Powered by Deep Web Technologies
Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)  

Office of Energy Efficiency and Renewable Energy (EERE)

A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

2

Own Your Power! A Consumer Guide to Solar Electricity for the Home (Brochure)  

SciTech Connect (OSTI)

A consumer guide about solar electricity for the home. Includes information about types of solar electric systems, how to choose a system, financing, and costs.

Not Available

2009-01-01T23:59:59.000Z

3

Planning a Home Solar Electric System | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartment of Energy Pinpointing America'sa Home

4

Installing and Maintaining a Home Solar Electric System | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32 InspectionSummaryInstalling a Light

5

Installing and Maintaining a Home Solar Electric System | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment of Energy4thOnSuccess, CongressionalIf you

6

Ozark Mountain solar home  

SciTech Connect (OSTI)

If seeing is believing, Kyle and Christine Sarratt are believers. The couple has been living in their passive solar custom home for almost two years, long enough to see a steady stream of eye-opening utility bills and to experience the quality and comfort of energy-efficient design. Skeptical of solar homes at first, the Sarratts found an energy-conscious designer that showed them how they could realize their home-building dreams and live in greater comfort while spending less money. As Kyle says, {open_quotes}We knew almost nothing about solar design and weren`t looking for it, but when we realized we could get everything we wanted in a home and more, we were sold.{close_quotes} Now the couple is enjoying the great feeling of solar and wood heat in the winter, natural cooling in the summer and heating/cooling bills that average less than $20/month. The Sarratts` home overlooks a large lake near the town of Rogers, tucked up in the northwest corner of Arkansas. It is one of three completed homes out of 29 planned for the South Sun Estates subdivision, where homes are required by covenant to incorporate passive solar design principles. Orlo Stitt, owner of Stitt Energy Systems and developer of the subdivision, has been designing passive solar, energy-efficient homes for twenty years. His passive solar custom home development is the first in Arkansas.

Miller, B.

1998-03-01T23:59:59.000Z

7

The passive solar home  

SciTech Connect (OSTI)

This article describes a home designed with both energy efficiency and solar principles in mind. The house is situated in Colorado and maintains a comfortable, relatively even heat year around with little backup heat needed. The sun heats the home and the energy efficient design works to store and distribute the heat slowly and continuously. Specific design elements discussed include the following: collection, storage, distribution and retention of solar energy.

Weiss, J.; Stone, L. [Solar Energy International, Carbondale, CO (United States)

1995-02-01T23:59:59.000Z

8

NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP FINALGUIDEBOOK DECEMBER 2006 CEC-300 Executive Director Payam Narvand Program Lead NEW SOLAR HOMES PARTNERSHIP Bill Blackburn Supervisor EMERGING RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Drake Johnson Office Manager RENEWABLE ENERGY PROGRAM

9

Renewable Energy Ready Home Solar Photovoltaic Specifications...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide,...

10

NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP COMMITTEEDRAFTGUIDEBOOK NOVEMBER 2006 CEC................................................................................................ 1 C. Comparison of Emerging Renewables Program and New Solar Homes Partnership Guidebooks ................................................... 8 G. Estimated Performance Using Commission PV Calculator .................................. 8 H

11

High-Performance with Solar Electric Reduced Peak Demand: Premier Homes  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department HIGHImageDepartment ofRancho

12

Your Solar Home  

Broader source: Energy.gov [DOE]

Solar Schoolhouse Education supplement for the Sacramento Bee to introduce solar to elementary school children and introduce the design and AD contest for local students.

13

Solar Textiles For the Home.  

E-Print Network [OSTI]

??Solar Textiles came out of the idea that everyone has windows in their homes which need to be shaded. The question was simple, why are… (more)

Cosman, Brienne E

2011-01-01T23:59:59.000Z

14

Solar Industry At Work: Streamlining Home Solar Installation...  

Broader source: Energy.gov (indexed) [DOE]

Solar Industry At Work: Streamlining Home Solar Installation Solar Industry At Work: Streamlining Home Solar Installation June 12, 2012 - 11:59am Addthis Sunrun is a home solar...

15

NEW SOLAR HOMES PARTNERSHIP GUIDEBOOKSTAFFDRAFT  

E-Print Network [OSTI]

Heather Raitt Technical Director RENEWABLE ENERGY PROGRAM Bill Pennington Office Manager BUILDINGS RENEWABLES PROGRAM & NEW SOLAR HOMES PARTNERSHIP Mark Hutchison Office Manager RENEWABLE ENERGY PROGRAM Building Energy Efficiency ................................................................. 9 C. Grid

16

COMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP  

E-Print Network [OSTI]

is part of a statewide solar program known as the California Solar Initiative. The New Solar HomesCOMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fifth Edition Commission Guidebook CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor SEPTEMBER 2012 CEC

17

NREL: Solar Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D.Solar EnergyRenewableSolar Research

18

COMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP  

E-Print Network [OSTI]

is part of a statewide solar program known as the California Solar Initiative. The New Solar Homes Nguyen, Le-Quyen, Farakh Nasim. 2013. New Solar Homes Partnership Guidebook (Sixth Edition). CaliforniaCOMMISSION GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Sixth Edition Commission Guidebook APRIL

19

NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP DRAFTSTAFFPROPOSALMAY 2006 CEC-300 of the information in this paper. #12;TABLE OF CONTENTS NEW SOLAR HOMES PARTNERSHIP .......................................................................................................2 Current Solar Incentive Programs

20

7Name ________________________________ Solar Electricity.  

E-Print Network [OSTI]

be attached directly to the outer surface of a satellite, or can be found on `solar panels' that the satellite. If the satellite is not big enough, additional solar panels may be needed to supply the electricity) The solar cells produce 0.03 watts per square cm, so the power available is 39819 x 0.03 = 1194 watts

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Homeowners Guide to Leasing a Solar Electric System (Brochure)  

SciTech Connect (OSTI)

This updated fact sheet provides an introduction to solar leases for homeowners who are considering installing a solar electric system on their home.

Not Available

2014-07-01T23:59:59.000Z

22

Residential solar home resale analysis  

SciTech Connect (OSTI)

One of the determinants of the market acceptance of solar technologies in the residential housing sector is the value placed upon the solar property at the time of resale. The resale factor is shown to be an important economic parameter when net benefits of the solar design are considered over a typical ownership cycle rather than the life cycle of the system. Although a study of solar resale in Davis, Ca, indicates that those particular homes have been appreciating in value faster than nonsolar market comparables, no study has been made that would confirm this conclusion for markets in other geograhical locations with supporting tests of statistical significance. The data to undertake such an analysis is available through numerous local sources; however, case by case data collection is prohibitively expensive. A recommended alternative approach is to make use of real estate market data firms who compile large data bases and provide multi-variate statistical analysis packages.

Noll, S.A.

1980-01-01T23:59:59.000Z

23

NEW SOLAR HOMES PARTNERSHIP Fourth Edition  

E-Print Network [OSTI]

NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

24

NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK  

E-Print Network [OSTI]

NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK Fourth Edition JANUARY 2012 CEC3002011006CMD2 The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives for installing solar energy

25

High-Performance with Solar Electric Reduced Peak Demand: Premier...  

Energy Savers [EERE]

energy systems with high-performance homes and showing how they align with utility peak-demand reduction interests. In addition to substantial energy savings, solar electric home...

26

Cullman Electric Cooperative- Energy Efficient Homes Program  

Broader source: Energy.gov [DOE]

Cullman Electric Cooperative offers rebates to residential customers that make certain energy efficiency improvements to newly constructed, all electric homes. Up to $200 is available per home. ...

27

NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK  

E-Print Network [OSTI]

NEW SOLAR HOMES PARTNERSHIP DRAFT GUIDEBOOK Fourth Edition SEPTEMBER 2011 CEC3002011006CMD 7, 2010. #12;i ABSTRACT The New Solar Homes Partnership (NSHP) Program is part of a statewide solar program known as the California Solar Initiative (CSI). The NSHP provides financial incentives

28

STAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP  

E-Print Network [OSTI]

. Brown, Jr., Governor #12;CALIFORNIA ENERGY COMMISSION Andrew McAllister Lead Commissioner, New Solar as the California Solar Initiative and. The New Solar Homes Partnership provides financial incentivesSTAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Seventh Edition Staff Draft

29

STAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP  

E-Print Network [OSTI]

solar program known as the California Solar Initiative (CSI). The New Solar Homes Partnership providesSTAFF DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP GUIDEBOOK Fifth Edition SEPTEMBER 2012 CEC3002012007ED5SD CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor #12;CALIFORNIA

30

NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION NEW SOLAR HOMES PARTNERSHIP REVISED SECONDTHIRD EDITION of 15 Attachment 1 ERRATA TO THE NEW SOLAR HOMES PARTNERSHIP COMMITTEE DRAFT GUIDEBOOK The following list of Errata was adopted as part of the proposed revisions to the New Solar Homes Partnership

31

Chicopee Electric Light- Residential Solar Rebate Program  

Broader source: Energy.gov [DOE]

Chicopee Electric Light offered rebates to residential customers who install solar photovoltaic systems on their homes. Customer rebates are $0.50 per watt for a maximum of $2,500 per installation.

32

Solar Powering America Home | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and ResponseStaffServicesFutureU.S.Solar Cell | DepartmentSolar

33

CEC- New Solar Homes Partnership  

Broader source: Energy.gov [DOE]

In January 2006, the California Public Utilities Commission (CPUC) adopted a program – the California Solar Initiative (CSI) – to provide more than $3 billion in incentives for solar projects with...

34

The solar electric power outlook  

SciTech Connect (OSTI)

The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

Kemp, J.W.

1995-12-31T23:59:59.000Z

35

First Electric Cooperative- Home Improvement Loans  

Broader source: Energy.gov [DOE]

First Electric Cooperative, a Touchstone Energy® Cooperative, serves over 85,000 member accounts throughout parts of seventeen counties in central and southeast Arkansas. The Home Improvement Loan...

36

Passive solar homes in Delaware Valley  

SciTech Connect (OSTI)

This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

1997-12-31T23:59:59.000Z

37

Tucson- Solar Design Requirement for Homes  

Broader source: Energy.gov [DOE]

Tucson adopted an ordinance in June 2008 that requires all new single-family homes and duplexes in Tucson to be "solar-ready." The ordinance was developed by a stakeholder group which included...

38

Passive Solar Home Design | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon Armed Services U.S. HouseMarcOHADepartmentRockyDepartment ofPassive Solar Home

39

Solar Powering America Home | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliabilityDepartment of Energy to HelpSolar

40

SciTech Connect: Solar Energy Education. Home economics: student...  

Office of Scientific and Technical Information (OSTI)

Solar Energy Education. Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: student...

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Havasu Solar Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is8584°,HardyIowaHaskell County isHavasu Solar Electric

42

Solar Energy Home | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle,Solutions,Solar Energy

43

Lane Electric Cooperative- Manufactured Homes Rebate Program  

Broader source: Energy.gov [DOE]

Lane Electric Cooperative offers customers an incentive for buying a new EnergyStar manufactured home. These properties must be within the eligible service area and must be a permanent residence....

44

THE POTENTIAL OF SOLAR ELECTRIC  

E-Print Network [OSTI]

.5 Energy and the Costs of Production.............................................................5 2 and Local Energy Benefits of PV.......................................15 5. CONCLUSIONS AND DISCUSSIONTHE POTENTIAL OF SOLAR ELECTRIC APPLICATIONS FOR DELAWARE'S POULTRY FARMS FINAL REPORT

Delaware, University of

45

Solar Powering America Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarkson solarDamien

46

Solar in the Real World: Tour of Solar Homes Begins in October...  

Broader source: Energy.gov (indexed) [DOE]

Solar in the Real World: Tour of Solar Homes Begins in October Solar in the Real World: Tour of Solar Homes Begins in October September 28, 2009 - 12:26pm Addthis John Lippert The...

47

Performance summary of the Balcomb solar home  

SciTech Connect (OSTI)

The heating performance of the Balcomb passive solar home is re-evaluated based on detailed review of 85 channels of data taken during six weeks of 1980. This led to a re-analysis of 176 days of data taken over the winter of 1978-79. Auxiliary heat during this winter was 7.4 million Btu which compares with 66.0 million Btu total heat losses from the house plus 46.4 million Btu losses from the greenhouse. Auxiliary heat predicted using the solar load ratio method is 8.1 million Btu. Solar savings are estimated as 57 million Btu. Good thermal comfort conditions are documented. Energy flows are tabulated for each month. Energy flows are tabulated for each month. Conclusions regarding detailed heat flow and storage in the house are presented.

Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

1981-01-01T23:59:59.000Z

48

Photoferroelectric solar to electrical conversion  

E-Print Network [OSTI]

We propose a charge pump which converts solar energy into DC electricity. It is based on cyclic changes in the spontaneous electric polarization of a photoferroelectric material, which allows a transfer of charge from a low to a high voltage. To estimate the power efficiency we use a photoferroelectric liquid crystal as the working substance. For a specific choice of material, an efficiency of $2\\%$ is obtained.

Milos Knezevic; Mark Warner

2013-01-30T23:59:59.000Z

49

Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes...  

Energy Savers [EERE]

Slashing Red Tape To Speed Solar Deployment for Homes and Businesses Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes and Businesses January 24, 2014 - 12:00am...

50

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network [OSTI]

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

51

Getting More Electricity out of Solar Cells | U.S. DOE Office...  

Office of Science (SC) Website

Getting More Electricity out of Solar Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News Stories of Discovery &...

52

Coast Electric Power Association- Comfort Advantage Home Program  

Broader source: Energy.gov [DOE]

Coast Electric Power Association (CEPA) provides rebates on heat pumps to new homes which meet certain weatherization standards. To qualify for this rebate the home must have:...

53

LEAD COMMISSIONER DRAFT GUIDEBOOK NEW SOLAR HOMES PARTNERSHIP  

E-Print Network [OSTI]

Payam Narvand Supervisors Kate Zocchetti Office Manager Renewable Energy Office Eurlyne Geiszler Office Manager Buildings Standards Development Office Suzanne Korosec Deputy Director Renewable Energy Division for installing solar energy systems on new residential buildings. Incentives from the New Solar Homes

54

EWEB- Solar Electric Program (Performance-Based Incentive)  

Broader source: Energy.gov [DOE]

The Eugene Water and Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential and commercial customers who generate electricity using solar photovoltaic (PV)...

55

High-Performance Home Technologies: Solar Thermal & Photovoltaic...  

Broader source: Energy.gov (indexed) [DOE]

in each of the volumes. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems More Documents & Publications Building America Whole-House Solutions for...

56

Lakeland Electric- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar...

57

Solar Decathlon Teams Working Around the Clock to Assemble Homes...  

Broader source: Energy.gov (indexed) [DOE]

Teams Working Around the Clock to Assemble Homes For Competition Solar Decathlon Teams Working Around the Clock to Assemble Homes For Competition September 14, 2011 - 12:59pm...

58

Flathead Electric Cooperative- New and Manufactured Home Incentive Program  

Broader source: Energy.gov [DOE]

Flathead Electric encourages its residential customers to occupy energy efficient homes. Owners and builders of new homes which meet the "Montana Homes" requirements listed on the program web site...

59

Valley Electric Association- Solar Water Heating Program  

Broader source: Energy.gov [DOE]

Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

60

Passive Solar Home Design | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartmentPOET-DSM biorefinery inPassive

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Thermal Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,Home Aimeebailey's picture SubmittedSan

62

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis  

E-Print Network [OSTI]

Electricity Markets Meet the Home through Demand Response Lazaros Gkatzikis CERTH, University) programs motivate home users through dynamic pricing to shift electricity consumption from peak demand periods. In this paper, we introduce a day ahead electricity market where the operator sets the prices

63

Solar and Wind Powering Wyoming Home | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy SmoothSolar IndustrySB 2

64

Solar Home Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutline JumpHold Jump to:Home

65

Empirical Characterization and Modeling of Electrical Loads in Smart Homes  

E-Print Network [OSTI]

in data analysis: i) generating device-accurate synthetic traces of building electricity usage, and ii) filtering out loads that generate rapid and random power variations in building electricity data. Keywords--ElectricalEmpirical Characterization and Modeling of Electrical Loads in Smart Homes Sean Barker, Sandeep

Shenoy, Prashant

66

Berkeley Electric Cooperative-HomeAdvantage Efficiency Loan Program  

Broader source: Energy.gov [DOE]

Berkeley Electric Cooperative provides HomeAdvantage Loans to qualifying homeowners for energy efficiency upgrades to residences. Measures typically include air infiltration measures, insulation...

67

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Broader source: Energy.gov (indexed) [DOE]

6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for...

68

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Investigation of Photovoltaic Cost Trends in California,”The Market Value and Cost of Solar Photovoltaic ElectricityThe Market Value and Cost of Solar Photovoltaic Electricity

Borenstein, Severin

2008-01-01T23:59:59.000Z

69

2013MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT)  

E-Print Network [OSTI]

Challenge in Australia, and the North American Solar Challenge. The vehicles drive during the day and stop2013MIT SOLAR ELECTRIC VEHICLE TEAM #12;The MIT Solar Electric Vehicle Team (SEVT) is a student organization dedicated to demonstrating the viability of alternative energy-based transportation. The team

Williams, Brian C.

70

NREL: Concentrating Solar Power Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResultsPhotoResource MapsA

71

New Home Buyer Solar Water Heater Trade-Off Study  

SciTech Connect (OSTI)

This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

Symmetrics Marketing Corporation

1999-08-18T23:59:59.000Z

72

RDI's Wisdom Way Solar Village Final Report: Includes Utility Bill Analysis of Occupied Homes  

SciTech Connect (OSTI)

In 2010, Rural Development, Inc. (RDI) completed construction of Wisdom Way Solar Village (WWSV), a community of ten duplexes (20 homes) in Greenfield, MA. RDI was committed to very low energy use from the beginning of the design process throughout construction. Key features include: 1. Careful site plan so that all homes have solar access (for active and passive); 2. Cellulose insulation providing R-40 walls, R-50 ceiling, and R-40 floors; 3. Triple-pane windows; 4. Airtight construction (~0.1 CFM50/ft2 enclosure area); 5. Solar water heating systems with tankless, gas, auxiliary heaters; 6. PV systems (2.8 or 3.4kWSTC); 7. 2-4 bedrooms, 1,100-1,700 ft2. The design heating loads in the homes were so small that each home is heated with a single, sealed-combustion, natural gas room heater. The cost savings from the simple HVAC systems made possible the tremendous investments in the homes' envelopes. The Consortium for Advanced Residential Buildings (CARB) monitored temperatures and comfort in several homes during the winter of 2009-2010. In the Spring of 2011, CARB obtained utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes. Most homes, in fact, had a net credit from the electric utility over the course of a year. On the natural gas side, total gas costs averaged $377 per year (for heating, water heating, cooking, and clothes drying). Total energy costs were even less - $337 per year, including all utility fees. The highest annual energy bill for any home evaluated was $458; the lowest was $171.

Robb Aldrich, Steven Winter Associates

2011-07-01T23:59:59.000Z

73

NREL: Electricity Integration Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two

74

First Solar Electric LLC formerly DT Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy InformationInformationElectric LLC formerly DT

75

Tampa Electric- Solar Rebate Program  

Broader source: Energy.gov [DOE]

'''''Note: Of the $1.5 million budgeted for this program annually, $500,000 is reserved for solar water heating, and $1 million is reserved for PV systems. All funds have been committed for Solar...

76

Solar Electric & Heat System Training  

Broader source: Energy.gov [DOE]

GRID Alternatives is holding a solar training in partnership with Trees, Water & People and Lakota Solar Enterprises. This 9-day training will include both classroom education and hands-on...

77

Property Tax Abatement for Solar Electric Systems  

Broader source: Energy.gov [DOE]

In August 2008, North Carolina enacted legislation that exempts 80% of the appraised value of a "solar energy electric system" (also known as a photovoltaic, or PV, system) from property tax. For...

78

Solar thermal electric: Program overview fiscal years 1993--1994  

SciTech Connect (OSTI)

The Solar Thermal Electric Program Overview and Accomplishments for Fiscal Years 1993--1994 are documented.

NONE

1995-03-01T23:59:59.000Z

79

Sandia National Laboratories: Price Premiums for Solar Home Sales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSP ResourcesSyntheticChemical

80

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

and Electrical Cogeneration ……………………. …………… 16 2.4.OptimalELECTRICAL AND THERMAL COGENERATION A thesis submitted inFOR ELECTRICAL AND THERMAL COGENERATION A solar tracker and

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Denton Municipal Electric- GreenSense Solar Rebate Program  

Broader source: Energy.gov [DOE]

Denton Municipal Electric offers rebates to its electric customers for the installation of solar PV and solar water heating systems. The solar rebates are designed for residential and small...

82

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

83

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca:upGuidebookSolSolution JumpJumpLight

84

A solar module fabrication process for HALE solar electric UAVs  

SciTech Connect (OSTI)

We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

1994-12-12T23:59:59.000Z

85

Singing River Electric Power Association- Comfort Advantage Home Program  

Broader source: Energy.gov [DOE]

Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf...

86

Empire District Electric- Low Income New Homes Program  

Broader source: Energy.gov [DOE]

Empire District Electric offers rebates for the utilization of energy efficient measures and appliances in new, low-income homes. Rebates are available for several types of building insulation,...

87

Pee Dee Electric Cooperative- Energy Efficient Home Improvement Loan Program  

Broader source: Energy.gov [DOE]

Pee Dee Electric Cooperative offers financing for members through the Energy Efficient Home Improvement Loan Program. Loans of up to $5,000, with repayment periods up to 72 months, can be used for...

88

American Solar Electric Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy SystemsAmerican Energy SystemsElectric Inc Jump to:

89

Performance of the biose cascade-INEL manufactured solar home  

SciTech Connect (OSTI)

Two manufactured active solar homes using air collectors and rock storage were designed, bult and are being tested. The cooperative, DOE-funded project involves. Boise Cascade Corporation and the Idaho National Engineering Laboratory (INEL). The two primary goals of the project are to develop an active solar heating system that is cost-effective now, and to provide significant market penetration through the involvement of Boise Cascade, a major manufacturer of factory built houses. A brief discussion of the houses and solar systems is included, with more detailed discussion of the desktop-computer based data acquisition system and initial performance results. The 1979 cooling season data indicated a need for modifications to achieve adequate cooling system performance. Data from the heating season showed good agreement with calculations, especially the house heat loss coefficient. However, solar heating fractions were lower than predicted and an examination of the collector operating efficiency showed the collector losses to be approximately three times higher than predicted. Tests are underway to better understand the large collection losses. Comparison of the performance data and f-chart predictions shows significant differences, with predicted solar fractions being lower than actual. The solar domestic hot water preheating system performed reasonably well, with significant thermal losses noticed from the auxiliary hot water heater. Recommendations are made for the design of solar air-heating systems.

Lau, A S; Liebelt, K H; Scofield, M P; Shinn, N R

1980-01-01T23:59:59.000Z

90

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Radiation  

E-Print Network [OSTI]

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Radiation Solar Radiation: Effects of atmosphere, angular dependence of radiation, variation of solar radiation ­ Calculation of Solar Radiation: · Estimate of intensity of solar radiation · Angular Dependence ­ Solar Noon

Honsberg, Christiana

91

Small Solar Electric Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher, Assistant7/2013technicalSmall Particles, BigSolar

92

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell Operation  

E-Print Network [OSTI]

is lost as heat. energy Eg 2 31 Absorption process #12;ELEG620: Solar Electric Systems UniversityELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell and shunt resistance). #12;ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C

Honsberg, Christiana

93

El Paso Electric Company- Solar PV Pilot Program  

Broader source: Energy.gov [DOE]

'''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00 pm MST on February 1, 2013.'''''

94

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

95

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

contributor to annual electricity consumption, and certainplay in “Other” electricity consumption in new homes, andor range. “Other” electricity consumption was derived by

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

96

Do You Wonder How Much Energy Your Home Could Get from Solar...  

Broader source: Energy.gov (indexed) [DOE]

you, you might be interested in these other resources from EERE: Small Solar Electric Systems Small Wind Electric Systems Small Wind for Homeowners, Ranchers, and Small Businesses...

97

Milwaukee, Wisconsin: Solar in Action (Brochure), Solar America...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and incentives for siting solar water heating systems at homes with electric water heating systems. * In 2005, the Solar Electric Power Association awarded a Business...

98

Solar installer training: Home Builders Institute Job Corps  

SciTech Connect (OSTI)

The instructors describe the solar installation training program operated since 1979 by the Home Builders Institute, the Educational Arm of the National Association of Home Builders for the US Department of Labor, Job Corps in San Diego, CA. The authors are the original instructors and have developed the program since its inception by a co-operative effort between the Solar Energy Industries Association, NAHB and US DOL. Case studies of a few of the 605 students who have gone to work over the years after the training are included. It is one of the most successful programs under the elaborate Student Performance Monitoring Information System used by all Job Corps programs. Job Corps is a federally funded residential job training program for low income persons 16--24 years of age. Discussion details the curriculum and methods used in the program including classroom, shop and community service projects. Solar technologies including all types of hot water heating, swimming pool and spa as well as photovoltaics are included.

