants. Benefits of a LEED home include lower energy and water bills; reduced greenhouse gas emissions; and less exposure to mold, mildew and other indoor toxins. LEED certification recognizes and rewards builders for meeting the highest performance standards, and gives homeowners confidence that their home is durable, healthy, and environmentally friendly WHO SHOULD ATTEND? Industry professionals seeking to increase their understanding of the LEED for Homes Rating System and green building strategies, benefits and resources:

unknown authors

2008-01-01T23:59:59.000Z

268

EERE: Clean Cities Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Cities Printable Version Share this resource Send a link to EERE: Clean Cities Home Page to someone by E-mail Share EERE: Clean Cities Home Page on Facebook Tweet about EERE: Clean...

269

Building Technologies Office: Home Energy Score: Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information for Home Energy Assessors to someone by E-mail Share Building Technologies Office: Home Energy Score: Information for Home Energy Assessors on Facebook Tweet about...

270

Building Technologies Office: Video: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Video: Home Energy Score to someone by E-mail Share Building Technologies Office: Video: Home Energy Score on Facebook Tweet about Building Technologies Office: Video: Home Energy...

271

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

security "to" the home from security "in" the home. )homes can be controlled to optimize convenience, comfort and securityhome network protocols. Some protocols are adding security

McParland, Charles

2010-01-01T23:59:59.000Z

272

Home and Building Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technologies Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

273

Building Technologies Office: Automated Home Energy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Area Network Trends SmartGridCity(tm) Integration with Home Controls Automated HomeEnergy Management Automated Monitoring, Control, Diagnostics, Optimization and Soft Repair...

274

Building Technologies Office: DOE Challenge Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Home on Twitter Bookmark Building Technologies Office: DOE Challenge Home on Google Bookmark Building Technologies Office: DOE Challenge Home on Delicious Rank Building...

275

HAE international home therapy consensus document  

E-Print Network (OSTI)

et al. : HAE international home therapy consensus document.Access HAE international home therapy consensus documenttreatment results in delays. Home therapy offers the

2010-01-01T23:59:59.000Z

276

Home Network Technologies and Automating Demand Response  

E-Print Network (OSTI)

networks_in_the_home_the_new_growth_market.htm [12] NationalHome Network Technologies and Automating Demand Responsethe University of California. Home Network Technologies and

McParland, Charles

2010-01-01T23:59:59.000Z

277

Reverse Migration: The Impact of Returning Home  

E-Print Network (OSTI)

Up, Factory Workers Head Home. Spiegel ONLINE. January 8,The Impact of Returning Home Alison Albright, Deborah Nayborof dollars in remittances home to educate their children and

Albright, Alison; Naybor, Deborah

2010-01-01T23:59:59.000Z

278

Hearth and Home Technologies | Open Energy Information  

Open Energy Info (EERE)

Hearth and Home Technologies Jump to: navigation, search Name Hearth and Home Technologies Place Lakeville, MN Website http:www.hearthandhometechno References Hearth and Home...

279

Federal Energy Management Program: Home Energy Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Checklist to someone by E-mail Share Federal Energy Management Program: Home Energy Checklist on Facebook Tweet about Federal Energy Management Program: Home Energy...

280

EERE: Energy Basics Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

businesses, and industries. Technologies Renewable Energy Technologies Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Home and Building Technologies Lighting and...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site  

Energy.gov (U.S. Department of Energy (DOE))

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

282

Low income home energy assistance  

Science Conference Proceedings (OSTI)

The Low Income Home Energy Assistance Program provides eligible households with assistance for home energy costs. Assistance is available to (1) help families pay heating and cooling costs, (2) prevent energy cutoff in crisis situations, and (3) help families make their homes more energy efficient. This report provides background information on the program in preparation for the program's reauthorization in 1990.

Not Available

1990-10-01T23:59:59.000Z

283

Towards personalised home care systems  

Science Conference Proceedings (OSTI)

Home care is increasingly seen as a promising alternative to traditional care services. Programming home care systems remains a significant challenge considering the potentially large scale of deployment, the differences between individual care needs, ... Keywords: home care, personalisation, pervasive computing, policy-based management

Feng Wang; Kenneth J. Turner

2008-07-01T23:59:59.000Z

284

Modeling of biogas generation in bioreactor landfills using neuro-fuzzy system  

Science Conference Proceedings (OSTI)

Biogas generation in anaerobic bioreactor landfills is modeled using the neuro-fuzzy system. The implemented inference system was an adaptive neuro-fuzzy inference system (ANFIS). The fuzzy logic controller featured a Multi-Input-Single-Output (MISO) ... Keywords: biogas generation, bioreactor landfills, neuro-fuzzy model

Mohamed S. Abdallah; Leta Fernandes; Mostafa A. Warith

2008-08-01T23:59:59.000Z

285

IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera*  

E-Print Network (OSTI)

IpNose: Electronic nose for remote bad odour monitoring system in landfill sites Alex Perera to classify and quantify different gas/odours. Here we suggest the integration of a small form factor computer of bad odours in landfill sites. Preliminary approach to this application using commercial sensors

Gutierrez-Osuna, Ricardo

286

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Conference Proceedings (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z

287

SPONSORED PROJECTS 1. Pending: "Feasibility Studies and Training to Support Landfill Gas Recovery in Ghana"  

E-Print Network (OSTI)

SPONSORED PROJECTS 1. Pending: "Feasibility Studies and Training to Support Landfill Gas Recovery: PI. 4. "An Improved Model to Predict Gas Generation from Landfills based on Waste Composition-2015, Role: Co-PI. 3. "Field Measurement of Emissions from Natural Gas Drilling, Production, and Distribution

Texas at Arlington, University of

288

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmap to Results Roadmap to Results Ease into the process of making your home more efficient. If you're new to this, or you're on a very tight budget, start with the lowest-hanging fruit like double-checking your water heater's temperature setting. The next easy steps are simple things that will fit into your shopping basket: maybe a few compact fluorescent lamps or a roll of weatherstripping. When it's time to replace that old fridge, or other appliances, take time to shop smart. At a minimum, look for the ENERGY STAR rating. There are detailed lists of products that will take you even farther. Remember: you're not simply spending money, you're investing for profit and comfort. Redoing your kitchen? New roof? Finally adding that in-law unit? Creating successful projects can take some work. Take the time to find a home

289

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Work-Arounds Work-Arounds While the Home Energy Saver is the most comprehensive home energy model available on the web, there are inevitably specific systems or features that we have not yet explicitly incorporated. In some cases, there are reasonable work-arounds that the user can use to approximate the energy use of such features or systems. For example: Evaporative Cooling: HES Does not model Evaporative coolers. However, you can specify an appropriately high SEER (e.g. 22) in the air conditioning description to approximate the relatively low energy use of evaporative coolers. Note that this method will not yield any information about the water consumption by evaporative coolers, which also has a cost and other implications. Extended Vacations: HES does not explicitly allow you to specify

290

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Watt about Water? Watt about Water? Water uses energy. Energy uses water. The "water-energy nexus" - as it has come to be known - is one of the emerging hot topics when it comes to making homes greener and more resource-efficient. The Home Energy Saver does not currently provide recommendations for reducing water use, but it does help you understand where your water is currently going (see the Appliances drill-down report from the Compare > Summary page). The material on this page provides some more background and resources for you to keep in mind. Water uses energy The most tangible link is that when your water is heated, every drop contains a hidden "drop" of energy. Saving hot water translates directly into water-heating energy savings. Such savings are available at hot water

291

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Lowest-Hanging Fruit Lowest-Hanging Fruit Get the Weekly Energy Saving Tip widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) The analysis you've done in the Home Energy Saver is a great beginning, but not the end of your quest. You now know where you stand and how much you can improve. Time to get started. In the following links you will find dozens of no-cost tips for things you can do to start saving energy immediately, many of which can be done without even opening your wallet! Air Leaks Home office electronics Lighting Heating & cooling Water heating Windows Making it Happen Roadmap to Results Seasons of Life The Lowest-Hanging Fruit Investing for Profit and Comfort Creating Successful Projects Financial Incentives Watt About Water? Choosing a Good Contractor

292

Financing your solar home  

SciTech Connect

Some insights as to how to apply for a loan for a solar home are derived by looking at the lending process from the lender's viewpoint. Aspects discussed include loan-to-value ratio, ability to repay, and resale viability. The information needed for the solar buyer to secure his loan, and the presentation of his case to the loan officer are discussed. (LEW)

Dixon, W.

1981-01-01T23:59:59.000Z

293

DOE Challenge Home Case Study, Mandalay Homes, Phoenix, AZ, Affordable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandalay Mandalay Homes Phoenix, AZ BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

294

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network (OSTI)

emissions. I recently saw an exhibit of a landfill gas carbon adsorber designed to remove siloxanes and air toxics from landfill gas prior to engine burning, to reduce wear on the engine. They later stripped this is a common practice. Most landfill gas energy combustion systems are uncontrolled. In 1998, a New York State

Columbia University

295

Int. J. Environment and Pollution, V0/. IS, No.4, 2001 Economic evaluation of a landfill system with gas  

E-Print Network (OSTI)

and externalities are examined. A cost-benefit analysis of a landfill system with gas recovery (LFSGR) has been be made as follows: Yedla, S. and Parikh, 1.K. (2001) 'Economic evaluation of a landfill system with gas.K. Parikh Economic evaluation of a landfill system with gas recovery 435 Tonnes per dayMillion tonnes per

Columbia University

296

Home energy savers program  

SciTech Connect

In July 1976, the Federal Energy Administration entered into a cooperative agreement with the State of Rhode Island to implement a residential energy conservation program on a statewide basis in order to achieve a reduction in energy consumption in the residential sector. The program, developed by Rhode Island and approved by FEA, was designed to test various approaches to encourage homeowners to take steps to conserve energy by weatherizing their homes. The approaches involved a three-stage strategy: the generation of an energy conservation awareness in homeowners through a statewide media campaign; the provision of specific ''how-to'' information to homeowners through mass media instruction, distribution of the ''Home Energy Savers' Workbook'', and by operation of a Home Energy Savers' Center with a hotline; and the encouragement of homeowners to follow through with energy measures. The demonstration program is described and evaluated. The findings can be summarized as follows: the high degree of interrelatedness and mutual dependency of the three stages necessitates well planned timing of program elements; the statewide media program was effective when spots were aired in prime time; however, the spots were generally in non-prime time slots, and thus had limited effectiveness. Distribution of ''workbooks'' on a mass scale left a measure of uncertainty as to whether they were reaching their intended audiences and mass media instruction was hampered by limited audiences, and production problems.

1978-03-01T23:59:59.000Z

297

I 95 Municipal Landfill Phase I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Municipal Landfill Phase I Biomass Facility Municipal Landfill Phase I Biomass Facility Jump to: navigation, search Name I 95 Municipal Landfill Phase I Biomass Facility Facility I 95 Municipal Landfill Phase I Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Make my home more energy-efficient?  

