National Library of Energy BETA

Sample records for home heating oil

  1. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  2. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  3. Northeast Home Heating Oil Reserve - Guidelines for Release ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation ...

  4. DOE to Purchase Heating Oil for the Northeast Home Heating Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC ...

  5. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department of Energy

    Office of Environmental Management (EM)

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts PDF icon 2014-2015 Heating Oil Season.pdf PDF icon 2013-2014 Heating Oil Season.pdf PDF icon 2012-2013 Heating Oil Season.pdf PDF icon 2011-2012 Heating Oil Season.pdf PDF icon 2010-2011 Heating Oil Season.pdf PDF icon 2009-2010 Heating Oil Season.pdf PDF icon 2008-2009 Heating Oil Season.pdf PDF icon 2007-2008 Heating

  6. Northeast Home Heating Oil Reserve - Guidelines for Release | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum distillate or to maintain the

  7. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S.

  8. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Office of Environmental Management (EM)

    Department of Energy Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation

  9. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  10. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis ...

  11. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Oil Deployment in the Home Heating Market March 23, 2015 Dr. Thomas A. Butcher Brookhaven National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * Goal- Evaluate the feasibility of using near-commercial, upgraded bio-oils in the heating market. Focus is on state of current fuel availability, technical aspects of end use, supply and distribution constraints, and barriers to manufacturer and end user

  12. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  13. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Environmental Management (EM)

    Reserve | Department of Energy Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil

  14. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Environmental Management (EM)

    Distillate | Department of Energy Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said

  15. DOE Accepts Bids for Northeast Home Heating Oil Stocks | Department of

    Office of Environmental Management (EM)

    Energy Accepts Bids for Northeast Home Heating Oil Stocks DOE Accepts Bids for Northeast Home Heating Oil Stocks February 3, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve. Awardee Amount Morgan Stanley 500,000 barrels Shell Trading U.S. Company 250,000 barrels George E. Warren Corporation 234,253

  16. DOE Completes Sale of Northeast Home Heating Oil Stocks | Department of

    Office of Environmental Management (EM)

    Energy Completes Sale of Northeast Home Heating Oil Stocks DOE Completes Sale of Northeast Home Heating Oil Stocks February 10, 2011 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. Hess Groton Terminal, Groton, CT Shell Trading U.S. Company 150,000 barrels Sprague

  17. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  18. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

  19. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

  20. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

  1. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

  2. Additional Storage Contracts Awarded for Northeast Home Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm ...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 2.93 per gallon, based on the residential heating fuel survey by the...

  4. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information...

  5. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 11.2 cents from a week ago to 2.91 per gallon. That's down 1.33 from a year ago, based on the...

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to 2.08 per gallon. That's down 72 cents from a year ago, based on the...

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to 2.33 per gallon. That's down 89 cents from a year ago, based on the...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the...

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to 2.36 per gallon. That's down 97 cents from a year ago, based on the...

  10. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the...

  11. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year...

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 17.7 cents from a week ago to 3.03 per gallon. That's down 1.09 from a year ago, based on the...

  13. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year...

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to 2.21 per gallon. That's down 87 cents from a year ago, based on the...

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to 2.38 per gallon. That's down 99 cents from a year ago, based on the...

  16. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the...

  17. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based...

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 2.16 per gallon. That's down 75 cents from a year ago, based on the...

  19. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year...

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to 2.18 per gallon. That's down 79 cents from a year ago, based...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to 2.11 per gallon. That's down 72 cents from a year ago, based on the...

  2. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year...

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to 2.06 per gallon. That's down 75 cents from a year ago, based on the...

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year...

  6. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the...

  7. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year...

  8. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the...

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.26 per gallon. That's down 89 cents from a year ago, based on the...

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the...

  11. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year...

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 8 cents from a week ago to 3.21 per gallon. That's down 98.7 cents from a year ago, based on the...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago,...

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the...

  15. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year...

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to 2.18 per gallon. That's down 87 cents from a year ago, based on the...

  17. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent...

  18. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the...

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year...

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 2.80 per gallon. That's down 1.44 from a year ago, based on the...

  1. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 10.3 cents from a week ago to 3.29 per gallon. That's down 93.7 cents from a year ago, based on the...

  2. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential...

  3. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  4. DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home...

  5. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  6. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  7. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  8. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  9. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  10. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  11. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  12. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil prices virtually unchanged The average retail price for home heating oil rose 2-tenths of a cent from a week ago to 4.24 per gallon. That's up 8.2 cents...

  13. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices virtually unchanged The average retail price for home heating oil fell 4-tenths of a penny from a week ago to 3.95 per gallon. That's down 8-tenths of a penny...

  14. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    0, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 4.23 per gallon. That's up 5.1 cents from a year...

  15. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 4.23 per gallon. That's up 14.9 cents from a year...

  16. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 3.1 cents from a week ago to 4.20 per gallon. That's up 13.6 cents from a year ago,...

  17. Residential heating oil prices virtually unchanged

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.2 cents from a week ago to 4.12 per gallon. That's up 9.4 cents from a year...

  18. Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Home Heating Energy Saver 101 Infographic: Home Heating Energy Saver 101 Infographic: Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats Thermostats Save money on heating by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood

  19. The Future of Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Home Heating The Future of Home Heating Huber presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the future of home heating PDF icon pyrolysis_huber.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends Biofuels Report Final

  20. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating ...

  1. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  2. Heating Oil Reserve History | Department of Energy

    Energy Savers [EERE]

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed then-Energy Secretary Bill Richardson to establish a two million barrel home heating oil component of the Strategic Petroleum Reserve in the Northeast. The intent was to create a buffer large enough to allow commercial companies to compensate for interruptions in supply during severe winter weather, but not so large as to

  3. Releases from the Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for...

  4. Home Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems Home Heating Systems Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com A variety of technologies are available for heating your house. In addition to heat pumps, which are discussed separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or

  5. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  6. Microsoft Word - Heating Oil Season.docx

    Broader source: Energy.gov (indexed) [DOE]

    -2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price (Previous Week) Heating Oil/Crude Oil Spread 5-Year Average Spread Current vs. Average Spread Spread Required for Trigger PADD 1A PADD 1B Average PADD 1A/1B Dollars per Barrel Cents per Gallon 10/13/2014 348.2 355.9 352.1 90.18 214.71 137.3 112.7 21.8% 180.4 10/20/2014 343.7 352.2 348.0 85.50 203.57 144.4 112.7 28.1%

  7. H. R. 3856: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on windfall profits derived from home heating oil, and for other purposes. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, January 23, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The tax would be imposed on the producer or importer of the home heating oil. The amount of the tax would be 90 percent of the windfall profit on each barrel, which is defined as the gross profit over the producer's or importer's average gross profit per barrel from home heating oil sold during November 1989. If significant sales were not made by any person during November 1989, the amount will be determined by the Secretary based on national averages. The bill also establishes a Home Heating Oil Trust Fund to finance grants under the Low-Income Home Energy Assistance Act of 1981.

  8. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  9. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about energy-efficient furnaces and boilers. Addthis Related Articles Tips: Natural Gas and Oil Heating Systems Energy Saver Guide: Tips on Saving Money and Energy at Home...

  10. Lower oil prices also cutting winter heating oil and propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    see even lower natural gas and heating oil bills this winter than previously expected ... said the average household heating with oil will experience a 41% drop in heating oil ...

  11. STEO October 2012 - home heating supplies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be...

  12. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  13. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Users Q1: Why are data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey is to collect prices for these fuels as they are used for heating purposes. For the purposes of the survey, the winter heating season extends from October through March. However, EIA does publish spot prices for heating oil and propane throughout the year. In addition, some State Energy Offices

  14. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAQs for Respondents Q1: What is the purpose of this survey? The U.S. Energy Information Administration (EIA) Form EIA-877, "Winter Heating Fuels Telephone Survey," is designed to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No. 2 heating oil during the heating season, and to report to the Congress and others when requested. Q2: How does the survey work? The

  15. Hillbrook Nursing Home Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility...

  16. Home Heating Hints | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Hints Home Heating Hints December 9, 2014 - 5:10pm Addthis Sealing air leaks can help you save energy and money this winter. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Sealing air leaks can help you save energy and money this winter. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy What are the key facts? Programmable

  17. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  18. STEO October 2012 - home heating use

    U.S. Energy Information Administration (EIA) Indexed Site

    to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly in the...

  19. Lower oil prices also cutting winter heating oil and propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in ...

  20. The Future of Home Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fleet replacement by 2030 of all furnaces and boilers from70% to 96% efficiency applying ULS fuel and new condensing technology Solar thermal hot water heating Impact B2 first ...

  1. Biomass Derivatives Competitive with Heating Oil Costs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat or electricity * Data are from literature, except heating oil is adjusted from ... are required? - What are the critical gaps in our analysis and understanding? ...

  2. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard release time and day of the week will be at 1:00 p. m. (Eastern time) on Wednesdays with the following exceptions. All times are Eastern. Data for: Alternate Release Date Release Day Release Time Holiday October 12, 2015 October 15, 2015 Thursday 1:00 p.m. Columbus November 9, 2015 November 12, 2015 Thursday 1:00 p.m.

  3. Energy Saver 101: Home Heating | Department of Energy

    Office of Environmental Management (EM)

    Energy Saver 101: Home Heating Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for

  4. Heating Oil and Propane Update - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. ...

  5. Energy Saver 101: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That means making smart decisions about your home's heating system can have a big impact on your energy bills. Our Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download

  6. #AskEnergySaver: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating #AskEnergySaver: Home Heating October 29, 2014 - 12:56pm Addthis This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Looking for more ways to save energy? Check out Energy Saver for

  7. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office of Public Affairs Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  8. State Heating Oil and Propane Program

    U.S. Energy Information Administration (EIA) Indexed Site

    State Heating Oil and Propane Program Marcela Rourk 2014 SHOPP Workshop October 8, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC October 8, 2014 2 * Expansion of propane data collection * EIA resources available to States * Improvements to SHOPP What is SHOPP? Marcela Rourk, Washington, DC October 8, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data collection effort between EIA and State Energy Offices (SEOs) - data used by policymakers, industry

  9. #HeatChat @Energy: Ask Us Your Home Heating Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy #HeatChat @Energy: Ask Us Your Home Heating Questions #HeatChat @Energy: Ask Us Your Home Heating Questions October 21, 2015 - 10:10am Addthis Check out our <a href="/node/780416">Energy Saver 101 infographic</a> for everything you need to know about home heating. Check out our Energy Saver 101 infographic for everything you need to know about home heating. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs How can I participate? Ask us

  10. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating #AskEnergySaver: Home Water Heating March 24, 2014 - 11:35am Addthis Did you know: Water heaters account for nearly 17 percent of a home’s energy use, consuming more energy than all other household appliances combined. For more about water heaters, check out our <a href="/node/612476">Energy Saver 101 home water heating infographic</a>. | Photo by Eric Grigorian, U.S. Department of Energy Solar Decathlon. Did you know: Water heaters account for nearly 17

  11. Biomass Derivatives Competitive with Heating Oil Costs. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Derivatives Competitive with Heating Oil Costs. Biomass Derivatives Competitive with Heating Oil Costs. Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs. PDF icon pyrolysis_levine.pdf More Documents & Publications Challenge # 1. Feedstock & Production Thermochemical Conversion Proceeses to Aviation Fuels A Review of DOE Biofuels Program

  12. Save on Home Water Heating | Department of Energy

    Energy Savers [EERE]

    on Home Water Heating Save on Home Water Heating August 19, 2014 - 10:46am Addthis Purchasing a water heater with the ENERGY STAR® label ensures you are buying an energy efficient appliance designed to save consumers money. | Photo courtesy of Dennis Schroeder, National Renewable Energy Labs Purchasing a water heater with the ENERGY STAR® label ensures you are buying an energy efficient appliance designed to save consumers money. | Photo courtesy of Dennis Schroeder, National Renewable

  13. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download a <a href="/node/784286">high-resolution version</a> of the infographic or individual sections. | Infographic by <a

  14. Guide to Home Heating and Cooling

    SciTech Connect (OSTI)

    2010-10-01

    Get the most out of your heating and cooling systems, including types, how to choose, and performing maintenance.

  15. Residential heating oil prices decline

    Gasoline and Diesel Fuel Update (EIA)

    propane price increase slightly The average retail price for propane is $2.41 per gallon, up 1-tenth of a cent from last week, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices in the Midwest region averaged $1.95 per gallon, up 5-tenths of a cent from last week, and down 10.4

  16. Production and Upgrading of Infrastructure Compatible Bio-Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for stabilization of heavy fuel oil Minimal upgrading for fuel oil blending - ... pathways Home Heating Oil: * Minimal upgrading by hydrotreating using either ...