Hansen, K.; Mann, R. [San Diego Job Corps Center, Imperial Beach, CA (United States). Home Builders Inst.

1996-10-01T23:59:59.000Z

99

Implementation of optimum solar electricity generating system  

SciTech Connect (OSTI)

Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

2014-10-24T23:59:59.000Z

100

Appliances, Lighting, Electronics, and Miscellaneous Equipment Electricity Use in New Homes  

E-Print Network [OSTI]

online: www.eia.doe.gov/cneaf/electricity/esr/esr_sum.html.Miscellaneous Equipment Electricity Use in New Homes RichardMiscellaneous Equipment Electricity Use in New Homes Richard

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan, Gregory

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electrical overstress failure in silicon solar cells  

SciTech Connect (OSTI)

A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

1982-11-01T23:59:59.000Z

102

Regional Per Capita Solar Electric Footprint for the United States  

SciTech Connect (OSTI)

In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

Denholm, P.; Margolis, R.

2007-12-01T23:59:59.000Z

103

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

the premium value of solar PV power to 0%-20% again. Whilepower to that location. While few dispute that the direct cost of electricity from the currently available solar

Borenstein, Severin

2008-01-01T23:59:59.000Z

104

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.gov » HistorySeventyPublic

105

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.gov »

106

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.gov »default Sign In About

107

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

108

Solar Energy Education. Home economics: teacher's guide. Field test edition. [Includes glossary  

SciTech Connect (OSTI)

An instructional aid is provided for home economics teachers who wish to integrate the subject of solar energy into their classroom activities. This teacher's guide was produced along with the student activities book for home economics by the US Department of Energy Solar Energy Education. A glossary of solar energy terms is included. (BCS)

Not Available

1981-06-01T23:59:59.000Z

109

Hybrid solar application in a demonstration home for the N. A. H. B  

SciTech Connect (OSTI)

The NAHB Energy Saver Home built in 1980 in Boulder, Colorado, is one of ten different energy-conserving homes built under a demonstration program for the National Association of Home Builders. It incorporates a unique job-built active solar system that is carefully integrated with passive solar features on the home to create an attractive and marketable hybrid solar application. This paper describes and illustrates the design of the system, expected performance of the solar system, and the initial public reaction to the design. The home is presently occupied and being monitored.

Leach, J.W.

1981-01-01T23:59:59.000Z

110

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

111

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network [OSTI]

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

112

Department of Electrical Engineering Spring 2011 Glass Block Solar Collector  

E-Print Network [OSTI]

to the sponsor. The collector incorporated a solar panel that charged a battery unit. The battery poweredPENNSTATE Department of Electrical Engineering Spring 2011 Glass Block Solar Collector Overview Pittsburgh Corning, a leading manufacturer of architectural glass blocks, wanted to incorporate a solar

Demirel, Melik C.

113

17th Sede Boqer Symposium on Solar Electricity Production  

E-Print Network [OSTI]

to solar panel parameter extraction based on the manufacturer's datasheet Moshe Averbukh1 , S. Lineykin2 17th Sede Boqer Symposium on Solar Electricity Production October 24-26, 2011 George Evens Family efficiency solar cells Ronen Gurtman1,3 , Anna Osherov2,3 Yuval Golan2,3 and Iris Visoly-Fisher1,3 1 Dept

Prigozhin, Leonid

114

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network [OSTI]

rating of a photovoltaic module is typically quoted as the power output of the module when the incidentNovember 21, 2000 PV Lesson Plan 2 ­ Solar Electric Arrays Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken

Oregon, University of

115

The Economics of Solar Electricity Erin Baker,  

E-Print Network [OSTI]

-effectiveness of incremental increases in solar capacity, holding the rest of the power system fixed. Solar's variability adds. Medium-run analyses con- sider the implications of non-incremental changes in solar capacity. The cost with solar power generation are close to zero. Second, increasing the level of grid-connected solar capacity

Fowlie, Meredith

116

Solar Decathlon Entry Uses iPad to Monitor Home | Department...  

Broader source: Energy.gov (indexed) [DOE]

competition. The University of Tennessee, Knoxville is participating in its first Solar Decathlon competition, featuring its home, "Living Light." Named for its very...

117

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Broader source: Energy.gov [DOE]

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

118

Solar Decathlon at Home in the D.C. Community | Department of...  

Broader source: Energy.gov (indexed) [DOE]

at Home in the D.C. Community Solar Decathlon at Home in the D.C. Community December 4, 2012 - 4:25pm Addthis One of the new homeowners, Layika Culley, and her family cut the...

119

Solar Decathlon Homes -- They're Not Just for Show | Department...  

Broader source: Energy.gov (indexed) [DOE]

Homes -- They're Not Just for Show Solar Decathlon Homes -- They're Not Just for Show December 13, 2012 - 4:01pm Addthis Cornells 2009 Silo House is now a private residence...

120

A publication presented by the Electrical Safety Foundation International A guide to understanding and maintaining your home's electrical system  

E-Print Network [OSTI]

A publication presented by the Electrical Safety Foundation International A guide to understanding and maintaining your home's electrical system #12;Should You Do-It-Yourself? Is a Permit or Inspection Required? How Much Energy Does My Home Use? How Does My Electrical System Work? What's Inside My Service Panel

Quigg, Chris

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Promise of Solar Energy is Boundless: A Smarter Electric Grid Delivers on that Promise  

SciTech Connect (OSTI)

This brochure summarizes the benefits of a smart electric grid, the Solar Program's Solar Energy Grid Intergration Systems efforts, and the Office of Electricity's "The Smart Grid" booklet.

Not Available

2008-10-01T23:59:59.000Z

122

Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

Not Available

2010-03-01T23:59:59.000Z

123

Author's personal copy Solar modulation in surface atmospheric electricity  

E-Print Network [OSTI]

Author's personal copy Solar modulation in surface atmospheric electricity R. Giles Harrison a is the major source of air's electrical conductivity over the oceans and well above the continents atmospheric electrical circuit, including the local vertical current density and the related surface potential

Usoskin, Ilya G.

124

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs

125

Constitution of the MIT Solar Electric Vehicle Team We, the workers of the Solar Electric Vehicle Team, in order to form a more  

E-Print Network [OSTI]

Constitution of the MIT Solar Electric Vehicle Team 1 PURPOSE We, the workers of the Solar Electric the blessings of fast Solar Cars to ourselves and our Posterity, do ordain and establish this Constitution for the Solar Electric Vehicle Team of the Massachusetts Institute of Technology (henceforth "TFP"). 2

Williams, Brian C.

126

Duke Energy (Electric)- Energy Star Homes Rate Discount Program  

Broader source: Energy.gov [DOE]

Duke Energy encourages residential customers to buy energy-efficient homes through the utility's [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a...

127

Silicon Valley Power- Solar Electric Buy Down Program  

Broader source: Energy.gov [DOE]

Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as...

128

Wind and Solar-Electric (PV) Systems Exemption  

Broader source: Energy.gov [DOE]

Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is...

129

New Hampshire Electric Co-Op- Solar Hot Water  

Broader source: Energy.gov [DOE]

New Hampshire Electric Co-Op (NHEC) offers rebates to residential customers who install qualified solar water-heating systems. The rebate is equal to 20% of installed system costs, with a maximum...

130

How to balance solar and conservation in passive homes  

SciTech Connect (OSTI)

A method is presented, step by step, which shows, for any kind of passive solar house, how air-tight to make it and how much insulation to use. The method strikes a balance between the solar savings fraction (SSF), the building load coefficient (BLC) and load collector ratio (LCR) and cost. An example is given that illustrates the method. (LEW)

Balcomb, D.

1981-09-01T23:59:59.000Z

131

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolveFuture | DepartmentSo Simple ItHeatingof

132

Renewable Energy Ready Home Solar Photovoltaic Specifications | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergy DataRemediatedLands || DepartmentRenewable Energyof

133

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24  Electrical, Controls & 

Hill, Steven Craig

2013-01-01T23:59:59.000Z

134

Moreno Valley Electric Utility- Solar Electric Incentive Program  

Broader source: Energy.gov [DOE]

Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30...

135

Sandia National Laboratories: Solar Electric Propulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

136

Building America System Research Plan for Reduction of Miscellaneous Electrical Loads in Zero Energy Homes  

SciTech Connect (OSTI)

This research plan describes the overall scope of system research that is needed to reduce miscellaneous electrical loads (MEL) in future net zero energy homes.

Barley, C. D.; Haley, C.; Anderson, R.; Pratsch, L.

2008-11-01T23:59:59.000Z

137

Miscellaneous electricity use in U.S. homes  

E-Print Network [OSTI]

AC03-76F0098 References AHAM. Association of Home Appliancea variety of sources (AHAM: California Energy Commission,

Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

1999-01-01T23:59:59.000Z

138

A solar array module fabrication process for HALE solar electric UAVs  

SciTech Connect (OSTI)

We describe a fabrication process to manufacture high power to weight ratio flexible solar array modules for use on high altitude long endurance (HALE) solar electric unmanned air vehicles (UAVs). A span-loaded flying wing vehicle, known as the RAPTOR Pathfinder, is being employed as a flying test bed to expand the envelope of solar powered flight to high altitudes. It requires multiple light weight flexible solar array modules able to endure adverse environmental conditions. At high altitudes the solar UV flux is significantly enhanced relative to sea level, and extreme thermal variations occur. Our process involves first electrically interconnecting solar cells into an array followed by laminating them between top and bottom laminated layers into a solar array module. After careful evaluation of candidate polymers, fluoropolymer materials have been selected as the array laminate layers because of their inherent abilities to withstand the hostile conditions imposed by the environment.

Carey, P.G.; Aceves, R.C.; Colella, N.J.; Thompson, J.B.; Williams, K.A.

1993-12-01T23:59:59.000Z

139

Salem Electric- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

140

Home Solar Installations: Things to Consider | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many|Humans haveVersion)12345ofDepartmentHome

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mortgage default and student outcomes, the solar home price premium, and the magnitude of housing price declines  

E-Print Network [OSTI]

effect of falling home prices on small business borrowing,”2 Understanding the Solar Home Price Premium: Electricitysocial influences on price,” Journal of Political Economy,

Dastrup, Samuel R.

2011-01-01T23:59:59.000Z

142

Solar Electric Power Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle,

143

Mortgage default and student outcomes, the solar home price premium, and the magnitude of housing price declines  

E-Print Network [OSTI]

capitalization of solar panels in housing prices measuresof log sales price on solar panels 94 Table 2.5:to home sales price of solar panels. The baseline equation

Dastrup, Samuel R.

2011-01-01T23:59:59.000Z

144

Solar Electrical Vehicles | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) Jump to:

145

Considering Solar For Your Home? One Milwaukee Homeowner Shares Her  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional AccountExperience | Department of

146

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems;  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many| Department HIGHImage

147

Harnessing Solar Energy at Home | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9 HanfordCell CathodeHarness the

148

NREL: Concentrating Solar Power Research - TroughNet Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEvents Below areBecomePowerResearch TroughNet

149

Solar Successes: The Best of Today's Energy Efficient Homes (Fact Sheet)  

SciTech Connect (OSTI)

This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

Not Available

2008-01-01T23:59:59.000Z

150

Energy Efficiency Fund (Electric)- Home Energy Solutions and Performance Programs  

Broader source: Energy.gov [DOE]

The Energy Efficiency Fund, funded by Connecticut's public benefits charge, provides home energy efficiency rebate programs to customers of The Connecticut Light and Power Company, The United...

151

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

152

Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a solar energy system on a Habitat for Humanity home. GRID installed solar electric systems on 10 affordable homes developed by Habitat for Humanity in the Ivy City neighborhood...

153

Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies  

E-Print Network [OSTI]

To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

154

Electric District No. 3- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Electric District No. 3 of Pinal County (ED3) provides incentives for their residential and business customers to invest in photovoltaics (PV). Residential and commercial customers installing PV...

155

Clay Electric Cooperative, Inc- Solar Thermal Loans  

Broader source: Energy.gov [DOE]

Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 counties in northern Florida, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs....

