National Library of Energy BETA

Sample records for home solar installation

  1. Home Solar Installations: Things to Consider | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Solar Installations: Things to Consider Home Solar Installations: Things to Consider May 29, 2013 - 3:18pm Addthis Home solar systems can save you energy and money. | Photo ...

  2. Home Solar Installations: Things to Consider | Department of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Installations: Things to Consider Home Solar Installations: Things to Consider May 29, 2013 - 3:18pm Addthis Home solar systems can save you energy and money. | Photo ...

  3. Solar, Wind, Hydropower: Home Renewable Energy Installations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built

  4. Installation on 2007 Solar Decathlon Home

    Broader source: Energy.gov [DOE]

    This photograph features a 2007 Solar Decathlon competition home that includes residential photovoltaic (PV) modules from SunPower Corporation of San Jose, California, and a solar collector from ...

  5. Installing and Maintaining a Home Solar Electric System | Department...

    Energy Savers [EERE]

    Making sure your home solar electric or photovoltaic (PV) system is sized, sited, installed, and maintained correctly is essential for maximizing its energy performance. When...

  6. Installing and Maintaining a Home Solar Electric System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Home Solar Electric System Installing and Maintaining a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV system. | Photo courtesy of Dennis Schroeder, NREL. Making sure your

  7. Installing and Maintaining a Home Solar Electric System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Home Solar Electric System When choosing a contractor, ask about their work record, experience, and licenses, and get more than one bid for the installation of your PV...

  8. Solar Industry At Work: Streamlining Home Solar Installation

    Broader source: Energy.gov [DOE]

    As Director of Operations at Sunrun, Tillie Peterson works to get solar panels up and running for homeowners as quickly and efficiently as possible.

  9. SunShot Installs Solar Energy System on Local Habitat for Humanity Home |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SunShot Installs Solar Energy System on Local Habitat for Humanity Home SunShot Installs Solar Energy System on Local Habitat for Humanity Home September 22, 2014 - 5:10pm Addthis 1 of 10 SunShot Initiative team members install a solar energy system on a Habitat for Humanity home in Washington, D.C. on Friday, September 19. The project was organized by GRID Alternatives, the nation's largest solar non-profit organization, as part of a two-day event to bring solar power

  10. So You Want to Go Solar? 3 Things to Consider When Installing...

    Energy Savers [EERE]

    So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home October 3, 2014 ...

  11. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  12. Solar Installation Labor Market Analysis

    SciTech Connect (OSTI)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  13. So You Want to Go Solar? 3 Things to Consider When Installing Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Home | Department of Energy So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home So You Want to Go Solar? 3 Things to Consider When Installing Solar Power at Home October 3, 2014 - 12:37pm Q&A What do you want to know about solar energy at home? Tell Us Addthis Installing solar panels requires the proper orientation and tilt, and it is best to use a professional contractor. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory

  14. Considering Solar For Your Home? One Milwaukee Homeowner Shares Her

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experience | Department of Energy Considering Solar For Your Home? One Milwaukee Homeowner Shares Her Experience Considering Solar For Your Home? One Milwaukee Homeowner Shares Her Experience February 7, 2013 - 10:35am Addthis Milwaukee solar installers putting in a rooftop solar energy system on Dr. Paula Papanek's home. | Photo courtesy of Dr. Paula Papanek. Milwaukee solar installers putting in a rooftop solar energy system on Dr. Paula Papanek's home. | Photo courtesy of Dr. Paula

  15. Structural considerations for solar installers : an approach...

    Office of Scientific and Technical Information (OSTI)

    Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits. Citation Details In-Document Search Title: Structural ...

  16. City of Tucson- Solar Design Requirement for Homes

    Office of Energy Efficiency and Renewable Energy (EERE)

    To comply with this requirement, new homes must either have a complete solar water heating system installed or comply with one of two solar stub-out options. Option one requires the installation...

  17. WPN 93-5: Recommended Installation Standards for Mobile Homes

    Broader source: Energy.gov [DOE]

    To provide technical assistance to the states on recommended installation techniques for weatherization materials installed on mobile homes.

  18. Oklahoma Tribe to Install Solar Roof

    Broader source: Energy.gov [DOE]

    An Indian tribe in Anadarko, Oklahoma is installing solar panel roofs on two tribal government buildings.

  19. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Energy Savers [EERE]

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  20. Solar Technologies Installations Ltd | Open Energy Information

    Open Energy Info (EERE)

    Installations Ltd Jump to: navigation, search Name: Solar Technologies Installations Ltd Place: Hampshire, United Kingdom Zip: S051 OHR Sector: Renewable Energy Product: A UK-based...

  1. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Design for Efficiency Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but ...

  2. Solar Home Energy | Open Energy Information

    Open Energy Info (EERE)

    Home Energy Jump to: navigation, search Name: Solar Home Energy Place: Bournemouth, United Kingdom Sector: Renewable Energy, Solar Product: Solar Home Energy is one of the...

  3. Automated solar collector installation design

    DOE Patents [OSTI]

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  4. CEC- New Solar Homes Partnership

    Broader source: Energy.gov [DOE]

    Launched on January 2, 2007, the New Solar Homes Partnership (NSHP) is a 10-year, $400 million program to encourage solar in new homes by working with builders and developers to incorporate into ...

  5. Active solar heating systems installation manual

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book provides an industry consensus of the best available installation procedures for large commercial-scale solar service water and space heating systems.

  6. Solar Energy Home | Open Energy Information

    Open Energy Info (EERE)

    Home Jump to: navigation, search Name: Solar Energy Home Address: 28 Church Road Place: London, United Kingdom Sector: Solar Product: Solar energy systems and equipment Phone...

  7. Portland Advancing Green Image With Solar Installs

    Broader source: Energy.gov [DOE]

    A quick Internet search reveals that many sources consider Portland, Ore., to be one of the most green-minded cities in the United States. But large upfront costs have been a barrier for citizens looking to install solar power systems in the past. Now, a neighborhood solar initiative is helping communities organize to get solar discounts, meaning the city could become even greener.

  8. NREL: Solar Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research A collage of solar photographs. The first photo shows a parabolic solar trough at the Eldorado Valley site. The second is of a gird-tied high-concentration solar cell MicroDish. And the third photo shows the photovoltaic panels at Oberlin College's Adam Joseph Lewis Center for Environmental studies. Learn About Solar Energy Solar technologies use the sun's energy to provide electricity, heat, light, hot water, and even cooling for homes, businesses, and industry. Learn more about

  9. Structural Code Considerations for Solar Rooftop Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  10. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    SciTech Connect (OSTI)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William; Harper, Alan

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  11. Solar Regional Test Center in Vermont Achieves Milestone Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Center in Vermont Achieves Milestone Installation - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense

  12. Solar Home in Boulder, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features a 2.04-kilowatt grid-tied solar photovoltaic (PV) electric system on the Edwards home in Colorado that generates clean, carbon-free electricity. Generous utility and...

  13. Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours

    Broader source: Energy.gov [DOE]

    Consumers may soon have the option of purchasing a do-it-yourself rooftop solar photovoltaic (PV) system at their local home improvement store that can be installed and connected to the grid in...

  14. Your Solar Home

    Broader source: Energy.gov [DOE]

    Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

  15. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design for Efficiency » Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a

  16. SunShot Initiative Installs Solar Energy System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Initiative Installs Solar Energy System SunShot Initiative Installs Solar Energy System Addthis 1 of 10 SunShot Initiative team members install a solar energy system on a Habitat for Humanity home in Washington, D.C. on Friday, September 19. The project was organized by GRID Alternatives, the nation's largest solar non-profit organization, as part of a two-day event to bring solar power to underserved communities. Image: Jamie Nolan 2 of 10 A volunteer from the SunShot Initiative helps

  17. Planning a Home Solar Electric System | Department of Energy

    Office of Environmental Management (EM)

    Planning a Home Solar Electric System Planning a Home Solar Electric System Whether a home solar electric system will work for you depends on the available sun (resource),...

  18. Sandia Energy - Price Premiums for Solar Home Sales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price Premiums for Solar Home Sales Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Systems Analysis Price Premiums for Solar Home Sales Previous...

  19. Sandia Energy - Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Installation InstallationTara Camacho-Lopez2015-03-20T19:23:2...

  20. New England Breeze Solar and Wind Installers | Open Energy Information

    Open Energy Info (EERE)

    Greater Boston Area Sector: Renewable energy, Services, Solar, Wind energy Product: Solar Panel and Wind Turbine Installation Year Founded: 2006 Phone Number: 978-567-9463...

  1. Obama Administration Announces Plans to Install New Solar Panels...

    Broader source: Energy.gov (indexed) [DOE]

    on Environmental Quality. "By installing solar panels on arguably the most famous house in ... will help make solar energy cost-competitive with conventional ...

  2. Million Solar Strong: U.S. Hits Millionth Solar Energy Installation...

    Office of Environmental Management (EM)

    Million Solar Strong: U.S. Hits Millionth Solar Energy Installation Million Solar Strong: U.S. Hits Millionth Solar Energy Installation April 21, 2016 - 1:14pm Addthis Million ...