  17. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  18. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  19. Home Heating Hints | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are not blocking heating registers. This will allow air to circulate more freely and save energy. Winter may mean colder weather is here, but it doesn't have to drain your...

  20. Energy Savings Week: Lowering Energy Bills with Efficient Home Heating

    Broader source: Energy.gov [DOE]

    With winter in full swing in many parts of the U.S., your thermostat may be getting more attention than usual. Whether you have a furnace, boiler, or heat pump system, you want to make sure your home stays warm—especially as holiday guests arrive. Fortunately, the Energy Department’s efforts to improve efficiency standards is paying dividends with energy bills associated with heating and appliances lower compared to past holiday seasons.

  1. Table 26. Natural gas home customer-weighted heating degree...

    U.S. Energy Information Administration (EIA) Indexed Site

    96 Created on: 2242016 5:55:04 PM Table 26. Natural gas home customer-weighted heating ... 1,392 803 2015 1,285 1,239 1,313 1,256 814 2016 1,090 1,094 1,213 1,290 824 % Diff (normal ...

  2. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  3. Passive solar heated energy conserving biosphere home. Final report

    SciTech Connect (OSTI)

    Piekarski, R.

    1985-01-01

    ''Warm Gold'' is an original design of a passive solar heated energy conserving biosphere home. It has been owner-built with financial help from the US Department of Energy through its Appropriate Technology Small Grants Program of 1980. The home incorporates the six major components of passive solar design: appropriate geometry and orientation, glazing, light levels and reflective surfaces, ventilation, thermal storage, and insulation. Warm Gold is an earth-sheltered home with earth cover on the roof as well as on the two opaque north leg walls. It is of durable and efficient masonry construction which included stone masonry with on-site materials and cement block and ready mix concrete. Excavation, backfill, and drainage were necessary aspects of earth sheltered construction together with the all-important Bentonite waterproofing system. Warm Gold is a house which meets all the national building code standards of HUD. The home has two bedrooms, one bathroom, living room, dining room-kitchen, greenhouse, and utility annex, all of which are incorporated with the earth-sheltered, passive solar systems to be a comfortable, energy-efficient living environment.

  4. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect (OSTI)

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  5. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas and Oil Heating Systems Tips: Natural Gas and Oil Heating Systems Install a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system, ask your local utility or state energy office about the latest technologies on the market. For example, many newer models have designs for burners and heat exchangers that are more efficient during operation and cut heat loss when the

  6. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  7. #tipsEnergy: Saving on Home Heating Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the

  8. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect (OSTI)

    Hunton, G.

    1998-06-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  9. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  10. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  11. Proceedings of the 1993 oil heat technology conference and workshop

    SciTech Connect (OSTI)

    McDonald, R.J.

    1993-09-01

    This report documents the proceedings of the 1993 Oil Heat Technology Conference and Workshop, held on March 25--26 at Brookhaven National Laboratory (BNL), and sponsored by the US Department of Energy - Office of Building Technologies (DOE-OBT), in cooperation with the Petroleum Marketers Association of America. This Conference, which was the seventh held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology (Oil-Heat R&D) program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space- conditioning equipment. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Building America Whole-House Solutions for New Homes: Testing Ductless Heat

    Energy Savers [EERE]

    Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington | Department of Energy Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington Building America Whole-House Solutions for New Homes: Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for

  13. Impact of Interruptible Natural Gas Service on Northeast Heating Oil Demand

    Reports and Publications (EIA)

    2001-01-01

    Assesses the extent of interruptible natural gas contracts and their effect on heating oil demand in the Northeast.

  14. Do-It-Yourself Home Energy Audits | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    dangerous and unhealthy situation in the home. In homes where a fuel is burned (i.e., natural gas, fuel oil, propane, or wood) for heating, be certain the appliance has an...

  15. How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? |

    Office of Environmental Management (EM)

    Department of Energy Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? How Has a Ceiling Fan Affected the Way You Heat and Cool Your Home? September 23, 2010 - 7:30am Addthis On Monday, Chris told you about his new ceiling fan and how it's changed the way he cools his home. In warm weather, ceiling fans cool people (not rooms) by producing a wind-chill effect-which is why you should turn off fans when you leave the room. A ceiling fan allows you to raise the thermostat setting

  16. Proceedings of the 1991 Oil Heat Technology Conference and Workshop

    SciTech Connect (OSTI)

    McDonald, R.J.

    1992-07-01

    This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  17. #AskEnergySaver: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    via email IW: It's not the fuel, it's how you burn it. Any fossil fuel -- gas, oil or propane -- or even wood or coal needs to be completely burned and its energy extracted as...

  18. H. R. 3710: A Bill to amend the Internal Revenue Code of 1986 to allow individuals a credit for expenditures to remove and replace underground home heating oil storage tanks in certain areas. Introduced in the House of Representatives, One Hundredth First Congress, First Session, November 17, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The bill would allow a tax credit in the amount equal to 25 percent of the removal and replacement expenditures made by the taxpayer during the taxable year, not to exceed 2000 dollars. The tank must be located at the principal residence of the taxpayer, be used to store heating oil for the residence, and be located in a critical aquifer protection area, as defined in the Public Health Service Act.

  19. Measured heating system efficiency retrofits in eight manufactured (HUD-code) homes

    SciTech Connect (OSTI)

    Siegel, J.; Davis, B.; Francisco, P.; Palmiter, L.

    1998-07-01

    This report presents the results of field measurements of heating efficiency performed on eight all-electric manufactured homes sited in the Pacific Northwest with forced-air distribution systems. These homes, like more than four million existing manufactured homes in the US, were constructed to thermal specifications that were mandated by the US Department of Housing and Urban Development in 1976. The test protocol compares real-time measurements of furnace energy usage with energy usage during periods when zonal heaters heat the homes to the same internal temperature. By alternating between the furnace and zonal heaters on 2 hour cycles, a short-term coheat test is performed. Additional measurements, including blower door and duct tightness tests, are conducted to measure and characterize the home's tightness and duct leakage so that coheat test results might be linked to other measures of building performance. The testing was done at each home before and after an extensive duct sealing retrofit was performed. The average pre-retrofit system efficiency for these homes was 69%. After the retrofit, the average system efficiency increased to 83%. The average simple payback period for the retrofits ranges from 1 to 5 years in Western Oregon and 1 to 3 years in colder Eastern Oregon.

  20. Heat Transfer and Thermophotovoltaic Power Generation in Oil-fired Heating Systems

    SciTech Connect (OSTI)

    Butcher, T.; Hammonds, J.S.; Horne, E.; Kamath, B.; Carpenter, J.; Woods, D.R.

    2010-10-21

    The focus of this study is the production of electric power in an oil-fired, residential heatingsystem using thermophotovoltaic (TPV) conversion devices. This work uses experimental, computational, and analytical methods to investigate thermal mechanisms that drive electric power production in the TPV systems. An objective of this work is to produce results that will lead to the development of systems that generate enough electricity such that the boiler is self-powering. An important design constraint employed in this investigation is the use of conventional, yellow-flame oil burners, integrated with a typical boiler. The power production target for the systems developed here is 100 W - the power requirement for a boiler that uses low-power auxiliary components. The important heattransfer coupling mechanisms that drive power production in the systems studied are discussed. The results of this work may lead to the development of systems that export power to the home electric system.

  1. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  3. State Heating Oil and Propane Program Expansion of Propane Data Collection

    U.S. Energy Information Administration (EIA) Indexed Site

    State Heating Oil and Propane Program Expansion of Propane Data Collection Marcela Rourk April 14, 2014 | Washington, DC Key Topics Marcela Rourk, Washington, DC April 14, 2014 2 * Overview and history of State Heating Oil and Propane Program (SHOPP) * Expansion of propane data collection * What is expected of SEOs that participate? * Benefits of participation What is SHOPP? Marcela Rourk, Washington, DC April 14, 2014 3 * State Heating Oil and Propane Program (SHOPP) - cooperative data

  4. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  5. Testing, Evaluation, and Qualification of Bio-Oil for Heating Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing, Evaluation, and Qualification of Bio-Oil for Heating March 26, 2015 Dr. Thomas A. Butcher Brookhaven National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement 2 * The goal of this project is to enable the replacement of 20% of the petroleum-derived heating oil in the Northeast with infrastructure compatible bio-oil by 2020 thereby stabilizing the supply and cost peaks for heating oil. * Heating oil and diesel

  6. Heating oil and propane households bills to be lower this winter despite recent cold spell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating oil and propane households bills to be lower this winter despite recent cold spell Despite the recent cold weather, households that use heating oil or propane as their main space heating fuel are still expected to have lower heating bills compared with last winter. In its new monthly forecast, the U.S. Energy Information Administration said the average household that uses heating oil will spend $1,780 this winter that's about $570 less than last winter. Those savings reflect lower crude

  7. Overall U-values and heating/cooling loads: Manufactured homes

    SciTech Connect (OSTI)

    Conner, C.C.; Taylor, Z.T.

    1992-02-01

    This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development`s (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

  8. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect (OSTI)

    McClanahan, Janice

    2001-04-01

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  9. Number 2 heating oil/propane program. Final report, 1991/92

    SciTech Connect (OSTI)

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  10. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  11. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...117,52,8,117,43,"Q","Q" "District Chilled Water ......",50,50,50,21,3,43,50,"Q","Q" ...

  12. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...,1839,5891,2354,"Q","Q" "District Chilled Water ......",2750,2750,2750,1316,749,2354,2750...

  13. No. 2 heating oil/propane program. Final report, 1992/93

    SciTech Connect (OSTI)

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  14. State heating oil and propane program. Final report, 1996--1997

    SciTech Connect (OSTI)

    Hunton, G.

    1997-08-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1996-97 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used in rural areas where Natural GAs is not available. Lower installation cost, convenience, lower operating costs compared to electricity and its perception as a clean heating fuel has increased the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  15. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  16. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

  17. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The value of the tax credit is $0.01/gallon for each percent of biodiesel blended with conventional home heating oil, up to a maximum of $0.20/ gallon. In other words, the purchaser of a mixture ...

  18. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  19. Performance of a small underfed wood chip-fired stoker in a hot air-heated home

    SciTech Connect (OSTI)

    Schneider, M.H.

    1983-01-01

    The goal of the study was to provide space heat for a home using forest biomass presently not in demand by industry, and by using a convenient, automatic, low-emission heating system. A stoker firing wood chips was installed in a home, and chips were prepared for it from the residues of a softwood clearcut. Residues from 1 and a quarter acre provided enough fuel to heat the house for the heating season. The chip-fired heating system was convenient, maintained the house at whatever temperature was set on the room thermostat, and generated little creosote or wood smoke. It was better at converting fuel to heat than the previous combustion heating systems in the house, with steady-state combustion efficiency of approximately 75% and longer-term appliance efficiency of 69%. Electric energy required for heating hot water was reduced approximately 27% as a result of a preheating coil located in the chip-fired furnace. The major cause of heat interruptions was jamming of the stoker which occurred on the average of every 18 and a half days. Clearing such jams was simple. The system operated safely throughout the test period.

  20. Tips: Natural Gas and Oil Heating Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    a new energy-efficient furnace to save money over the long term. Install a new energy-efficient furnace to save money over the long term. If you plan to buy a new heating system,...

  1. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  2. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006a, b) and in this report.

  3. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  4. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  5. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  6. Technology Solutions Case Study: Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California

    SciTech Connect (OSTI)

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  7. Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Trough and its Components - Energy Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Hydrogen Removal From Heating Oil of a Parabolic Trough Increases the Life of the Trough and its Components A Method to Selectively Remove & Measure Hydrogen Gas from a Fluid Volume National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Parabolic trough power plants use concentrated solar thermal energy to generate

  8. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  9. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for installation labor and materials, and $627 for overhead and management), and the benefit-to-cost ratio was 1.48. A general trend toward higher-than-average fuel-oil savings was observed in houses with high pre-weatherization fuel-oil consumption. Program savings could likely be increased by targeting higher energy consumers for weatherization, although equity issues would have to be considered. Weatherization measures associated with higher-than-average savings were use of a blower door for air-sealing, attic and wall insulation, and replacement space-heating systems. Space-heating system tune-ups were not particularly effective at improving the steady-state efficiency of systems, although other benefits such as improved seasonal efficiency, and system safety and reliability may have resulted. The Program should investigate methods of improving the selection and/or application of space-heating system tune-ups and actively promote improved tune-up procedures that have been developed as a primary technology transfer activity. Houses were more air-tight following weatherization, but still leakier than what is achievable. Additional technology transfer effort is recommended to increase the use of blower doors considering that only half the weatherized houses used a blower door during air sealing. A guidebook developed by a committee of experts and covering a full range of blower-door topics might be a useful technology transfer and training document. Weatherization appeared to make occupants feel better about their house and house environment.