156

New Solar Homes Partnership Training Workshops The Energy Commission will be providing three workshops on how the New Solar Homes Partnership  

E-Print Network [OSTI]

questions. Topics will include: NSHP Program Overview The Application Process PV Calculator Tool NSHP EnergyNew Solar Homes Partnership Training Workshops The Energy Commission will be providing three Efficiency Requirements The Payment Claim Process Utility Residential New Construction Energy Efficiency

157

Solar Electric Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle,Solutions, LLC Place:

158

Solar amp Electric Solutions | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to:Jump to:Visionnotamp

159

Kiwis Take Home Engineering Win for Solar Home 'First Light' | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*) KitchenAid: ENERGY STAR Referral (KSRS25RV*)of

160

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect (OSTI)

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solar Two is a concentrating solar power plant that can supply electric power "on demand"  

E-Print Network [OSTI]

. Solar One used water as a working fluid to generate the steam required to drive a conven- tional turbine steam, and electricity is produced by a conventional steam turbine. After the molten salt has cooled with the U.S. Department of Energy (DOE). Technical Achievement Solar Two represents a major technical

Laughlin, Robert B.

162

Use of Linear Predictive Control for a Solar Electric Generating System  

E-Print Network [OSTI]

1 Use of Linear Predictive Control for a Solar Electric Generating System Thorsten Stuetzle, Nathan Engineering Drive Madison, WI, 53706, USA ABSTRACT In a Solar Electric Generating System (SEGS A solar electric generating system (SEGS), shown in Figure 1, refers to a class of solar energy systems

Wisconsin at Madison, University of

163

Using EMI for Electrical Energy Disaggregation in the Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser ServicesUsersCray

164

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage  

E-Print Network [OSTI]

SmartCharge: Cutting the Electricity Bill in Smart Homes with Energy Storage Aditya Mishra, David,irwin,shenoy,kurose}@cs.umass.edu Ting Zhu Binghamton University tzhu@binghamton.edu ABSTRACT Market-based electricity pricing provides consumers an op- portunity to lower their electric bill by shifting consump- tion to low price periods

Shenoy, Prashant

165

Sandia National Laboratories: Solar Electric Propulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting SitingProgramsAdvanced Nuclear

166

Sandia National Laboratories: solar thermal electric technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe GoalMicrosystemsquantumSunShotMoltensolar

167

Estimating electric current densities in solar active regions  

E-Print Network [OSTI]

Electric currents in solar active regions are thought to provide the energy released via magnetic reconnection in solar flares. Vertical electric current densities $J_z$ at the photosphere may be estimated from vector magnetogram data, subject to substantial uncertainties. The values provide boundary conditions for nonlinear force- free modelling of active region magnetic fields. A method is presented for estimating values of $J_z$ taking into account uncertainties in vector magnetogram field values, and minimizing $J_z^2$ across the active region. The method is demonstrated using the boundary values of the field for a force-free twisted bipole, with the addition of noise at randomly chosen locations.

Wheatland, M S

2015-01-01T23:59:59.000Z

168

Miscellaneous electricity use in U.S. homes  

SciTech Connect (OSTI)

Historically, residential energy and carbon saving efforts have targeted conventional end uses such as water heating, lighting and refrigeration. The emergence of new household appliances has transformed energy use from a few large and easily identifiable end uses into a broad array of ''miscellaneous'' energy services. This group of so called miscellaneous appliances has been a major contributor to growth in electricity demand in the past two decades. We use industry shipment data, lifetimes, and wattage and usage estimates of over 90 individual products to construct a bottom-up end use model (1976-2010). The model is then used to analyze historical and forecasted growth trends, and to identify the largest individual products within the miscellaneous end use. We also use the end use model to identify and analyze policy priorities. Our forecast projects that over the period 1996 to 2010, miscellaneous consumption will increase 115 TWh, accounting for over 90 percent of future residential electricity growth. A large portion of this growth will be due to halogen torchiere lamps and consumer electronics, making these two components of miscellaneous electricity a particularly fertile area for efficiency programs. Approximately 20 percent (40 TWh) of residential miscellaneous electricity is ''leaking electricity'' or energy consumed by appliances when they are not performing their principal function. If the standby power of all appliances with a standby mode is reduced to one watt, the potential energy savings equal 21 TWh/yr, saving roughly $1-2 billion annually.

Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

1999-09-30T23:59:59.000Z

169

AET Solar formerly solar division of GGAM Electrical Services | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:UseAEE SolarAES

170

Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior: Preprint  

SciTech Connect (OSTI)

Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.; Roche, R.; Earle, L.; Christensen, D.; Bauleo, P.; Zimmerle. D.

2013-08-01T23:59:59.000Z

171

A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS  

E-Print Network [OSTI]

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR SOLAR ELECTRIC SYSTEMS Updated User Manual May 2011 University of Delaware #12;Mailing Address: John Byrne Director Center for Energy and Environmental Policy) 831-3098 Website: http://ceep.udel.edu The Center for Energy and Environmental Policy conducts

Delaware, University of

172

Minnesota Power- Solar-Electric (PV) Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

173

Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial...  

Energy Savers [EERE]

to Solar PV in New York City? Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City? The goal of this study is to evaluate the...

174

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells  

E-Print Network [OSTI]

Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

Fisher, Frank

175

Solar thermal bowl concepts and economic comparisons for electricity generation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

176

Baltimore Gas and Electric Company- Home Performance with Energy Star Rebates  

Broader source: Energy.gov [DOE]

The Baltimore Gas and Electric Company (BG&E) offers the Home Performance with Energy Star Program that provides incentives for residential customers who have audits performed by participating...

177

Energy Policy 32 (2004) 289297 The potential of solar electric power for meeting future US energy  

E-Print Network [OSTI]

Energy Policy 32 (2004) 289­297 The potential of solar electric power for meeting future US energy needs: a comparison of projections of solar electric energy generation and Arctic National Wildlife of solar electric power in the form of photovoltaics to meet future US energy demand with the projected

Delaware, University of

178

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

179

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming EventsFriday, MayHome Home

180

Home Previous Page Odd power: New microbe strain makes more electricity, faster  

E-Print Network [OSTI]

Home Previous Page Odd power: New microbe strain makes more electricity, faster Author: Newswise Issue: 8/2009 In their most recent experiments with Geobacter, the sediment-loving microbe whose hairlike filaments help it to produce electric current from mud and wastewater, Derek Lovley and colleagues

Lovley, Derek

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming EventsFriday, MayHome

182

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

183

Assessment of solar technology in the home-building industry. Final report  

SciTech Connect (OSTI)

The NAHB Research Foundation, Inc., conducted a review of existing survey data supplied by home builders. The objective of this effort was to provide data which would serve as a basis for evaluating the completed and/or continuing programs of the Office of Solar Heat Technologies and to identify areas of future program emphasis.

Not Available

1983-06-01T23:59:59.000Z

184

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

solar electric capacity on new homes, and to have solar electric systems on 50% of all new homes built in Californiasolar capacity installed; capacity more than quadrupled to 746 MW by the end of 2010 (CPUC 2011). California

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

185

What Do You Wish You Knew About Home Solar Energy? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES' URENCO-USAWesternDepartment ofThisSolar

186

NREL: News Feature - NREL Solar Technology Will Warm Air at 'Home'  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearch Staff MaterialsPrintableHPDrivingNREL Solar

187

The Influence of Residential Solar Water Heating on Electric Utility Demand  

E-Print Network [OSTI]

Similar sets of residences in Austin, Texas with electric water heaters and solar water heaters with electric back-up were monitored during 1982 to determine their instantaneous electric demands, the purpose being to determine the influence...

Vliet, G. C.; Askey, J. L.

1984-01-01T23:59:59.000Z

188

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming EventsFriday, May 1,

189

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming EventsFriday, May 1,MSA

190

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors|Upcoming EventsFriday, May

191

Clayton Homes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic NationalElectric)Clarion-GoldfieldClay-Union

192

Northeast regional assessment study for solar electric options in the period 1980-2000  

SciTech Connect (OSTI)

Opportunities for demonstration and large scale deployment of solar electric facilities are identified and assessed. Technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation are defined. The following topics are covered: a description of the Northeast Region and its solar resources, central station applications, a dispersed user analysis, user viewpoints and institutional factors, and market potential for dispersed solar electric systems. (MHR)

None

1981-04-01T23:59:59.000Z

193

Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes  

SciTech Connect (OSTI)

This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

Gordon, Kelly L.; Gilbride, Theresa L.

2008-05-22T23:59:59.000Z

194

Passive solar design strategies: Remodeling guidelines for conserving energy at home  

SciTech Connect (OSTI)

The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler's typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house's need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

Not Available

1991-01-01T23:59:59.000Z

195

Passive solar design strategies: Remodeling guidelines for conserving energy at home. [Final report  

SciTech Connect (OSTI)

The idea of passive solar is simple, but applying it effectively does require information and attention to the details of design and construction. Some passive solar techniques are modest and low-cost, and require only small changes in remodeler`s typical practice. At the other end of the spectrum, some passive solar systems can almost eliminate a house`s need for purchased heating (and in some cases, cooling) energy -- but probably at a relatively high first cost. In between are a broad range of energy-conserving passive solar techniques. Whether or not they are cost-effective, practical and attractive enough to offer a market advantage to any individual remodeler depends on very specific factors such as local costs, climate, and market characteristics. Passive solar design strategies: Remodeling Guidelines For Conserving Energy At Homes is written to help give remodelers the information they need to make these decisions. Passive Solar Design Strategies is a package in three basic parts: The Guidelines contain information about passive solar techniques and how they work, and provides specific examples of systems which will save various percentages of energy; The Worksheets offer a simple, fill-in-the-blank method to pre-evaluate the performance of a specific design; The Worked Example demonstrates how to complete the worksheets for a typical residence.

Not Available

1991-12-31T23:59:59.000Z

196

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

197

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

198

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood Drive HolidayVisiting

199

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood Drive

200

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood Drivedefault Sign In

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood Drivedefault Sign

202

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood Drivedefault

203

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood Drivedefaultdefault

204

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFood

205

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFooddefault Sign In About |

206

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFooddefault Sign In About

207

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFooddefault Sign In

208

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFooddefault Sign Indefault

209

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFooddefault Sign

210

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC History PublicationsFooddefault Sign *** The

211

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup America Startup

212

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup America Startupdefault Sign In

213

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup America Startupdefault Sign

214

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup America Startupdefault

215

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup America Startupdefaultdefault

216

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup America

217

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Sign In About |

218

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Sign In About

219

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Sign In

220

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Sign Indefault

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Sign

222

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Signdefault Sign

223

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault Signdefault

224

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault SigndefaultAll

225

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefault

226

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefaultdefault Sign In

227

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefaultdefault Sign

228

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefaultdefault

229

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup Americadefaultdefaultdefault

230

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startup

231

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In About | Careers |

232

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In About | Careers

233

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In About |

234

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In About |default

235

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In About

236

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In Aboutdefault Sign

237

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In Aboutdefault

238

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign In

239

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign InATC Methodology

240

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign InATC

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign InATCInterconnection

242

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault Sign

243

Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortal Startupdefault SignPages default Sign In

244

Front contact solar cell with formed electrically conducting layers on the front side and backside  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by a silicon substrate and a first doped layer of a first dopant type on the backside of the solar cell. A second doped layer of a second dopant type makes an electrical connection to the substrate from the front side of the solar cell. A first metal contact of a first electrical polarity electrically connects to the first doped layer on the backside of the solar cell, and a second metal contact of a second electrical polarity electrically connects to the second doped layer on the front side of the solar cell. An external electrical circuit may be electrically connected to the first and second metal contacts to be powered by the solar cell.

Cousins, Peter John

2012-06-26T23:59:59.000Z

245

Solar Electric Generating System II finite element analysis  

SciTech Connect (OSTI)

On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

Dohner, J.L.; Anderson, J.R.

1994-04-01T23:59:59.000Z

246

Performance of solar electric generating systems on the utility grid  

SciTech Connect (OSTI)

The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

Roland, J.R.