  3. Solar Homes Sell for a Premium

    Broader source: Energy.gov [DOE]

    Buying a solar energy system will likely increase your home’s value. A recent study found that solar panels are viewed as upgrades, just like a renovated kitchen or a finished basement, and home buyers across the country have been willing to pay a premium of about $15,000 for a home with an average-sized solar array. Additionally, there is evidence homes with solar panels sell faster than those without. In 2008, California homes with energy efficient features and PV were found to sell faster than homes that consume more energy. Keep in mind, these studies focused on homeowner-owned solar arrays.

  4. The California Energy Commission's New Solar Homes Partnership Program Case Study: Promoting Greener, Better Housing in California

    Broader source: Energy.gov [DOE]

    This case study analyzes data from the California Energy Commission's New Solar Homes Partnership Program, part of California's comprehensive statewide solar program, the California Solar Initiative. At the time this study was conducted, the New Solar Homes Partnership Program had installed 14,100 solar energy systems totaling 45 megawatts of capacity.

  5. Pasadena Water and Power- Solar Power Installation Rebate

    Broader source: Energy.gov [DOE]

    Pasadena Water & Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

  6. Passive Solar Home Design | Department of Energy

    Energy Savers [EERE]

    well-designed passive solar home first reduces heating and cooling loads through energy-efficiency strategies and then meets those reduced loads in whole or part with solar energy. ...

  7. Helping Ensure High-Quality Installation of Solar Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Maximizes Taxpayer's Investment Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  8. Forest County Potawatomi Community Installation of Solar Photovoltaic...

    Broader source: Energy.gov (indexed) [DOE]

    Installation of Solar Photovoltaic Systems Presented by: Tansey Smith Sustainability ... THANK YOU QUESTIONS? Tansey Smith Sustainability Coordinator 5320 Wensaut Lane Crandon, ...

  9. Final row of solar panels installed at Livermore | National Nuclear...

    National Nuclear Security Administration (NNSA)

    When complete, the 3.3 MW fixed-tilt solar photovoltaic facility will represent the largest DOENNSA purchase of solar energy from an onsite facility. Electrical installation will ...

  10. Empirically Derived Strength of Residential Roof Structures for Solar Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Sanchez, Alfred; Campos, Ivan A.; Gerstle, Walter H.

    2014-12-01

    Engineering certification for the installation of solar photovoltaic (PV) modules on wood roofs is often denied because existing wood roofs do not meet structural design codes. This work is intended to show that many roofs are actually sufficiently strong given the conservatism in codes, documented allowable strengths, roof structure system effects, and beam composite action produced by joist-sheathing interaction. This report provides results from a testing program to provide actual load carrying capacity of residential rooftops. The results reveal that the actual load carrying capacity of structural members and systems tested are significantly stronger than allowable loads provided by the International Residential Code (IRC 2009) and the national structural code found in Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). Engineering analysis of residential rooftops typically ignores the system affects and beam composite action in determining rooftop stresses given a potential PV installation. This extreme conservatism combined with conservatism in codes and published allowable stress values for roof building materials (NDS 2012) lead to the perception that well built homes may not have adequate load bearing capacity to enable a rooftop PV installation. However, based on the test results presented in this report of residential rooftop structural systems, the actual load bearing capacity is several times higher than published values (NDS 2012).

  11. Solar Energy Education. Home economics: student activities. Field...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Solar Energy Education. Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: ...

  12. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  13. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon...

  14. Solar Homes in Watsonville, California

    Broader source: Energy.gov [DOE]

    This photograph features a Clarum Homes Vista Montana development that consists of 177 single-family homes, 80 townhouses, and 132 apartments. Every home features a 1.2 to 2.4-kilowatt photovoltaic...

  15. Toolkit for Installing Solar on K-12 Schools

    Broader source: Energy.gov [DOE]

    Following the release of The Solar Foundation's Brighter Future: A Study on Solar in U.S. Schools under the Solar Outreach Partnership, the organization has been working to help more K-12 public schools go solar through its technical assistance program. As part of this effort, they developed the Toolkit for Installing Solar on K-12 Schools to compile new and existing resources, designed to provide public school officials with a starting point for pursuing their own solar projects. Hands-on guidance in putting the ideas contained within this toolkit into action is available through the SolarOPs Technical Assistance program.

  16. Guide to Passive Solar Home Design

    SciTech Connect (OSTI)

    2010-10-01

    Passive solar design incorporates features in your home and its natural surroundings that harness the sun's low rays in winter and deflect the sun's high rays in the summer.

  17. Solar Decathlon 2015: Nation's Leading Sustainable Home Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar ... Richard King Richard King Director, Solar Decathlon KEY FACTS 2015 Solar Decathlon to kick ...

  18. Solar Home in Sacramento, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features houses in this Premier Homes development, near Sacramento, that has a 2.2-kilowatt building integrated photovoltaic (BIPV) system manufactured by GE Energy. The homes...

  19. Technology Solutions for New Homes Case Study: Indirect Solar...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, ...

  20. Plug and Play: Purchase, Install, and Connect Residential Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo Credit: Fraunhofer CSE Consumers may soon have the option of purchasing a do-it-yourself rooftop solar photovoltaic (PV) system at their local home improvement store that can ...

  1. Solar Homes Sell for a Premium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Homes Sell for a Premium Solar Homes Sell for a Premium Solar Homes Sell for a Premium Buying a solar energy system will likely increase your home's value. A recent study found that solar panels are viewed as upgrades, just like a renovated kitchen or a finished basement, and home buyers across the country have been willing to pay a premium of about $15,000 for a home with an average-sized solar array. Additionally, there is evidence homes with solar panels sell faster than those without.

  2. Milwaukee Installer Reflects on His Career In Solar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    market. Follow our weeklong series to hear from Milwaukee-based installers, residents and city leaders on what it's like to be a part of this solar community. Share your...

  3. Spurring Solar Installations in Hawaii | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spurring Solar Installations in Hawaii Spurring Solar Installations in Hawaii January 5, 2015 - 2:06pm Addthis National Renewable Energy Laboratory engineer Greg Martin (from left) works with Solectria engineers Jonathon Smith and Jihua Ma testing Solectria's smart inverter at the Energy Systems Integration Facility in Golden, Colorado. | Photo by Dennis Schroeder, National Renewable Energy Laboratory National Renewable Energy Laboratory engineer Greg Martin (from left) works with Solectria

  4. Roof Installation at 2009 Solar Decathlon

    Broader source: Energy.gov [DOE]

    Iowa State student Timothy Lentz, foreground, and Team Alberta student Leah Battersdy, right, work on the roofs of their houses during the U.S. Department of Energy Solar Decathlon 2009.

  5. Hawaii Marine Base Installs Solar Roofs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marine Base Installs Solar Roofs Hawaii Marine Base Installs Solar Roofs April 2, 2010 - 2:42pm Addthis Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar panels. The new roofs saves $20,000 a year in energy costs. Built on the end of the Mokapu Peninsula on Oahu's northeast coast, the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay gets plenty of sunlight. But harnessing

  6. Planning a Home Solar Electric System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Solar Electric System Planning a Home Solar Electric System Whether a home solar electric system will work for you depends on the available sun (resource), available space for the system size you need, the economics of the investment, and the local permits required. | Photo courtesy of Decker Homes. Whether a home solar electric system will work for you depends on the available sun (resource), available space for the system size you need, the economics of the investment, and the local

  7. Solar Energy Education. Home economics: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home economics: teacher's guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Home economics: teacher's guide. Field ...

  8. Million Solar Strong: U.S. Hits Millionth Solar Energy Installation

    Broader source: Energy.gov [DOE]

    Today GreenTech Media announced that the U.S. solar energy industry passed 1 million installations sometime around the end of February. This news comes as solar continues to represent a major and...

  9. Median Installed Price of U.S. Solar at All-Time Low in 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Median Installed Price of U.S. Solar at All-Time Low in 2015

  10. Efficient Solutions for Existing Homes Case Study: Solar Water Heating in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Buildings | Department of Energy Existing Homes Case Study: Solar Water Heating in Multifamily Buildings Efficient Solutions for Existing Homes Case Study: Solar Water Heating in Multifamily Buildings In spring 2014, Olive Street Development completed a major renovation project-converting an old school building in Greenfield, Massachusetts, into 12 high-performance apartments. The developer installed SDHW to reduce fossil-fuel consumption, and CARB has been monitoring the system

  11. Solar heating system installed at Troy, Ohio. Final report

    SciTech Connect (OSTI)

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  12. Solar Home in Glastonbury, Connecticut

    Broader source: Energy.gov [DOE]

    This photograph features a building with a 2.52-kilowatt residential grid-tied solar photovoltaic (PV) electric system. The system generates clean electricity and feeds any excess into the local...

  13. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  14. What Do You Wish You Knew About Home Solar Energy?

    Broader source: Energy.gov [DOE]

    Solar Decathlon 2011 is in full swing, and the Energy Savers blog is all about home solar energy during the event!

  15. Solar heating system installed at Jackson, Tennessee. Final report

    SciTech Connect (OSTI)

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  16. Solar For Milwaukee, By Milwaukee | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Installing a solar hot water system at a Milwaukee ... to estimating total cost - when it comes to home solar installations -- it's ... -- including solar panels manufactured by Helios ...