NLE Websites -- All DOE Office Websites (Extended Search)

Make my home more energy-efficient? Every home is different. For homes within the United States, you can use EETD's Home Energy Saver to get advice on how to lower your energy...

299

Usable Security in Smart Homes  

E-Print Network (OSTI)

AbstractA number of technologies are emerging that enable the creation of Smart Homes, which are households containing numerous networked devices all interacting with each other over the home network. As these Smart Homes become increasingly prevalent and users become more reliant on mobile devices to handle sensitive information, research related to the development of a usable security framework for Smart Homes is increasing in importance. In this paper, we first give some of the motivating use cases for such a security framework. We then describe some of the design challenges presented by the creation of usable Smart Home security frameworks. With an emphasis on usability, we proceed to highlight the hardships users face when interacting with currently available security frameworks and substantiate the need for a significant improvement in this field. Finally, we summarize and conclude. Key words: Smart Home, home networking, security, usability.

Saad Shakhshir; Dimitris Kalofonos

2005-01-01T23:59:59.000Z

300

Home - Energy Explained, Your Guide To Understanding Energy ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & ...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EERE: Geothermal Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

302

Salad Mixes for the Home Garden  

E-Print Network (OSTI)

Gardener Salad Mixes for the Home Garden owever you assesssalads. (Note: For the home gardener, the use of edible ?

Martin, Orin

2008-01-01T23:59:59.000Z

303

Natural clay-shredded tire mixtures as landfill barrier materials  

Science Conference Proceedings (OSTI)

A natural overconsolidated fissured clay, Keuper Marl, was mixed with shredded tire, 1--4 and 4--8 mm angular size particles, in weight percentages between 6 and 15%, and examined for use as a constituent in a landfill liner in terms of compaction, unconfined compressive strength, stress-strain behavior, permeability to water and paraffin, leachability, free swell behavior and swelling pressure. The results showed that the compacted dry density reduced solely due to the lighter weight of the tire and the unconfined compressive strength of the mixture was as low 40% of the strength of the clay alone. In stress-strain behavior the clay-tire mixtures produced a prolonged strain range at failure of roughly double that observed for the clay alone. The permeability to paraffin was reduced by more than 50 times compared to that of water. The leachability results showed different leached levels of copper and nickel from the NRA and TCLP leaching tests which will need to be assessed in relation to appropriate standards. Paraffin caused considerable swelling of the clay-tire mixtures compared to the clay alone and caused the development of swelling pressures of up to 600 kPa. Combinations of the various test results will need to be assessed in relation to the design requirement of the specific landfill liner being designed.

Al-Tabbaa, A. [Univ. of Cambridge (United Kingdom). Dept. of Engineering; Aravinthan, T. [Babtie Group, Croydon (United Kingdom)

1998-12-31T23:59:59.000Z

304

DOE Challenge Home Case Study, e2Homes, Winterpark, FL, Custom Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fi fi rst certifi ed DOE Challenge Home in the United States-the Wilson Residence in Winter Park, Florida-produces more energy than it uses with construction costs one-third less than originally proposed. Completed in May 2012, this 4,305-ft 2 custom home (with four bedrooms and baths) screams "BIG" until you hear the "small footprint" in the energy- and water-effi ciency details. Without solar power, the home scores a HERS 57, which is well below the HERS 100 for a standard home built to code. With its photovoltaic system, the home produces better than zero net-energy performance, with a score of HERS -7. This translates into no electric utility bills and even $123 annually in the homeowner's pocket from the utility. When the homeowner, Mr. Wilson, hired e2 Homes to build his dream home, he

305

DOE Challenge Home Case Study, KB Home, San Marcos, CA, Production Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KB KB Home San Marcos, CA BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

306

DOE Challenge Home Case Study, Garbett Homes, Herriman, UT, Production Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Garbett Garbett Homes Herriman, UT BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

307

DOE Challenge Home Case Study, Clifton View Homes, Coupeville, WA, Systems Home  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clifton View Clifton View Homes Coupeville, WA BUILDING TECHNOLOGIES OFFICE DOE Challenge Home builders are in the top 1% of builders in the country meeting the extraordinary levels of excellence and quality specifi ed by the U.S. Department of Energy. Every DOE Challenge Home starts with ENERGY STAR for Homes Version 3 for an energy-effi cient home built on a solid foundation of building science research. Then, even more advanced technologies are designed in for a home that goes above and beyond current code to give you the superior quality construction, HVAC, appliances, indoor air quality, safety, durability, comfort, and solar-ready components along with ultra-low or no utility bills. This provides homeowners with a quality home that will last for generations to come.

308

Lighting Options for Homes.  

SciTech Connect

This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

Baker, W.S.

1991-04-01T23:59:59.000Z

309

Challenge Home Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenge Home Events Challenge Home Events Challenge Home Events Sorted By Date Sort By Location Sort By Event Description Contact TBA West Chester, Pennsylvania DOE Challenge Home Zero Net-Energy-Ready Home Training DOE Challenge Home is conducting this Zero Net-Energy-Ready Home training with our Training Partner, the Home Ventilating Institute. Coming soon! January 16, 2014 Latham, New York DOE Challenge Home Zero Net-Energy-Ready Home Training DOE Challenge Home is conducting this Zero Net-Energy-Ready Home training with our Training Partner, the New York State Builders Association (NYSBA). Register by emailing Juli Turner at jturner@nysba.com March 24, 2014 Lexington, Kentucky DOE Challenge Home Zero Net-Energy-Ready Home Training This 3.5-hour training provides builders with a comprehensive review of zero net-energy-ready home construction including the business case, detailed specifications, and opportunities to be recognized as an industry leader.

310

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

311

Migration and methanogens: A review of current landfill gas field research at ANL  

DOE Green Energy (OSTI)

Landfill gas recovery research at Argonne National Laboratory is focusing on a project studying gas movement through landfill cover materials and a pilot investigation of microbial populations in landfills. Vertical gas pressure and concentration gradients between the top of refuse and the landfill cover are being examined. In particular, changes in the vertical gradients indicative of changes in magnitude and direction of pressure or diffusional flow with time are being monitored. This study emphasizes changes in vertical pressure and concentration gradients related to barometric pressure and other meteorological variables, soil moisture changes, and pumping rates at simulated recovery wells. Preliminary results suggest that changes in soil-gas pressures in the landfill cover and top of refuse closely follow changes in barometric pressure. Measurable concentration gradients exist between the top of refuse and the cover materials indicating that diffusion is a major mechanism for gas movement, particularly during dry weather when pressure gradients are negligible. A pilot investigation has begun on microbial populations in sanitary landfills. First, a series of leachate samples from various depths at the Blackwell Forest Preserve Landfill were evaluated for microbial populations, selected chemical constituents, and methane production. Diverse motile populations of fluorescing organisms were found in selected samples. 19 refs., 6 figs., 3 tabs.

Bogner, J.; Torpy, M.; Rose, C.; Vogt, M.; Gartman, D.; Moore, C.

1986-01-01T23:59:59.000Z

312

Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse  

DOE Green Energy (OSTI)

Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

Bogner, J.E.; Rose, C.; Piorkowski, R.

1989-01-01T23:59:59.000Z

313

Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington  

SciTech Connect

The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

1990-08-01T23:59:59.000Z

314

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

315

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

316

Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models  

Science Conference Proceedings (OSTI)

Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

Di Bella, Gaetano, E-mail: dibella@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Di Trapani, Daniele, E-mail: ditrapani@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Viviani, Gaspare, E-mail: gviv@idra.unipa.it [Dipartimento di Ingegneria Civile, Ambientale e Aerospaziale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

2011-08-15T23:59:59.000Z

317

DOE Solar Decathlon: Home Entertainment  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Entertainment Home Entertainment (100 points) The Home Entertainment Contest in the U.S. Department of Energy Solar Decathlon gauges whether a house has what it takes to be a home. How well does it accommodate the pleasures of living, such as sharing meals with friends and family, watching movies in a home theater, and checking social media? How well does it accommodate a small home office for a telecommuter? The contest includes: Holding two dinner parties for neighbors, who award the host team points based on the quality of the meal, ambiance, and overall experience Keeping all interior and exterior house lights on during specified periods of time Operating a television and computer during specified time periods Hosting a movie night for neighbors, who rate their hosts based on

318

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

319

Careers at Brookhaven Lab | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers at Brookhaven Home For Job Seekers Job List Life at Brookhaven Benefits Family Programs Recreation & Fitness Why Brookhaven? For New Hires For Employees Challenge Yourself...

320

No Home Like Your Own.  

E-Print Network (OSTI)

??No Home Like Your Own is a journey through my childhood memories of pre?war Socialist Yugoslavia and the war in Bosnia and Herzegovina that followed (more)

Alibai?, Emir

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar Textiles For the Home.  

E-Print Network (OSTI)

??Solar Textiles came out of the idea that everyone has windows in their homes which need to be shaded. The question was simple, why are (more)

Cosman, Brienne E

2011-01-01T23:59:59.000Z

322

Department of Energy Home Page  

Office of Scientific and Technical Information (OSTI)

US DEPARTMENT OF ENERGY Search Home Page Contents ABOUT DOE About The Department of Energy (Learn about the Department of Energy, its mission, plans, organizational structure,...

323

Events - Home - Energy Innovation Portal  

Home Events. Site Map; ... The award-winning event attracts more than 100,000 visitors as it challenges 20 collegiate teams to design, ... energy-efficient, ...

324

New American Home 2009 (Brochure)  

DOE Green Energy (OSTI)

This brochure details the New American Home 2009, which demonstrates the use of innovative building materials, cutting-edge design, and the latest construction techniques.

Not Available

2008-12-01T23:59:59.000Z

325

SRS -Structural Science Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups Industry Argonne Home ...

326

Performance of Home Smoke Alarms  

Science Conference Proceedings (OSTI)

... 72 Figure 86. Heating ignition source with cooking oil . ... Estimated particle size from cooking oil fire scenario . . ... Performance of Home Smoke Alarms ...