  10. Go for the Gold in Energy-Efficient Home Heating | Department...

    Broader source: Energy.gov (indexed) [DOE]

    As the Olympics strive to be more energy efficient, we can champion the same effort in our homes and become energy saving Olympians. One of the biggest places to save energy (and ...

  11. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1

    SciTech Connect (OSTI)

    1998-06-01

    In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

  12. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  13. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  14. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump Location: Tucson, AZ and Chico, CA Partners: La Mirada Homes www.lamiradahomes.net Chico Green Builders Daikin www.daikinac.com ARBI http://arbi.davisenergy.com/ Building Component: HVAC, domestic hot water Application: New, single family Year Tested: 2011-2012 Applicable Climate Zones: Hot-dry, cold PERFORMANCE DATA Cost

  15. Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems

    Broader source: Energy.gov [DOE]

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings.

  16. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Hydronic Heating Coil Versus Propane Furnace Rehoboth Beach, Delaware PROJECT INFORMATION Construction: New Home Type: Single-family, affordable IBACOS, www.ibacos.com Builder: Insight Homes, Rehoboth Beach, DE www.itsjustabetterhouse.com Size: 1,715 ft 2 Price Range: About $230,000 Date Completed: 2012 Climate Zone: Mixed-humid PERFORMANCE DATA Builder standard practice = 56 Case study house = 1,715 ft 2 With renewables = Not applicable Without renewables = 56 Projected annual energy cost

  17. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  18. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  19. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, Carl; Puttagunta, Srikanth; Owens, Douglas

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  20. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  1. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.

  2. Data-Driven Mailing Helps Heat Up Untapped Seattle Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Series Data-Driven Mailing Helps Heat Up Untapped Seattle Market Recognizing owners of oil-heated homes in Seattle, Washington, as a long-untapped market, Community Power Works engaged them through a direct mail campaign in April 2012. Not only did the mailing generate hundreds of sign-ups, but the number of oil-heated homes initiating upgrades increased to 50% in the six months after the mailing. In the interview below, Community Power Works Project Manager Ruth Bell and Program/System

  3. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  4. Purchasing a New Energy-Efficient Central Heating System | Department of

    Energy Savers [EERE]

    Energy Purchasing a New Energy-Efficient Central Heating System Purchasing a New Energy-Efficient Central Heating System October 21, 2008 - 4:00am Addthis John Lippert Energy prices are skyrocketing. According to the Energy Information Administration's October 7, 2008 forecast, heating fuel expenditures for the average household using oil as its primary heating fuel are expected to increase by $449 over last winter. Households using natural gas to heat their homes can expect to pay $155 more

  5. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Office of Environmental Management (EM)

    Existing Homes: Multifamily Individual Heating and Ventilation Systems Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation...

  6. Household heating bills expected to be lower this winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household heating bills expected to be lower this winter U.S. consumers are expected to pay less this winter on their home heating bills because of lower oil and natural gas prices and projected milder temperatures than last winter. In its new forecast, the U.S. Energy Information Administration said households that rely on heating oil which are mainly located in the Northeast will pay the lowest heating expenditures in 9 years down 25% from last winter as consumers are expected to save about

  7. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In ...

  8. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In...

  9. DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study, Nexus EnergyHomes, Frederick, MD, Production DOE Zero Energy Ready Home Case Study, Nexus ... geothermal heat pumps, solar PV, and a proprietary energy management system. ...

  10. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA...

    Energy Savers [EERE]

    San Marcos, CA, Production Home DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, ... pump for central air in sealed attic, solar water heating and 100% LED lighting. ...

  11. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical ...

  12. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential for a renewable heating oil substitution fuel in New England - Agenda Time ... background information on the heating oil industry and their efforts at pyrolysis oil ...

  13. Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field Assessment

    Broader source: Energy.gov [DOE]

    In this project, the NorthernSTAR team analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating.

  14. Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes

    SciTech Connect (OSTI)

    Im, Piljae; Hughes, Patrick; Liu, Xiaobing

    2012-01-01

    The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

  15. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham...

    Energy Savers [EERE]

    home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat pump heats and cools the home,...

  16. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods

    SciTech Connect (OSTI)

    Dolealov, Markta; Beneov, Libue; Zvodsk, Anita

    2013-09-15

    Highlights: The character of household waste in the three different types of households were assesed. The quantity, density and composition of household waste were determined. The physicochemical characteristics were determined. The changing character of household waste during past 10 years was described. The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Unions solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.

  17. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  18. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating oil substitution | Department of Energy renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England. PDF icon pyrolysis_oil_agenda.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil

  19. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of ... Assumptions of the RERH Solar Water Heating Specification ...

  20. Passive Solar Home Design | Department of Energy

    Energy Savers [EERE]

    Design » Design for Efficiency » Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot

  1. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot

  2. Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sealing Your Home Sealing Your Home Caulking can reduce heating and cooling costs and improve comfort in your home. Caulking can reduce heating and cooling costs and improve comfort in your home. Air leakage, or infiltration, occurs when outside air enters a house uncontrollably through cracks and openings. Properly air sealing can significantly reduce heating and cooling costs, improve building durability, and create a healthier indoor environment. In addition to air sealing, you'll also want

  3. Coast Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association (CEPA) provides rebates on heat pumps for new homes which meet certain weatherization standards. To qualify for this rebate the home must have:

  4. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study of a DOE Zero Energy Ready Home in San Marcos, CA that scored HERS 52 without PV, -4 with PV. This 52,778-square-foot production home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting.

  5. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/SH) control strategy briefly described in the original report and corrects some minor errors.

  6. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-02-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of a centrally ducted integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006a). The present report is an update to that document which summarizes results of an analysis of the impact of adding a humidifier to the HVAC system to maintain minimum levels of space relative humidity (RH) in winter. The space RH in winter has direct impact on occupant comfort and on control of dust mites, many types of disease bacteria, and 'dry air' electric shocks. Chapter 8 in ASHRAE's 2005 Handbook of Fundamentals (HOF) suggests a 30% lower limit on RH for indoor temperatures in the range of {approx}68-69F based on comfort (ASHRAE 2005). Table 3 in chapter 9 of the same reference suggests a 30-55% RH range for winter as established by a Canadian study of exposure limits for residential indoor environments (EHD 1987). Harriman, et al (2001) note that for RH levels of 35% or higher, electrostatic shocks are minimized and that dust mites cannot live at RH levels below 40%. They also indicate that many disease bacteria life spans are minimized when space RH is held within a 30-60% range. From the foregoing it is reasonable to assume that a winter space RH range of 30-40% would be an acceptable compromise between comfort considerations and limitation of growth rates for dust mites and many bacteria. In addition it reports some corrections made to the simulation models used in order to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006) and in this report.

  7. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer Visualization CAVE...

  8. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  9. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and...

  10. Construction-employment opportunities of four oil-replacing space-heating alternatives for core areas of thirteen major northeastern and midwestern cities

    SciTech Connect (OSTI)

    Santini, D.J.; Wernette, D.R.

    1980-07-01

    Construction employment opportunities are compared for four oil-replacing technologies providing equivalent space-heating services to the core areas of 13 major northeastern and midwestern cities. The four technologies are: cogeneration district heating, coal gasification, coal liquefaction and electrification (coal-fired power plant). It is observed that the district-heating option places a higher percentage of its capital stock within the center city. It also requires lower occupational skills for its construction than the other three alternatives. In view of the lower average educational level of minorities and their concentration in urban areas, substantially more minority employment should occur if district heating is implemented. This alternative also will provide employment opportunities for unemployed nonminority construction laborers and contribute indirectly to the improvement of inner-city neighborhoods where many unemployed construction laborers live.

  11. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom

    Energy Savers [EERE]

    Homes | Department of Energy e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps. PDF icon BA_ZeroEnergyReady_e2Homes_062414.pdf More Documents & Publications

  12. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect (OSTI)

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  13. State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP). Final report, August 9, 1991--August 8, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy`s Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources` Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources` Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy`s Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

  14. Buildng America Whole-House Solutions for New Homes: William Ryan Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tampa, Florida | Department of Energy Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida Case study of William Ryan Homes, who worked with Building America research partner CARB to design HERS-65 homes with energy-efficient heat pumps and programmable thermostats with humidity controls, foam-filled concrete block walls, draining house wrap, and airsealed kneewalls. PDF

  15. Building America Whole-House Solutions for New Homes: Tommy Williams Homes,

    Energy Savers [EERE]

    Gainesville, Florida | Department of Energy Tommy Williams Homes, Gainesville, Florida Building America Whole-House Solutions for New Homes: Tommy Williams Homes, Gainesville, Florida Case study of Tommy Williams Homes who partnered with Building America to build HERS-58 homes with foam gaskets at sill and top plates, fresh air intakes, SEER 16/HSPF 9.5 heat pumps, and tight air sealing of 2.7 ACH50. PDF icon Tommy Williams Homes: Longleaf Village & Belmont - Gainesville, FL More

  16. Building America Whole-House Solutions for New Homes: Urbane Homes,

    Energy Savers [EERE]

    Louisville, Kentucky | Department of Energy Urbane Homes, Louisville, Kentucky Building America Whole-House Solutions for New Homes: Urbane Homes, Louisville, Kentucky Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space. PDF icon Urbane Homes - Louisville, KY More Documents & Publications High

  17. Buildng America Whole-House Solutions for New Homes: William Ryan Homes,

    Energy Savers [EERE]

    Tampa, Florida | Department of Energy Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida Case study of William Ryan Homes, who worked with Building America research partner CARB to design HERS-65 homes with energy-efficient heat pumps and programmable thermostats with humidity controls, foam-filled concrete block walls, draining house wrap, and airsealed kneewalls. PDF

  18. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect (OSTI)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200 C) and constant oil shale grade, both the relative dielectric constant (?') and imaginary permittivity (?'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ?' decreases or remains constant with oil shale grade, while ?'' increases or shows no trend with oil shale grade. At higher temperatures (>200 C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ?'' fluctuates. At these temperatures, maximum values for both ?' and ?'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  19. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  20. Home | DOEpatents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    DOEpatents Home DOEpatents FAQ About DOEpatents Site Map Contact Us DOE Home » DOE Patents Navigation Toggle Navigation DOEpatents Home DOEpatents FAQ About DOEpatents Site Map Contact Us OSTI Home DOE Home DOEpatents Database From the 1940s to today... A central collection of US Department of Energy patent information Find + Advanced Search × Advanced Search All Fields: Patent Title: Abstract: Assignee: Inventor(s): Name Name ORCID Patent Number: Patent Application Number: Contract Number:

  1. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  2. Nebraska Preparing for the Upcoming Heating Season

    Gasoline and Diesel Fuel Update (EIA)

    N E B R A S K A Nebraska "Preparing for the Upcoming Heating Season" E N E R G Y O F F I C E State Heating Oil and Propane Conference October 8, 2014 Profile of Nebraska Population - 1,868,516 Occupied Housing Units - 733,570 Occupied Housing by Fuel Used for Home Heating in 2012 Natural Gas 63% Fuel Oil and Kerosene 0.50% Electricity 26% Propane 8% Wood 1.60% All Other Fuels 0.09% Coal or Coke 0.01% Solar Energy 0.04% No Fuel Used 0.20% http://www.neo.ne.gov/statshtml/75.html History

  3. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA,

    Energy Savers [EERE]

    Systems Home | Department of Energy Coupeville, WA, Systems Home DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA, Systems Home Case study of a DOE Zero Energy Ready Home on Whidbey Island, WA, that scored HERS 45 without PV. This 2,908-square-foot custom/system home has a SIP roof and walls, R-20 rigid foam under slab, triple-pane windows, ground source heat pump for radiant floor heat, and a unique balanced ventilation system using separate exhaust fans to bring

  4. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  5. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey...

    Energy Savers [EERE]

    SIP above-grade walls, a 10.25-in. SIP roof, and triple-pane windows. The home has a ground-source heat pump provides radiant floor heat plus passive solar heating from large...