  17. Kiwis Take Home Engineering Win for Solar Home 'First Light' | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Kiwis Take Home Engineering Win for Solar Home 'First Light' Kiwis Take Home Engineering Win for Solar Home 'First Light' September 29, 2011 - 4:22pm Addthis “First Light,” the solar home from New Zealand, stands complete on the first day of the 2011 U.S. Department of Energy Solar Decathlon. The 25-student team from Victory University of Wellington won the Engineering Contest today, the fourth juried contest of the competition. "First Light," the solar home

  18. Vet’s company installing solar across Massachusetts

    Broader source: Energy.gov [DOE]

    Dan Leary, a U.S. Army veteran, is president of Nexamp Inc., a clean energy company that specializes in solar installation. Dan founded the company in 2006 and has witnessed its impressive growth from six employees to 65 and counting as of July 2010.

  19. Solar Panel Design Ideas for Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Panel Design Ideas for Your Home Solar Panel Design Ideas for Your Home June 8, 2016 - 5:08pm Addthis These examples of building integrated photovoltaic panels are like solar eye candy. All images from U.S. Department of Energy Solar Decathlon These examples of building integrated photovoltaic panels are like solar eye candy. All images from U.S. Department of Energy Solar Decathlon Alexis Powers Communications Specialist at the National Renewable Energy Laboratory Solar is not just for

  20. Harnessing Solar Energy at Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harnessing Solar Energy at Home Harnessing Solar Energy at Home October 1, 2014 - 12:37pm Q&A What do you want to know about solar energy at home? Tell Us Addthis Solar panels are a great way to produce clean energy at home! | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Solar panels are a great way to produce clean energy at home! | Photo courtesy of Stefano Paltera, U.S. Department of Energy. Paige Terlip Paige Terlip Former Communicator, National Renewable Energy

  1. Combining Solar and Home Performance Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combining Solar and Home Performance Services Combining Solar and Home Performance Services Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, call slides and discussion summary, December 11, 2014. Call Slides and Discussion Summary (2.89 MB) More Documents & Publications Think Again! A Fresh Look at Home Performance Business Models and Service Offerings (301) Lessons Learned: Peer Exchange Calls -- No. 3 Voluntary Initiative on

  2. Commercial dissemination approaches for solar home systems

    SciTech Connect (OSTI)

    Terrado, E.

    1997-12-01

    The author discusses the issue of providing solar home systems to primarily rural areas from the perspective of how to commercialize the process. He considers two different approaches, one an open market approach and the other an exclusive market approach. He describes examples of the exclusive market approach which are in process in Argentina and Brazil. Coming from a banking background, the business aspects are discussed in detail. He points out the strengths and weaknesses of both approaches toward developing such systems.

  3. Shopping for a Solar Home Made Easy - SunShot and the Future of Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home-Buying | Department of Energy Shopping for a Solar Home Made Easy - SunShot and the Future of Solar Home-Buying Shopping for a Solar Home Made Easy - SunShot and the Future of Solar Home-Buying July 27, 2016 - 10:00am Addthis Solar homes are being sold across the country, but they can be hard to find and compare. Teams from Lawrence Berkeley National Laboratory and Elevate Energy are working to ensure that solar is properly represented in multiple listing services. | Photos courtesy of

  4. Forest County Potawatomi Community: Installation of Solar Photovoltaic Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest County Potawatomi Community Installation of Solar Photovoltaic Systems Presented by: Nathan Karman Legal Department Forest County Potawatomi Community March 27, 2014 "Let us share our natural resources for the good of our People. Let us work for clean air and water and pray for the courage to stand up to those who would abuse our Mother Earth. So be it." - Bemwetek (Elder James Thunder) Excerpt from 2007 Class I Air Redesignation Public Hearing Prayer Community's Commitment to

  5. Performance summary of the Balcomb solar home

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

    1981-01-01

    The heating performance of the Balcomb passive solar home is re-evaluated based on detailed review of 85 channels of data taken during six weeks of 1980. This led to a re-analysis of 176 days of data taken over the winter of 1978-79. Auxiliary heat during this winter was 7.4 million Btu which compares with 66.0 million Btu total heat losses from the house plus 46.4 million Btu losses from the greenhouse. Auxiliary heat predicted using the solar load ratio method is 8.1 million Btu. Solar savings are estimated as 57 million Btu. Good thermal comfort conditions are documented. Energy flows are tabulated for each month. Energy flows are tabulated for each month. Conclusions regarding detailed heat flow and storage in the house are presented.

  6. Best Practices Solar Case Study: Pulte Homes - Civano, Tucson, Arizona

    SciTech Connect (OSTI)

    2007-06-01

    Building America factsheet on Pulte Homes, an energy-efficient home builder in hot dry climate using ducts in conditioned space, improved insulation, high-efficiency HVAC, and solar hot water.

  7. Solar absorber panel, collector assembly and installation method

    SciTech Connect (OSTI)

    Spencer, D.L.

    1980-12-23

    A solar absorber panel assembly has a pair of substantially parallel plates sealed together at their perimeter. A raised integral header is formed in one of the plates. An external header is in fluid communication with the integral header and is spaced from and mechanically connected to the plates. A solar collector assembly includes hanger brackets mounted on an inclined support surface to engage and retain bodies of insulation material and solar absorber panels. The absorber panels are in side-by-side relation with relatively slidable slightly overlapping marginal portions. External headers on the absorber panels are connected together by slip-on resilient sleeves of silicone rubber. An enclosure having a transparent cover and a wall extending around a plurality of absorber panels and external headers is attached directly to the support surface independently of the hanger brackets and absorber panels. The cover is supported by cover support brackets mounted on the support surface and extending upwardly between panels, passing through openings formed by lateral recesses in the marginal portions of the absorber panels. A solar collector is installed by attaching hanger brackets to an inclined support surface, placing thermal insulation and absorber panels on the hanger brackets to prevent downward slipping movement, and enclosing the absorber panels with a cover which is transmissive of radiant solar energy.

  8. Solar energy and your home: questions and answers

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    This fact sheet provides a basic introduction to solar heating and cooling systems. It is intended for the many homeowners who could benefit from living in a solar home.

  9. Solar Energy and Your Home: Questions and Answers

    DOE R&D Accomplishments [OSTI]

    1984-01-01

    This fact sheet provides a basic introduction to solar heating and cooling systems. It is intended for the many homeowners who could benefit from living in a solar home.

  10. Solar space heating installed at Kansas City, Kansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  11. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chicago Solar Express Reduces Costs, Wait Times Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  12. Plug and Play Solar PV for American Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes logo-fraunhofer.gif The Fraunhofer Center for Sustainable Energy Systems (CSE) will develop a new plug-and-play PV system that self-checks for proper installation and safety and communicates with the local utility and local jurisdiction to request permission to feed power into its smart meter. The utility and locality will remotely grant permission to the system to connect, and the PV system will immediately

  13. Measurement-Based Evaluation of Installed Filtration System Performance in Single-Family Homes

    SciTech Connect (OSTI)

    Chan, Wanyu Rengie; Singer, Brett C.

    2014-04-03

    This guide discusses important study design issues to consider when conducting an on-site evaluation of filtration system performance. The two most important dichotomies to consider in developing a study protocol are (1) whether systems are being evaluated in occupied or unoccupied homes and (2) whether different systems are being compared in the same homes or if the comparison is between systems installed in different homes. This document provides perspective and recommendations about a suite of implementation issues including the choice of particle measurement devices, selection of sampling locations, ways to control and/or monitor factors and processes that can impact particle concentrations, and data analysis approaches.

  14. Obama Administration Announces Plans to Install New Solar Panels on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Residence | Department of Energy Plans to Install New Solar Panels on the White House Residence Obama Administration Announces Plans to Install New Solar Panels on the White House Residence October 5, 2010 - 12:00am Addthis WASHINGTON - U.S. Energy Secretary Steven Chu and Council of Environmental Quality (CEQ) Chair Nancy Sutley today announced plans to install solar panels and a solar hot water heater on the roof of the White House Residence. These two solar installations will

  15. On the Market: Buying and Selling a Solar Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On the Market: Buying and Selling a Solar Home On the Market: Buying and Selling a Solar Home On the Market: Buying and Selling a Solar Home Information on the premium boosting power of solar energy. On the Market: Buying and Selling a Solar Home (147.78 KB) More Documents & Publications On the Market: Buying and Selling a Solar Home All About Solar and Real Estate On the Market: Buying and Selling a Solar Home Solar Homes Sell for a Premium Advances in Integrating Energy Efficiency Into the

  16. EERE Success Story-Helping Ensure High-Quality Installation of Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Technologies | Department of Energy Helping Ensure High-Quality Installation of Solar Power Technologies EERE Success Story-Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis Lorain County Community College Instructors install PV modules on training roof labs during the Midwest Renewable Energy Association’s Train-the-Trainer PV Instructor Institute course. Lorain County Community College Instructors install PV modules on training

  17. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  18. Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools

    SciTech Connect (OSTI)

    Coughlin, J.; Kandt, A.

    2011-10-01

    This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually own and operate the PV systems on behalf of the school district. This is commonly referred to as the 'third-party ownership model.' Both methods have advantages and disadvantages that should be weighed carefully.