2012-10-15T23:59:59.000Z

327

Home Energy Audits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency » Homes » Home Weatherization » Home Energy Energy Efficiency » Homes » Home Weatherization » Home Energy Audits Home Energy Audits November 26, 2013 Professional Home Energy Audits A home energy audit is the first step to assessing how much energy your home consumes and to deciding what measures you can take to make your home more energy efficient. October 28, 2013 William Stewart, with Veterans Green Jobs, blows cellulose insulation in the interior walls of a Lakewood, Colorado, home. This home is part of the Energy Department's Weatherization Assistance Program that supports energy efficiency upgrades to low-income homes in Denver. | Photo courtesy of Dennis Schroeder, NREL. Weatherization Saves Families Energy and Money In honor of National Weatherization Day, we're highlighting how energy

328

Home Energy Score | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Home Energy Score Residential Buildings » Home Energy Score Home Energy Score The Home Energy Score is similar to a vehicle's mile-per-gallon rating. The Home Energy Score allows homeowners to compare the energy performance of their homes to other homes nationwide. It also provides homeowners with suggestions for improving their homes' efficiency. The process starts with a Home Energy Score Qualified Assessor collecting energy information during a brief home walk-through. Using the Home Energy Scoring Tool, developed by the Lawrence Berkeley National Laboratory, the Qualified Assessor then scores the home on a scale of 1 to 10. A score of 10 indicates that the home has excellent energy performance. A score of 1 indicates the home needs extensive energy improvements. In addition to

329

HomeNote: supporting situated messaging in the home  

Science Conference Proceedings (OSTI)

In this paper we describe a field trial designed to investigate the potential of remote, situated messaging within the home. Five households used our "HomeNote" device for approximately a month. The results show a diversity of types of communication ... Keywords: SMS, domestic communication, epigraphic, family life, field study, messaging, situated displays

Abigail Sellen; Richard Harper; Rachel Eardley; Shahram Izadi; Tim Regan; Alex S. Taylor; Ken R. Wood

2006-11-01T23:59:59.000Z

330

Moving Toward Zero Energy Homes: The Ultimate Family Home, Las Vegas, Nevada (Brochure)  

DOE Green Energy (OSTI)

Brochure describes the energy efficient and solar energy features of the Ultimate Family Home Zero Energy Home, participant in the Zero Energy Homes initiative.

Not Available

2003-12-01T23:59:59.000Z

331

The Curious Institution of Mobile Home Rent Control: An Analysis of Mobile Home Parks in California  

E-Print Network (OSTI)

institution of mobile home , J. Housing Econ. (2007),into e?ects of mobile home park rent control. Journal ofinstitution of mobile home , J. Housing Econ. (2007),

Mason, Carl; Quigley, John M.

2007-01-01T23:59:59.000Z

332

Home : ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Who dared imagine? Who dared imagine? Our newest video celebrates 20 years of success with our innovative ENERGY STAR partners. See the Video EPA Logo ENERGY STAR is a U.S. Environmental Protection Agency voluntary program that helps businesses and individuals save money and protect our climate through superior energy efficiency. Learn more about ENERGY STAR. A comprehensive review of ENERGY STAR and other EPA climate protection partnerships. See 2011 Annual Report. Basic information on climate change, greenhouse gas emissions, and climate change science. See Climate Change. With help from ENERGY STAR, by 2012, Americans had cumulatively prevented more than 1.8 billion metric tons of GHG emissions. See 2012 Achievements. Energy Efficiency For Your Home

333

TVDG Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

for Upton, New York Forecast for Upton, New York Forecast Welcome to TVDG Logo the BNL Tandem Brookhaven National Laboratory's Tandem Van de Graaff Accelerator Facility We have a NEW Home Page. Please try it and let us know about any omissions or additions you would like to see on our new site. Where Can We Go From Here? 10 Steps 10 steps to your Tandem experiment. SEU Availability SEU availability calendar for our facility. Here you can see when the facility is available for running SEU. Species List of ions, energies and LETs that are available at our facility. Reservations Fill-in form that allows registered users to reserve time at our facility via the Web. User Registration Users are required to register before being allowed on site Contacts List of contact people at our facility and how to reach us by phone, fax or e-mail.

334

SRS CAB - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Google Logo Search Google Logo SRS CAB Logo Menu SRS CAB Home About Us Board Board Members Membership Application Committees Speakers Bureau Meetings Meeting Schedules Meeting Recordings Presentations & Summaries Recommendations Board Materials Mission EM SSAB Charter Operating Procedures Work Plans Official Correspondence Reports & Documents Workshops CAB Position Statements Outreach 2014 Public Tours Article on SRS CAB- Bella Magazine Resources Links Site Map Newsletter SRS CAB Newsletters Contact Us Contact Information Next Committee Meeting Upcoming Committee Meetings The 2014 CAB committee meeting schedule will be made available in February 2014 DOE Meeting Center 230 Village Green Blvd., Suite 220 Aiken, SC 29801 Map and Directions Next CAB Meeting January 27-28, 2014 Full Board Hilton Garden Inn

335

Recovery Act milestone: Excavation begins at Manhattan Project landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act milestone Recovery Act milestone Recovery Act milestone: Excavation begins at Manhattan Project landfill The six-acre site contains a series of trenches used from 1944 to 1948 to dispose of hazardous and non-hazardous trash from Manhattan Project labs and buildings. July 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

336

Using GIS to Identify Remediation Areas in Landfills  

Science Conference Proceedings (OSTI)

This paper reports the use of GIS mapping softwareArcMap and ArcInfo Workstationby the Idaho National Engineering and Environmental Laboratory (INEEL) as a non-intrusive method of locating and characterizing radioactive waste in a 97-acre landfill to aid in planning cleanup efforts. The fine-scale techniques and methods used offer potential application for other burial sites for which hazards indicate a non-intrusive approach. By converting many boxes of paper shipping records in multiple formats into a relational database linked to spatial data, the INEEL has related the paper history to our current GIS technologies and spatial data layers. The wide breadth of GIS techniques and tools quickly display areas in need of remediation as well as evaluate methods of remediation for specific areas as the site characterization is better understood and early assumptions are refined.

Linda A.Tedrow

2004-08-01T23:59:59.000Z

337

Global Home File System at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Wherever possible, you should refer to your home directory using the environment variable $HOME. The absolute path to your home directory (e.g., /u4/elvis/) may change, but the value of $HOME will always be correct. For security reasons, you should never allow "world write" access to your $HOME directory or your $HOME/.ssh directory. NERSC scans for such security weakness, and, if detected, will change the permissions on your directories. Platforms Utilizing Global Home The Global Home file system is available on all NERSC systems except PDSF.

338

Precision zero-home locator  

DOE Patents (OSTI)

A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

Stone, William J. (Kansas City, MO)

1986-01-01T23:59:59.000Z

339

Precision zero-home locator  

DOE Patents (OSTI)

A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

Stone, W.J.

1983-10-31T23:59:59.000Z

340

PNNL Lab Homes Sarah Widder  

E-Print Network (OSTI)

2 mean radiant temperature sensors Water and Environment Controllable water flows at fixtures Solar insolation (pyronometer) inside home Weather station (Lab Home B only) Data collection via Campbell on weather -10% -5% 0% 5% 10% 15% 20% 25% DailyWholeHouseEnergySavings Clear Pa

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

767: Construction and Experiment of an Industrial Solid Waste 767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant in Piketon, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 25, 1995 EA-0767: Finding of No Significant Impact Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant October 25, 1995 EA-0767: Final Environmental Assessment

342

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

343

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012. Recorded Voice: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hello, everyone. Good afternoon and welcome to today's webinar. This is sponsored by the U.S. Department of Energy. My name is Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory in Golden, Colorado. We're going to give folks

344

Landfill methane recovery. Part II: gas characterization. Final report, December 1981-December 1982  

SciTech Connect

This study addresses field sampling, analytical testing, and data generation for the characterization of both raw and processed landfill gas. Standardized protocols were developed for the sampling and analysis of the landfill gas for trace constituents and are presented as Appendices A-C. A nationwide survey was conducted in which gas samples were collected at nine landfill sites and tested for trace volatile organic compounds (VOC), trace volatile mercury, and human pathogenic viruses and bacteria. Surface-gas flux measurements at the landfill surface were also made. Repetitive sampling and analysis for each of the nice sites porvided the opportunity to evaluate agreement (or variations) within a laboratory and between two analytical laboratories. Sampling and analytical protocols used by both laboratories were identical, however, the analytical hardware and interpretive computer hardware and software were different.

Lytwynyshyn, G.R.; Zimmerman, R.E.; Flynn, N.W.; Wingender, R.; Olivieri, V.

1982-12-01T23:59:59.000Z

345

Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

NONE

1997-04-01T23:59:59.000Z

346

Information on the Fate of Mercury From Fluorescent Lamps Disposed in Landfills  

Science Conference Proceedings (OSTI)

Mercury is contained in energy-efficient fluorescent, mercury-vapor, metal halide, and high-pressure sodium lamps. This report presents information on the potential for air and groundwater contamination when mercury lamps are disposed in municipal landfills.

1995-04-19T23:59:59.000Z

347

Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas  

SciTech Connect

The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

K. David Newell; Timothy R. Carr

2007-03-31T23:59:59.000Z

348

NREL: Learning - Photovoltaics for Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Homes Homes Photo of solar panels on the roof of a traditional looking home in Colorado. Photovoltaic solar panels installed on the roof of a home in Boulder, Colorado. The following resources will help you install a photovoltaic (PV) system on your home. If you are unfamiliar with PV systems, see the introduction to PV. Resources American Solar Energy Society Provides consumers with information about solar energy and resources. Database of State Incentives for Renewables and Efficiency Provides information on state, local, utility, and selected federal incentives that promote renewable energy. Florida Solar Energy Center Provides basic information on photovoltaics for consumers. Own Your Power! A Consumer Guide to Solar Electricity The U.S. Department of Energy (DOE) answers consumer questions about PV and

349

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

350

Development of the utilization of combustible gas produced in existing sanitary landfills: effects of corrosion at the Mountain View, CA Landfill Gas-Recovery Plant  

DOE Green Energy (OSTI)

Corrosion of equipment has occurred at the Mountain View, California Landfill Gas Recovery Plant. Corrosion is most severe on compressor valve seats and cages, tubes in the first and second stages of the interstage gas cooler, and first and second stage piping and liquid separators. Corrosion occurs because the raw landfill gas contains water, carbon dioxide, and oxygen. Some corrosion may also result from trace concentrations of organic acids present in the landfill gas. Corrosion of the third stage compressor, cooler, and piping does not occur because the gas is dehydrated immediately prior to the third stage. Controlling corrosion is necessary to maintain the mechanical integrity of the plant and to keep the cost of the gas competitive with natural gas. Attempts to reduce corrosion rates by injecting a chemical inhibitor have proved only partially successful. Recommendations for dealing with corrosion include earlier dehydration of the gas, selection of special alloys in critical locations, chemical inhibition, and regular plant inspections.