  6. Building America Case Study: Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate, Brevard and Volusia Counties, Florida (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate Brevard and Volusia Counties, Florida PROJECT INFORMATION Project Name: Phased Deep Retrofit: Phase II Location: Central Florida Partners: Florida Power & Light, fpl.com Building America Partnership for Improved Residential Construction, ba-pirc.org Building Component: HVAC Application: Retrofit, single-family Year Tested: 2014-2015 Applicable Climate Zone: Hot-humid PERFORMANCE DATA Average home living area: 1,872 ft 2

  7. Building America Case Study: Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast, Devens and Easthampton, Massachusetts (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast Devens and Easthampton, Massachusetts PROJECT INFORMATION Construction: New construction Type: Single-family Partners: Builder: Transformations, Inc., transformations-inc.com Building Science Corporation, buildingscience.com Size: 1,100 ft 2 -2,300 ft 2 houses Climate Zone: Cold (5A) Transformations, Inc., has extensive experience building high-performance homes-production and custom-in a variety of Massachusetts locations

  8. Home Energy Score Sample Report | Department of Energy

    Office of Environmental Management (EM)

    Home Energy Score Sample Report Home Energy Score Sample Report The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. PDF icon

  9. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cambridge, Massachusetts Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, ...

  10. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Energy Savers [EERE]

    Department of Energy M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation system that supplies all of the home's electricity, heating, and cooling on site. The tri-generator is powered by a

  11. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect (OSTI)

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  12. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field ...

  13. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect (OSTI)

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  14. Combi Systems for Low Load homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Context Technical Approach * A condensing water heater and hydronic air handler will used to provide space and water heating loads in almost 300 weatherized homes. * System ...

  15. DEMCO- Touchstone Energy Home Program

    Broader source: Energy.gov [DOE]

    DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

  16. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Winter Park, FL that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps.

  17. Winter Heating Fuels - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  18. Winter Heating Fuels - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  19. Active Solar Heating | Department of Energy

    Energy Savers [EERE]

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  20. Active Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary

  1. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This house incorporates slab-on-grade, EPS roof, and radiant heating with an air-to-water heat pump that also preheats domestic hot water. Without counting in the solar panels, the home earns a home energy rating system (HERS) score of 37, with projected utility bills of about $740 a year. With the 6.4-kW photovoltaic power system installed on the roof, the homes HERS scores drops to -1 and utility bills for the all-electric home drop to zero. This home was awarded a 2013 Housing Innovation Award in the affordable builder category.

  2. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island,

    Energy Savers [EERE]

    WA | Department of Energy Whidbey Island, WA DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island, WA Case study of a DOE Zero Energy Ready home on Whidbey Island, WA, that scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car. The two-story custom home has ICF below-grade walls, 6.5-inch SIP above-grade walls, a 10.25-in. SIP roof, and triple-pane windows. The home has a ground-source heat pump provides radiant floor heat

  3. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA |

    Energy Savers [EERE]

    Department of Energy Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA Case study of a DOE Zero Energy Ready home in Bellingham, WA, that achieves HERS 43 without PV or HERS 13 with 3.2 kW of PV. The 1,055-ft2 two-story production home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat pump heats

  4. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine |

    Energy Savers [EERE]

    Department of Energy Home: Near Zero Maine Home II, Vassalboro, Maine DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine Case study of a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar

  5. DOE Zero Energy Ready Home Case Study: TC Legend, Seattle, WA, Custom Home

    Office of Environmental Management (EM)

    | Department of Energy TC Legend, Seattle, WA, Custom Home DOE Zero Energy Ready Home Case Study: TC Legend, Seattle, WA, Custom Home Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 37 without PV, HERS -1 with PV. This 1,915-square-foot custom home has SIP walls and roof, R-20 XPS under the slab, triple-pane windows, an air to water heat pump for radiant heat, and balanced ventilation with timer-controlled fans to bring in and exhaust air. PDF icon TC Legend Homes

  6. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Home Cooling Energy Saver 101 Energy Saver 101 We're covering everything you need to know about home cooling to help you save energy and money. Read more Ventilation Systems for Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read

  7. New energy-conserving passive solar single-family homes. Cycle 5, Category 2 HUD solar heating and cooling demonstration program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The 91 new single-family, energy-conserving passive solar homes described represent award winning designs of the series of five demonstration cycles of the HUD program. Information is presented to help builders and lenders to understand passive solar design, to recognize passive solar buildings, and to provide specific design, construction, and marketing suggestions and details. The first section describes the concept of passive solar energy, explains the various functions which passive solar systems must perform, and discusses the various types of passive systems found in the Cycle 5 projects. The second section discusses each of the 91 solar homes. The third section details the issues of climate requirements and site design concerns, gives examples of building construction, and suggests how to market solar homes. The appendices address more technical aspects of the design and evaluation of passive solar homes.

  8. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque,

    Energy Savers [EERE]

    NM, Production | Department of Energy Homes Inc., Albuquerque, NM, Production DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque, NM, Production Case study of a DOE Zero Energy Ready Home in Aztec, NM, that scored HERS 49 without PV. This 2,064-square-foot production home has advance framed walls, a spray foamed attic, an air source heat pump, and an HRV. PDF icon Palo Duro Homes, Inc.- Albuquerque, NM More Documents & Publications DOE Zero Energy Ready Home Case

  9. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide...

  10. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide Chemical and Supply Order Form Training Access...

  11. Building America Whole-House Solutions for New Homes: CDC Realty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    attics, solar water heating, tight air sealing, and rigid foam exterior sheathing. ... Building America Whole-House Solutions for New Homes: David Weekely Homes, Houston, Texas

  12. Building America Case Study: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Research, TaC Studios Residence Atlanta, Georgia PROJECT INFORMATION Construction: New Home Type: Single-family Builder: TaC Studios, tacstudios.com Size: 3,570 ft 2 Price Range: about $750,000 Date completed: 2011 Climate zone: Mixed-humid PERFORMANCE DATA HERS index: 66 Builder standard practice = 75 Case study house 3,570 ft 2 Projected annual energy cost savings: $493 Incremental cost of energy efficiency measures: $51,036 Incremental annual mortgage: $1,449 Annual

  13. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOE Patents [OSTI]

    Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  14. Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange

    DOE Patents [OSTI]

    Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

    1983-09-21

    A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  15. QUIZ: Test your Home Energy IQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy IQ QUIZ: Test your Home Energy IQ Test your Home Energy IQ Find out if you are the brightest bulb when it comes to home energy use trivia! 1. What accounts for the most energy use in American homes? Heating and cooling Water heating Electronics and lighting Appliances According to the most recent Residential Energy Consumption Survey, heating and cooling accounted for 48 percent of total energy consumption in American homes. However, this number is down from 58 percent in 1993 as a

  16. Quiz: Test Your Home Energy IQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy IQ Quiz: Test Your Home Energy IQ October 7, 2015 - 12:38pm Addthis Test your Home Energy IQ Find out if you are the brightest bulb when it comes to home energy use trivia! 1. What accounts for the most energy use in American homes? Heating and cooling Water heating Electronics and lighting Appliances According to the most recent Residential Energy Consumption Survey, heating and cooling accounted for 48 percent of total energy consumption in American homes. However, this number is

  17. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  18. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-06-01

    Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

  19. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) | Department of Energy Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump

  20. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This ...

  1. Building America Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    foundation heat exchanger (FHX) is a new concept for a cost- effective horizontal ground heat exchanger (HGHX) that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating. This new FHX technology could reduce costs by placing the HGHX into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for the water supply and septic field). Since they reduce or

  2. Energy-Efficient Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Energy-Efficient Home Design Energy-Efficient Home Design The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. The Home Energy Score is a

  3. WIPP Home Page Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Page Search Enter word(s) to search for on the WIPP Home Page: Search

  4. Challenge Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Homes New CH logo is not recognized in market Original Builders Challenge label had no brand architecture Zero Net-Energy Ready is a heavy lift for housing industry Build strong ...

  5. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  6. Building America Technology Solutions for New and Existing Homes: Replacing

    Energy Savers [EERE]

    Resistance Heating with Mini-Split Heat Pumps | Department of Energy Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. PDF icon Replacing Resistance Heating with Mini-Split Heat Pumps More Documents & Publications

  7. Building America Case Studies for New Homes: Performance and Costs of

    Energy Savers [EERE]

    Ductless Heat Pumps in Marine Climate High-Performance Homes | Department of Energy Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes Building America Case Studies for New Homes: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes The Woods is a sustainable community built by Habitat for Humanity in 2013. This community comprises 30 homes that are high-performance and energy-efficient. With support from Tacoma Public

  8. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Retrofit Integrated Space and Water Heating: Field Assessment Minneapolis, Minnesota PROJECT INFORMATION Project Name: Retrofit Integrated Space and Water Heating: Field Assessment Location: Minneapolis, MN Partners: Center for Energy and Environment, www.mncee.org/ Sustainable Resources Center, www.src-mn.org/ University of Minnesota, www.bbe.umn.edu/index.htm NorthernSTAR Building America Partnership Building Component: HVAC Application: Retrofit; single family Year Tested: 2012 Climate

  9. HIA 2015 DOE Zero Energy Ready Home Case Study: High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The home's heating and cooling system consists of a ground source heat pump with two air handling units, both installed within the conditioned space of the home. The first air ...

  10. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, ...

  11. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  12. Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Oil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our <a href="node/770751">interactive chart</a>. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence

  13. HOMEe | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: HOMEe Place: Denmark Product: Denmark-based maker of home automation products, including devices to manage lighting and climate. References: HOMEe1...

  14. Heating & Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Homes » Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. <a href="/energysaver/principles-heating-and-cooling">Learn more about the principles of heating and cooling</a>. Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for

  15. Singing River Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet Comfort Advantage weatherization standards. To qualify for this rebate...

  16. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Performance of ...

  17. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Solutions for New and Existing Homes: Advanced Controls Improve Performance of Combination Space- and Water-Heating Systems Building America Technology Solutions for New ...

  18. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), This case study describes ...

  19. Building America Technology Solutions for New and Existing Homes...

    Energy Savers [EERE]

    Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) In addition...

  20. Combi Systems for Low Load homes | Department of Energy

    Energy Savers [EERE]

    America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field Assessment Building America Expert Meeting: Recommendations for...

  1. Tips: Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Tips: Heat Pumps Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to electric resistance

  2. Passive Solar Home Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary...

  3. Home Energy Assessments

    Broader source: Energy.gov [DOE]

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy...

  4. Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Whole-House Solutions for Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747

  5. Construction progresses at GE's Oil & Gas Technology Center ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Construction progressing at GE's newest research center, the Oil & Gas Technology Center in Oklahoma City Click to email this to a friend (Opens in new window)...

  6. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Cooling Tips: Heating and Cooling Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy

  7. Home Energy Score

    SciTech Connect (OSTI)

    2011-12-16

    The Home Energy Score allows a homeowner to compare her or his home's energy consumption to that of other homes, similar to a vehicle's mile-per-gallon rating. A home energy assessor will collect energy information during a brief home walk-through and then score that home on a scale of 1 to 10.

  8. DOE Zero Energy Ready Home: Leganza Residence- Greenbank, Washington

    Broader source: Energy.gov [DOE]

    This DOE Zero Energy Ready Home features structural insulated panel walls and roof, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  9. Combined Heat And Power Installation Market Analysis | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Analysis Home There are currently no posts in this category. Syndicate...

  10. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  11. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsHeat Index Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative humidity to estimate how hot it actually feels. The human body cools off through perspiration, which removes heat from

  12. Home Energy Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Checklist Home Energy Checklist This checklist outlines actions that conserve energy within homes. Today Checkbox Turn down the temperature of your water heater to the warm setting (120°F). You'll save energy and avoid scalding your hands. Checkbox Check if your water heater has an insulating blanket. An insulating blanket will pay for itself in one year or less! Checkbox Heating can account for almost half of the average family's winter energy bill. Make sure your furnace or heat

  13. Heat and Cool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Heat and Cool Heat and Cool Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water heating accounts for 18%, making these some of the largest energy expenses in any home. Space Heating and Cooling A variety of technologies

  14. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  15. Heat and Cool | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water...

  16. Report on Solar Water Heating Quantitative Survey

    SciTech Connect (OSTI)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  17. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  18. Demonstration and Performance Monitoring of Foundation Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration and Performance Monitoring of Foundation Heat Exchangers in Low Load, High Performance Research Homes Demonstration and Performance Monitoring of Foundation Heat ...