  19. Printed decorative solar panels could become part of our homes...

    Open Energy Info (EERE)

    content Printed decorative solar panels could become part of our homes and offices Hello, I provide user supp... The top one on this page: htt... Can you send the specific...

  20. NREL Solar Technology Will Warm Air at 'Home' - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Technology Will Warm Air at 'Home' July 30, 2010 Photo of a building coved in ... to a wall at the RSF that uses their award-winning transpired air collector technology. ...

  1. Solar Successes: The Best of Today's Energy Efficient Homes

    SciTech Connect (OSTI)

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  2. Solar Home Tour and Exhibitor Showcase Open Doors to Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To see how Andrews and 15 others are tapping into the energy of the sun, take the Denver Metro Tour of Solar Homes, hosted by the Colorado Renewable Energy Society (CRES), from 10 ...

  3. HSC Solar | Open Energy Information

    Open Energy Info (EERE)

    for homes is continuing to drop significantly making this the ideal time to consider solar panel installation. Every household using electricity will see benefit with a solar...

  4. Installing and Maintaining a Home Solar Electric System | Department...

    Energy Savers [EERE]

    ... (W) or kilowatts (kW). If possible, have the bids specify the system capacity in "AC Watts" (alternating current) under ... Also request an estimate of the amount of energy that the ...

  5. Efficient Solutions for Existing Homes Case Study: Solar Water...

    Energy Savers [EERE]

    The developer installed SDHW to reduce fossil-fuel consumption, and CARB has been monitoring the system since its completion. Solar Water Heating in Multifamily Buildings (703.51 ...

  6. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume 6 Building America Best Practices Series | Department of Energy Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series The sixth volume of the Building America Best Practices Series presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific

  7. Solar Decathlon at Home in the D.C. Community | Department of...

    Office of Environmental Management (EM)

    at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community December 4, ... were add by DC Habitat after the Solar Decathlon demonstration home was moved to Deanwood. ...

  8. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  9. Solar Installations – Experience and Recommendations City of Madison

    Broader source: Energy.gov [DOE]

    Assessment of local solar hot water markets, market variables, market barriers, and suggested strategies to increase solar hot water deployment in the city and county.

  10. Description of the Solar-MEC field test installation (Conference...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Institute of Gas Technology, Chicago, Ill. (USA) Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; SOLAR AIR CONDITIONERS; DESIGN; ...

  11. Renewable Energy Ready Home Solar Photovoltaic Specifications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency.

  12. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  13. Solar Powering America Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Powering America banner U.S. Department of Housing and Urban Development U.S. Department of Agriculture U.S. Environmental Protection Agency U.S. Department of Energy Solar ...

  14. Largest Solar Panel Installation at a U.S. University Goes Live |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Largest Solar Panel Installation at a U.S. University Goes Live Largest Solar Panel Installation at a U.S. University Goes Live November 4, 2010 - 6:10pm Addthis Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. Sen. Menendez, Rep. Pascrell, John Lushetsky and other officials at the ribbon cutting. A couple of weeks ago, I had the opportunity to participate in a ribbon cutting event for the largest solar installation on a United

  15. Technology Solutions for New Homes Case Study: Indirect Solar Water Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems in Single-Family Homes | Department of Energy Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, Rural Development, Inc. (RDI) completed the construction of Wisdom Way Solar Village (WWSV), which is a development of 20 very efficient homes in Greenfield, Massachusetts. The homes feature R-40 walls, triple-pane windows, R-50 attic insulation, and airtight

  16. HIA 2015 DOE Zero Energy Ready Home Case Study: Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Agency's Indoor airPLUS. Each home meets the hot water distribution ... In addition, homes are required to have solar electric panels installed or have the conduit and ...

  17. Solar greenhouse as an integral part of an earth-sheltered home: the first two years

    SciTech Connect (OSTI)

    Malott, R.W.

    1984-01-01

    The construction of a solar greenhouse as an integral part of an earth-sheltered home is discussed. The problems of building such a home are described.

  18. Largest On-Campus Solar Facility Being Installed at William Paterson |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Largest On-Campus Solar Facility Being Installed at William Paterson Largest On-Campus Solar Facility Being Installed at William Paterson March 29, 2010 - 10:57am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs What does this project do? Solar arrays at parking lots and photovoltaic cells on the rooftops of campus buildings should provide about 15 to 20 percent of our energy needs on the campus. Cranes place solar panels on roofs and

  19. Solar Decathlon 2015: Nation's Leading Sustainable Home Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition on the Horizon | Department of Energy Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon July 13, 2015 - 2:15pm Addthis The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction site. | Photo courtesy of New York City College of Technology. The New York City College of Technology is weatherproofing

  20. Solar Energy Education. Home economics: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition. [Includes glossary] (Technical Report) | SciTech Connect Home economics: teacher's guide. Field test edition. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Home economics: teacher's guide. Field test edition. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  1. Hawaii Marine Base Installs Solar Roofs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Lorelei Laird Writer, Energy Empowers What does this project do? Marine Corps Base Hawaii replaced roofs on two buildings with polyvinyl chloride membrane 'cool' roofs and solar...

  2. Placement and efficiency effects on radiative forcing of solar installations

    SciTech Connect (OSTI)

    Burg, Brian R.; Ruch, Patrick; Paredes, Stephan; Michel, Bruno

    2015-09-28

    The promise for harnessing solar energy being hampered by cost, triggered efforts to reduce them. As a consequence low-efficiency, low-cost photovoltaics (PV) panels prevail. Conversely, in the traditional energy sector efficiency is extremely important due to the direct costs associated to fuels. This also affects solar energy due to the radiative forcing caused by the dark solar panels. In this paper we extend the concept of energy payback time by including the effect of albedo change, which gives a better assessment of the system sustainability. We present an analysis on the short and medium term climate forcing effects of different solar collectors in Riyadh, Saudi Arabia and demonstrate that efficiency is important to reduce the collector area and cost. This also influences the embodied energy and the global warming potential. We show that a placement of a high concentration photovoltaic thermal solar power station outside of the city using a district cooling system has a double beneficial effect since it improves the solar conversion efficiency and reduces the energy demand for cooling in the city. We also explain the mechanisms of the current economic development of solar technologies and anticipate changes.

  3. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passive solar design takes advantage of a building's site, climate, and materials to ... south-facing windows and retains it in materials that store heat, known as thermal mass. ...

  4. Own Your Power! A Consumer Guide to Solar Electricity for the Home

    DOE R&D Accomplishments [OSTI]

    2009-01-01

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  5. Own Your Power! A Consumer Guide to Solar Electricity for the Home

    SciTech Connect (OSTI)

    NREL

    2009-01-01

    A consumer guide about solar electricity for the home. It includes information about types of solar electric systems, how to choose a system, financing, and costs.

  6. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  7. Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)

    Broader source: Energy.gov [DOE]

    A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

  8. Tampa Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides financial incentives to customers who install solar-energy systems on their homes and businesses. Customers who install eligible solar water heating systems may receive a ...

  9. Financing Solar Installations with New Markets Tax Credits: Denver, Colorado (Fact Sheet)

    SciTech Connect (OSTI)

    Coughlin, J.

    2010-09-01

    Fact sheet provides a brief overview of New Markets Tax Credits (NMTCs), a third-party financing incentive for solar installations in the public sector. NMTCs are intended to encourage economic activity in low-income and disadvantaged neighborhoods. The use of NMTCs in an innovative solar project transaction by the City of Denver, Colorado, is highlighted.

  10. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    SciTech Connect (OSTI)

    Nangle, John; Simon, Joseph

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  11. Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future

    Broader source: Energy.gov [DOE]

    See how Appalachian State University used traditional mountain life architecture to design their 2011 Solar Decathlon home.

  12. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist. SHW-Ready Checklists.pdf (85.65 KB) More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist Renewable Energy Ready Home Solar Photovoltaic Specifications

  13. Energy Department Launches SunShot Prize Competition to Install Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems at a Fraction of Today's Price | Department of Energy SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price Energy Department Launches SunShot Prize Competition to Install Solar Energy Systems at a Fraction of Today's Price September 12, 2012 - 2:27pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Energy Department's SunShot Initiative, which is working to make solar energy competitive with other forms of energy without

  14. Factory-built integrated solar homes - A progress report

    SciTech Connect (OSTI)

    Rawlings, L.K.

    1995-12-31

    Over the past fifteen years, hundreds of people across the US have built for themselves highly advanced residences which integrated passive solar architecture; photovoltaic power systems; high-efficiency lights, appliances, and HVAC (heating, ventilating, and cooling) equipment; high-level insulation and airtight construction; and other renewable energy and energy-efficient technologies. Such a home can be referred to as an {open_quotes}integrated solar home{close_quotes}. As the essential technologies have improved in performance, price, and availability, the performance of such homes has steadily advanced to the point where they could provide amenities at more-or-less normal US standards of luxury, yet require as little as 5% to 10% of the level of fossil fuel or biomass use that are required in an average US home. However, the resources required to build such a home, both in terms of the time and dedication needed for research, design, and construction of the homes, and in terms of the additional cost of the renewable energy/energy efficient features, have prevented such construction from moving beyond a tiny handful of highly motivated homeowners and into the mainstream of residential construction. This paper has design summaries of six different houses.