Not Available

1982-10-01T23:59:59.000Z

351

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

352

Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills  

Science Conference Proceedings (OSTI)

Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

Sizirici, Banu, E-mail: bsy3@case.edu [Case Western Reserve University, Civil Engineering Department, 2104 Adelbert Road, Bingham Bld. Room: 216, Cleveland, OH 44106 (United States); Tansel, Berrin; Kumar, Vivek [Florida International University, Civil and Environmental Engineering Department, Miami, FL (United States)

2011-06-15T23:59:59.000Z

353

The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

2012-05-15T23:59:59.000Z

354

Pricing landfill externalities: Emissions and disamenity costs in Cape Town, South Africa  

Science Conference Proceedings (OSTI)

Highlights: > The paper estimates landfill externalities associated with emissions, disamenities and transport. > Transport externalities vary from 24.22 to 31.42 Rands per tonne. > Costs of emissions (estimated using benefits transfer) vary from 0.07 to 28.91 Rands per tonne. > Disamenities (estimated using hedonic pricing) vary from 0.00 to 57.46 Rands per tonne. > Overall, external costs for urban landfills exceed those of a regional landfill. - Abstract: The external (environmental and social) costs of landfilling (e.g. emissions to air, soil and water; and 'disamenities' such as odours and pests) are difficult to quantify in monetary terms, and are therefore not generally reflected in waste disposal charges or taken into account in decision making regarding waste management options. This results in a bias against alternatives such as recycling, which may be more expensive than landfilling from a purely financial perspective, but preferable from an environmental and social perspective. There is therefore a need to quantify external costs in monetary terms, so that different disposal options can be compared on the basis of their overall costs to society (financial plus external costs). This study attempts to estimate the external costs of landfilling in the City of Cape Town for different scenarios, using the benefits transfer method (for emissions) and the hedonic pricing method (for disamenities). Both methods (in particular the process of transferring and adjusting estimates from one study site to another) are described in detail, allowing the procedures to be replicated elsewhere. The results show that external costs are currently R111 (in South African Rands, or approximately US$16) per tonne of waste, although these could decline under a scenario in which energy is recovered, or in which the existing urban landfills are replaced with a new regional landfill.

Nahman, Anton, E-mail: anahman@csir.co.za [Environmental and Resource Economics Group, Natural Resources and the Environment, Council for Scientific and Industrial Research, P.O. Box 320, Stellenbosch 7599 (South Africa)

2011-09-15T23:59:59.000Z

355

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

356

Stochastic modelling of landfill leachate and biogas production incorporating waste heterogeneity. Model formulation and uncertainty analysis  

Science Conference Proceedings (OSTI)

A mathematical model simulating the hydrological and biochemical processes occurring in landfilled waste is presented and demonstrated. The model combines biochemical and hydrological models into an integrated representation of the landfill environment. Waste decomposition is modelled using traditional biochemical waste decomposition pathways combined with a simplified methodology for representing the rate of decomposition. Water flow through the waste is represented using a statistical velocity model capable of representing the effects of waste heterogeneity on leachate flow through the waste. Given the limitations in data capture from landfill sites, significant emphasis is placed on improving parameter identification and reducing parameter requirements. A sensitivity analysis is performed, highlighting the model's response to changes in input variables. A model test run is also presented, demonstrating the model capabilities. A parameter perturbation model sensitivity analysis was also performed. This has been able to show that although the model is sensitive to certain key parameters, its overall intuitive response provides a good basis for making reasonable predictions of the future state of the landfill system. Finally, due to the high uncertainty associated with landfill data, a tool for handling input data uncertainty is incorporated in the model's structure. It is concluded that the model can be used as a reasonable tool for modelling landfill processes and that further work should be undertaken to assess the model's performance.

Zacharof, A.I.; Butler, A.P

2004-07-01T23:59:59.000Z

357

Energy Efficiency -- Home Page  

U.S. Energy Information Administration (EIA) Indexed Site

If you are having trouble, call 202-586-8800 for help. If you are having trouble, call 202-586-8800 for help. Home >Energy Users EEnergy Efficiency Page Energy-Efficiency Measurement MEASUREMENT DISCUSSION: Measures and Policy Issues Energy Intensity as a Common Surrogate for Energy Efficiency Indices as a Measure of Relative Changes Market-Basket Comprehensive Factorial Decomposition Divisia Index OTHER MEASUREMENT APPROACHES: Best Practice MEASUREMENT ISSUES : Site Energy Versus Primary Energy Physical Versus Economic Units picture of line graph on stand Energy Efficiency Measurement Discussion The development of energy-efficiency indictors, for any country, is limited by the availability of data. Data are limited for several reasons. As the amount of data collected increases so do the costs of collecting, processing, and analyzing the data. The configuration of certain technologies and processes can also limit the possibility of obtaining microdata. As an example, in the manufacturing sector, some motors are encased in such a way that it is impossible to collect data on the motor unless records have been maintained for the motor. This leads to another reason data are limited--respondent burden. Care has to be taken so that surveys are not so long that participation is discouraged or inaccurate answers are given due to the difficulty and time it takes to obtain the data.

358

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

359

Building Technologies Office: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Score to Home Energy Score to someone by E-mail Share Building Technologies Office: Home Energy Score on Facebook Tweet about Building Technologies Office: Home Energy Score on Twitter Bookmark Building Technologies Office: Home Energy Score on Google Bookmark Building Technologies Office: Home Energy Score on Delicious Rank Building Technologies Office: Home Energy Score on Digg Find More places to share Building Technologies Office: Home Energy Score on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

360

NV Energy- Energy Plus New Homes Program  

Energy.gov (U.S. Department of Energy (DOE))

NV Energy offers the Energy Plus New Homes Program provides rebates to certified builders in the NV Energy service territory that build high-efficiency homes. (Rebates are only available to home...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Passive Solar Home Design | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Passive Solar Home Design Passive Solar Home Design June 24, 2013 - 7:18pm Addthis This North Carolina home gets most of its space heating from the passive solar design, but the...

362

NEW SOLAR HOMES PARTNERSHIP THIRD EDITION  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP THIRD EDITION GUIDEBOOK APRIL 2010 CEC-300 Executive Director Sanford Miller Program Lead NEW SOLAR HOMES PARTNERSHIP Payam Narvand Supervisor NEW SOLAR HOMES PARTNERSHIP Pamela Doughman Technical Director RENEWABLE ENERGY PROGRAM Tony Goncalves

363

Overview: Home Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 8:17am Addthis Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com Home heating accounts for about 30 percent of the...

364

Building Technologies Office: Home Energy Score: Information...  

NLE Websites -- All DOE Office Websites (Extended Search)

home, lower your utility bills, improve the comfort of your home, or reduce your energy usage. The Home Energy Score can help you understand how to integrate energy upgrades into...

365

Making Housing Home [Speaking of Places  

E-Print Network (OSTI)

more time and money in their home environments. 8 Suchis my space, this is my home. This is where Im nourishingand the Quality of Their Home Environments, in Child

Bendiner-Viani, Gabrielle; Saegert, Susan

2007-01-01T23:59:59.000Z

366

Digitizing Physical Objects in the Home  

E-Print Network (OSTI)

and incentives, the paperless home is still very much in thePhysical Objects in the Home Alladi Venkatesh Debora E.Physical Objects in the Home Alladi Venkatesh 1 , Debora

Venkatesh, Alladi; Dunkle, Debora E.; Wortman, Amanda

2011-01-01T23:59:59.000Z

367

A review of home phototherapy for psoriasis  

E-Print Network (OSTI)

al. Adherence to acitretin and home narrowband ultraviolet B81. [ PubMed ] 58. Lowe NJ. Home ultraviolet phototherapy.PubMed ] 9. Larko O, Swanbeck G. Home solarium treatment of

Nolan, Bridgit V; Yentzer, Brad A; Feldman, Steven R

2010-01-01T23:59:59.000Z

368

Transferring PACE Assessments Upon Home Sale  

E-Print Network (OSTI)

efficiency improvements to homes across the country is thehomeowner to the next when the home is sold. This analysisif they plan to occupy the home for a shorter time period.

Coughlin, Jason

2011-01-01T23:59:59.000Z

369

Rhythms and plasticity: television temporality at home  

E-Print Network (OSTI)

onto switch off. In: Inside the smart home, pp 115126 33.2005) Artful systems in the home. In: Pro- ceedings of CHIcomputer: making technology at home in domestic routine. In:

Irani, Lilly; Jeffries, Robin; Knight, Andrea

2010-01-01T23:59:59.000Z

370

Building America Efficient Solutions for New Homes Case Study...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15...

371

Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998  

SciTech Connect

The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

1998-09-01T23:59:59.000Z

372

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

373

Foundation Insulation for Existing Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes Building America Technical Update April 29 & 30, 2013 Patrick H. Huelman Cold Climate Housing Coordinator University of Minnesota Extension Foundation Insulation for Existing Homes * Context - Focused on basements and crawlspaces. - Aimed at cold climates (Climate Zones 6 & 7). - Generally aimed at liquid active walls. * Approach - Managing risks - Current solutions & best practices - Evaluating new approaches * Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes. * Promote building science solutions using a systems engineering and integrated design approach. * "Do no harm" => must ensure that safety, health, and durability are maintained or improved.

374

Potential Benefits of Commissioning California Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Benefits of Commissioning California Homes Title Potential Benefits of Commissioning California Homes Publication Type Report LBNL Report Number LBNL-48258 Year of...

375

Panasonic Home & Environment Company | Open Energy Information  

Open Energy Info (EERE)

Create one now Panasonic Home & Environment Company is a company located in Washington, DC. References Retrieved from "http:en.openei.orgwindex.php?titlePanasonicHome%26E...

376

EERE: Fuel Cell Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

377

Cullman Electric Cooperative- Energy Efficient Homes Program  

Energy.gov (U.S. Department of Energy (DOE))

Cullman Electric Cooperative offers rebates to residential customers that make certain energy efficiency improvements to newly constructed, all electric homes. Up to $200 is available per home. ...

378

Solar Home Energy | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Solar Home Energy Jump to: navigation, search Name Solar Home Energy Place Bournemouth, United Kingdom Sector Renewable...

379

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's...

380

Energy Basics: Home and Building Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Home Energy Magazine | Open Energy Information  

Open Energy Info (EERE)

Magazine Jump to: navigation, search Name Home Energy Magazine Place Berkeley, CA Website http:www.homeenergymagazine. References Home Energy Magazine1 Information About...

382

Home Depot Foundation | Open Energy Information  

Open Energy Info (EERE)

Depot Foundation Jump to: navigation, search Name Home Depot Foundation Place Atlanta, GA Website http:www.homedepotfoundation References Home Depot Foundation1 Information...

383

Guide to implementing reclamation processes at Department of Defense municipal solid waste and construction debris landfills. Master's thesis  

Science Conference Proceedings (OSTI)

This thesis serves as a guide for implementing landfill reclamation techniques on municipal solid waste or construction debris landfills owned, operated, or used by the DoD. The research describes historical and current methods for disposing of solid waste including open dumping, sanitary landfilling, and the development of state-of-the-art sanitary landfill cell technology. The thesis also identifies the factors which have led to the need for new methods of managing municipal solid waste. The vast majority of the study is devoted to identifying actions which should be taken before, during, and after implementation of a landfill reclamation project. These actions include the development of health, safety, and contingency planning documents, the establishment of systems for characterizing and monitoring site conditions, and the identification of other procedures and processes necessary for performing successful operations. Finally, this study contains a model for analyzing under which conditions reclamation is economically feasible. The model examines economic feasibility in four separate conditions and shows that reclamation is economically feasible in a wide variety of markets. However, the model also shows that feasibility is directly associated with a continuance of normal landfilling operations. Landfill, Landfill reclamation, Landfill mining, Municipal solid waste, Recycling, Construction debris.