1986-01-01T23:59:59.000Z

247

An Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application  

E-Print Network [OSTI]

during transient and instantaneous peak power demands of an electric vehicle (EV) and to recover energyAn Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application F. Khoucha, A and lower device stress than conventional designs, for solar electric vehicle (SEV) applications

Boyer, Edmond

248

2010MIT SOLAR ELECTRIC VEHICLE TEAM A MESSAGE FROM THE PRESIDENT  

E-Print Network [OSTI]

2010MIT SOLAR ELECTRIC VEHICLE TEAM #12;A MESSAGE FROM THE PRESIDENT President Hockfield poses with SEVT members at an outreach event ONE #12;The MIT Solar Electric Vehicle Team (SEVT) is a student electric vehicles through international participation and competition. Give our sponsors publicity through

249

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

SciTech Connect (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

250

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

251

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-ElectricCNG Fuel System

252

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

Hill, Steven Craig

2013-01-01T23:59:59.000Z

253

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

The Market Value and Cost of Solar Photovoltaic ElectricityCosts Capacities, Global Perspectives through 2012”, Bernreuter Research, Photovoltaicto the cost of solar power. 5 European Photovoltaic Industry

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

254

Appliances, Lighting, Electronics, and Miscellaneous EquipmentElectricity Use in New Homes  

SciTech Connect (OSTI)

The "Other" end-uses (appliances, lighting, electronics, andmiscellaneous equipment) continue to grow. This is particularly true innew homes, where increasing floor area and amenities are leading tohigher saturation of these types of devices. This paper combines thefindings of several field studies to assess the current state ofknowledge about the "Other" end-uses in new homes. The field studiesinclude sub-metered measurements of occupied houses in Arizona, Florida,and Colorado, as well as device-level surveys and power measurements inunoccupied new homes. We find that appliances, lighting, electronics, andmiscellaneous equipment can consume from 46 percent to 88 percent ofwhole-house electricity use in current low-energy homes. Moreover, theannual consumption for the "Other" end-uses is not significantly lower innew homes (even those designed for low energy use) compared to existinghomes. The device-level surveys show that builder-installed equipment isa significant contributor to annual electricity consumption, and certaindevices that are becoming more common in new homes, such as structuredwiring systems, contribute significantly to this power consumption. Thesefindings suggest that energy consumption by these "Other" end uses isstill too large to allow cost-effective zero-energy homes.

Brown, Richard E.; Rittelman, William; Parker, Danny; Homan,Gregory

2007-02-28T23:59:59.000Z

255

HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling  

E-Print Network [OSTI]

HomeSim: Comprehensive, Smart, Residential Electrical Energy Simulation and Scheduling J. Venkatesh.edu + {jc.junqua, phmorin} @us.panasonic.com Abstract-- Residential energy constitutes 38% of the total energy consumption in the United States [1]. Although a number of building simulators have been proposed

Simunic, Tajana

256

E-Print Network 3.0 - all-electric solar house Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

go to www.ncsc.ncsu.edu Solar... Thermal Solar thermal technologies use the sun's power to heat air or water. We use hot water in our homes... for bathing and cooking. During the...

257

Homebuilder's Guide to Going Solar (Brochure)  

SciTech Connect (OSTI)

This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

Not Available

2008-12-01T23:59:59.000Z

258

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Shannon Moynahan, “The California Solar Initiative — TriumphRates Undermine California’s Solar Photovoltaic Subsidies? ”to the fact that solar PV in California has not been focused

Borenstein, Severin

2008-01-01T23:59:59.000Z

259

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)  

SciTech Connect (OSTI)

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

Not Available

2010-10-01T23:59:59.000Z

260

Solar-Assisted Electric Vehicle Charging Station Interim Report  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

Lapsa, Melissa Voss [ORNL; Durfee, Norman [ORNL; Maxey, L Curt [ORNL; Overbey, Randall M [ORNL

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

262

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network [OSTI]

is the “soiling” e?ect: dirty solar panels absorb less solarinstalling solar photovoltaic panels at their homes orStudies of solar PV production over a panel’s lifetime

Borenstein, Severin

2007-01-01T23:59:59.000Z

263

So You Want to Go Solar? 3 Things to Consider When Installing...  

Broader source: Energy.gov (indexed) [DOE]

| Photo courtesy of Decker Homes. Planning a Home Solar Electric System Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems to...

264

Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report  

SciTech Connect (OSTI)

This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

Not Available

1984-06-01T23:59:59.000Z

265

Market diffusion and the effect of demonstrations : a study of the Denver Metro Passive Solar Home program  

E-Print Network [OSTI]

This paper is a report on the reactions to and effects of the Denver Metro Passive Solar Home demonstration program, conducted in the Spring of 1981. The purpose of the program was to provide impetus to builders for ...

Lilien, Gary L.

1981-01-01T23:59:59.000Z

266

Energy-Saving Landscaping for Your Passive Solar Home Landscaping is often regarded as a finishing touch to enhance  

E-Print Network [OSTI]

Energy-Saving Landscaping for Your Passive Solar Home Landscaping is often regarded as a finishing at 30o north of east. When the sun reaches its maximum height, again at solar noon when it is directly Energy Office North Carolina Department of Administration Industrial Extension Service College

267

NASA Home > News & Features > News Topics > Solar System > Features Send Print Share > Log In To MyNASA | > Sign Up  

E-Print Network [OSTI]

overhead to provide a birds-eye view of mountain ranges, lakes and canyons. On the ground, a rover or lakeNASA Home > News & Features > News Topics > Solar System > Features Send Print Share > Log In To MyNASA | > Sign Up News & Features News Topics Shuttle & Station Moon & Mars Solar System Sun-Earth System

Arizona, University of

268

Solar electricity for Africa: The case of Kenya  

SciTech Connect (OSTI)

This paper presents results of two recent World Bank efforts made in Kenya, Niger, and Cameroon to study the impact of two different renewable projects, one a Micro-Lights program involving about 500 lanterns and the second a survey of 410 households using solar electricity systems. The Micro-Lights program showed that users have distinct preferences in the style of the lamps, that they are willing to spend cash, and that they demand good quality. They may be initially satisfied, but rapidly want more from their purchases. The photoelectric system survey touched less than 1% of such households, and looked at user education, system size, satisfaction, expectations, age of system, appliances, and expectations.

Plas, R.J. van der

1997-12-01T23:59:59.000Z

269

Solar Storm Risks for Maine and the New England Electric Grid,  

E-Print Network [OSTI]

Solar Storm Risks for Maine and the New England Electric Grid, and Potential Protective Measures.resilientsocieties.org #12;1 EXECUTIVE SUMMARY A severe solar storm--a historical example being the Carrington Event of 1859 of the eastern United States. Severe solar storms--of the intensity of the 1921 New York Central Storm

Schrijver, Karel

270

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA  

E-Print Network [OSTI]

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA T, the proper configuration of a PV system depends on the knowledge of solar resource, which, although generally service. The PV-GIS approach makes it possible to enhance the spatial resolution of the solar radiation

Paris-Sud XI, Université de

271

Particle acceleration and radiation by direct electric fields in flaring complex solar active regions  

E-Print Network [OSTI]

to connect the energy re- lease process with the acceleration of electrons in solar flares, using a CA modelParticle acceleration and radiation by direct electric fields in flaring complex solar active-Meudon, 92195 Meudon Cedex, FRANCE Abstract The acceleration and radiation of solar energetic particles

Anastasiadis, Anastasios

272

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid  

E-Print Network [OSTI]

Considerations Related to Connecting Solar Generating Facilities to the Electrical Grid March 2011 voltages are nominally 4.5kv and 13 2kv The solar system must maintain voltageand 13.2kv. The solar system) or multiple sites (multiple leases, interconnect points, construction forces) Ground based, roof top (weight

Homes, Christopher C.

273

Department of Electrical Engineering Spring 2011 Automated Solar Tracking Photovoltaic Array  

E-Print Network [OSTI]

system to align a solar panel toward the sun throughout the day while capable of charging USB devices to manufacture a portable, lightweight solar panel which will maximize efficiency for outdoor enthusiastsPENNSTATE Department of Electrical Engineering Spring 2011 Automated Solar Tracking Photovoltaic

Demirel, Melik C.

274

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

solar PV power recognizing that it produces a disproportionate amount of its outputsolar power, because spatially distributed solar PV resources are not likely to have a high second-to-second correlation in output,Power from Solar PVs As with the solar PV production data, there are two conceptual approaches to valuing solar output

Borenstein, Severin

2008-01-01T23:59:59.000Z

275

Mortgage default and student outcomes, the solar home price premium, and the magnitude of housing price declines  

E-Print Network [OSTI]

households face typically higher time of use prices for any electricityelectricity prices in San Diego County are tiered by monthly consumption, with each householdHouseholds may be uncertain about how much electricity the solar panels will generate, the future price of electricity

Dastrup, Samuel R.

2011-01-01T23:59:59.000Z

276

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

that by turning the solar panels more towards the west,peak production from the solar panels can be more closelyproduction from these solar panels over the two- year period

Borenstein, Severin

2008-01-01T23:59:59.000Z

277

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

THERMAL COGENERATION A solar tracker and concentrator was3.1.Tracking System The solar tracker is designed to supportSummary and Conclusion A solar tracker and concentrator was

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

278

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Renew- ables”, The Electricity Journal, Volume 14 (2001),from Real-Time Retail Electricity Pricing: Bill VolatilityReal- Time Retail Electricity Pricing,” Energy Journal,28(

Borenstein, Severin

2008-01-01T23:59:59.000Z

279

A model library of solar thermal electric components for the computer code TRNSYS  

SciTech Connect (OSTI)

A new approach to modeling solar thermal electric plants using the TRNSYS simulation environment is discussed. The TRNSYS environment offers many advantages over currently used tools, including the option to more easily study the hybrid solar/fossil plant configurations that have been proposed to facilitate market penetration of solar thermal technologies. A component library developed for Rankine cycle, Brayton cycle, and solar system modeling is presented. A comparison between KPRO and TRNSYS results for a simple Rankine cycle show excellent correlation.

Pitz-Paal, R. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany). Solare Energietechnik; Jones, S. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

280

Hodges residence: performance of a direct gain passive solar home in Iowa  

SciTech Connect (OSTI)

Results are presented for the performance of the Hodges Residence, a 2200-square-foot earth-sheltered direct gain passive solar home in Ames, Iowa, during the 1979-80 heating season, its first occupied season. No night insulation was used on its 500 square feet of double-pane glass. Total auxiliary heat required was 43 GJ (41 MBTU) gross and 26 GJ (25 MBTU) net, amounting, respectively, to 60 and 36 kJ/C/sup 0/-day-m/sup 2/ (2.9 and 1.8 BTU/F/sup 0/-day-ft/sup 2/). The heating season was unusually cloudy and included the cloudiest January in the 21 years of Ames insolation measurements. Results are also presented for the performance of the hollow-core floor which serves as the main storage mass and for the comfort range in the house.

Hodges, L.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

high cost of power from solar photovoltaic (PV) panels hassolar panels can be more closely synchronized with system demand, but at a costcost of the solar PV installation is equivalent to purchasing each MWh over the life of the panels

Borenstein, Severin

2008-01-01T23:59:59.000Z

282

Oncor Electric Delivery- Solar Photovoltaic Standard Offer Program  

Broader source: Energy.gov [DOE]

The 2013 Oncor Solar Photovoltaic Standard Offer Program Guidelines are now [https://www.oncoreepm.com/SolarPV.aspx available]. The application period for both the residential and non-residential...

283

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

Solar Photovoltaic Cells”, Center for the Study of Energy Markets Working Paper WP-142, UniversitySolar Photovoltaic Subsidies? ” Center for the Study of Energy Markets Working Paper #172, Universitysolar PV today positive. Director, University of California Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

284

S/EV 92 (Solar and Electric Vehicles): Proceedings. Volume 1  

SciTech Connect (OSTI)

Volume I of these proceedings presents current research on solar and electric powered vehicles. Both fundamental and advanced concepts concerning electric vehicles are presented. The use of photovoltaic cells in electric vehicles and in a broader sense as a means of power generation are discussed. Information on electric powered fleets and races is included. And policy and regulations, especially pertaining to air quality and air pollution abatement are presented.

Not Available

1992-12-01T23:59:59.000Z

285

Roseville Electric- Residential New Construction Rebate Program  

Broader source: Energy.gov [DOE]

Roseville Electric provides financial incentives to encourage local builders to construct energy efficient homes which incorporate solar resources. Participating builders can choose to build...

286

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

287

Sales and Use Tax Exemption for Residential Solar and Wind Electricity Sales (Maryland)  

Broader source: Energy.gov [DOE]

In May 2011 Maryland enacted legislation providing a sales and use tax exemption for sales of electricity from qualifying solar energy and residential wind energy equipment to residential customers...

288

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field-Effect  

E-Print Network [OSTI]

Performance Enhancement of a Graphene-Zinc Phosphide Solar Cell Using the Electric Field, University of California, Berkeley, California 94720, United States Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States § Department of Applied Physics

Javey, Ali

289

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling  

E-Print Network [OSTI]

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling Michael G of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Atwater, Harry

290

Clay Electric Cooperative, Inc- Energy Smart Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Clay Electric Cooperative (CEC) provides a rebate of $0.01 per BTU output to its residential members when they purchase qualified solar water heaters. This rebate is capped at 60,000 BTUs per...

291

Planning for PV: The Value and Cost of Solar Electricity (Fact Sheet)  

SciTech Connect (OSTI)

This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

Not Available

2008-01-01T23:59:59.000Z

292

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array  

E-Print Network [OSTI]

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire, and will aid in the design and optimization of nanowire-based systems for solar energy-conversion applications, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one

Zhou, Chongwu

293

EIS-0416: Ivanpah Solar Electric Generating System, San Bernardino County, California  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support a proposal from Solar Partners I, II, IV, and VIII, limited liability corporations formed by BrightSource Energy (BrightSource), to construct and operate a solar thermal electric generating facility in San Bernardino County, California on BLM Land.