  15. Do You Wonder How Much Energy Your Home Could Get from Solar or Wind?

    Broader source: Energy.gov [DOE]

    Have you ever thought about installing wind or solar energy on your property? Learn more about it in this post.

  16. HIA 2015 DOE Zero Energy Ready Home Case Study: Palo Duro Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Projected Annual Energy Cost Savings (compared to a ... In addition, homes are required to have solar electric panels ... attic areas before installing R-75 worth of blown ...

  17. Passive solar heated energy conserving biosphere home. Final report

    SciTech Connect (OSTI)

    Piekarski, R.

    1985-01-01

    ''Warm Gold'' is an original design of a passive solar heated energy conserving biosphere home. It has been owner-built with financial help from the US Department of Energy through its Appropriate Technology Small Grants Program of 1980. The home incorporates the six major components of passive solar design: appropriate geometry and orientation, glazing, light levels and reflective surfaces, ventilation, thermal storage, and insulation. Warm Gold is an earth-sheltered home with earth cover on the roof as well as on the two opaque north leg walls. It is of durable and efficient masonry construction which included stone masonry with on-site materials and cement block and ready mix concrete. Excavation, backfill, and drainage were necessary aspects of earth sheltered construction together with the all-important Bentonite waterproofing system. Warm Gold is a house which meets all the national building code standards of HUD. The home has two bedrooms, one bathroom, living room, dining room-kitchen, greenhouse, and utility annex, all of which are incorporated with the earth-sheltered, passive solar systems to be a comfortable, energy-efficient living environment.

  18. Homeowners Guide to Leasing a Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    This updated fact sheet provides an introduction to solar leases for homeowners who are considering installing a solar electric system on their home.

  19. Performance of the biose cascade-INEL manufactured solar home

    SciTech Connect (OSTI)

    Lau, A S; Liebelt, K H; Scofield, M P; Shinn, N R

    1980-01-01

    Two manufactured active solar homes using air collectors and rock storage were designed, bult and are being tested. The cooperative, DOE-funded project involves. Boise Cascade Corporation and the Idaho National Engineering Laboratory (INEL). The two primary goals of the project are to develop an active solar heating system that is cost-effective now, and to provide significant market penetration through the involvement of Boise Cascade, a major manufacturer of factory built houses. A brief discussion of the houses and solar systems is included, with more detailed discussion of the desktop-computer based data acquisition system and initial performance results. The 1979 cooling season data indicated a need for modifications to achieve adequate cooling system performance. Data from the heating season showed good agreement with calculations, especially the house heat loss coefficient. However, solar heating fractions were lower than predicted and an examination of the collector operating efficiency showed the collector losses to be approximately three times higher than predicted. Tests are underway to better understand the large collection losses. Comparison of the performance data and f-chart predictions shows significant differences, with predicted solar fractions being lower than actual. The solar domestic hot water preheating system performed reasonably well, with significant thermal losses noticed from the auxiliary hot water heater. Recommendations are made for the design of solar air-heating systems.

  20. Homebuilder's Guide to Going Solar

    DOE R&D Accomplishments [OSTI]

    2008-12-01

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  1. Solar House in Milton, Massachusetts

    Broader source: Energy.gov [DOE]

    This photograph features a DeSantis home that sports an 8.4-kilowatt photovoltaic (PV) solar electric system manufactured by Evergreen Solar of Marlboro, Massachusetts, and installed by groSolar of...

  2. The Best and Brightest in Solar Homes Open to the Public

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Best and Brightest in Solar Homes Open to the Public For more information contact: e:mail: Public Affairs Golden, Colo., Oct. 1, 1997 -- The most innovative designs in passive and active solar homes in the Denver-metro area will be open to the public October 18 as part of the second annual Colorado Tour of Solar Homes. More than 20 homes with state-of-the-art solar technologies in the Denver-Boulder area are included in the tour, sponsored by the American Solar Energy Society (ASES) in

  3. Handbook of experiences in the design and installation of solar heating and cooling systems

    SciTech Connect (OSTI)

    Ward, D.S.; Oberoi, H.S.

    1980-07-01

    A large array of problems encountered are detailed, including design errors, installation mistakes, cases of inadequate durability of materials and unacceptable reliability of components, and wide variations in the performance and operation of different solar systems. Durability, reliability, and design problems are reviewed for solar collector subsystems, heat transfer fluids, thermal storage, passive solar components, piping/ducting, and reliability/operational problems. The following performance topics are covered: criteria for design and performance analysis, domestic hot water systems, passive space heating systems, active space heating systems, space cooling systems, analysis of systems performance, and performance evaluations. (MHR)

  4. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  5. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  6. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    checklist. PDF icon SHW-Ready Checklists.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist ...

  7. Finding Solutions to Solar's Soft Cost Dilemma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions to Solar's Soft Cost Dilemma Finding Solutions to Solar's Soft Cost Dilemma January 8, 2013 - 1:22pm Addthis Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to streamline rooftop solar installations so that its faster, easier and cheaper for Americans to go solar. | Photo courtesy of Dennis Schroeder, NREL. Brian Webster installs rooftop solar panels on a home in Englewood, Colorado. The Energy Department is working to

  8. Community-Scale High-Performance with Solar: Pulte Homes, Tucson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes. ...

  9. Selling the solar home '80: market findings for the housing industry

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    An overview of the current 1980's market for solar heated and cooled houses is presented. The study is based on the first, second, and third demonstration program grants awarded by HUD under the Solar Heating and Cooling Demonstration Act of 1974. The market data collection process included interviews with industry, public officials, and consumers. Profiles are provided of the typical demonstration solar house, builder, and purchaser. Considerations in planning the solar home and designing and building the home for the local market are reviewed. The attitudes and interests of the potential solar home purchaser are discussed and a profile of buyers and nonbuyers is presented; frequently asked questions are listed. Techniques and promotional tools for attracting solar home buyers are reviewed and the reactions of purchasers living in a solar house are cited. The general outlook for the solar housing market is discussed and is considered encouraging.

  10. Thin-film flat-plate solar collectors for low-cost manufacture and installation

    SciTech Connect (OSTI)

    Andrews, J.W.; Wilhelm, W.G.

    1980-03-01

    A flat-plate solar energy collector design using thin-film plastics in both the absorber and glazing is described. The design approach proceeded in two steps. First, cost constraints on solar collectors were determined using reasonable economic projections. Second, engineering was applied only to those ideas which had hope of falling within those cost boundaries. The use of thin-film plastics appeared most attractive according to these criteria. The nature of the marketing and distribution network can be expected to have a strong impact on the final installed cost of the collector; the proposed design has characteristics which could make possible a reduced price markup.

  11. Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes and Businesses

    Broader source: Energy.gov [DOE]

    Rooftop Solar Challenge helped cut permitting time by 40 percent and reduce fees by over 10 percent, opening the door to make it faster and easier for more than 47 million Americans to install solar.

  12. Homebuilder's Guide to Going Solar (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

  13. DOE Challenge Home Case Study, Mandalay Homes, Phoenix, AZ, Affordable

    Energy Savers [EERE]

    ... On the Gordon Estates homes, Mandalay installed a unique solar system that provides water ... The underside of the roof is covered with 5.5 inches (R-20) of closed- cell spray foam, ...

  14. Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

  15. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  16. Building America Top Innovations 2012: Community Scale High Performance with Solar - Pulte Homes

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Pulte Homes of Tucson’s work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

  17. Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Pulte Homes of Tucson’s work with Building America to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a community of more than 1,000 homes.

  18. Indonesia solar home systems project for rural electrification

    SciTech Connect (OSTI)

    Sanghvi, A.P.

    1997-12-01

    This paper presents, from a financing aspect the broad issues involved in a plan to provide solar home systems (SHS) to provide rural electrification in several areas of rural Indonesia. The paper discusses the approaches being used to provide funding, develop awareness of the technology, and assure the success of the project. The plan involves the use of grant money to help with some of the initial costs of such systems, and thereby to encourage local financing on a terms rather than cash basis. There are needs for market development, and development of a business structure in the country to support this type of technology. Provided this plan can succeed, it may serve as a model for further efforts.

  19. Home retrofitting for energy conservation and solar considerations

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This manual explains both the key concepts behind our need for and our impact on energy usage, as well as a nuts-and-bolts explanation of how to improve the energy efficiency of your home. By reviewing both the concepts and practices of energy conservation, the manual presents a comprehensive picture of how home energy use is effected by the inhabitants and by the structure itself. The manual begins with an explanation of why we are looking at energy, then proceeds to explain how the heat transfer occurs between houses and humans. Next is a chapter on energy audits and how to use them, followed by a comprehensive section on energy conservation actions to do now to reduce energy use. Conservation actions include low cost/no cost measures, schemes to reduce infiltration, how to increase insulation, and what to do with windows and doors, heating and heat distribution systems, and water heaters. Solar energy options are then briefly explained, as well as the all important issues of financing and tax credits. The manual concludes with a bibliography to direct the reader to more sources of information.