Tures, G.L.

1993-09-21T23:59:59.000Z

384

Waginogans and Other Indian Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Waginogans and Other Indian Homes Waginogans and Other Indian Homes Nature Bulletin No. 578 October 31, 1959 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor Richard Becker, Naturalist WAGINOGANS AND OTHER INDIAN HOMES The American Indians built homes of many types that varied according to the materials available and the customs and culture of each tribe or nation. Sioux and other plains Indians who followed the buffalo lived in teepees. The "longhouse" of the Iroquois, built of poles covered with bark and surrounded by a palisade, was a large permanent structure housing several families. So, too, were the fort-like pueblos and cliff dwellings built of rocks and adobe clay by some of the southwestern "agricultural" Indians.

385

Home Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

386

4Home | Open Energy Information  

Open Energy Info (EERE)

4Home 4Home Jump to: navigation, search Name 4Home Place Sunnyvale, California Zip 94085 Sector Services Product California-based developer of home automation software and services. Coordinates 32.780338°, -96.547405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.780338,"lon":-96.547405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

DEMCO- Touchstone Energy Home Program  

Energy.gov (U.S. Department of Energy (DOE))

DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

388

SSRL Accelerator Phycics Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

(29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics activities at SSRL is limited...

389

Communication in Home Area Networks  

E-Print Network (OSTI)

Vehicle Supply Equipment Green PHY PEV Plug-in Electricaldata rate. HomePlug Green PHY (GP), AV and AV2 are developedstandards Netricity Green PHY AV AV2 Bandwidth(Hz) 10490 k

Wang, Yubo

2012-01-01T23:59:59.000Z

390

Next Linear Collider Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome to the Next Linear Collider NLC Home Page If you would like to learn about linear colliders in general and about this next-generation linear collider project's mission,...

391

Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. Black-Right-Pointing-Pointer Measurement errors for tracer gases were 1-3% in landfill gas. Black-Right-Pointing-Pointer Background signals from landfill gas result in elevated limits of detection. Black-Right-Pointing-Pointer Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF{sub 6}), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Yazdani, Ramin [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Yolo County, 44090 County Rd. 28H, Woodland, CA 95776 (United States); Imhoff, Paul T., E-mail: imhoff@udel.edu [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

2012-02-15T23:59:59.000Z

392

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network (OSTI)

Environmental Protection Agency (US EPA) regulations, it produces energy and does not emit fossil carbonCCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood

Florida, University of

393

Building Technologies Office: Challenge Home Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Home Events Challenge Home Events to someone by E-mail Share Building Technologies Office: Challenge Home Events on Facebook Tweet about Building Technologies Office: Challenge Home Events on Twitter Bookmark Building Technologies Office: Challenge Home Events on Google Bookmark Building Technologies Office: Challenge Home Events on Delicious Rank Building Technologies Office: Challenge Home Events on Digg Find More places to share Building Technologies Office: Challenge Home Events on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards

394

Home Energy Audits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Weatherization » Home Energy Audits Weatherization » Home Energy Audits Home Energy Audits A home energy checkup helps owners determine where their house is losing energy and money - and how such problems can be corrected to make the home more energy efficient. A professional technician -- often called an energy auditor -- can give your home a checkup. Items shown here include checking for leaks, examining insulation, inspecting the furnace and ductwork, performing a blower door test and using an infrared camera. Learn more about a professional home energy audit. A home energy audit, also known as a home energy assessment, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you

395

Building Technologies Office: Home Energy Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Score Energy Score The Home Energy Score is similar to a vehicle's mile-per-gallon rating. The Home Energy Score allows homeowners to compare the energy performance of their homes to other homes nationwide. It also provides homeowners with suggestions for improving their homes' efficiency. The process starts with a Home Energy Score Qualified Assessor collecting energy information during a brief home walk-through. Using the Home Energy Scoring Tool, developed by the Lawrence Berkeley National Laboratory, the Qualified Assessor then scores the home on a scale of 1 to 10. A score of 10 indicates that the home has excellent energy performance. A score of 1 indicates the home needs extensive energy improvements. In addition to providing the Score, the Qualified Assessor provides the homeowner with a list of recommended energy improvements and the associated cost savings estimates.

396

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

This page intentionally left blank This page intentionally left blank Rocky Flats Site Original Landfill - Settlement Plates Monitoring Quarterly Survey March 26, 2010 Comparison to Previous Survey December 15, 2009 03-26-10 OBSERVATIONS DELTA DELTA DELTA 12-15-09 OBSERVATIONS POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION NORTHING EASTING ELEVATION POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION 15053 747913.6883 2082233.082 6005.91 N-RIM-PIPE-AA 0.00 -0.02 -0.02 76527 747913.6913 2082233.064 6005.88 PIPE-N-RIM-AA 15052 747644.9257 2081851.191 5975.35 N-RIM-PIPE-BB -0.02 -0.01 -0.03 76528 747644.9087 2081851.179 5975.32 PIPE-N-RIM-BB 15059 747883.3477 2081666.073 6019.61 N-RIM-PIPE-CC 0.01 0.00 -0.01 76515 747883.3557 2081666.077 6019.59 PIPE-N-RIM-CC 15058 747803.4731 2081642.34 6006.10 N-RIM-PIPE-DD

397

Phytostabilization of a landfill containing coal combustion waste.  

SciTech Connect

The establishment of a vegetative cover to enhance evapotranspiration and control runoff and drainage was examined as a method for stabilizing a landfill containing coal combustion waste. Suitable plant species and pretreatment techniques in the form of amendments, tilling, and chemical stabilization were evaluated. A randomized plot design consisting of three subsurface treatments (blocks) and five surface amendments (treatments) was implemented. The three blocks included (1) ripping and compost amended, (2) ripping only, and (3) control. Surface treatments included (1) topsoil, (2) fly ash, (3) compost, (4) apatite, and (5) control. Inoculated loblolly (Pinus taeda) and Virginia (Pinus virginiana) pine trees were planted on each plot. After three growing seasons, certain treatments were shown to be favorable for the establishment of vegetation on the basin. Seedlings located on block A developed a rooting system that penetrated into the basin media without significant adverse effects to the plant. However, seedlings on blocks B and C displayed poor rooting conditions and high mortality, regardless of surface treatment. Pore-water samples from lysimeters in block C were characterized by high acidity, Fe, Mn, Al, sulfate, and traceelement concentrations. Water-quality characteristics of the topsoil plots in block A, however, conformed to regulatory protocols. A decrease in soil-moisture content was observed in the rooting zone of plots that were successfully revegetated, which suggests that the trees, in combination with the surface treatments, influenced the water balance by facilitating water loss through transpiration and thereby reducing the likelihood of unwanted surface runoff and/or drainage effluent.

Barton, Christopher; Marx, Donald; Adriano, Domy; Koo, Bon Jun; Newman, Lee; Czapka, Stephen; Blake, John

2005-12-01T23:59:59.000Z

398

Microbial oxidation of methane from old landfills in biofilters  

Science Conference Proceedings (OSTI)

Landfill gas emissions are among the largest sources of the greenhouse gas methane. For this reason, the possibilities of microbial methane degradation in biofilters were investigated. Different filter materials were tested in two experimental plants, a bench-scale plant (total filter volume 51 l) and a pilot plant (total filter volume 4 m{sup 3}). Three months after the beginning of the experiment, very high degradation rates of up to 63 g CH{sub 4}/(m{sup 3}h) were observed in the bench-scale plant at mean methane concentrations of 2.5% v/v and with fine-grained compost as biofilter material. However, the degradation rates of the compost biofilter decreased in the fifth month of the experiment, probably due to the accumulation of exopolymeric substances formed by the microorganisms. A mixture of compost, peat, and wood fibers showed stable and satisfactory degradation rates around 20 g/(m{sup 3}h) at mean concentrations of 3% v/v over a period of one year. In this material, the wood fibers served as a structural material and prevented clogging of the biofilter. Extrapolation of the experimental data indicates that biofilters for methane oxidation have to be at least 100 times the volume of biofilters for odor control to obtain the same cleaning efficiency per unit volume flow of feed gas.

Streese, J.; Stegmann, R

2003-07-01T23:59:59.000Z

399

Environmental impact of landfill disposal of selected geothermal residues  

Science Conference Proceedings (OSTI)

A solid waste is classified as hazardous if it contains sufficient leachable components to contaminate the groundwater and the environment if disposed in a landfill. Scale, sludge and drilling mud from three geothermal fields (Bulalo, Phlippines; Cerro Prieto, Mexico; and Dixie Valley, USA) containing regulated elements at levels above the earths crustal abundance were studied for their leachability. Cr, As, Cu, Zn and Pb were detected at levels which could impair groundwater quality if leaching occurred. Several procedures were used to assess the likely risk posed by the residues : protocol leaching tests (Canadian LEP and US TCLP), toxicity testing, accelerated weathering test, and a preliminary acid mine drainage potential test. Whole rock analysis, X-ray diffraction, and radioactivity counting were also performed to characterize the samples. Toxi-chromotest and SOS-chromotest results were negative for all samples. Leachng tests indicated that all of them could be classified as nonhazardous wastes. Only one of the six showed a low-level radioactivity based on its high Pb-210 activity. Initial tests for acidification potential gave positive results for three out of six samples whle none of the regulated elements were found in the leachate after accelerated weathering experiment for three months.

Peralta, G.L.; Graydon, J.W.; Seyfried, P.L.; Kirk, D.W.

1996-01-24T23:59:59.000Z

400

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa  

Science Conference Proceedings (OSTI)

The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

Odusanya, David O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa); Okonkwo, Jonathan O. [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)], E-mail: OkonkwoOJ@tut.ac.za; Botha, Ben [Department of Environmental, Water and Earth Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, 175 Nelson Mandela Drive, Arcadia, Pretoria 0001 (South Africa)

2009-01-15T23:59:59.000Z

402

Home - Energy Explained, Your Guide To Understanding Energy ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

403

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

DOE Green Energy (OSTI)

The need to control gas and leachate production and minimize refuse volume in landfills has motivated the development of landfill simulation models that can be used by operators to predict and design optimal treatment processes. T2LBM is a module for the TOUGH2 simulator that implements a Landfill Bioreactor Model to provide simulation capability for the processes of aerobic or anaerobic biodegradation of municipal solid waste and the associated flow and transport of gas and liquid through the refuse mass. T2LBM incorporates a Monod kinetic rate law for the biodegradation of acetic acid in the aqueous phase by either aerobic or anaerobic microbes as controlled by the local oxygen concentration. Acetic acid is considered a proxy for all biodegradable substrates in the refuse. Aerobic and anaerobic microbes are assumed to be immobile and not limited by nutrients in their growth. Methane and carbon dioxide generation due to biodegradation with corresponding thermal effects are modeled. The numerous parameters needed to specify biodegradation are input by the user in the SELEC block of the TOUGH2 input file. Test problems show that good matches to laboratory experiments of biodegradation can be obtained. A landfill test problem demonstrates the capabilities of T2LBM for a hypothetical two-dimensional landfill scenario with permeability heterogeneity and compaction.