  19. Secretary Chu Announces More Stringent Appliance Standards for Home Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters and Other Heating Products | Department of Energy Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products April 1, 2010 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu announced today that the Department has finalized higher energy efficiency standards for a key group of heating appliances that will together save consumers

  20. Tips: Your Home's Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home's Energy Use Tips: Your Home's Energy Use How we use energy in our homes. Heating accounts for the biggest portion of your utility bills. Source: U.S. Energy Information Administration, AEO2014 Early Release Overview. How we use energy in our homes. Heating accounts for the biggest portion of your utility bills. Source: U.S. Energy Information Administration, AEO2014 Early Release Overview. A home energy assessment (sometimes referred to as an energy audit) will show what parts of your

  1. New Whole-House Solutions Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida

    SciTech Connect (OSTI)

    none,

    2012-10-01

    PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15 with PV or HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV.

  2. 5 Cool Things about Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo...

  3. DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Garbett Homes, Herriman, UT, Production Home DOE Zero Energy Ready Home Case Study: Garbett Homes, Herriman, UT, Production Home Case study of a DOE Zero Energy Ready Home in ...

  4. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case ...

  5. DOE Zero Energy Ready Home Case Study: M Street Homes Smartlux on Greenpark, Houston, TX

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder certified its first DOE Zero Energy Ready Home and won a Production Builder honor in the 2014 Housing Innovation Awards. It is the first home in the world to use a tri-generation system to supply electricity, heating, and cooling on site.

  6. Renewable Energy Ready Home Solar Photovoltaic Specifications | Department

    Energy Savers [EERE]

    of Energy Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency. PDF icon rerh_solar_electric_guide.pdf More Documents & Publications Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE DOE Zero Energy Ready Home PV-Ready Checklist DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist

  7. Home Improvement Catalyst (HI-Cat) | Department of Energy

    Energy Savers [EERE]

    Improvement Catalyst (HI-Cat) Home Improvement Catalyst (HI-Cat) The Home Improvement Catalyst (HI-Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The home improvement market represents $150 billion in annual investment, with over 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation and other measures.

  8. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, ...

  9. Masco Home Services/WellHome | Open Energy Information

    Open Energy Info (EERE)

    WellHome Jump to: navigation, search Name: Masco Home ServicesWellHome Place: Taylor, MI Website: www.mascohomeserviceswellhome. References: Masco Home Services...

  10. Wholesale Heating Oil Weekly Heating Oil and Propane Prices ...

    U.S. Energy Information Administration (EIA) Indexed Site

    1.134 1.102 1.131 1.239 1.287 1.309 2013-2016 East Coast (PADD 1) 1.139 1.101 1.124 1.238 1.281 1.300 2013-2016 New England (PADD 1A) 1.191 1.154 1.179 1.305 1.349 1.366 2013-2016 ...

  11. Residential Heating Oil Weekly Heating Oil and Propane Prices...

    U.S. Energy Information Administration (EIA) Indexed Site

    2.103 2.094 2.089 2.096 2.122 2.132 1990-2016 East Coast (PADD 1) 2.109 2.100 2.095 2.101 2.127 2.136 1990-2016 New England (PADD 1A) 2.044 2.043 2.034 2.039 2.061 2.070 1990-2016 ...

  12. Home Improvement Catalyst: Focused on Energy Efficiency to More Homes Across America

    Broader source: Energy.gov [DOE]

    The home improvement market represents $150 billion in annual investment, with more than 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation, and other measures.

  13. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  14. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Cool » Home Heating Systems » Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems.

  15. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Phoenix, AZ, that scored HERS 58 without PV or HERS 38 with PV. This 1,700-square-foot affordable home has R-21 framed walls, a sealed closed-cell spray foamed attic, an air-source heat pump with forced air, and a solar combo system that provides PV, hot water, and space heating.

  16. System for increasing corona inception voltage of insulating oils

    DOE Patents [OSTI]

    Rohwein, Gerald J. (Albuquerque, NM)

    1998-01-01

    The Corona Inception Voltage of insulating oils is increased by repetitive cycles of prestressing the oil with a voltage greater than the corona inception voltage, and either simultaneously or serially removing byproducts of corona by evacuation and heating the oil.

  17. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters A diagram of a heat pump water heater. A diagram of a heat pump water heater. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore,

  18. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    ... of Compliance Certification Regarding Drug-free Workplace Simpson-Craig Checklist A ... Q8: How does my State Energy Office draw grant funds? The U.S. Department of Energy has ...

  19. Heating Oil and Propane Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    SHOPP Financial Forms - for State Energy Officials The Federal forms below are required ... The Federal Financial Report, Form SF-425, collects basic data on federal and recipient ...

  20. State Home Oil Weatherization (SHOW) Program

    Broader source: Energy.gov [DOE]

    Residents complete an energy audit independently, or with the assistance of a certified contractor, to decide which measures are appropriate. After installing the new products, the “Energy Rebate”...

  1. Marshfield Utilities - Heat Pump Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Wisconsin Program Type Rebate Program Rebate Amount Ground Source Heat Pump: 150 Home Energy Audit: Free Summary Marshfield Utilities offers cash-back rewards for...

  2. Dehumidifying Heat Pipes | Department of Energy

    Energy Savers [EERE]

    claims that your thermostat can be set higher with the low humidity air, allowing a net energy savings. Related Information Home Cooling Systems Air Conditioning Heat Pump Systems...

  3. Oil Shale | OpenEI Community

    Open Energy Info (EERE)

    Discussions Polls Q & A Events Notices My stuff Energy blogs Login | Sign Up Search Oil Shale Home There are currently no posts in this category. Syndicate content About us...

  4. Oil Shale Market | OpenEI Community

    Open Energy Info (EERE)

    Discussions Polls Q & A Events Notices My stuff Energy blogs Login | Sign Up Search Oil Shale Market Home There are currently no posts in this category. Syndicate content About...

  5. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  6. DOE Zero Energy Ready Home Case Study: TC Legend Homes — Cedarwood, Bellingham, WA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This house was the Grand Winner in the Affordable Builder category of the 2014 Housing Innovation Awards, and has 6-inch SIP walls, a 10-inch structural insulated panel roof, and insulating concrete forms foundation walls with R-20 high-density rigid EPS foam under the slab.A single ductless heat pump heats and cools the home, which also gets passive solar heating from south-facing triple-pane windows that heat a concrete slab floor plus a connected greenhouse.

  7. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Foundation Heat Exchanger, Oak Ridge, Tennessee | Department of Energy Foundation Heat Exchanger, Oak Ridge, Tennessee Building America Technology Solutions for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic

  8. Home Energy Solutions for Existing Homes

    Broader source: Energy.gov [DOE]

    The first step to participate in this program is to evaluate a home's energy use by using Energy Trust's online Home Energy Profile Tool or by calling 1-866-368-7878. Homeowners may also opt for a...

  9. Global Home Filesystem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to dotfiles, source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Quotas, Performance, and Usage Default global home quotas are 40 GB and 1,000,000 inodes. Quota increases in global homes are approved only in extremely unusual circumstances; users are encouraged to use the various scratch, project,

  10. Oil shale retorting method and apparatus

    SciTech Connect (OSTI)

    York, E.D.

    1983-03-22

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  11. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham Power

    Energy Savers [EERE]

    House, Bellingham, WA | Department of Energy Bellingham Power House, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham Power House, Bellingham, WA Case study of a DOE 2015 Housing Innovation Award winning custom home in the marine climate that got HERS 34 without PV or HERS -12 with PV, with 6" SIP walls and 10" SIP roof; R-28 ICF around slab, R-20 rigid foam under slab; radiant floor heat and passive design; air-to-water heat pump COP 4.4; HRV;

  12. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Heat Pump Systems » Air-Source Heat Pumps Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your home. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. This is possible because a heat pump moves heat rather than converting it from a fuel like combustion heating systems do. Air-source heat pumps have been used for many years in

  13. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  14. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  15. NREL: Solar Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research A collage of solar photographs. The first photo shows a parabolic solar trough at the Eldorado Valley site. The second is of a gird-tied high-concentration solar cell MicroDish. And the third photo shows the photovoltaic panels at Oberlin College's Adam Joseph Lewis Center for Environmental studies. Learn About Solar Energy Solar technologies use the sun's energy to provide electricity, heat, light, hot water, and even cooling for homes, businesses, and industry. Learn more about

  16. Heating System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or

  17. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Calculating Design Heating Loads for Superinsulated Buildings | Department of Energy Calculating Design Heating Loads for Superinsulated Buildings Building America Technology Solutions for New and Existing Homes: Calculating Design Heating Loads for Superinsulated Buildings During the winter of 2013-2014, the Consortium for Advanced Residential Buildings monitored the energy use of three homes in the EcoVillage community in climate zone 6 to evaluate the accuracy of two different mechanical

  18. Building America Technology Solutions for New and Existing Homes: Ground

    Energy Savers [EERE]

    Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), | Department of Energy Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet), This case study describes the construction of a new test home in Atlanta, GA, that demonstrates current best practices for the mixed-humid climate,

  19. Manufactured Homes Simulated Thermal Analysis and Cost Effectiveness Report.

    SciTech Connect (OSTI)

    Baylon, David

    1990-05-17

    In 1988 and 1989, 150 manufactured homes were built to comply with Super Good Cents (SGC) specifications adapted from the existing specifications for site-built homes under the Residential Construction Demonstration Project (RCDP). Engineering calculations and computer simulations were used to estimate the effects of the SGC specifications on the thermal performance of the homes. These results were compared with consumer costs to establish the cost-effectiveness of individual measures. Heat loss U-factors for windows, walls, floors and ceilings were established using the standard ASHRAE parallel heat flow method. Adjustments resulted in higher U-factors for ceilings and floors than assumed at the time the homes were approved as meeting the SGC specifications. Except for those homes which included heat pumps, most of the homes did not meet the SGC compliance standards. Nonetheless these homes achieved substantial reductions in overall heat loss rate (UA) compared to UAs estimated for the same homes using the standard insulation packages provided by the manufacturers in the absence of the RCDP program. Homes with conventional electric furnaces showed a 35% reduction in total UA while homes with heat pumps had a 25% reduction. A regression analysis showed no significant relationship between climate zone, manufacturer and UA. A modified version of SUNDAY building simulation program which simulates duct and heat pump performance was used to model the thermal performance of each RCDP home as built and the same home as it would have been built without SGC specifications (base case). Standard assumptions were used for thermostat setpoint, thermal mass, internal gains and infiltration rates. 11 refs., 5 figs., 5 tabs.

  20. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  1. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  2. New Whole-House Solutions Case Study: Urbane Homes, Louisville, Kentucky

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This builder worked with National Association of Home Builders Research Center to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space.

  3. Early Oak Ridge Trailer Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Trailer Home A typical trailer home

  4. Home Energy Score graphic

    Energy Savers [EERE]

    12345 Honeysuckle Lane 1,800 square feet Smithville, AR 72466 1970 Yes Home Energy Score Recommendations Home Facts Score Address: Home size: Year built: Air conditioned: Your home's current score 3 Score with improvements 7 Estimated annual savings $411 Uses Uses more 10 less 1 2 3 4 5 6 7 8 9 energy energy homeenergyscore.gov The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's

  5. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  6. Ductless, Mini-Split Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    remodel and your home does not have heating and cooling ducts, a ductless mini-split heat pump may be a cost-effective, energy-efficient choice. Ductless, mini-split-system heat...

  7. Principles of Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is heat traveling through a solid material. On hot days, heat is conducted into your home through the roof, walls, and windows. Heat-reflecting roofs, insulation, and energy...

  8. Tips: Passive Solar Heating and Cooling | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs...

  9. Reducing Home Heating and Cooling Costs

    U.S. Energy Information Administration (EIA) Indexed Site

    public library should be able to help locate the office. Many utilities have "Demand Side Management" programs that will assist any utility customer. Depending on the local...

  10. Building America Case Studies for Existing Homes: Supplemental Ductless

    Energy Savers [EERE]

    Mini-Split Heat Pump in the Hot-Humid Climate | Department of Energy Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate Building America Case Studies for Existing Homes: Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate The Building America Partnership for Improved Residential Construction team that studied the effects of mini-split heat pumps in six central Florida homes. PDF icon Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate More

  11. DOE Tour of Zero: Bellingham Power House by TC Legend Homes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bellingham Power House by TC Legend Homes DOE Tour of Zero: Bellingham Power House by TC Legend Homes Addthis 1 of 19 TC Legend Homes built this 2,781-square-foot home in Bellingham, Washington, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 19 A greenhouse off the kitchen provides a thermal transition zone into the home, minimizing heat losses during the winter. The solar hot water heating panels are visible on the porch roof.