  20. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect (OSTI)

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  1. REC Solar | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Sector: Solar Product: Solar installer Website: www.recsolar.comcmHome.html Coordinates: 37.3754586, -122.0085828 Show Map Loading map... "minzoom":false,"map...

  2. HIA 2015 DOE Zero Energy Ready Home Case Study: Evolutionary...

    Broader source: Energy.gov (indexed) [DOE]

    to have solar electric panels installed or have the ... in shape so he could maximize solar heat gain in the winter. ... * Projected Annual Energy Cost Savings (compared to a home ...

  3. Automated solar collector installation design including ability to define heterogeneous design preferences

    DOE Patents [OSTI]

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2013-01-08

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

  4. Automated solar collector installation design including ability to define heterogeneous design preferences

    DOE Patents [OSTI]

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-04-29

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre -defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives. Embodiments may also include definition of one or more design apertures, each of which may correspond to boundaries in which solar collector layouts should comply with distinct sets of user-defined design preferences. Distinct apertures may provide heterogeneous regions of collector layout according to the user-defined design preferences.

  5. The World's Largest Solar Project Finds a Home in California | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Solar Project Finds a Home in California The World's Largest Solar Project Finds a Home in California October 27, 2010 - 3:49pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this project do? The Blythe site will be the first of four solar thermal plant developments that will eventually produce 2,800 megawatts of electricity, powering up to two million homes in the region. The massive project will generate over 1,000 construction

  6. July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Facilities | Department of Energy July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 12, 2013 - 10:40am Addthis On Wednesday, July 17 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar on resilient solar-storage systems for homes and commercial facilities. The webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program

  7. Energy Department Catalyzes New Mexico Solar Boom | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzes New Mexico Solar Boom Energy Department Catalyzes New Mexico Solar Boom July 21, 2016 - 12:47pm Addthis This solar system, installed at a home in Santa Fe, benefitted from the New Mexico Solar Market Development Tax Credit. This solar system, installed at a home in Santa Fe, benefitted from the New Mexico Solar Market Development Tax Credit. John Coggin John Coggin Communications Specialist, Weatherization and Intergovernmental Programs What are the key facts? New Mexico's current

  8. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  9. Solar Successes: The Best of Today's Energy Efficient Homes (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-01-01

    This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

  10. DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zero Energy Ready Home Solar Hot Water-Ready Checklist (Encouraged) DOE Zero Energy Ready Home National Program encourages, but does not require, consideration of this checklist. Although the checklist is always encouraged, the following three conditions could be considered when deciding on using the checklist. Where all three conditions of the following conditions are met DOE encourages use of this checklist: 1. Location, based on zip code has at least 5 kWh/m 2 /day average daily solar

  11. RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes

    SciTech Connect (OSTI)

    Robb Aldrich, Steven Winter Associates

    2011-07-01

    In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

  12. Solar Industry Scorches Records | Department of Energy

    Office of Environmental Management (EM)

    Industry Scorches Records Solar Industry Scorches Records March 6, 2014 - 5:24pm Addthis Workers install a solar energy system on the rooftop of a home in Golden, Colorado. More ...

  13. Combining Solar and Home Performance Services | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Think Again A Fresh Look at Home Performance Business Models and Service Offerings (301) Lessons Learned: Peer Exchange Calls -- No. 3 Voluntary ...

  14. Solar Decathlon Teams Working Around the Clock to Assemble Homes...

    Broader source: Energy.gov (indexed) [DOE]

    at the 2011 Solar Decathlons All-Team Meeting, immediately before the assembly stage of the competition. | Photo Credit: Carol AnnaU.S. Department of Energy Solar Decathlon. ...

  15. Incentives and Financing for Energy Efficient Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Incentives and Financing for Energy Efficient Homes Incentives and Financing for Energy Efficient Homes Financial incentives and financing programs can help with the cost of making energy efficient home improvements and installing renewable energy systems, such as solar electricity. | Photo courtesy of Dennis Schroeder/NREL. Financial incentives and financing programs can help with the cost of making energy efficient home improvements and installing renewable energy systems, such as

  16. New energy-conserving passive solar single-family homes. Cycle 5, Category 2 HUD solar heating and cooling demonstration program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The 91 new single-family, energy-conserving passive solar homes described represent award winning designs of the series of five demonstration cycles of the HUD program. Information is presented to help builders and lenders to understand passive solar design, to recognize passive solar buildings, and to provide specific design, construction, and marketing suggestions and details. The first section describes the concept of passive solar energy, explains the various functions which passive solar systems must perform, and discusses the various types of passive systems found in the Cycle 5 projects. The second section discusses each of the 91 solar homes. The third section details the issues of climate requirements and site design concerns, gives examples of building construction, and suggests how to market solar homes. The appendices address more technical aspects of the design and evaluation of passive solar homes.

  17. City of Lancaster- Mandatory Solar Requirement for New Homes

    Broader source: Energy.gov [DOE]

    PV is not required on all homes within a production subdivision, but the builder must meet the aggregate requirement within the subdivision. For example, one house with twice the required PV can ...

  18. NREL: Concentrating Solar Power Research - TroughNet Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steam is coming out of the generation system building. Power Plant Systems Parabolic Trough Data and Resources Industry Partners Solar Data Power Plant Data Models and Tools System ...

  19. Solar Decathlon Homes-- They’re Not Just for Show

    Broader source: Energy.gov [DOE]

    Have you ever wondered what happens to Solar Decathlon Houses after the competition? We explore where some of the houses are now.

  20. SunShot Prize: America's Most Affordable Rooftop Solar: A Competition To Spur Low-Cost Rooftop Solar Installations Across The Nation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    The SunShot Prize encourages novel public-private partnerships, original business models, and innovative approaches to installing clean, renewable solar energy. The sustainable business strategies developed by participants will provide transferable lessons that can be applied nationwide to hasten America's transition to affordable clean energy in a post-subsidy market.

  1. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  2. NREL Solar Technology Will Warm Air at 'Home' - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Technology Will Warm Air at 'Home' July 30, 2010 Photo of a building coved in perforated metal, with two men standing next to it. Enlarge image NREL's Craig Christensen and Chuck Kutscher stand next to a wall at the RSF that uses their award-winning transpired air collector technology. Credit: Dennis Schroeder Sometimes the way back home isn't straightforward. But once you find your way, you know you'll be welcomed with open arms. Transpired solar air collector technology PDF ,

  3. Selling Into the Sun: Price Premium Analysis of a Multi-State Dataset of Solar Homes

    Broader source: Energy.gov [DOE]

    Homes with solar photovoltaic (PV) systems have multiplied in the United States recently, reaching more than half a million in 2014, in part due to plummeting PV costs and innovative financing options. As PV systems become an increasingly common feature of U.S. homes, the ability to assess the value of these homes appropriately will become increasingly important. At the same time, capturing the value of PV to homes will be important for facilitating a robust residential PV market. Appraisers and real estate agents have made strides toward valuing PV homes, and several limited studies have suggested the presence of PV home premiums; however, gaps remain in understanding these premiums for housing markets nationwide. To fill these gaps, researchers from Lawrence Berkeley National Laboratory (LBNL) and their collaborators from other institutions conducted the most comprehensive PV home premium analysis to date. The study more than doubles the number of PV home sales previously analyzed, examines transactions in eight states, and spans the years 2002–2013. The results impart confidence that PV consistently adds value across a variety of states, housing and PV markets, and home types.

  4. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  5. Lumbee River EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lumbee River EMC is offering $850 rebates to residential customers who install solar water heaters on their homes. To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  6. Lumbee River EMC- Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC is offering 6% loans to residential customers for the installation of solar water heaters on their homes.  To qualify, the systems must be certified OG-300 by the Solar Ratings and...

  7. Planning a Home Solar Electric System | Department of Energy

    Office of Environmental Management (EM)

    Thus, PV systems function most efficiently in the southwestern United States, which receives the greatest amount of solar energy. Before you buy a PV system, you will want to be ...

  8. Solar Energy Education. Home economics: student activities. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Priority | Department of Energy Classroom Update: Making Clean Energy Upgrades a Back-to-School Priority Solar Classroom Update: Making Clean Energy Upgrades a Back-to-School Priority August 21, 2013 - 2:52pm Addthis Watch as Aaron Sebens, a fourth-grade teacher in Durham, North Carolina, gives an update on his student's solar-powered classroom project. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Clean Energy Resources Watch our first

  9. Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  10. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  11. Forest City Solar Military Community

    Broader source: Energy.gov [DOE]

    This photograph features the Forest City military community in Honolulu, Hawaii, that uses high-efficiency solar panels installed on the roof of its community center to power 10 homes.

  12. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new

  13. Passive solar retrofit: how to add natural heating and cooling to your home

    SciTech Connect (OSTI)

    Strickler, D.J.

    1982-01-01

    This do-it-yourself guide includes information on planning and maintaining a passive retrofit home. Information is given on: evaluating an individual house; climate, and situation; deciding on most appropriate solar features; determining the need for outside help and locating it; applying for financial assistance and tax credits; choosing materials; and construction. Also covered are: house insulation, auxiliary heating and cooling, decorating the passive solar retrofit, essential weather data, construction guidelines, a list of manufacturers of solar materials, and a reference supplement are included.