Oldenburg, Curtis M.

2001-05-22T23:59:59.000Z

404

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile and characterized by temperature, pH, ash content and C02 evolved during aerobic respiration. Assuming a 1 0% lignin content, the labile carbon fraction was reduced by an estimated 71 % during composting. Over a of six month period, simulated landfill cells filled with raw waste generated 66 M3 methane per Mg of dry refuse, while cells containing compost produced 31 M3 methane per Mg of dry compost. Per unit weight of dry raw material, composted waste placed in a landfill produced only 23% of the methane that was generated from raw refuse.

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

405

Creating home network access for the elderly  

Science Conference Proceedings (OSTI)

Wireless broadband networks for home environment present us with many challenges unfamiliar in more public settings. At home, we encounter the end-users with little ICT experience. Probably among the most challenging members of the home network are the ... Keywords: accessibility, authentication, home networks, security, usability, user interface design

Kristiina Karvonen

2007-07-01T23:59:59.000Z

406

Building Technologies Office: Home Energy Score Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by E-mail Partners to someone by E-mail Share Building Technologies Office: Home Energy Score Partners on Facebook Tweet about Building Technologies Office: Home Energy Score Partners on Twitter Bookmark Building Technologies Office: Home Energy Score Partners on Google Bookmark Building Technologies Office: Home Energy Score Partners on Delicious Rank Building Technologies Office: Home Energy Score Partners on Digg Find More places to share Building Technologies Office: Home Energy Score Partners on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

407

Home Energy Score Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Home Energy Score » Home Energy Score Residential Buildings » Home Energy Score » Home Energy Score Partners Home Energy Score Partners Home Energy Score Partners The U.S. Department of Energy (DOE) is partnering with state and local governments, utilities, and non-profit organizations across the country to make the Home Energy Score widely available to homeowners. Current partners, along with descriptions of their residential energy efficiency efforts, can be found by clicking on this interactive map. To become a Home Energy Score Partner, an organization must score a minimum of 200 homes in the first year, and provide quality assurance by rescoring 5% of these homes. Organizations interested in becoming a Partner can contact the program via email at homeenergyscore@ee.doe.gov. You can find frequently asked questions for partners on the Frequently

408

DOE Challenge Home Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Resources DOE Challenge Home Resources DOE Challenge Home provides resources for successfully building and selling net zero-energy ready homes in today's market. DOE Challenge Home Training & Events DOE Challenge Home Technical Resources DOE Challenge Home Training Orientation Webinar (video, text version, presentation slides) Gaining Recognition as a Leader webinar (text version) Zero Net-Energy Ready Homes Design Options for Locating Ducts within Conditioned Space DOE Challenge Home Builder Profiles Learn more about DOE Challenge Home Builders on their individual profiles, look up their case studies in the Building America Program Publication and Product Library, or search the Building America Solution Center. DOE Challenge Home Sales and Marketing A Symbol of Excellence Consumer Brochure

409

Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling  

SciTech Connect

An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compost was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.

Andersen, J.K.; Boldrin, A.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Scheutz, C., E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

2012-01-15T23:59:59.000Z

410

Analytical risk-based model of gaseous and liquid-phase radon transport in landfills with radium sources  

Science Conference Proceedings (OSTI)

An analytical model of gaseous and liquid-phase radon transport through soils is derived for environmental modeling of landfills containing uranium mill tailings or Ra-226 sources. Processes include radon diffusion in both the gas and liquid phases, ... Keywords: Landfill, Multiphase, Performance assessment, Probabilistic modeling, Radium, Radon, Transport

Clifford K. Ho

2008-09-01T23:59:59.000Z

411

Health assessment for New Lyme Landfill, Ashtabula, Ohio, Region 5. CERCLIS No. OHD980794614. Final report  

SciTech Connect

The New Lyme Landfill is a 40-acre facility operated from 1969 until 1978 as a trench and fill landfill with majority of the waste coming from industrial and commercial sources. Leachate includes both leachate seeps at the surface of the landfill and water that is either stagnant or moving very slowly in or out of the trenches. Organic compounds detected consisted of VOCs and phenolic compounds. Concentrations of inorganic compounds were generally an order-of-magnitude or more in ground water. Chrysotile asbestos fibers were found in two leachate water samples. The primary potential exposure pathways for leachate are direct contact or inhalation of airborne asbestos fibers. Based on the nature of the contaminants and the hydrological conditions at the site, residential development of the area may not be suitable.

Not Available

1986-01-30T23:59:59.000Z

412

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

Science Conference Proceedings (OSTI)

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

413

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

Science Conference Proceedings (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

414

Department of Energy Home Page  

Office of Scientific and Technical Information (OSTI)

US DEPARTMENT OF ENERGY Search Home Page Contents US DEPARTMENT OF ENERGY Search Home Page Contents [ABOUT DOE] About The Department of Energy (Learn about the Department of Energy, its mission, plans, organizational structure, accomplishments and the Secretary of Energy Federico Peña.) [DEPARTMENTAL RESOURCES] Departmental Resources (Look for information across the Department, connect to other Departmental Home Pages, or search for scientific and technical information through such systems as the DOE Information Bridge, containing searchable citations of worldwide energy research as well as bibliographic citations with links to DOE sponsored or acquired full-text reports; EnergyFiles, DOE's virtual library environment containing energy-related STI and tools to facilitate information use in the R&D process; and the DOE Reports Bibliographic

415

Export.gov - Australia Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Australian Importers Australian Importers Register | Manage Account Search Our Site Click to Search Our Site Export.gov Home Opportunities By Industry By Country Market Research Trade Events Trade Leads Free Trade Agreements Solutions International Sales & Marketing International Financing International Logistics Licenses & Regulations Trade Data & Analysis Trade Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > Australia Local time in Sydney and Melbourne: : Print | E-mail Page Australia Australia Home Doing Business in Australia Market Research on Australia Services for U.S. Companies Trade Events Business Service Providers Links Internships Contact Us Our Worldwide Network About Us Press Room Other Worldwide Markets G'day and welcome! The U.S. Commercial Service, Australia helps U.S. companies do business in

416

Export.gov - Ireland Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Doing Business in Ireland Doing Business in Ireland Register | Manage Account Search Our Site Click to Search Our Site Export.gov Home Opportunities By Industry By Country Market Research Trade Events Trade Leads Free Trade Agreements Solutions International Sales & Marketing International Financing International Logistics Licenses & Regulations Trade Data & Analysis Trade Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > Ireland Local time in Ireland: Print | E-mail Page Ireland Ireland Home Recent Events Doing Business in Ireland Services for U.S. Companies Trade Events Business Service Providers Links Internship 2014 U.S. Franchises Tourism Information Contact Us Our Worldwide Network About Us Press Room Other European Markets Other Worldwide Markets Welcome to the U.S. Commercial Service in Ireland

417

Homes Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Homes Blog RSS November 8, 2013 The Jackson County Welcome Center in Moss Point, Mississippi. The Mississippi Public Service Commission has approved new rules that will help provide utility customers several pathways to increase energy efficiency. | Photo courtesy of Energy and Natural Resources Division, Mississippi Development Authority Mississippi Adopts New Rules to Save Energy, Money The Mississippi Public Service Commission has issued new rules that will help provide utility customers several pathways to increase energy efficiency. August 15, 2013 New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. | Infographic by Sarah Gerrity, Energy Department.

418

Export.gov - Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

Hrvatski Hrvatski Register | Manage Account Search Our Site Click to Search Our Site Export.gov Home Opportunities By Industry By Country Market Research Trade Events Trade Leads Free Trade Agreements Solutions International Sales & Marketing International Financing International Logistics Licenses & Regulations Trade Data & Analysis Trade Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > Croatia Local Time: Print | E-mail Page Croatia Croatia Home Doing Business in Croatia Market Research on Croatia Services for U.S. Companies Trade Events Business Service Providers IPR Toolkit Study in the United States Internship with the U.S. Commercial Service Contact Us Our Worldwide Network About Us Press Room Other European Markets Other Worldwide Markets

419

Design document for landfill capping Prototype Decision Support System. Draft 1.0  

Science Conference Proceedings (OSTI)

The overall objective of the Prototype Decision Support System for shallow land burial project is to ``Develop a Decision Support System tool which incorporates simulation modeling and multi-objective decision theory for the purpose of designing and evaluating alternative trench cap designs for mixed waste landfill covers. The goal is to improve the quality of technical information used by the risk manager to select landfill cover designs while taking into account technological, economical, and regulatory factors.`` The complexity of the technical and non-technical information, and how the information varies in importance across sites, points to the need for decision analysis tools that provide a common basis for integrating, synthesizing, and valuing the decision input. Because the cost of remediating thousands of contaminated DOE sites is projected to be in the 10`s--100`s of billions of dollars, methods will be needed to establish cleanup priorities and to help in the selection and evaluation of cost effective remediation alternatives. Even at this early stage in DOE`s cleanup program, it is certain that capping technologies will be heavily relied upon to remediate the 3000+ landfills on DOE property. Capping is favored in remediating most DOE landfills because, based on preliminary baseline risk assessments, human and ecological risks are considered to be low at most of these sites and the regulatory requirements for final closure of old landfills can be met using a well designed cap to isolate the buried waste. This report describes a program plan to design, develop, and test a decision support system (DSS) for assisting the DOE risk manager in evaluating capping alternatives for radioactive and hazardous waste landfills. The DOE DSS will incorporate methods for calculating, integrating and valuing technical, regulatory, and economic criteria.