  12. Home construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home construction Home construction Family members inspect construction of their future home.

  13. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  14. Tips: Passive Solar Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Tips: Passive Solar Heating and Cooling Using passive solar design to heat and cool your home can be both environmentally friendly and cost effective. In many cases, your heating costs can be reduced to less than half the cost of heating a typical home. Passive solar design can also help lower your cooling costs. Passive solar cooling techniques include carefully designed overhangs and using reflective coatings on windows,

  15. Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Technology Solutions for New Manufactured Homes Idaho, Oregon, and Washington Manufactured Home Builders PROJECT INFORMATION Project Name: High Performance Manufactured Home Prototyping and Construction Development Location: Pacific Northwest states (ID, OR, and WA) Partners: Northwest Manufactured Housing industry Building America Partnership for Improved Residential Construction, www.ba-pirc.org Building Components: HVAC, building envelope, lighting, and water heating Application: New, single

  16. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Weiss Building & Development LLC, System Home, River Forest, IL DOE Zero Energy Ready Home Case Study: Weiss Building & Development LLC., Custom Home, Downers Grove, IL

  17. DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes, Fishers Circle, Vadnais Heights, MN DOE Zero Energy Ready Home Case Study: Amaris Homes, Fishers Circle, Vadnais Heights, MN Case study of a DOE 2015 Housing Innovation ...

  18. DOE Zero Energy Ready Home Case Study: High Performance Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Homes, Chamberlain Court 75, Gettysburg, PA DOE Zero Energy Ready Home Case Study: High Performance Homes, Chamberlain Court 75, Gettysburg, PA DOE Zero Energy ...

  19. Building America Technology Solutions for New and Existing Homes: Boiler

    Energy Savers [EERE]

    Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts | Department of Energy Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts The ARIES Collaborative partnered with Homeowners' Rehab Inc., a nonprofit affordable housing owner, to upgrade the

  20. Home Energy Assessments

    ScienceCinema (OSTI)

    Dispenza, Jason

    2013-05-29

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy efficient. An assessment will show you problems that may, when corrected, save you significant amounts of money over time. This video shows some of the ways that a contractor may test your home during an assessment, and helps you understand how an assessment can help you move toward energy savings. Find out more at: http://www.energysavers.gov/your_home/energy_audits/index.cfm/mytopic=11160

  1. Soil & Groundwater Home - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soil & Groundwater Home Soil & Groundwater Home Annual Reports Environmental Data Access Administrative Record Soil & Groundwater Home Email Email Page | Print Print Page |Text...

  2. Imagine Homes | Open Energy Information

    Open Energy Info (EERE)

    Homes Jump to: navigation, search Name: Imagine Homes Place: San Antonio, TX Website: www.imaginehomes.com References: Imagine Homes1 Information About Partnership with NREL...

  3. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  4. Building America Efficient Solutions for Existing Homes Case Study: Habitat

    Energy Savers [EERE]

    for Humanity of Palm Beach County, Lake Worth, Florida | Department of Energy Efficient Solutions for Existing Homes Case Study: Habitat for Humanity of Palm Beach County, Lake Worth, Florida Building America Efficient Solutions for Existing Homes Case Study: Habitat for Humanity of Palm Beach County, Lake Worth, Florida PNNL and Florida Solar Energy Center worked with Habitat for Humanity of Palm Beach County to upgrade an empty 1996 home with a 14.5 SEER AC, heat pump water heater, CFLs,

  5. DOE Tour of Zero: The Village Park Eco Home by Sterling Brook...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 16 The high-efficiency Sterling Brook custom home uses an energy managementhome automation system operated by mobile devices to control heating and cooling, lighting, and...

  6. Weatherized Homes Saving Money for Families Across the U.S.

    Broader source: Energy.gov [DOE]

    750 thousand homes have been weatherized over the past three years through the Department's Weatherization Assistance Program, saving families $400 a year on their heating and cooling bills.

  7. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile

    Broader source: Energy.gov [DOE]

    This webinar will focus on the use of ductless heat pumps (DHP) as a hybrid “all-electric” heating system in new high-performance homes.

  8. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  9. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Energy Savers [EERE]

    Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ Case study of a DOE Zero Energy Ready home in northern AZ that...

  10. Home | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A nanophotonic comeback for incandescent bulbs? MIT News highlighted work in the S3TEC center led by Marin Soljacic which... Read the full story The S3TEC Center aims at advancing fundamental science and developing materials to harness heat from the sun and convert this heat into electricity via thermoelectric, thermogalvanic and thermophotovoltaic technologies. Home Observation of Weyl points highlighted by APS and physicsworld.com Direct observations of Weyl points were named one of the top

  11. Home | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A nanophotonic comeback for incandescent bulbs? MIT News highlighted work in the S3TEC center led by Marin Soljacic which... Read the full story The S3TEC Center aims at advancing fundamental science and developing materials to harness heat from the sun and convert this heat into electricity via thermoelectric, thermogalvanic and thermophotovoltaic technologies. Home Observation of Weyl points highlighted by APS and physicsworld.com Direct observations of Weyl points were named one of the top

  12. New Home Rebate

    Broader source: Energy.gov [DOE]

    The Alaska Housing Finance Corporation (AFHC) provides rebates to Alaskans who purchase or build new, energy-efficient homes. AFHC uses the Home Energy Rating System index to determine the size of...

  13. New Homes Incentive Program

    Broader source: Energy.gov [DOE]

    Most incentives are based on a home's Energy Performance Score (EPS), a measurement tool that assesses a home's energy consumption, estimated utility costs and carbon impact. The EPS allows...

  14. DOE Zero Energy Ready Home Case Study: Ferguson Design and Construction Inc., Sagaponack, NY, Custom Home

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Long Island, NY, that scored HERS 43 without PV. This 5,088-square-foot custom home has R-25 double-stud walls, a vaulted roof with R-40 blown cellulose, R-10 XPS under slab, a hydro air system with 91% efficient boiler for forced air and radiant floor heat, and 100% LED lights.

  15. NW Natural (Gas)- New Homes Stand Alone Incentive Program

    Broader source: Energy.gov [DOE]

    Builders with new construction projects in NW Natural’s Washington gas service territory are eligible to receive cash incentives from Energy Trust of Oregon for gas heated homes that receive Energy...

  16. City of Tucson- Solar Design Requirement for Homes

    Broader source: Energy.gov [DOE]

    To comply with this requirement, new homes must either have a complete solar water heating system installed or comply with one of two solar stub-out options. Option one requires the installation...

  17. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, ...

  18. Energy-Saving Homes, Buildings, and Manufacturing Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings & Homes March 17, 2016 EERE Success Story-3D Printing Enables New Generation of Heat Exchangers January 14, 2016 EERE Success Story-DOE Industry Partnerships Lead to ...

  19. Energy-Efficient Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    climatic and site conditions to provide heating in the winter and cooling in the summer. Earth-Sheltered, Straw Bale, Log, and Manufactured Homes If you live in or are planning to...

  20. Empire District Electric- Low Income New Homes Program

    Broader source: Energy.gov [DOE]

    Empire District Electric offers rebates for energy efficient measures and appliances in new, low-income homes. Rebates are available for several types of building insulation, heat pumps, central...

  1. DOE Tour of Zero: The Charlottesville Infill by Promethean Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 of 13 Low-no-VOC certified paints and finishes are used for a healthier indoor environment. 6 of 13 This home uses an ultra-efficient heat pump system (21 SEER, 12.2...

  2. Pacific Power - Home Energy Savings Program For Builders | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.75 - 1sq. ft. Attic Insulation: 0.05sq.ft. Central Air Conditioning: 275 Heat Pump Water Heater: 250 Summary Pacific Power provides an incentive for home builders in...

  3. Solar Energy and Your Home: Questions and Answers

    DOE R&D Accomplishments [OSTI]

    1984-01-01

    This fact sheet provides a basic introduction to solar heating and cooling systems. It is intended for the many homeowners who could benefit from living in a solar home.

  4. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast, Devens and ... Building America Technology Solutions for New and Existing Homes: Long-Term Monitoring of ...

  5. DOE Zero Energy Ready Home Case Study: Manatee County Habitat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HERS 53 without PV, HERS 23 with PV. This 1,143-square-foot affordable home has R-23 ICF walls, a spray-foamed sealed attic, solar hot water, and a ducted mini-split heat pump. ...

  6. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  7. Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes Homes EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually

  8. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the earth has remained approximately constant at about 15 degrees Celsius during the past century. It is therefore in a state of radiative balance, emitting the same

  9. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating is 100% energy efficient in the sense that all the incoming electric energy is converted to heat. However, most electricity is produced from coal, gas, or

  10. DOE Challenge Home Label Methodology

    Broader source: Energy.gov [DOE]

    A document of the U.S. Department of Energy's Zero Energy Ready Home (formerly Challenge Home) program.

  11. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  12. Strategy Guideline: Demonstration Home

    SciTech Connect (OSTI)

    Savage, C.; Hunt, A.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  13. Strategy Guideline. Demonstration Home

    SciTech Connect (OSTI)

    Hunt, A.; Savage, C.

    2012-12-01

    This guideline will provide a general overview of the different kinds of demonstration home projects, a basic understanding of the different roles and responsibilities involved in the successful completion of a demonstration home, and an introduction into some of the lessons learned from actual demonstration home projects. Also, this guideline will specifically look at the communication methods employed during demonstration home projects. And lastly, we will focus on how to best create a communication plan for including an energy efficient message in a demonstration home project and carry that message to successful completion.

  14. DOE Challenge Home Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program A note from Sam Rashkin: 100,000 builders ready for Challenge Home 2013 was an amazing year. Nearly 220,000 homes were rated with an average HERS Index Score of 64. Assuming a basic bell distribution curve, that means upwards of a 100,000 homes last year achieved HERS Index Scores on or about the DOE Challenge Home performance threshold from low to high 50's. In other words, nearly half of the U.S. single-family housing market can easily step up to DOE Challenge Home certification with

  15. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us DOE Home » ScienceCinema Navigation ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us OSTI Home DOE Home ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search × Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE

  16. Carbon sequestration in depleted oil shale deposits

    DOE Patents [OSTI]

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  17. Oil-shale utilization at Morgantown, WV

    SciTech Connect (OSTI)

    Shang, J.Y.; Notestein, J.E.; Mei, J.S.; Romanosky, R.R.; King, J.A.; Zeng, L.W.

    1982-01-01

    Fully aware of the nation's need to develop high-risk and long-term research in eastern oil-shale and low-grade oil-shale utilization in general, the US DOE/METC initiated an eastern oil-shale characterization program. In less than 3 months, METC produced shale oil from a selected eastern-US oil shale with a Fischer assay of 8.0 gallons/ton. In view of the relatively low oil yield from this particular oil shale, efforts were directed to determine the process conditions which give the highest oil yield. A 2-inch-diameter electrically heated fluidized-bed retort was constructed, and Celina oil shale from Tennessee was selected to be used as a representative eastern oil shale. After more than 50 runs, the retorting data were analyzed and reviewed and the best oil-yield operating condition was determined. In addition, while conducting the oil-shale retorting experiments, a number of technical problems were identified, addressed, and overcome. Owing to the inherent high rates of heat and mass transfers inside the fluidized bed, the fluidized-bed combustor and retorting appear to be a desirable process technology for an effective and efficient means for oil-shale utilization. The fluidized-bed operation is a time-tested, process-proven, high-throughput, solid-processing operation which may contribute to the efficient utilization of oil-shale energy.

  18. What do the DOE Zero Energy Ready Home Program Specs Actually...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... conditioners, air-source heat pumps, and water-source (i.e., geothermal) heat pumps up to ... In other words, under Revision 07, if a home's heatingcooling system happens to be a ...

  19. DOE Tour of Zero: Bellingham Power House by TC Legend Homes ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A greenhouse off the kitchen provides a thermal transition zone into the home, minimizing heat losses during the winter. The solar hot water heating panels are visible on the porch ...

  20. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE | Department of

    Energy Savers [EERE]

    Energy Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE, from the U.S. Environmental Protection Agency (EPA) PDF icon rerh_swh_guide.pdf More Documents & Publications Renewable Energy Ready Home Solar Photovoltaic Specifications DOE Zero Energy Ready Home Solar Hot Water-Ready Checklist DOE Zero Energy Ready Home PV-Ready Checklist

  1. Measured Performance of Occupied, Side-by-Side, South Texas Homes

    SciTech Connect (OSTI)

    Chasar, D.; vonSchramm, V.