294

Qinghai Solar Energy Electric Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirstNovosPatriotEolicosQinghai Lighting

295

New Ulm Public Utilities- Solar Electric Rebate Program  

Broader source: Energy.gov [DOE]

New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

296

A.W. Blakers, 'Solar and Wind Electricity in Australia', Australian Journal of Environmental Management, Vol 7, pp 223-236, 2000 SOLAR AND WIND ELECTRICITY IN AUSTRALIA  

E-Print Network [OSTI]

environmental impact associated with the construction of what amounts to a coastal hydro scheme. Solar energy.blakers@anu.edu.au Abstract This paper examines the renewable generation of electricity in Australia from photovoltaics (PV environmental impacts even when deployed on very large scales. They are the only fully sustainable technologies

297

Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)  

SciTech Connect (OSTI)

Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

Not Available

2014-11-01T23:59:59.000Z

298

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Introduction  

E-Print Network [OSTI]

of Delaware, ECE Spring 2008 C. Honsberg Sources of energy Geothermal: Location of resource Wind: Site issues · Importance of energy issue · Impact of photovoltaic power · Electricity generation overview · Why use solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Importance of the energy problem

Honsberg, Christiana

299

ELEG620: Solar Electric Systems University of Delaware Spring 2008 1 University of Delaware  

E-Print Network [OSTI]

Department of Electrical and Computer Engineering ELEG620: Solar Electric Systems Photovoltaic System Design-alone photovoltaic system. Working in groups, you will: · Decide on a load and design goal for your system; · Write system is to determine the type and size of the system. You are given substantial latitude in choosing

Honsberg, Christiana

300

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

electricity | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coopelectricity Home

302

Measured electric hot water standby and demand loads from Pacific Northwest homes  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

303

Community-Scale High-Performance with Solar: Pulte Homes, Tucson...  

Energy Savers [EERE]

Science Corporation to apply a suite of energy-efficiency measures integrated with passive solar design and solar water heating that reduced energy use more than 50% for a...

304

Effect of internal electric field on InAs/GaAs quantum dot solar cells  

SciTech Connect (OSTI)

We studied time-resolved carrier recombination in InAs/GaAs quantum dot (QD) solar cells. The electric field in a p-i-n diode structure spatially separates photoexcited carriers in QDs, strongly affecting the conversion efficiency of intermediate-band solar cells. The radiative decay lifetime is dramatically reduced in a strong electric field (193?kV/cm) by efficient recombination due to strong carrier localization in each QD and significant tunneling-assisted electron escape. Conversely, an electric field of the order of 10?kV/cm maintains electronic coupling in the stacked QDs and diminishes tunneling-assisted electron escape.

Kasamatsu, Naofumi; Kada, Tomoyuki; Hasegawa, Aiko; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

2014-02-28T23:59:59.000Z

305

Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)  

SciTech Connect (OSTI)

Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

Not Available

2014-09-01T23:59:59.000Z

306

Atsun Solar Electric Technology Co Ang Li Tiansheng | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels05. ItJumpAtraverda Ltd Jump

307

SEPCO - Solar Electric Power Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTI PFAN) |SEMCO Jump

308

Project Profile: Deployable Commercial Rooftop Solar Electric System |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartmentProjectatChemicallyTransfer

309

Advanced Solar Electric Inc ASE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:Iowa ASHRAEAddis,Advanced RenewableEnergyInc ASE

310

New, Cost-Competitive Solar Plants for Electric Utilities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNewNew

311

Treatment of Solar Generation in Electric Utility Resource Planning  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

2013-10-01T23:59:59.000Z

312

DOE Tour of Zero: The Solar Residence by e2 Homes | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles » AlternativeUp HomeHorseDOE Directives

313

Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy SmoothSolar IndustrySB 2 1X Category

314

Climatic Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic Solar Jump to: navigation,

315

Optimal Control of a Grid-Connected Hybrid Electrical Energy Storage System for Homes  

E-Print Network [OSTI]

with the introduction of dynamic electricity energy pricing models since electricity consumers can use their PV, and thereby, minimize their electricity bill. Due to the characteristics of a realistic electricity price period under a general electricity energy price function. The proposed algorithm is based on dynamic

Pedram, Massoud

316

Energy 101: Solar PV  

SciTech Connect (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2011-01-01T23:59:59.000Z

317

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

318

Gainesville Regional Utilities- Solar-Electric (PV) System Rebate Program  

Broader source: Energy.gov [DOE]

'''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of...

319

How Three Retail Buyers Source Large-Scale Solar Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Large-scale, non-utility solar power purchase agreements (PPAs) are still a rarity despite the growing popularity of PPAs across the country. In this webinar, participants will learn more about how...

320

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Community Development Using Solar Energy to Produce Electricity for Ohioans  

E-Print Network [OSTI]

Because it is a virtually unlimited, clean, and renewable resource, the sun has the potential to provide an important source of energy to help power our way of life. Interest in solar energy is growing among

Eric Romich

322

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

intervention. The huge subsidies that fossil fuel companiessubsidies or recognition of environmental externalities from fossil fuels)subsidies targeted speci?cally at installation of solar PV. The fact that fossil fuel

Borenstein, Severin

2008-01-01T23:59:59.000Z

323

home automation | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectricsecretaryguidanceheathome

324

Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs  

SciTech Connect (OSTI)

This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

1980-02-01T23:59:59.000Z

325

Duke, R. D. and Kammen, D. M. (2003) "Energy for Development: Solar Home Systems in Africa and Global Carbon Emissions", Climate Change for Africa: Science,  

E-Print Network [OSTI]

Duke, R. D. and Kammen, D. M. (2003) "Energy for Development: Solar Home Systems in Africa and Global Carbon Emissions", Climate Change for Africa: Science, Technology, Policy and Capacity Building: Solar Home Systems in Africa and Global Carbon Emissions Richard D. Duke* and Daniel M. Kammen

Kammen, Daniel M.

326

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

electricity, such as steam engines or gas turbines. Typicalsystems, a sterling engine or steam turbine is typicallysuch as a steam turbine or sterling engine connected to an

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

327

Linn County Rural Electric Cooperative- Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Linn County Rural Electric Cooperative Association (Linn County RECA) is a member-owned cooperative. To encourage energy efficiency, Linn County offers a number of rebates to commercial,...

328

Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States  

SciTech Connect (OSTI)

The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

None

1980-07-01T23:59:59.000Z

329

Duke Energy (Electric)- Energy Star Homes Rate Discount Program (South Carolina)  

Broader source: Energy.gov [DOE]

Duke Energy encourages residential customers to buy energy-efficient homes through its [http://www.energystar.gov/index.cfm?c=new_homes.hm_index Energy Star Homes Program], which awards a rate...

330

Subtask 2: Molecules, Materials, and Systems for Solar Electricity | ANSER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst Buffer Archive HomeStump|Center |

331

Solar Electric Light Company SELCO | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak Area (Henkle, EtSolapurSolutionsSELCO

332

Stackelberg Game based Demand Response for At-Home Electric Vehicle Charging  

E-Print Network [OSTI]

Member, IEEE Abstract--Consumer electricity consumption can be controlled through electricity prices and customers respond accordingly with their electricity consumption levels. In particular, the demands as a game [7]. Note that in reality, electricity retailers are significantly regulated by governments

Bahk, Saewoong

333

NREL: State and Local Governments - Value of Solar: Program Design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Grid" Value of Solar Policy Basics Printable Version State & Local Governments Home Blog...

334

Loan Guarantees for Three California PV Solar Plants Expected...  

Broader source: Energy.gov (indexed) [DOE]

across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of...

335

Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)  

SciTech Connect (OSTI)

Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

2014-01-01T23:59:59.000Z

336

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterizationDiesel

337

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThis EIS evaluatesStatementNotice ofTXProjectSystem

338

Hybrid Wind and Solar Electric Systems | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecemberGlossaryEnergy andAction CenterHumanHuman

339

QER - Comment of Solar Electric Power Association | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963 Vol.Department of Energy Silberstein,Julia

340

Overview and Challenges of Thin Film Solar Electric Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics Group (X-rayLSDPreciousM206Oversight7

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: Ivanpah Solar Electric Generating System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State University Sandia and PartnersIsao

342

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

the produc- tion of solar PV panels at hourly prices is muchsolar PV installation is equivalent to purchasing each MWh over the life of the panels at a constant real pricesolar panels over the two- year period are worth an average of $61.11/MWh when valued at the hourly systemwide price

Borenstein, Severin

2008-01-01T23:59:59.000Z

343

Madison Gas and Electric- Clean Power Partner Solar Buyback Program  

Broader source: Energy.gov [DOE]

'''''The Clean Power Partners Program has reached the 1 MW cap. Applicants can be placed on a waiting list or participate in MGE's [http://www.mge.com/Home/rates/cust_gen.htm net metering program]....

344

The World's Largest Solar Project Finds a Home in California | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy The U.S. andTheof Energy

345

SunShot Installs Solar Energy System on Local Habitat for Humanity Home |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 Special Report:Step bySubsidy forThisSunShot

346

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers AboutEnergy July 12, 2011 MEETING

347

4Home | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Homepowering9century GreenE JumpLimited

348

Baldwin Homes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBay HotMountainBaldwin

349

Belcher Homes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility JumpBedford RuralOpenBekk TechBelcher

350

Ecosystem Solar Electric Corp aka Solar MW Energy Inc | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESEInformationFans on Air

351

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

solar insolation and the solar panel characteristics. Theinsolation on the assigned solar panel for a clear sky wassolar insolation on the solar panel varies with the change

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

352

community solar | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop Home7 August,

353

Could Your Home Benefit from a Small Wind Electric System? | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2Administrative OperationsDepartment ofofServicesEnergy

354

Critical Question #3: What are the Best Options for All-Electric Homes? |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens onSite | Departmentof Energy

355

Clean Energy State Program Guide: Mainstreaming Solar Electricity Strategies for States to Build Local Markets  

Broader source: Energy.gov [DOE]

A PV mapping tool visually represents a specific site and calculates PV system size and projected electricity production. This report identifies the commercially available solar mapping tools and thoroughly summarizes the source data type and resolution, the visualization software program being used, user inputs, calculation methodology and algorithms, map outputs, and development costs for each map.

356

Effects of Highly Non-uniform Illumination Distribution on Electrical Performance of Solar Cells  

E-Print Network [OSTI]

Effects of Highly Non-uniform Illumination Distribution on Electrical Performance of Solar Cells E.T.Franklin, J.S Coventry Centre for Sustainable Energy Systems Australian National University Canberra ACT 0200 AUSTRALIA Telephone: +61 02 6125 3976 Facsimile: +61 02 6125 0506 E-mail: evan@faceng.anu.edu.au Abstract

357

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems  

E-Print Network [OSTI]

1 ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems · Central issues in photovoltaic systems · Characteristics of energy systems & performance, these parameters determine the minimum effective system size. · Thermal-based systems are · PV systems are both

Honsberg, Christiana

358

Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space  

SciTech Connect (OSTI)

Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.

Noble, R.J.

1998-08-01T23:59:59.000Z

359

CfA Home HCO Home SAO Home Donate Search  

E-Print Network [OSTI]

CfA Home HCO Home SAO Home Donate Search Measuring the Ancient Solar Nebula's Magnetic Field meteorites that formed in brief heating events in the young solar nebula. They probably constitute sized constituents of primitive meteorites that formed in brief heating events in the young solar nebula

Walsworth, Ronald L.

360

Millennium Electric TOU Ltd aka Millennium Solar EIG Solar | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont:is a townMillardCommunication Co Ltd

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

solar land use | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Homerequestsoftware Home Home

362

Sandia National Laboratories: $0.06 per kilowatt-hour for solar electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per kilowatt-hour for solar

363

Nationwide: Slashing Red Tape To Speed Solar Deployment for Homes and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogenRegistration is OPEN!N

364

Community-Scale High-Performance with Solar: Pulte Homes, Tucson, AZ -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLE FORSuperiorThethePropertyCommunityEnergyBuilding

365

Solar Decathlon at Home in the D.C. Community | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on Energy andDepartment ofAnShare yourA New Energy-Efficient

366

Energy Efficiency First, Zero Energy Ready Homes, and Solar PV Updates |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectrical SafetyEnergythroughDetroit | Department ofEnergy Can

367

Solar Power: Using Photovoltaics to Preserve California's Electricity Capacity Reserves  

SciTech Connect (OSTI)

The California Power Authority (CPA) is committed to increasing the use of renewable energy supplies--such as photovoltaics and wind--as a hedge against price fluctuations of electricity and natural gas. The CPA wants to own and operate an adequate supply of reserve generation that: - Can be deployed quickly in response to severe summer peak loads, unexpected loss of base and intermediate generation units, and failure of critical transmission facilities; - Will minimize the reliance on spot market purchases during periods when the State is most vulnerable to price gouging from private generators.