Stone, J.J.; Paige, G.; Hakonson, T.E. [Los Alamos National Lab., NM (United States); Lane, L.J. [USDA-ARS Southwest Watershed Research Center, Tucson, AZ (United State)

1994-01-01T23:59:59.000Z

420

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Argonne TTRDC - Green Racing - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Home * Home * Photo Gallery * Results and Recaps GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Green Racing at Argonne green racing track What is Green Racing? green racing Left to right: chief crew mechanic Mark Jones, team owner Marty Zehr, driver Dalton Zehr, Circle Track magazine editor Robert Fisher, Argonne researcher Forrest Jehlik, electrical engineer Danny Bocci. green racing simulator Green Racing Simulator green racing sim trailer Green Racing Simulator Trailer Exhibit Green Racing uses motor sport competitions as a platform to help rapidly

422

EERE: EERE Successes Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Successes Search Successes Search Search Help EERE Successes EERE » Successes Printable Version Share this resource Home Crosscutting Sustainable Transportation Bioenergy Hydrogen & Fuel Cells Vehicles Renewable Electricity Geothermal Solar Water Wind Energy Efficiency Buildings Federal Energy Management Homes Manufacturing This collection of the Office of Energy Efficiency and Renewable Energy's (EERE) successes highlights the positive impact of its work with businesses, industry partners, universities, research labs, and other entities to increase the use and effectiveness of affordable renewable energy and energy efficiency technologies. EERE's successes are organized by category into milestones, community-focused successes, and research successes. Browse crosscutting initiative and commercialization successes,

423

Home: Directives, Delegations, and Requirements  

NLE Websites -- All DOE Office Websites

content. | Skip to navigation content. | Skip to navigation Site Map Contact Us Current Documents Archived Documents Entire Site only in current section Advanced Search... U.S. Department of Energy Office of Management Directives, Delegations, and Requirements Sections Home Directives Current Directives Draft Directives Archives Delegations Current Delegations Current Designations Rescinded Organizations' Assignment of Responsibility Development & Review RevCom Writers' Tools DPC Corner References News and Updates Help Personal tools You are here: Office of Management » Directives, Delegations, and Requirements Info Home Directives are the Department of Energy's primary means of establishing policies, requirements, responsibilities, and procedures for Departmental elements and contractors. Directive

424

Network Mobility Home Network Models  

E-Print Network (OSTI)

This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The IETF Trust (2007). This paper documents some of the usage patterns and the associated issues when deploying a Home Network for Network Mobility (NEMO)enabled Mobile Routers, conforming to the NEMO Basic Support. The aim here is specifically to provide some examples of organization of the Home Network, as they were discussed in NEMO-related mailing

P. Thubert; Cisco Systems; R. Wakikawa; V. Devarapalli

2007-01-01T23:59:59.000Z

425

Barometric pumping of burial trench soil gases into the atmosphere at the 740-G Sanitary Landfill  

SciTech Connect

In 1991, a soil gas survey was performed at the Savannah River Site Sanitary Landfill as part of the characterization efforts required under the integrated Resource Conservation and Recovery Act (RCRA) Facility Investigation and Comprehensive Environmental Resource Conservation and Recovery Act (CERCLA) Remedial Investigation (RFI/RI) program. This report details the findings of this survey, which identified several areas of the landfill that were releasing volatile organic compounds to the atmosphere at levels exceeding regulatory standards. Knowledge of the rates of VOC outgassing is necessary to protect site workers, provide input into the human health and environmental risk assessment documents and provide input into the remedial design scenario.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-12-01T23:59:59.000Z

426

EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: Teleconference: 1. DOE EM ITR Landfill Assessment Project: Lessons Learned Craig H. Benson, PhD, PE CRESP July 2009 1 Independent Technical Review Team * Craig H. Benson, PhD, PE - University of Wisconsin-Madison: waste containment systems, civil engineering, geotechnical engineering. * William H. Albright, PhD - Desert Research Institute, Reno, Nevada: waste containment systems, hydrology, regulatory interactions. * David P. Ray, PE - US Army Corps of Engineers, Omaha, NB: waste containment systems, civil engineering, geotechnical engineering. * John Smegal - Legin Group, Washington, DC: economics, management. 2 * Mixed-waste landfill authorized by EPA and Washington State DoE for disposal of

427

Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

Brown, W.R.; Cook, W. J.; Siwajek, L.A.

2000-10-20T23:59:59.000Z

428

BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT  

Science Conference Proceedings (OSTI)

The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

Jon Creighton

2012-03-13T23:59:59.000Z

429

The Home Energy Score: Measuring "MPG" For Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Home Energy Score: Measuring "MPG" For Your Home The Home Energy Score: Measuring "MPG" For Your Home The Home Energy Score: Measuring "MPG" For Your Home November 9, 2010 - 2:27pm Addthis Acting Under Secretary Cathy Zoi talks about the new Home Energy Score pilot program. Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency You may know the miles per gallon your car gets, but have you ever wanted to know the miles per gallon your home gets? Today, Vice President Biden and Secretary Chu launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot locations across the nation. The Home Energy Score is like a miles per gallon rating - but for your home. It summarizes a home's energy performance on a simple 10-point

430

The Home Energy Score: Measuring "MPG" For Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Home Energy Score: Measuring "MPG" For Your Home The Home Energy Score: Measuring "MPG" For Your Home The Home Energy Score: Measuring "MPG" For Your Home November 9, 2010 - 2:27pm Addthis Acting Under Secretary Cathy Zoi talks about the new Home Energy Score pilot program. Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency You may know the miles per gallon your car gets, but have you ever wanted to know the miles per gallon your home gets? Today, Vice President Biden and Secretary Chu launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot locations across the nation. The Home Energy Score is like a miles per gallon rating - but for your home. It summarizes a home's energy performance on a simple 10-point

431

The Home Energy Score: Measuring 'MPG' For Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Home Energy Score: Measuring 'MPG' For Your Home The Home Energy Score: Measuring 'MPG' For Your Home The Home Energy Score: Measuring 'MPG' For Your Home November 16, 2010 - 8:52am Addthis Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency Editor's Note: Cross-posted from the Energy Blog. You may know the miles per gallon your car gets, but have you ever wanted to know the miles per gallon your home gets? Vice President Biden and Secretary Chu recently launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot locations across the nation. The Home Energy Score is like a miles per gallon rating - but for your home. It summarizes a home's energy performance on a simple 10-point scale - with a 10 for the top performers, or those that keep the home

432

The Home Energy Score: Measuring 'MPG' For Your Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Home Energy Score: Measuring 'MPG' For Your Home The Home Energy Score: Measuring 'MPG' For Your Home The Home Energy Score: Measuring 'MPG' For Your Home November 16, 2010 - 8:52am Addthis Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency Editor's Note: Cross-posted from the Energy Blog. You may know the miles per gallon your car gets, but have you ever wanted to know the miles per gallon your home gets? Vice President Biden and Secretary Chu recently launched the Home Energy Score program to help consumers save money by saving energy. The program is kicking off in ten pilot locations across the nation. The Home Energy Score is like a miles per gallon rating - but for your home. It summarizes a home's energy performance on a simple 10-point scale - with a 10 for the top performers, or those that keep the home

433

Trends in Out-of-Home and At-Home Activities  

E-Print Network (OSTI)

T. F. Golob. Will Electronic Home Shopping Reduce Travel?An Investigation of Electronic Home Shopping. Institute of2006. 9. Ferrell, C. E. Home-Based Teleshoppers and Shopping

Wilson, Ryan; Krizek, Kevin J.; Handy, Susan L

2008-01-01T23:59:59.000Z

434

Building Technologies Office: DOE Challenge Home  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Challenge Home DOE Challenge Home Since 2008, the U.S. Department of Energy's (DOE) Builders Challenge program has recognized hundreds of leading builders for their achievements in energy efficiency-resulting in over 14,000 energy efficient homes and millions of dollars in energy savings. The DOE Challenge Home - an ambitious successor to the Builders Challenge program - represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings, comfort, health, and durability. Find partners & homes Locate top builders and zero net-energy ready homes Find partners & homes Technical Resources Requirements for building and certifying a DOE Challenge Home Technical Resources Become a Partner Complete online registration to become a partner

435

Building Technologies Office: Home Energy Score Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by E-mail Publications to someone by E-mail Share Building Technologies Office: Home Energy Score Publications on Facebook Tweet about Building Technologies Office: Home Energy Score Publications on Twitter Bookmark Building Technologies Office: Home Energy Score Publications on Google Bookmark Building Technologies Office: Home Energy Score Publications on Delicious Rank Building Technologies Office: Home Energy Score Publications on Digg Find More places to share Building Technologies Office: Home Energy Score Publications on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background FAQs Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

436

Home Energy Scoring Tool | Open Energy Information  

Open Energy Info (EERE)

Home Energy Scoring Tool Home Energy Scoring Tool Jump to: navigation, search Tool Summary Name: Home Energy Scoring Tool Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings - Residential Phase: Evaluate Effectiveness and Revise as Needed Topics: Resource assessment Resource Type: Online calculator User Interface: Website Website: www1.eere.energy.gov/buildings/homeenergyscore/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Home Energy Scoring Tool[1] Generate clear and credible home energy assessments; recommend customized upgrades and cost saving tips; compare the energy use of different homes The Home Energy Score allows a homeowner to compare her or his home's energy consumption to that of other homes, similar to a vehicle's

437

Home Energy Assessments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Assessments Energy Assessments Home Energy Assessments Addthis Description A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Speakers Jason Dispenza Duration 1:44 Topic Home Weatherization Home Energy Audits Consumption Credit Energy Department Video MR. : Core to any energy audit, you've got a blower door test; an infrared camera scan; combustion safety testing for homes with gas

438

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

Science Conference Proceedings (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

439

Home Energy Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Loan Program Home Energy Loan Program Home Energy Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Solar Buying & Making Electricity Maximum Rebate $6,000 from LA DNR Program Info State Louisiana Program Type State Loan Program Rebate Amount 50% of loan amount subsidized by LA DNR Provider Louisiana Department of Natural Resources The Home Energy Loan Program (HELP), administered by the Louisiana Department of Natural Resources (DNR), allows homeowners to get a five-year loan to improve the energy efficiency of their existing home. DNR

440
Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

New American Home 2008: Orlando, Florida  

SciTech Connect

Each year, The New American home demonstrates innovative building materials, cutting-edge design, and the latest construction techniques. It provides production homebuilders with an example for producing more energy-efficient, durable homes without sacrificing style. This year, The New American Home celebrates its 25th anniversary. The New American Home is the official showcase house of the annual International Builders' Show, and is a for-sale product. Most features and innovations in the home are accessible to builders and consumers for integration into their own home.

2007-12-01T23:59:59.000Z

442

New American Home 2008: Orlando, Florida  

SciTech Connect

Each year, The New American home demonstrates innovative building materials, cutting-edge design, and the latest construction techniques. It provides production homebuilders with an example for producing more energy-efficient, durable homes without sacrificing style. This year, The New American Home celebrates its 25th anniversary. The New American Home is the official showcase house of the annual International Builders' Show, and is a for-sale product. Most features and innovations in the home are accessible to builders and consumers for integration into their own home.

Not Available

2007-12-01T23:59:59.000Z

443

Home, Home (Video) on the Range: Reflections on Small-Town Video Stores in 2010  

E-Print Network (OSTI)

theory, and practices of video culture in the United States.Home, Home (Video) on the RangeReflections on Small-Town Video Stores in 2010 Daniel

Herbert, Daniel

2010-01-01T23:59:59.000Z

444

Home Comforts : the Role of Hormones, Territoriality and Perceptions on the Home Advantage in Football.  