    2012-09-01

    The performance of three homes in San Antonio, Texas with identical floor plans and orientation were evaluated through a partnership between the Florida Solar Energy Center (FSEC), CPS Energy, and Woodside Homes of South Texas. Measurements included whole house gas and electric use as well as heating, cooling, hot water, major appliances and indoor and outdoor conditions. One home built to builder standard practice served as the control, while the other homes demonstrated high performance features. Utility peak electric load comparisons of these dual-fuel homes provide an assessment of envelope and equipment improvements. The control home used natural gas for space and water heating only, while the improved homes had gas heating and major appliances with the exception of a high efficiency heat pump in one home. Data collection began in July of 2009 and continued through April of 2011. Energy ratings for the homes yielded E-Scales (aka HERS indices) of 86 for the control home, 54 for one improved home and 37 for the other home which has a 2.4kW photovoltaic array.

  2. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota County, Nokomis, FL

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The builder won an Affordable Builder award in the 2014 Housing Innovation Awards for this super-insulated home that features a 5.5-inch-thick layer of open-cell spray foam on the inside of the attic ceiling, providing an R-20-insulated, cool, conditioned space for the homes high-efficiency SEER 15 heat pumps.

  3. DOE Zero Energy Ready Home: Montlake Modern - Seattle, Washington |

    Energy Savers [EERE]

    Department of Energy Montlake Modern - Seattle, Washington DOE Zero Energy Ready Home: Montlake Modern - Seattle, Washington Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake;

  4. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. households heat with natural gas, while almost 40 percent of households depend on electricity as their primary heating source. Heating oil and propane each heat about 5% of...

  5. Radiant Heating | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid or in areas with high electricity prices. Hydronic systems can use a wide variety of energy sources to heat the liquid, including standard gas- or oil-fired boilers,...

  6. Residential oil burners with low input and two stages firing

    SciTech Connect (OSTI)

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  7. A Consumer's Guide: Heat Your Water with the Sun

    SciTech Connect (OSTI)

    2003-12-01

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  8. Sandia Energy - From Compost to Sustainable Fuels: Heat-Loving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Compost to Sustainable Fuels: Heat-Loving Fungi Are Sequenced Home Renewable Energy Energy Transportation Energy News Modeling Modeling & Analysis From Compost to Sustainable...

  9. NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet)

    SciTech Connect (OSTI)

    Hudon, K.

    2012-05-01

    A new simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes.

  10. A Consumer's Guide: Heat Your Water with the Sun (Brochure)

    Broader source: Energy.gov [DOE]

    This publication introduces consumers to solar heating technologies, and guides them through the basics of the technology and how to purchase it for the home.

  11. Lightning Dock Geothermal Space Heating Project: Lightning Dock...

    Open Energy Info (EERE)

    Abstract The proposed project was to take the existing geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive...

  12. Manufactured Home Energy Audit user`s manual

    SciTech Connect (OSTI)

    1997-09-01

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the US Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA displays a colorful, graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes.

  13. How to Prepare Your Home for a Blackout | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    matches Also, do not light candles andor oil lamps if there is a possibility of a gas leak in your home. Keep the emergency number for your electric utility handy in case you...

  14. Bio-oil fractionation and condensation

    DOE Patents [OSTI]

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  15. Base Oil Market Segment Forecasts up to 2020,Research Reports...

    Open Energy Info (EERE)

    Market Research Home > Groups > Future of Condition Monitoring for Wind Turbines Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 11 June, 2015 - 03:19 Base Oil...

  16. Building America Case Study: Field Performance of Inverter-Driven Heat Pumps in Cold Climates - Connecticut, Massachusetts, and Vermont (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of Inverter-Driven Heat Pumps in Cold Climates Connecticut, Massachusetts, and Vermont PROJECT INFORMATION Project Name: Field Performance of Inverter-Driven Heat Pumps in Cold Climates Location: CT, MA, and VT Partners: Efficiency Vermont, efficiencyvermont.com Consortium for Advanced Residential Buildings, carb-swa.com Building Component: Heating, ventilating, and air conditioning Application: New and retrofit; single- family and multifamily Year Tested: 2013-2014 Climate Zone(s):

  17. Building America Case study: Advanced Controls Improve Performance of Combination Space and Water Heating Systems, Minneapolis, Minnesota (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Improve Performance of Combination Space- and Water-Heating Systems Minneapolis, Minnesota PROJECT INFORMATION Combined Space and Water Heating: Next Steps to Improved Performance Location: Minneapolis, MN Partners: University of Minnesota and The Energy Conservatory Center for Energy and Environment, mncee.org NorthernSTAR Building America Partnership Building Component: Space conditioning and water heating Application: New and retrofit; single-family Year Tested: 2011-2014 Applicable

  18. Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Performance of a Heat Pump Water Heater in the Hot-Humid Climate Windermere, Florida Over recent years, heat pump water heaters (HPWHs) have become more read- ily available and more widely adopted in the marketplace. A key feature of an HPWH unit is that it is a hybrid system. When conditions are favorable, the unit will operate in heat pump mode (using a vapor compression system that extracts heat from the surrounding air) to effciently provide domestic hot water (DHW). Homeowners need not

  19. DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI,

    Energy Savers [EERE]

    Custom Home | Department of Energy Study, Caldwell and Johnson, Exeter, RI, Custom Home DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home in Exeter, Rhode Island, that scored HERS 43 without PV. This 2,000 ft2 custom home has a spray- foamed attic and walls, plus rigid foam sheathing, ducted mini-split heat pumps, and an HRV. PDF icon BA_ZeroEnergyReady_CaldwellJohnson_062314.pdf More Documents & Publications

  20. DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA,

    Energy Savers [EERE]

    Systems Home | Department of Energy Seattle, WA, Systems Home DOE Zero Energy Ready Home Case Study: Dwell Development, Seattle, WA, Systems Home Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 34 without PV. This 2,000-square-foot system home has R-45 double-stud walls, an unvented flat roof with 2 inches of spray foam plus 18 inches blown cellulose, R-42 XPS under slab, triple-pane windows, and a ductless mini-split heat pump. PDF icon Dwell Development -

  1. DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY

    Energy Savers [EERE]

    | Department of Energy New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY Case study of a DOE Zero Energy Ready home in New Paltz, NY, that achieved a HERS score of 37 without PV or 7 with 7.5-kW PV. The two-story 2,288-ft2 home is one of 9 certified homes. All of the homes have R-22 ICF walls, R-20 closed-cell spray foam under the slab, a ground-source heat pump with

  2. Wood and Pellet Heating | Department of Energy

    Energy Savers [EERE]

    Heat & Cool » Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1

  3. DOE ZERH Case Study: Evolutionary Home Builders, The Adaptation Home, Geneva, IL

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 30 without PV, with 2x8 24” on center walls with blown fiberglass and 4” polysio rigid foam; basement with 2” XPS interior, 4” under slab, 4” exterior of foundation wall; vented attic with R-100 blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater.

  4. Energy Efficiency -- Home Page

    U.S. Energy Information Administration (EIA) Indexed Site

    If you are having trouble, call 202-586-8800 for help. Home >Energy Users EEnergy Efficiency Page Energy-Efficiency Measurement MEASUREMENT DISCUSSION: Measures and Policy Issues...

  5. Home Automation Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumer Electronics Association Home Automation Interoperability CE.org Using XML to ... Inc. brose@wjrconsulting.com Consumer Electronics Association * 2,000 consumer technology ...

  6. DOE Zero Energy Ready Home Case Study: BPC Green Builders Trolle Residence, Danbury, CT

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The builder of this 1,650-ft2 cabin won a Custom Home honor in the 2014 Housing Innovations Awards. The home meets Passive House Standards with 5.5-in. of foil-faced polysiocyanurate foam boards lining the outside walls, R-55 of rigid EPS foam under the slab, R-86 of blown cellulose in the attic, triple-pane windows, and a single ductless heat pump to heat and cool the entire home.

  7. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  8. DOE Zero Energy Ready Home Case Study, KB Home, San Marcos, CA, Production Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB Home San Marcos, CA BUILDING TECHNOLOGIES OFFICE The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR for Homes Version 3 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you superior

  9. Performance summary of the Balcomb solar home

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

    1981-01-01

    The heating performance of the Balcomb passive solar home is re-evaluated based on detailed review of 85 channels of data taken during six weeks of 1980. This led to a re-analysis of 176 days of data taken over the winter of 1978-79. Auxiliary heat during this winter was 7.4 million Btu which compares with 66.0 million Btu total heat losses from the house plus 46.4 million Btu losses from the greenhouse. Auxiliary heat predicted using the solar load ratio method is 8.1 million Btu. Solar savings are estimated as 57 million Btu. Good thermal comfort conditions are documented. Energy flows are tabulated for each month. Energy flows are tabulated for each month. Conclusions regarding detailed heat flow and storage in the house are presented.

  10. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Water Heating Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Low-flow fixtures will help you reduce your hot water use and save money on your water heating bills. | Photo courtesy of Huntington Veterans Medical Ctr. Water heating accounts for about 18% of your home's energy use. Reducing your hot water use, employing energy-saving strategies, and choosing an energy efficient

  11. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  12. Formaldehyde measurements in five new unoccupied energy efficient manufactured homes

    SciTech Connect (OSTI)

    Parker, G.B.; Onisko, S.A.

    1986-11-01

    Week-long integrated formaldehyde levels were measured over eight weeks in five new unoccupied energy efficient manufactured homes. These homes were constructed to the specifications set forth in the Model Conservation Standards (MCS) established by the Northwest Power Planning Council for site-built homes. The MCS standards exceed the Housing and Urban Development's (HUD) standards that currently apply to manufactured homes nationwide. Two of the homes were located at Richland, Washington, and three homes were located at Vancouver, Washington. Among other features of the MCS, the homes are equipped with air-to-air heat exchangers (AAHX) to supply additional fresh air ventilation. The first four weeks of testing were conducted with the AAHX off and the second four-week measurement period was conducted with the AAHX continuously on the HI setting. Formaldehyde levels ranged from 0.047 ppM the fifth week of the testing in a double wide home (with the AAHX turned on) to 0.164 ppM in the single wide home in the first week of measurements with the AAHX off. At no time did the formaldehyde levels exceed 0.4 ppM, the HUD targeted indoor level based on HUD codes for formaldehyde emissions from plywood and particle board building materials used in the homes. There was no strong correlation between formaldehyde levels and the measured air exchange rate. 9 refs., 2 figs., 3 tabs.

  13. NREL Delivers In-Home HVAC Efficiency Testing Solutions (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivers In-Home HVAC Efficiency Testing Solutions Researchers at the National Renewable Energy Laboratory (NREL) have recently developed two simple in-home efficiency test methods that can be used by technicians, researchers, or interested homeowners to verify the correct opera- tion and energy efficiency of a home's air conditioning and heating equipment. An efficiency validation method for mini-split heat pumps (MSHPs)-highly efficient refrigerant-based air conditioning and heating systems

  14. Reducing Energy Use in Existing Homes by 30%: Learning From Home Performance with ENERGY STAR

    SciTech Connect (OSTI)

    Liaukus, C.

    2014-12-01

    The improvement of existing homes in the United States can have a much greater impact on overall residential energy use than the construction of highly efficient new homes. There are over 130 million existing housing units in the U.S., while annually new construction represents less than two percent of the total supply (U.S. Census Bureau, 2013). Therefore, the existing housing stock presents a clear opportunity and responsibility for Building America (BA) to guide the remodeling and retrofit market toward higher performance existing homes. There are active programs designed to improve the energy performance of existing homes. Home Performance with ENERGY STAR (HPwES) is a market-rate program among them. BARA's research in this project verified that the New Jersey HPwES program is achieving savings in existing homes that meet or exceed BA's goal of 30%. Among the 17 HPwES projects with utility data included in this report, 15 have actual energy savings ranging from 24% to 46%. Further, two of the homes achieved that level of energy savings without the costly replacement of heating and cooling equipment, which indicates that less costly envelope packages could be offered to consumers unable to invest in more costly mechanical packages, potentially creating broader market impact.

  15. DOE Zero Energy Ready Home Case Study: Nexus EnergyHomes, Frederick, Maryland

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This urban infill community with 24 duplexes, 19 townhomes, and 7 single-family homes features SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. The builder won a 2013 Housing Innovation Award in the production builder category.