Herig, C..

2001-09-01T23:59:59.000Z

368

Texas Solar Power Company | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & SolutionsKentucky)MunicipalTexasSolar

369

Bosch Solar Energy AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield SectorInformationBosch Solar

370

Quantitative Analysis of Solar Technologies For Net-Zero Design Affordable Homes Research Group, School of Architecture, McGill University  

E-Print Network [OSTI]

Cost per Watt (U.S.) Mono-crystalline - thick modular panels on roof, walls or separate structure 17Quantitative Analysis of Solar Technologies For Net-Zero Design Affordable Homes Research Group PRINCIPLES & RESULTS CONCLUSIONS Photovoltaic (PV) Energy Production Water-Based Solar Thermal Collectors Air

Barthelat, Francois

371

Mortgage default and student outcomes, the solar home price premium, and the magnitude of housing price declines  

E-Print Network [OSTI]

consumer adoption of solar panels in San Diego,” Unpublishedlog sales price on solar panels 94 Table 2.5: Predictedestimates of log price on solar panels with neighborhood

Dastrup, Samuel R.

2011-01-01T23:59:59.000Z

372

Evaluation of a High-Performance Solar Home in Loveland, Colorado  

SciTech Connect (OSTI)

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.

Hendron, R.; Eastment, M.; Hancock, E.; Barker, G.; Reeves, P.

2006-01-01T23:59:59.000Z

373

Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint  

SciTech Connect (OSTI)

Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions. The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.

Hendron, R.; Eastment, M.; Hancock, E.; Barker, G.; Reeves, P.

2006-08-01T23:59:59.000Z

374

SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin, Prashant Shenoy, and Jeannie Albrecht  

E-Print Network [OSTI]

SmartCap: Flattening Peak Electricity Demand in Smart Homes Sean Barker, Aditya Mishra, David Irwin--Flattening household electricity demand reduces generation costs, since costs are disproportionately affected by peak demands. While the vast majority of household electrical loads are interactive and have little scheduling

Massachusetts at Amherst, University of

375

Mortgage default and student outcomes, the solar home price premium, and the magnitude of housing price declines  

E-Print Network [OSTI]

The market value and cost of solar photovoltaic electricityfinds that the cost of a solar photovoltaic system is about

Dastrup, Samuel R.

2011-01-01T23:59:59.000Z

376

solar garden | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Homerequestsoftware Home

377

Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

1987-03-01T23:59:59.000Z

378

FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter  

E-Print Network [OSTI]

With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

Singh, S N

2010-01-01T23:59:59.000Z

379

Outdoor testing of advanced optical materials for solar thermal electric applications  

SciTech Connect (OSTI)

The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.

Wendelin, T.J.; Jorgensen, G.; Goggin, R.M.

1992-05-01T23:59:59.000Z

380

Duct Leakage Impacts on Airtightness, Infiltration, and Peak Electrical Demand in Florida Homes  

E-Print Network [OSTI]

handler (AH) operating continuously and 0.29 ach with the AH off. Return leaks were found to average 10.3% of AH total flow. House airtightness, in 90 of these homes, determined by blower door testing, averaged 12.58 air changes per hour at 50 Pascals...

Cummings, J. B.; Tooley, J. J.; Moyer, N.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Square Butte Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References: EIASpanishSquare Butte Electric

382

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentralMWacTampa ElectricTara

383

Meriwether Lewis Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric CoMeridian BiorefiningLewis Electric

384

Aiken Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAiken Electric Coop Inc Place: South

385

Wellsborough Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells Rural Electric Co

386

Wise Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle isWisconsinWise Electric

387

electric generation | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop

388

electric load data | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop

389

SunShot Vision Study: A Comprehensive Analysis of the Potential for U.S. Solar Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

The SunShot Vision Study provides the most comprehensive assessment to date of the potential for solar technologies to meet a significant share of electricity demand in the United States during the next several decades.

Not Available

2012-06-01T23:59:59.000Z

390

AV Solar Ranch I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2 Jump to:ASAlliances

391

Beacon Solar Energy Project Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector

392

Solar Decathlon 2005  

SciTech Connect (OSTI)

Solar Decathlon 2005 is a U.S. Department of Energy and National Renewable Energy Laboratory competition involving 19 colleges and universities from the United States, Canada, and Spain. These teams will compete to design, build, and demonstrate solar homes. In fall 2005, teams will transport their competition solar houses to Washington, D.C., where they will construct a solar village on the National Mall. When the houses are assembled, the teams will compete against each other in 10 contests (hence, a decathlon) for about a week. The contests range from design to comfort to energy performance. Each team must provide an aesthetically pleasing entry that produces sufficient solar energy for space conditioning, hot water, lighting, appliances, and an electric car. The Solar Decathlon is co-sponsored by BP, The Home Depot, the American Institute of Architects, the National Association of Home Builders, and the DIY Network. For more information, visit the Web site at www.solardecathlon.org.

Warner, C.; Nahan, R.; King, R.

2005-01-01T23:59:59.000Z

393

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing  

E-Print Network [OSTI]

New top layer reduces the"wiggle"that degrades the conversion of light to electricity in solar cells by absorbing light within a specific wavelength. Today's thin-film solar cells could not function light to pass through to the cell's active layers. Until recently, TCOs were seen as a necessary

394

Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells  

E-Print Network [OSTI]

Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells A a b s t r a c ta r t i c l e i n f o Available online xxxx Keywords: Solar cells CdCl2 CdTe Thin absorbers Due to its high scalability and low production cost, CdTe solar cells have shown a very strong

Romeo, Alessandro

395

Melink Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLake GeothermalHomeSolar

396

Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power  

E-Print Network [OSTI]

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of practical generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Meir, S; Geballe, T H; Mannhart, J

2013-01-01T23:59:59.000Z

397

General Electric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligenceGainSpan Corporation JumpGarkanePathwaysElectric

398

New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion  

SciTech Connect (OSTI)

Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL; ,

2010-05-26T23:59:59.000Z

399

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission  

E-Print Network [OSTI]

Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from through 30 April 2004. During this time period PJM coordinated the movement of wholesale electricity of challenged reliability is the incidence of out-of-economic-merit order dispatching due to adverse reactive

Schrijver, Karel

400

Wisdom Way Solar Village: Design, Construction, and Analysis of a Low Energy Community  

SciTech Connect (OSTI)

This report describes work conducted at the Wisdom Way Solar Village (WWSV), a community of 10 high performance duplexes (20 homes) in Greenfield, MA, constructed by Rural Development, Inc. (RDI). Building America's CARB team monitored temperatures and comfort in several homes during the winter of 2009-2010, and tracked utility bill information from 13 occupied homes. Because of efficient lights, appliances, and conscientious home occupants, the energy generated by the solar electric systems exceeded the electric energy used in most homes.

Aldrich, R.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An Intelligent Solar Powered Battery Buffered EV Charging Station with Solar Electricity Forecasting and EV Charging Load Projection Functions  

E-Print Network [OSTI]

fast charging, and solar power availability pose a challengeevent to a fixed SOC from solar power and/or the grid in athem without considering solar power availability and the

Zhao, Hengbing; Burke, Andrew

2014-01-01T23:59:59.000Z

402

1Electricity from Sunlight: The Van Allen Probes Solar Panels NASA's twin Van Allen Probes spacecraft will be launched in 2012. The  

E-Print Network [OSTI]

1Electricity from Sunlight: The Van Allen Probes Solar Panels NASA's twin Van Allen Probes of the surrounding four solar panel `wings' that provide power to the spacecraft instruments. The small blue rectangles within each of the four solar panels show the location of the solar cells used to power

403

CO sub 2 emissions from coal-fired and solar electric power plants  

SciTech Connect (OSTI)

This report presents estimates of the lifetime carbon dioxide emissions from coal-fired, photovoltaic, and solar thermal electric power plants in the United States. These CO{sub 2} estimates are based on a net energy analysis derived from both operational systems and detailed design studies. It appears that energy conservation measures and shifting from fossil to renewable energy sources have significant long-term potential to reduce carbon dioxide production caused by energy generation and thus mitigate global warming. The implications of these results for a national energy policy are discussed. 40 refs., 8 figs., 23 tabs.

Keith, F.; Norton, P.; Brown, D.

1990-05-01T23:59:59.000Z

404

Cimarron I Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic National ParkCimarron I Solar Power Plant Jump

405

Colorado Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft River 5 MWCommission|HighlandsSolar

406

Piedmont EMC- Solar Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Piedmont Electric Membership Corporation is offering a $500 rebate to its residential members who install solar water heaters on their homes. The utility recommends but does not require the system...

407

Southeastern Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,HomeIndiana:RhodeSoutheastern Electric Coop

408

Federated Rural Electric Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHomeFederated Rural Electric Assn Place:

409

Flint Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHome Kyoung's pictureFlint Electric

410

The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations  

SciTech Connect (OSTI)

This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

Subudhi, M. [Brookhaven National Lab., Upton, NY (United States)] [Brookhaven National Lab., Upton, NY (United States); Carroll, D.P. [Florida Univ., Gainesville, FL (United States)] [Florida Univ., Gainesville, FL (United States); Kasturi, S. [MOS, Inc., Melville, NY (United States)] [MOS, Inc., Melville, NY (United States)

1994-01-01T23:59:59.000Z

411

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

adopted a program- the California Solar Initiative (CSI) -of the impact of the California Solar Initiative (CSI), andissues with rooftop solar PV in California are: 1) Utility

Hill, Steven Craig

2013-01-01T23:59:59.000Z

412

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

by California. The California Solar Initiative (CSI) targetsCommission, “The California Solar Initiative”, available atdemand-pull: Lessons from California’s solar policy”, Energy

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

413

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

414

Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions  

E-Print Network [OSTI]

Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

2014-01-01T23:59:59.000Z

415

Dynamics of Electric Currents, Magnetic Field Topology and Helioseismic Response of a Solar Flare  

E-Print Network [OSTI]

The solar flare on July 30, 2011 was of a modest X-ray class (M9.3), but it made a strong photospheric impact and produced a "sunquake," observed with the Helioseismic and Magnetic Imager (HMI) on NASA's Solar Dynamics Observatory (SDO). In addition to the helioseismic waves (also observed with the SDO/AIA instrument), the flare caused a large expanding area of white-light emission and was accompanied by substantial restructuring of magnetic fields, leading to the rapid formation of a sunspot structure in the flare region. The flare produced no significant hard X-ray emission and no coronal mass ejection. This indicates that the flare energy release was mostly confined to the lower atmosphere. The absence of significant coronal mass ejection rules out magnetic rope eruption as a mechanism of helioseismic waves. We discuss the connectivity of the flare energy release with the electric currents dynamics and show the potential importance of high-speed plasma flows in the lower solar atmosphere during the flare e...

Sharykin, I N

2015-01-01T23:59:59.000Z

416

Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

417

EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT  

E-Print Network [OSTI]

CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICCHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRICprocess Boeing solar receiver [5J Internal detail of Boeing solar receiver [5J . 2.4 Heat

Dayan, J.

2011-01-01T23:59:59.000Z

418

31Home Power #16 April/May 1990 Code Corner  

E-Print Network [OSTI]

ivilization is spreading throughout the country, and with it, the bureaucracy of building codes and electrical away from obstructions to maximize the collection of solar energy. In these locations they are good31Home Power #16 · April/May 1990 Code Corner PV that Meets the National Electric Code John Wiles

Johnson, Eric E.