  14. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  15. Solar heating and hot water system installed at the Senior Citizen Center, Huntsville, Alabama. [Includes engineering drawings

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Information is provided on the solar energy system installed at the Huntsville Senior Citizen Center. The solar space heating and hot water facility and the project involved in its construction are described in considerable detail and detailed drawings of the complete system and discussions of the planning, the hardware, recommendations, and other pertinent information are included. The facility was designed to provide 85 percent of the hot water and 85 percent of the space heating requirements. Two important factors concerning this project for commercial demonstration are the successful use of silicon oil as a heat transfer fluid and the architecturally aesthetic impact of a large solar energy system as a visual centerpoint. There is no overheat or freeze protection due to the characteristics of the silicon oil and the design of the system. Construction proceeded on schedule with no cost overruns. It is designed to be relatively free of scheduled maintenance, and has experienced practically no problems.

  16. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Resilient Electric Infrastructures Military...

  17. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect (OSTI)

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  18. Permitting Best Practices Make Installing Solar Easier: Technical Assistance (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA

  19. Local Solar: Commonalities between Communities that Lead their State in Installed PV

    SciTech Connect (OSTI)

    Day, Megan; Doris, Elizabeth

    2015-12-14

    This poster presents the results of an analysis that identifies commonalities between communities that lead their U.S. states in solar capacity.

  20. Solar in the Real World: Tour of Solar Homes Begins in October

    Broader source: Energy.gov [DOE]

    The National Solar Tour takes place annually during the first Saturday in October in conjunction with National Energy Awareness Month.

  1. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado

    SciTech Connect (OSTI)

    Roberts, B.

    2011-07-01

    The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

  2. Project SUNN solar home (APTECH AZ-81-54). Final report

    SciTech Connect (OSTI)

    Birkey, R.C.

    1983-01-01

    The design and construction of the SUNN solar home utilizing energy conservation relevant to the constuction needs of the Navajo Nation has met with success, most particularly in its initial student and Navajo leadership training programs. The overall size of the structural concept was increased dramatically (from the modest 700 to 900 square foot model to an 1856 sq. ft. structure) in order to accommodate the Window Rock School District with a practical building and the placement of SUNN home in a highly visible area of the school grounds. A cooperation was formed with the school district with intentions to increase the potential for publicity, community involvement, utilize students in the construction process, and develop professional interest in the utilization and transfer of SUNN home technologies for other Navajo communities.

  3. High-Performance with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America solar home research that has demonstrated the ability to reduce peak demand by 75%. Numerous field studies have monitored power production and system effectiveness.

  4. Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, Call Slides and Discussion Summary, December 11, 2014Better Buildings Residential Network Peer Exchange Call: Combining Solar and Home Performance Services, Call Slides and Discussion Summary, December 11, 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combining Solar and Home Performance Services December 11th, 2014 Call Slides and Discussion Summary Agenda  Introductory Polls  Residential Network and Peer Exchange Call Overview  Polls on Solar and Home Performance Topics  Featured Speakers  Ria Langheim, Center for Sustainable Energy  Tim Harvey, Austin Energy  Discussion  What are the benefits of pursuing solar and home performance goals simultaneously? Disadvantages?  What are some examples of solar and home

  5. Passive solar design strategies: Remodeling guidelines for conserving energy at home

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

  6. Forest City Solar Military Community Center

    Broader source: Energy.gov [DOE]

    This photograph features a Forest City military community that uses high-efficiency solar photovoltaic (PV) panels installed on the roof of its community center to power 10 homes. Forest City is in...

  7. Chicopee Electric Light- Residential Solar Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Chicopee Electric Light offers rebates to residential customers who install solar photovoltaic (PV) systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per...

  8. Piedmont EMC- Solar Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

  9. Glendale Water and Power- Solar Solutions Program

    Broader source: Energy.gov [DOE]

    The Solar Solutions program provides all customer groups with an incentive to install photovoltaic (PV) systems on their homes and buildings. Rebate levels will decrease over time on an annual...

  10. Baltimore Vet Cuts Energy Bills With Solar

    Broader source: Energy.gov [DOE]

    Baltimore resident and disabled veteran Paul Bennett shares his experience utilizing state and federal grants and tax credits to install solar panels on his historic row home and cut energy costs.

  11. Bishop Paiute Tribe 2015 Residential Solar Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Tribal-member owner-occupied, single-family homes of low- income families on the ... , 501(c)(3) non-profit solar installer; Business Contact: A. Bambi Tran, Inland Empire ...

  12. Solar Means Business: Top U.S. Corporate Solar Users

    Broader source: Energy.gov [DOE]

    Solar energy makes financial sense. That's why business leaders in America's brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. For the third year in a row, not only are more businesses choosing solar, but those that have used solar in the past are doing so again and again on rooftops across America. Walmart, Kohl's, Costco, Apple, IKEA, and more have all embraced solar energy. Collectively, the 25 companies with the most solar capacity in the U.S. now have 1,110 systems totaling 569 MW, generating enough electricity to power more than 115,000 homes. And these companies are installing even more.

  13. Solar Access to Public Capital (SAPC) Working Group: Best Practices in Commercial and Industrial (C&I) Solar Photovoltaic System Installation; Period of Performance: November 28, 2014-September 1, 2015

    SciTech Connect (OSTI)

    Doyle, Chris; Loomans, Len; Truitt, Andrew; Lockhart, Robert; Golden, Matt; Dabbagh, Kareem; Lawrence, Richard

    2015-12-29

    This Best Practices in Commercial and Industrial Solar Photovoltaic System Installation Guide is the second of a series of guides designed to standardize and improve solar asset transparency for investors and rating agencies, provide an industry framework for quality management, and reduce transaction costs in the solar asset securitization process. The Best Practices in C&I PV System Installation Guide is intended to outline the minimum requirements for commercial and industrial solar project developments. Adherence to the guide is voluntary. Providers that adhere to the guide are responsible for self-certifying that they have fulfilled the guide requirements. Investors and rating agencies should verify compliance.

  14. Sundance, Skiing and Solar: Park City to Install New PV System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The mountain paradise of Park City, Utah - best known for its sensational skiing and annual Sundance Film Festival - is quickly becoming a shining example of environmental sustainability. The city’s latest green endeavor: an 18 kW solar energy system on top of the historic Marsac Building.

  15. All About Solar and Real Estate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All About Solar and Real Estate With nearly one million solar energy systems installed on residential rooftops across the country, buying or selling a solar home is getting more and more common. Just like a renovated kitchen or a finished basement increases a home's value, solar has been shown to boost home valuation and shorten a home's time on the market. In addition, new borrowing tools give solar-interested homeowners access to financing programs that can lower the cost of capital and unlock

  16. HIA 2015 DOE Zero Energy Ready Home Case Study: Hammer and Hand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1,839 * Builder's Added Cost Over 2009 IECC: without PV ... or 5 with the 10 kW of solar PV panels on the home's simple ... with and he was installing windows exactly as ...

  17. Community Shared Solar: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 COMMUNITY SHARED SOLAR POLICY AND REGULATORY CONSIDERATIONS ABSTRACT Shared solar, also called community solar, is an increasingly popular business model for deploying distributed solar technology. Shared solar projects allow customers that do not have suffcient solar resource, that rent their homes, or that are otherwise unable or unwilling to install solar on their residences, to buy or lease a portion of a shared solar system. The participant's share of the electricity generated is credited

  18. Better Buildings Neighborhood Program Data Installed Measures...

    Energy Savers [EERE]

    Installed Measures Better Buildings Neighborhood Program Data Installed Measures Building project data for 75,110 single-family homes upgraded between July 1, 2010, and September ...

  19. SunShot Spotlight: Solar and Real Estate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Spotlight: Solar and Real Estate SunShot Spotlight: Solar and Real Estate SunShot Spotlight: Solar and Real Estate With nearly one million solar energy systems installed on residential rooftops across the country, buying or selling a solar home is getting more and more common. Just like a renovated kitchen or a finished basement increases a home's value, solar has been shown to boost home valuation and shorten a home's time on the market. In addition, new borrowing tools give

  20. DOE Tour of Zero: Port Hadlock by Clifton View Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Port Hadlock by Clifton View Homes DOE Tour of Zero: Port Hadlock by Clifton View Homes 1 of 10 Clifton View Homes built this 1,784-square-foot zero energy home in Port Hadlock, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 10 The ultra-efficient home has 7.56 kW of solar electric panels on the roof that help it to achieve annual energy bills of $35. The solar panels are installed on the durable, fire-resistant standing seam

  1. Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet highlights the energy challenges faced by the Virgin Islands Environmental Resource Station (VIERS), the renewable energy and energy efficiency solutions implemented, the resulting energy efficiency savings, and other project benefits. In 2011, VIERS installed a 9.4 kW solar system funded by a $50,000 American Recovery and Reinvestment Act (ARRA) grant, which was administered by VIEO. To identify additional energy-saving opportunities, VIERS performed an energy audit of appliances, which resulted in the removal of two water coolers and the installation of a water meter to monitor water use and how it relates to electric pump use. VIERS also added an educational component to the project, developing a solar classroom near the original solar system. By building on previous energy conservation measures and making additional investments in renewable energy technology, VIERS has lowered its average monthly energy consumption nearly 30%, even with an increase in guests. The VIERS efforts are not limited to the technology installations, however. They also serve to impact the youth of the U.S. Virgin Islands (USVI) by educating young people about energy efficiency and renewable energy technologies and their energy and environmental impacts. VIERS solar system is connected to the Web via a live feed that posts solar output data in real time, increasing the VIERS solar classroom's potential educational impact exponentially.