  16. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  17. DOE Challenge Home Case Study, Mandalay Homes, Phoenix, AZ, Affordable

    Energy Savers [EERE]

    Homes Version 3 for an energy-effi cient home built on a ... durability, comfort, and solar-ready components along with ... he was skeptical. The production home builder was focusing ...

  18. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award ...

  19. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  20. Air-Source Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of...

  1. Questar Gas- Residential Solar Assisted Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Questar gas provides incentives for residential customers to purchase and install solar water heating systems (both for domestic and pool heating uses) on their newly-constructed homes. Rebates of...

  2. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  3. Guidelines for Home Energy Professionals Project: Benefits for Home Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workers | Department of Energy for Home Energy Workers Guidelines for Home Energy Professionals Project: Benefits for Home Energy Workers Photo of a weatherization worker putting on personal protective equipment to prepare for adding insulation to this home. The Guidelines for Home Energy Professionals project fosters the growth of a high-quality residential energy upgrade market and a skilled, credentialed workforce. As a result, home energy workers can: Stand out during job interviews and

  4. DOE Zero Ready Home Case Study: Cobblestone Homes, 2014 Model Home, Midland, MI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cobblestone Homes 2014 Model Home Midland, MI DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed

  5. The Home Microbiome Project

    SciTech Connect (OSTI)

    Gilbert, Jack

    2014-08-25

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  6. The Home Microbiome Project

    ScienceCinema (OSTI)

    Gilbert, Jack

    2014-09-15

    The Home Microbiome Project is an initiative aimed at uncovering the dynamic co-associations between people's bacteria and the bacteria found in their homes.The hope is that the data and project will show that routine monitoring of the microbial diversity of your body and of the environment in which you live is possible.

  7. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  8. Affordable High Performance in Production Homes: Artistic Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This Top Innovation profile describes how Artistic Homes (now Palo Duro Homes), a ... Find more case studies of Building America projects across the country that demonstrate ...

  9. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas How Healthcare + Industry Breeds Better Inspection Technology Healthcare and industrial inspection technologies seem worlds apart; but overlapping areas of expertise like those are among the... Read More » From Blood to Mud: Microclarifier Technology At first glance, blood and mud have absolutely nothing in

  10. Methods for deoxygenating biomass-derived pyrolysis oil

    DOE Patents [OSTI]

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  11. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in the United States while creating American jobs and reducing greenhouse gas emissions. ... Heating Oil-A Commercial Perspective, by Steve Lupton, Envergent Technologies LLC ...

  12. The New American Home 2011

    SciTech Connect (OSTI)

    2010-12-01

    The New American Home is built annually as a showcase home for the International Builders Show to demonstrate innovative technologies, construction techniques, products, and design trends for the homebuilding industry to use in any new or remodeled home.

  13. Home Energy Score Calculation Methodology

    Broader source: Energy.gov [DOE]

    A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home...

  14. Choosing and Installing Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Choosing and Installing Geothermal Heat Pumps Choosing and Installing Geothermal Heat Pumps These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo courtesy of ©iStockphoto/BanksPhotos These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable. | Photo

  15. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile

    Broader source: Energy.gov [DOE]

    This webinar will focus on the use of ductless heat pumps (DHP) as a hybrid “all-electric” heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located...

  16. Building America Technology Solutions for New and Existing Homes:

    Energy Savers [EERE]

    Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) | Department of Energy Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid Climate, Windermere, Florida (Fact Sheet) For a 6-month period, the Building America team Consortium for Advanced Residential Buildings monitored the

  17. Building America Technology Solutions for New and Existing Homes: Advanced

    Energy Savers [EERE]

    Controls Improve Performance of Combination Space- and Water-Heating Systems | Department of Energy Controls Improve Performance of Combination Space- and Water-Heating Systems Building America Technology Solutions for New and Existing Homes: Advanced Controls Improve Performance of Combination Space- and Water-Heating Systems In this project, NorthernSTAR Building America Partnership team demonstrated improved controls have the potential to reduce complexity of combination systems and boost

  18. Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven Heat Pump for the Residential Sector

    Energy Savers [EERE]

    Engine-Driven Heat Pump for the Residential Sector Introduction Building on previous work on an 11-ton packaged natural gas heat pump, this project will develop hardware and software for engine and system controls for a residential gas heat pump system that will provide space cooling, heating, and hot water. Various electric heat pump systems are used to provide heating and cooling for a wide range of buildings, from commercial fa- cilities to single family homes. The market for heat pumps is

  19. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  20. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    efficient when cooling your home. Not only does this save energy and money, it reduces air pollution. GSHP System Ground source heat pump systems consist of three parts: the...

  1. Characterization of microstructural strengthening in the heat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the heat-affected zone of a blast-resistant naval steel Home Author: X. Yu, J. Caron, S. S. Babu, J. C. Lippold, D. Isheim, D. N. Seidman Year: 2010 Abstract: The...

  2. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type...

  3. Tips: Heating and Cooling | Department of Energy

    Office of Environmental Management (EM)

    to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type...

  4. Home Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    Home Biodiesel Jump to: navigation, search Name: Home Biodiesel Place: Marysville, California Zip: 95901 Product: Manufacturer of small scale biodiesel equipment. Coordinates:...

  5. EnergySpark Home Loan

    Broader source: Energy.gov [DOE]

    The Washington State Housing Finance Commission (WSHFC) is offering reduced interest rates on loans for qualified buyers of energy efficient homes. Homes must be new construction exceeding...

  6. Challenge Home Student Design Competition

    Broader source: Energy.gov [DOE]

    Check out student designs of zero energy ready homes -- homes that are so efficient they can produce as much energy as the use with a renewable energy system.

  7. DOE Challenge Home Label Methodology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2012 1 Label Methodology DOE Challenge Home Label Methodology October 2012 DOE Challenge Home October 2012 2 Label Methodology Contents Background ............................................................................................................................................... 3 Methodology ............................................................................................................................................. 5 Comfort/Quiet

  8. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  9. Building America Whole-House Solutions for New Homes: Winchester...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-House Solutions for New Homes: Winchester Homes and Camberley Homes Building America Whole-House Solutions for New Homes: Winchester Homes and Camberley Homes In this ...

  10. Principles of Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Principles of Heating and Cooling Principles of Heating and Cooling To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. To heat and cool your house efficiently, it is important to know how heat transfers to and from objects. | Photo courtesy of ©iStockphoto/kryzanek. Understanding how heat is transferred from the outdoors into your home and from your home to your body is important for

  11. Oil shale combustion/retorting

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

  12. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 0 0 0 0 0 0 1986-2014 East Coast (PADD 1) 0 0 0 0

  13. Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes Homes From the incandescent to CFLs to LEDs, we're exploring the <a href="/node/772396">long history of the light bulb</a> and how it led to new technology breakthroughs that are helping consumers save money on their energy bills. From the incandescent to CFLs to LEDs, we're exploring the long history of the light bulb and how it led to new technology breakthroughs that are helping consumers save money on their energy bills. Our homes are a major source of energy use

  14. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  16. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1 inch in length.

  17. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  18. Heat-Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat-Exchanger Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  19. Enhance Your Home Inspection Business with the Home Energy Score |

    Energy Savers [EERE]

    Department of Energy Enhance Your Home Inspection Business with the Home Energy Score Enhance Your Home Inspection Business with the Home Energy Score March 9, 2016 2:00PM to 3:00PM EST Wouldn't your customers like to know how their homes stack up in terms of energy efficiency? Now, using the U.S. Department of Energy's (DOE) free Home Energy Score, you can provide a miles-per-gallon type rating along with your home inspections. Better yet, by offering the rating and accompanying

  20. DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville,

    Energy Savers [EERE]

    VA | Department of Energy Promethean Homes, Charlottesville, VA DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA DOE Zero Energy Ready Home Case Study: Promethean Homes, Charlottesville, VA Case study of a DOE Zero Energy Ready home in Charlottesville, VA, that achieves a HERS 33 without PV. The 2,572-ft2 custom home with daylight basement, has 2x6 advanced framed walls filled with R-21 cellulose plus 2-in. rigid mineral wool insulation over the plywood sheathing,

  1. Enhance Your Home Inspection Business with the Home Energy Score |

    Energy Savers [EERE]

    Department of Energy Enhance Your Home Inspection Business with the Home Energy Score Enhance Your Home Inspection Business with the Home Energy Score March 17, 2016 8:00PM to 9:00PM EDT Wouldn't your customers like to know how their homes stack up in terms of energy efficiency? Now, using the U.S. Department of Energy's (DOE) free Home Energy Score, you can provide a miles-per-gallon type rating along with your home inspections. Better yet, by offering the rating and accompanying

  2. DOE Zero Energy Ready Home Case Study: The Imery Group Proud Green Home, Serenbe, GA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The first certified Zero Energy Ready Home in Georgia was honored in the Custom Builder category of the 2014 Housing Innovation Awards. The 2,811-ft2, two-story custom home has 2x6 advanced framed walls filled with R-20 of open-cell spray foam, plus an R-6.6 insulated coated OSB sheathing. Also included is electronic monitoring equipment that tracks the PV, solar thermal water heater, ERV, mini-split heat pump with three indoor heads, solar water heater, and LED and CFL lighting.

  3. DOE Zero Energy Ready Home: Healthy Efficient Homes- Spirit Lake, Iowa

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  4. DOE Zero Energy Ready Home Case Study: Healthy Efficient Homes - Spirit Lake, Iowa

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Spirit Lake, Iowa, that scored HERS 41 without PV and HERS 28 with PV. This 3,048 ft2 custom home has advanced framed walls filled with 1.5 inches closed-cell spray foam, a vented attic with spray foam-sealed top plates and blown fiberglass over the ceiling deck. R-23 basement walls are ICF plus two 2-inch layers of EPS. The house also has a mini-split heat pump, fresh air fan intake, and a solar hot water heater.

  5. New Homes Program

    Broader source: Energy.gov [DOE]

    In order to participate in the program, interested customers must find a New Homes builder through the Focus on Energy website and work with an accredited building performance consultant.

  6. Home Energy Rebate Program

    Broader source: Energy.gov [DOE]

    Note: The Home Energy Rebate Program is suspended effective 5 pm March 25, 2016. Applicants on the waitlist may check the status of their application online, and new participants may call 1-877-257...

  7. Home Weatherization Visit

    Broader source: Energy.gov [DOE]

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits...

  8. Home Energy Score Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Score Program Peer Review April 3, 2013 Joan Glickman, US DOE Norm Bourassa, LBNL joan.glickman@ee.doe.gov, 202-586-5607 njbourassa@lbl.gov, 510-495-2677 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Significant underinvestment in energy efficiency in residential sector * High costs of traditional energy audits and ratings * No standard method for understanding and comparing the energy efficiency of homes at

  9. Critical Question #3: What are the Best Options for All-Electric Homes? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: What are the Best Options for All-Electric Homes? Critical Question #3: What are the Best Options for All-Electric Homes? In moving toward net zero energy homes, the challenge of specifying components for all-electric homes is inevitable. In this case, what are the most cost-effective and reliable options for water heating and space conditioning PDF icon cq3_all_electric_houses_prahl.pdf PDF icon cq3_airsource_heat_pumps_munk.pdf More Documents & Publications

  10. Home Energy Audits Can Help You Keep That New Year's Resolution |

    Energy Savers [EERE]

    Department of Energy Home Energy Audits Can Help You Keep That New Year's Resolution Home Energy Audits Can Help You Keep That New Year's Resolution January 3, 2013 - 8:25am Addthis Blower door test during a home energy audit. | Holtkamp Heating & A/C, Inc. Blower door test during a home energy audit. | Holtkamp Heating & A/C, Inc. Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy How does it work? You can save energy and money this year by

  11. Collective Impact for Zero Net Energy Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Star Certified New Home Building America Goal: High-Performance Zero Net-Energy Ready New & Existing Homes ZNER NewExist. Home Low HERS Code New Home Building...

  12. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, ...

  13. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park...

    Energy Savers [EERE]

    e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park,...

  14. Affordable High Performance in Production Homes: Artistic Homes,

    Energy Savers [EERE]

    Albuquerque, NM - Building America Top Innovation | Department of Energy Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM - Building America Top Innovation Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM - Building America Top Innovation Photo of a home in New Mexico. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America

  15. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Substation Fuel in New England | Department of Energy Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and

  16. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  17. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  18. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  19. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  20. Home Weatherization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Homes » Home Weatherization Home Weatherization A home energy audit is the first step to saving energy and money. Our Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. Explore the <a href="/node/714616">full infographic</a> now. A home energy audit is the first step to saving energy and money. Our