419

Southwestern Electric Power Co (Texas) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References: EIA FormSouthwestern Electric

420

Clay-Union Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanic NationalElectric)Clarion-GoldfieldClay-Union

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Beartooth Electric Coop, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:SectorBearBeartooth Electric Coop,

422

Big Bend Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: EnergyBiofuelsBig Bend Electric

423

Virginia Electric & Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside, Nebraska (UtilityVirginia Electric

424

Borrego Solar (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield SectorInformation Address:

425

Borrego Solar Systems Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGEFairfield SectorInformation

426

CT Solar Loan | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city in ChittendenPartners LLCInvestment Partners LLP

427

Accurate Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey

428

Agua Caliente Solar Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area274907°,AgassizisAgriwind

429

Arnprior Solar Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass

430

BioSolar Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon:GreatBioGold Fuels

431

Energy 101: Concentrating Solar Power  

ScienceCinema (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2013-05-29T23:59:59.000Z

432

Energy 101: Concentrating Solar Power  

SciTech Connect (OSTI)

From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

None

2010-01-01T23:59:59.000Z

433

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGHBrayton

434

Home | DOEpatents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.gov »defaultDiscover

435

Pea River Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag Utility DistrictPea River Electric

436

Pennsylvania Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag UtilityPennsylvania Electric Co

437

Pennyrile Rural Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag UtilityPennsylvania ElectricPennyrile

438

Santee Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa, Mallorca: Energy Resources JumpSantee Electric

439

Southwest Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References: EIA Form EIA-861 Final Data File

440

Springer Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: Missouri References: EIASpanish ForkSpark

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sumter Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriPrograms |Illinois References:SullivanSumter

442

Taylor Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentralMWacTampa

443

Tennessee Valley Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & SolutionsKentucky) Jump to:

444

Howard Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformationHomer Electric|South

445

Intercounty Electric Coop Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatible development JumpOhioIntercounty Electric Coop

446

K C Electric Association | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida: Energy Resources JumpK C Electric

447

Maui Electric Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co Ltd Jump to: navigation, search

448

Menard Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanosElectric Co LtdJacksonLakeInformation

449

Midwest Electric, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency, RenewableMiddle GeorgiaElectric,

450

Cobb Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:ClimaticCoalogix

451

Alfalfa Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandria Biomass Facility JumpKansas)

452

Altamaha Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstom Energy SystemsAltaAltamaha

453

American Electric Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstomAmedee GeothermalCoal

454

Anza Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jumpvolcanic region, CaliforniaAntreville,Anza

455

Appalachian Electric Coop | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:

456

Bartlett Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to: navigation,and Cooling Jump

457

Bayfield Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:Sector Biomass FacilityBayfield

458

Bear Valley Electric Service | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:SectorBear Canyon

459

Beauregard Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass Facility Jump to:SectorBearBeartoothBeauregard

460

Berkeley Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre Biomass FacilityOregon: Energy Resources

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Tideland Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:InnovationFunds-BusinessOhioEnvironmentalism (E3G)

462

Tippah Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont Rural Elec Member Corp Jump to: navigation,

463

Tombigbee Electric Power Assn | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont Rural Elec Member Corp Jump

464

Tucson Electric Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformationKentucky) JumpCorpDist

465

Verendrye Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValero Refining

466

Wake Electric Membership Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside, NebraskaVolunteerWaitsfield,

467

Walton Electric Member Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,

468

Westfield Electric Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWellsLoadingREMC Jump

469

Wisconsin Electric Power Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is aWindustryOpen

470

Craighead Electric Coop Corp | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text isRica NREL CooperationCraighead Electric Coop

471

FEM Electric Assn, Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project)CompanyFEM Electric Assn, Inc

472

Impact of dispersed solar and wind systems on electric distribution planning and operation  

SciTech Connect (OSTI)

Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

Boardman, R.W.; Patton, R.; Curtice, D.H.

1981-02-01T23:59:59.000Z

473

Numerical power balance and free energy loss analysis for solar cells including optical, thermodynamic, and electrical aspects  

SciTech Connect (OSTI)

A method for analyzing the power losses of solar cells is presented, supplying a complete balance of the incident power, the optical, thermodynamic, and electrical power losses and the electrical output power. The involved quantities have the dimension of a power density (units: W/m{sup 2}), which permits their direct comparison. In order to avoid the over-representation of losses arising from the ultraviolet part of the solar spectrum, a method for the analysis of the electrical free energy losses is extended to include optical losses. This extended analysis does not focus on the incident solar power of, e.g., 1000?W/m{sup 2} and does not explicitly include the thermalization losses and losses due to the generation of entropy. Instead, the usable power, i.e., the free energy or electro-chemical potential of the electron-hole pairs is set as reference value, thereby, overcoming the ambiguities of the power balance. Both methods, the power balance and the free energy loss analysis, are carried out exemplarily for a monocrystalline p-type silicon metal wrap through solar cell with passivated emitter and rear (MWT-PERC) based on optical and electrical measurements and numerical modeling. The methods give interesting insights in photovoltaic (PV) energy conversion, provide quantitative analyses of all loss mechanisms, and supply the basis for the systematic technological improvement of the device.

Greulich, Johannes, E-mail: johannes.greulich@ise.fraunhofer.de; Höffler, Hannes; Würfel, Uli; Rein, Stefan [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-79110 Freiburg (Germany)

2013-11-28T23:59:59.000Z

474

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network [OSTI]

value of power from solar panels in California, I ?nd thatthe valuation of power from solar panels could substantiallys incentive to install solar panels, but in section VII I

Borenstein, Severin

2005-01-01T23:59:59.000Z

475

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

and GTM Research (2010), “U.S. solar energy trade assessment2010), “U.S. solar energy trade assessment 2010: Trade flows2010: Trade flows and domestic content for solar energy-

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

476

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

S. and Yuan, L.Y. (2007), “China’s Solar Energy Industry:the examples of China and Taiwan that Solar PV saw a largetariffs Figure 7: China’s annual solar PV installation and

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

477

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

biomass, compared to solar power to meet their objectives ofmake it diffi cult for solar power to compete in the marketswhich would enable solar power to penetrate a large part of

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

478

Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergyDISTRIBUTED SOLAR

479

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network [OSTI]

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

480

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

solar PV and distributed generation. UTILITY RATE DESIGN ANDutility concerns that a high penetration of inverter-based solar energy systems along with other distributed generation

Hill, Steven Craig

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "home solar electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

paper .pdf [148] Solar PV Carousel Trackers For Buildingtrackers may experience a capacity factor benefit of between 25-30% (Campbell 2010b) in high solar

Hill, Steven Craig

2013-01-01T23:59:59.000Z

482

Building America Top Innovations Hall of Fame Profile Â… Community Scale High-Performance with Solar: Pulte Homes, Tucson, AZ  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > SunBuildingInnovations

483

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

scale solar capacity being announced, mainly in Californiasolar capacity installation has largely been dominated by California.

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

484

NV Energy (Southern Nevada)- Solar Hot Water Incentive Program  

Broader source: Energy.gov [DOE]

NV Energy is providing an incentive for its residential customers to install solar water heaters on their homes. As of July 26, 2013, NV Energy electric customers in Southern Nevada who own their...

485

Southeastern Electric Coop Inc (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerTypePonsa,HomeIndiana:RhodeSoutheastern Electric Coop Inc

486

Act Solar Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergy InformationAclara JumpLogs ActivityAcresSolar

487

Arizona Solar Tech | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass FacilityArdica Technologies JumpArizonaOil andSolar Tech

488

Verve Solar Consulting | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew HampshireValeroTrans Co Inc JumpVerve Solar

489

Behavioral Perspectives on Home Energy Audits: The Role of Auditors, Labels, Reports, and Audit Tools on Homeowner Decision Making  

E-Print Network [OSTI]

efficiency  windows   Solar  Panel   Solar  Water  Heater  Upgrade  -­?  Solar  panels        Install   photovoltaic  Adding  or  maintaining  solar  panels   Number  of  homes  

Ingle, Aaron

2013-01-01T23:59:59.000Z

490

Curvature and torsion effects in electric current-carrying twisted solar loops  

SciTech Connect (OSTI)

Riemannian geometry of the electric current-carrying solar loops is obtained from a thin tube approximation of twisted magnetic flux tubes. The Frenet torsion and curvature affect the electron drift speed of the electrons of the current along the toroidal direction of the tube. The twist of the tube is computed and it is shown that twist is maximum at the surface of the tube and minimum at the tube axis. This acts as inertia effects to the electron drift. The higher the torsion of the tube axis the smaller is the velocity along the direction of the tube. This effect is similar to the one obtained by Tyspin et al. [Physics of Plasmas, 5, 3385 (1998)] in the case of toroidal devices with curvature and torsion. Here the simple geometrical effects are enough to slow down the currents and no viscosity in the fluid is taken into account. A slight compressibility of the plasma flow is due to the twist of the tube. As applications of these ideas, it is shown that torsion effects are not enough to accelerate electrons up to relativistic energies, and the torsion is computed in the case of the force-free loop. The value of torsion is used to compute the electron acceleration in two distinct cases. The first is the case when the Riemann loop suffers the action of a dc electric sub-Dreicer field, where the magnetic field is direct along the magnetic loop, and the loop moves along the orthogonal direction to the loop as in vortex filaments. In this case, the acceleration is shown to be of the order of 10{sup -17} cm s{sup -2} for a solar torsion of the order of 10{sup -4} cm{sup -1}. The second case is for the curvature drift contribution, where torsion is also present. In this case we show that torsion is not present in the velocity drift but just in the electron acceleration. Though these values are extremely low, they can be improved by considering small loops lowering the radius of the loop which, here, was taken as 600 km. Curvature drift acceleration is also estimated as 100 cm s{sup -2}.

Garcia de Andrade, L. C. [Departamento de Fisica Teorica-IF-UERJ, Rua Sao Francisco Xavier 524, Rio de Janeiro, RJ Maracana, CEP 20550-013 Brazil (Brazil)

2006-11-15T23:59:59.000Z

491

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect (OSTI)

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

492

An outdoor exposure testing program for optical materials used in solar thermal electric technologies  

SciTech Connect (OSTI)

Developing low-cost, durable advanced optical materials is important for making solar thermal energy. technologies viable for electricity production. The objectives of a new outdoor testing program recently initiated by the National Renewable Energy Laboratory (NREL) are to determine the expected lifetimes of candidate reflector materials and demonstrate their optical durability in real-world service conditions. NREL is working with both utilities and industry in a collaborative effort to achieve these objectives. To date, simulated/accelerated exposure testing of these materials has not been correlated with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering results. This outdoor testing program will allow outdoor exposure data to be obtained for realistic environments and will establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data. In this program, candidate reflector materials are subjected to various outdoor exposure conditions in a network of sites across the southwestern United States. Important meteorological data are continuously recorded at these sites; these data will be analyzed for possible correlations with material optical performance. Weathered samples are characterized on a regular basis using a series of optical tests. These tests provide the basis for tracking material performance and durability with exposure time in the various outdoor environments. This paper describes the outdoor testing program in more detail including meteorological monitoring capabilities and the optical tests that are performed on these materials.

Wendelin, T.; Jorgensen, G.

1994-01-01T23:59:59.000Z

493

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

problems are encountered. There are utility concerns that a high penetration of inverter-based solar energyproblem with a non-imaging 2D Fresnel concentrator. Lorenzo (1981) evaluated chromatic aberrations in solar energy

Hill, Steven Craig

2013-01-01T23:59:59.000Z

494

The U.S. Department of Energy`s role in commercialization of solar thermal electric technology  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has supported the development of solar thermal electric (STE) technology since the early 1970s. From its inception, the program has held a long-term goal of nurturing STE technologies from the research and development (R&D) stage through technology development, ultimately leading to commercialization. Within the last few years, the focus of this work -has shifted from R&D to cost-shared cooperative projects with industry. These projects are targeted not just at component development, but at complete systems, marketing approaches, and commercialization plans. This changing emphasis has brought new industry into the program and is significantly accelerating solar thermal`s entry into the marketplace. Projects such as Solar Two in the power tower area, a number of dish/Stirling joint ventures in the modular power area, and operations and maintenance (O&M) cost reduction studies will be discussed as examples of this new focus.

Burch, G.D. [United States Dept. of Energy, Washington, DC (United States); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

495

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network [OSTI]

solar having a combined 15,000 Gigawatts of potential capacity [1,2]. For the past 30 years, California

Hill, Steven Craig

2013-01-01T23:59:59.000Z

496

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning  

Office of Energy Efficiency and Renewable Energy (EERE)

In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

497

2007 IEEE Canada Electrical Power Conference Solar Photovoltaic Array's Shadow Evaluation  

E-Print Network [OSTI]

whether the maximum output power of the solar photovoltaic arrays under the system is sufficiently cost, and the the "shading factor," which is defined as the ratio of the non- maximum output power of the solar photovoltaic solar PV arrays: effects on performance, and in particular the output power of * In the numerical method

Lehman, Brad

498

In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes  

SciTech Connect (OSTI)

CARB partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and LAMELs through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and lighting, appliances, and miscellaneous loads (LAMELs).

Puttagunta, S.; Shapiro, C.

2012-04-01T23:59:59.000Z

499

Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.  

E-Print Network [OSTI]

The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

500

Electric Market and Utility Operation Terminology (Fact Sheet), Solar Energy Technologies Program (SETP)  

Broader source: Energy.gov [DOE]

This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.