  2. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) in their newly-constructed homes. Rebates of...

  3. Loan Guarantees for Three California PV Solar Plants Expected...

    Broader source: Energy.gov (indexed) [DOE]

    Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, ...

  4. City of Palo Alto Utilities- Solar Water Heating Program

    Broader source: Energy.gov [DOE]

    City of Palo Alto Utilities is offering incentives for their residential, commercial and industrial customers to install solar water heating systems on their homes and facilities with a goal of 1...

  5. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Questar Gas provides incentives for residential customers to purchase and install solar water heating systems on their homes. Rebates of $750 per system are provided to customers of Questar who...

  6. Solar Access to Public Capital (SAPC) Working Group: Best Practices in PV System Installation; Version 1.0, March 2015; Period of Performance, October 2014 - September 2015

    SciTech Connect (OSTI)

    Doyle, C.; Truitt, A.; Inda, D.; Lawrence, R.; Lockhart, R.; Golden, M.

    2015-03-01

    The following Photovoltaics Installation Best Practices Guide is one of several work products developed by the Solar Access to Public Capital (SAPC) working group, which works to open capital market investment. SAPC membership includes over 450 leading solar developers, financiers and capital managers, law firms, rating agencies, accounting and engineering firms, and other stakeholders engaged in solar asset deployment. SAPC activities are directed toward foundational elements necessary to pool project cash flows into tradable securities: standardization of power purchase and lease contracts for residential and commercial end customers; development of performance and credit data sets to facilitate investor due diligence activities; comprehension of risk perceived by rating agencies; and the development of best practice guides for PV system installation and operations and maintenance (O&M) in order to encourage high-quality system deployment and operation that may improve lifetime project performance and energy production. This PV Installation Best Practices Guide was developed through the SAPC Installation Best Practices subcommittee, a subgroup of SAPC comprised of a wide array of solar industry leaders in numerous fields of practice. The guide was developed over roughly one year and eight months of direct engagement by the subcommittee and two working group comment periods.

  7. Photovoltaic Installation Data from the Open PV Project: Real-time Status of the Solar Photovoltaic Market in the U.S.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project are voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of the US solar power market. The database allows searching by state or zipcode, size or date ranges, and organization name. The results include the cost of each solar install and an average of cost per power watt in that specific state. The Open PV Visualization Gallery features four interactive data maps that instantly reconfigure to display updated information as soon as an individual or organization uploads new data.

  8. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  9. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  10. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  11. Sandia Energy - Solar Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Market Transformation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Market TransformationTara...

  12. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBtu) gross and 26 GJ (25 MBtu) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 Btu/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollowcore floor which serves as the main storage mass and for the comfort range in the house.

  13. Hodges residence: performance of a direct gain passive solar home in Iowa

    SciTech Connect (OSTI)

    Hodges, L.

    1980-01-01

    Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

  14. System manual for the University of Pennsylvania retrofitted solar heated Philadelphia row home (SolaRow)

    SciTech Connect (OSTI)

    Zinnes, I.; Lior, N.

    1980-05-01

    The University of Pennsylvania SolaRow house, an urban row home retrofitted for comfort and domestic hot water heating, was extensively instrumented for performance monitoring and acquisition of weather and solar radiation data. This report describes the heating and instrumentation systems, provides the details for instrumentation, piping and valve identification, and specifies the operation and maintenance of the heating and data acquisition systems. The following are included: (1) system flow diagrams; (2) valve and cable identification tables; (3) wiring diagrams; and (4) start-up, normal operation, shut-down, maintenance and trouble-shooting procedures. It thus provides the necessary technical information to permit system operation and monitoring, overall system performance analysis and optimization, and acquisition of climatological data.

  15. A Step by Step Tool Kit for Local Governments to Go Solar

    Broader source: Energy.gov [DOE]

    This tool kit provides an array of strategies and options that local governments can implement to help encourage solar developments in their region, including amending general plans, incentivizing energy efficiency measures and solar installations, and educating local home builders about existing solar incentives. It also includes model ordinances and resolutions to help local governments promote solar development.

  16. Solar Installation Contractor

    Broader source: Energy.gov [DOE]

    Alternate Title(s):General Contractor, Electrical or Plumbing Contractor, Construction Manager, Project Superintendant

  17. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This house incorporates slab-on-grade, EPS roof, and radiant heating with an air-to-water heat pump that also preheats domestic hot water. Without counting in the solar panels, the home earns a home energy rating system (HERS) score of 37, with projected utility bills of about $740 a year. With the 6.4-kW photovoltaic power system installed on the roof, the home’s HERS scores drops to -1 and utility bills for the all-electric home drop to zero. This home was awarded a 2013 Housing Innovation Award in the affordable builder category.

  18. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  19. DOE Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, Illinois

    SciTech Connect (OSTI)

    none,

    2013-09-01

    The Passive House Challenge Home located in River Forest, Illinois, is a 5-bedroom, 4.5-bath, 3,600 ft2 two-story home (plus basement) that costs about $237 less per month to operate than a similar sized home built to the 2009 IECC. For a home with no solar photovoltaic panels installed, it scored an amazingly low 27 on the Home Energy Rating System (HERS) score.An ENERGY STAR-rated dishwasher, clothes washer, and refrigerator; an induction cooktop, condensing clothes dryer, and LED lighting are among the energy-saving devices inside the home. All plumbing fixtures comply with EPA WaterSense criteria. The home was awarded a 2013 Housing Innovation Award in the "systems builder" category.

  20. Look to the Right, Kids: Five Solar/Wind Hybrids | Department...

    Broader source: Energy.gov (indexed) [DOE]

    about the technology and how to get a hybrid unit installed at their home, he adds. ... Vertical airfoils catch the wind, with several solar panels at the base to absorb sunrays. ...

  1. Have a great idea about how to cut the cost of solar panel installatio...

    Open Energy Info (EERE)

    Have a great idea about how to cut the cost of solar panel installation? Home > Groups > Buildings Dc's picture Submitted by Dc(266) Contributor 7 November, 2014 - 12:13 As prices...

  2. How Solar Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 likes How Solar Works Every four minutes, another American home or business goes solar, but how do solar panels turn sunlight into energy? We'll answer that question, while exploring other topics like the different types of solar technology available for both commercial and residential use and the steps you need to take before you install solar panels on your house. For more on solar energy, check out the Top 6 Things You Didn't Know About Solar Energy. Innovators Sort by: Random |

  3. No Roof, No Problem: Shared Solar Programs Make Solar Possible For You

    Broader source: Energy.gov [DOE]

    Every three weeks, the U.S. brings as much solar power online as we installed for the entire year in 2008. Did you know you can still reap the benefits of this solar boom without installing anything at your home? Shared solar programs, such as the ones highlighted in this graphic, enable communities to increase access to affordable, sustainable solar power. Find out how the Energy Department’s SunShot Initiative works to expand and improve shared solar programs all across America.

  4. Powering a Home with Just 25 Watts of Solar PV. Super-Efficient Appliances Can Enable Expanded Off-Grid Energy Service Using Small Solar Power Systems

    SciTech Connect (OSTI)

    Phadke, Amol A.; Jacobson, Arne; Park, Won Young; Lee, Ga Rick; Alstone, Peter; Khare, Amit

    2015-04-01

    Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africa and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.

  5. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  6. Environmental Evaluation for Installation of Solar Arrays at San Jose/Santa Clara Water Pollution Control Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this technical memorandum (TM) is to review the options to develop a potential solar array development (Project) within or adjacent to western burrowing owl (Athene cunicularia) habitat in the buffer lands that surround the San José/Santa Clara Water Pollution Control Plant (WPCP) and to determine if there is a ground-mounted solar photovoltaic (PV) configuration that would enable a workable co-existence between the burrowing owl habitat and the PV arrays.

  7. Solar Contractor Licensing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility InstallersContractors Savings Category Solar - Passive Solar Water Heat Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Photovoltaics...

  8. Going Off the Grid with Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Off the Grid with Solar Going Off the Grid with Solar October 22, 2014 - 2:18pm Q&A What do you want to know about solar energy at home? Tell Us Addthis When installing an off-grid solar electric system be sure you have "balance-of-system" equipment to transmit electricity safely. | Photo courtesy of Warren Gretz, National Renewable Energy Laboratory. When installing an off-grid solar electric system be sure you have "balance-of-system" equipment to transmit

  9. Cost, Design, and Performance of Solar Hot Water in Cold-Climate Homes

    SciTech Connect (OSTI)

    2006-05-03

    This paper examines long-term performance of two solar hot water heating systems in the northern climate zone.

  10. Building America Technology Solutions for New and Existing Homes: A Homeowner’s Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This step-by-step guide developed by the National Renewable Energy Laboratory describes proper installation of window air conditioning units, in order to improve energy efficiency, save money, and improve comfort for homeowners