E-Print Network (OSTI)

??Since the seminal work of Schwartz and Barsky (1977) detailing the notion of a home advantage, whereby teams perform consistently better at home opposed to (more)

Anderson, Melissa

2011-01-01T23:59:59.000Z

445

Building America Efficient Solutions for New Homes Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ravenwood Homes achieved a HERS score of 15 on its high- Ravenwood Homes achieved a HERS score of 15 on its high- performance home with design assistance from a Building America research team including Pacific Northwest National Laboratory, Energy Smart Home Plans, LLC, and Florida HERO. The home which is located in southwestern Florida, was completed in 2011 and includes a 6 KW rooftop photovoltaic system; without the PV, the home achieves a HERS rating of 65. Ceilings that provide a continuous air barrier can be a key energy-saving feature of a home. In this home the builder installed the ceiling drywall as one continuous layer then installed duct chases in dropped ceilings beneath this drywall so that ducts were installed in conditioned space with an unbroken air barrier above. Interior walls were also attached to

446

Superfund Record of Decision (EPA Region 5): Tri County/Elgin Landfill Site, Elgin, IL. (First remedial action), September 1992. Final report  

SciTech Connect

The 66-acre Tri County Landfill (TCL) site comprises two former landfills the Tri County Landfill and the Elgin Landfill, located near the junction of Kane, Cook and DuPage Counties, Illinois. The two disposal operations overlapped to the point where the two landfills were indistinguishable. Land use in the area is predominantly agricultural. The local residents and businesses use private wells as their drinking water supply. Prior to the 1940's, both landfills were used for gravel mining operations. From 1968 to 1976, the TCL received liquid and industrial waste. State and county inspection reports revealed that open dumping, area filling, and dumping into the abandonded gravel quarry had occurred at the site. In addition, confined dumping, inadequate daily cover, blowing litter, fires, lack of access restrictions, and leachate flows were typical problems reported. In 1981, the landfill was closed with a final cover.

Not Available

1992-09-30T23:59:59.000Z

447

Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

448

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-08-01T23:59:59.000Z

449

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-05-01T23:59:59.000Z

450

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-08-01T23:59:59.000Z

451

Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas | Open  

Open Energy Info (EERE)

SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

452

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

453

Impact of different plants on the gas profile of a landfill cover  

SciTech Connect

Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

Reichenauer, Thomas G., E-mail: thomas.reichenauer@ait.ac.at [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Watzinger, Andrea; Riesing, Johann [Health and Environment Department, Environmental Resources and Technologies, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf (Austria); Gerzabek, Martin H. [Institute of Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Applied Life Sciences, Peter Jordan-Strasse 82, 1190 Vienna (Austria)

2011-05-15T23:59:59.000Z

454

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

455

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

456

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-12-01T23:59:59.000Z

457

Fault tree analysis and fuzzy expert systems: Early warning and emergency response of landfill operations  

Science Conference Proceedings (OSTI)

In this paper we argue that Early Warning Systems for engineering facilities can be developed by combining and integrating existing technologies and theories. As example, we present an efficient integration of fuzzy expert systems, fault tree analysis ... Keywords: Accidents, Early Warning System, Expert systems, Fault tree analysis, Fuzzy logic, Landfills, Operational problems, Possibility theory, Public Access to Environmental Information

I. M. Dokas; D. A. Karras; D. C. Panagiotakopoulos

2009-01-01T23:59:59.000Z

458

Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils  

SciTech Connect

The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

2010-09-30T23:59:59.000Z

459

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-01-01T23:59:59.000Z

460

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

DOE Green Energy (OSTI)

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches while providing superior environmental protection. The overall objective is to manage landfill solid waste for rapid waste decomposition, maximum landfill gas generation and capture, and minimum long-term environmental consequences. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5 acre anaerobic cell and liquid addition has commenced. Construction of the 2.5 acre aerobic cell is nearly complete with only the blower station and biofilter remaining. Waste placement and instrumentation installation is ongoing in the west-side 6-acre anaerobic cell. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-04-01T23:59:59.000Z

462

Professional Home Energy Audits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Professional Home Energy Audits Professional Home Energy Audits Professional Home Energy Audits November 26, 2013 - 4:59pm Addthis Learn about the steps and benefits of a comprehensive home energy assessment in this video. Read the text version. What does this mean for me? A professional energy audit gives you a thorough picture of where your home is losing energy and what you can do to save money. You can save 5%-30% on your energy bill by making upgrades following a home energy assessment. You may be eligible for state, local, or utility incentives to assist with your home energy audit. Visit the Database of State Incentives for Renewables and Efficiency to find out. How does it work? An energy auditor will walk through your home, review your bills, and conduct a blower door test or thermographic scan.Some utilities offer

463

EERE: Bioenergy Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioenergy Technologies Office Search Bioenergy Technologies Office Search Search Help Bioenergy Technologies Office HOME ABOUT THE PROGRAM RESEARCH & DEVELOPMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Bioenergy Technologies Office Site Map Printable Version Share this resource Send a link to EERE: Bioenergy Technologies Office Home Page to someone by E-mail Share EERE: Bioenergy Technologies Office Home Page on Facebook Tweet about EERE: Bioenergy Technologies Office Home Page on Twitter Bookmark EERE: Bioenergy Technologies Office Home Page on Google Bookmark EERE: Bioenergy Technologies Office Home Page on Delicious Rank EERE: Bioenergy Technologies Office Home Page on Digg Find More places to share EERE: Bioenergy Technologies Office Home Page on AddThis.com... Biomass is a clean, renewable energy source that can help to significantly

464

EERE: SunShot Initiative Home Page  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Energy SunShot Initiative Search Search Help SunShot Initiative HOME ABOUT KEY ACTIVITIES FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » SunShot Initiative Printable Version Share this resource Send a link to EERE: SunShot Initiative Home Page to someone by E-mail Share EERE: SunShot Initiative Home Page on Facebook Tweet about EERE: SunShot Initiative Home Page on Twitter Bookmark EERE: SunShot Initiative Home Page on Google Bookmark EERE: SunShot Initiative Home Page on Delicious Rank EERE: SunShot Initiative Home Page on Digg Find More places to share EERE: SunShot Initiative Home Page on AddThis.com... SunShot U.S. Department of Energy The DOE SunShot Initiative is a national collaborative effort to make solar energy cost-competitive with other forms of electricity by the end of the

465

Transferring PACE Assessments Upon Home Sale  

E-Print Network (OSTI)

renewable energy and energy efficiency project to exceed the costcosts of homes with varying levels of efficiency improvements or a renewable energyrenewable energy and comprehensive energy efficiency improvements to homes across the country is the initial capital cost.

Coughlin, Jason

2011-01-01T23:59:59.000Z

466

Homemaestro: Order from chaos in home networks  

E-Print Network (OSTI)

We present HomeMaestro, a distributed system for monitoring and instrumentation of home networks. HomeMaestro performs extensive measurements at the host level to infer application network requirements, and identifies networkrelated problems through time-series analysis. By sharing and correlating information across hosts in the home network, our system automatically detects and resolves contention over network resources among applications based on predefined policies. Finally, HomeMaestro implements a distributed virtual queue to enforce those policies by prioritizing applications without additional assistance from network equipment such as routers or access points. We outline the challenges in managing home networks, describe the design choices and architecture of our system, and highlight the performance of HomeMaestro components in typical home scenarios. 1.

Thomas Karagiannis; Elias Athanasopoulos; Christos Gkantsidis; Peter Key

2008-01-01T23:59:59.000Z

467

Giving animals in need a HOME  

NLE Websites -- All DOE Office Websites (Extended Search)

413HOME 11142013 Giving animals in need a HOME Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov Sheri Savage is affiliated with East of Eden K9 Rescue, a companion animal...

468

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office Home Page to someone by E-mail Share EERE: Fuel Cell Technologies Office Home Page...

469

EERE: Building Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Printable Version Share this resource Send a link to EERE: Building Technologies Office Home Page to someone by E-mail Share EERE: Building Technologies Office Home Page on...

470

EERE: Vehicle Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office Home Page to someone by E-mail Share EERE: Vehicle Technologies Office Home...

471

Water Conservation Checklist for the Home  

E-Print Network (OSTI)

Modifying water use in the home can reduce water waste and save energy and money. This publication explains how to conserve water while doing various activities around the home. Tips are also given on inspecting plumbing.

Harris, Janie; Kellner, Bev

2002-08-10T23:59:59.000Z

472

How to Build a Better Home  

DOE Green Energy (OSTI)

Brochure about combining three types of solar technology (PV, solar thermal, and passive solar design) into one home to greatly improve efficiency of the home and reduce its environmental impact.

Poole, L.

2000-06-19T23:59:59.000Z

473

Home Performance with ENERGY STAR - Webinar Slides  

NLE Websites -- All DOE Office Websites (Extended Search)

Existing Homes Efficiency - If You Want BetterBuildings - Go with HPwES Home Performance with ENERGY STAR August 5, 2010 Chandler von Schrader, EPA Casey Murphy, ICF Int'l Matthew...

474

Building Technologies Office: DOE Challenge Home  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency-resulting in over 14,000 energy efficient homes and millions of dollars in energy savings. The DOE Challenge Home - an ambitious successor to the Builders Challenge...

475

Professional Home Energy Audits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Professional Home Energy Audits Professional Home Energy Audits Professional Home Energy Audits November 26, 2013 - 4:59pm Addthis Learn about the steps and benefits of a comprehensive home energy assessment in this video. Read the text version. What does this mean for me? A professional energy audit gives you a thorough picture of where your home is losing energy and what you can do to save money. You can save 5%-30% on your energy bill by making upgrades following a home energy assessment. You may be eligible for state, local, or utility incentives to assist with your home energy audit. Visit the Database of State Incentives for Renewables and Efficiency to find out. How does it work? An energy auditor will walk through your home, review your bills, and conduct a blower door test or thermographic scan.Some utilities offer

476

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

477

Weatherization and Intergovernmental Program: Guidelines for Home Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Home Energy Workers to someone by E-mail Share Weatherization and Intergovernmental Program: Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers on Facebook Tweet about Weatherization and Intergovernmental Program: Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers on Twitter Bookmark Weatherization and Intergovernmental Program: Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers on Google Bookmark Weatherization and Intergovernmental Program: Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers on Delicious Rank Weatherization and Intergovernmental Program: Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers on Digg

478

EPA_T1542_SECTOR_ResHomeImprv  

NLE Websites -- All DOE Office Websites (Extended Search)

to improve energy efficiency at home: > ENERGY STAR's Home Energy Yardstick > The DIY Guide to ENERGY STAR Home Sealing > ENERGY STAR's Guide to Energy-Efficient Heating and...

479

Columbia Water & Light - New Home Energy Star Rebate | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Home Energy Star Rebate Columbia Water & Light - New Home Energy Star Rebate Eligibility Construction Residential Savings For Heating & Cooling Home Weatherization Construction...

480

Columbia Water & Light - Home Performance with Energy Star Rebates...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star Rebates Columbia Water & Light - Home Performance with Energy Star Rebates Eligibility Residential Savings For Home Weatherization Commercial...

Note: This page contains sample records for the topic "homes penrose landfill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Bryan Texas Utilities - SmartHOME Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Savings Bryan Texas Utilities - SmartHOME Program Bryan Texas Utilities - SmartHOME Program Eligibility...

482

An Overview of Automotive Home and Neighborhood Refueling  

E-Print Network (OSTI)

convenience and security similar to home refueling. Theconvenience and security similar to