National Library of Energy BETA

Sample records for home heating fuel

  1. Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Home Heating Energy Saver 101 Infographic: Home Heating Energy Saver 101 Infographic: Home Heating Everything you need to know about home heating, including how heating systems work, the different types on the market and proper maintenance. Read more Thermostats Thermostats Save money on heating by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood

  2. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  3. The Future of Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Home Heating The Future of Home Heating Huber presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the future of home heating PDF icon pyrolysis_huber.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Performance of Biofuels and Biofuel Blends A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

  4. EERE: Alternative Fuels Data Center Home Page

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg Find More places to share EERE: Alternative Fuels

  5. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  6. Home Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems Home Heating Systems Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com Home heating accounts for about 30 percent of the energy used in the home. | Photo courtesy iStockphoto.com A variety of technologies are available for heating your house. In addition to heat pumps, which are discussed separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or

  7. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  8. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts PDF ...

  9. Sandia Energy - From Compost to Sustainable Fuels: Heat-Loving...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Compost to Sustainable Fuels: Heat-Loving Fungi Are Sequenced Home Renewable Energy Energy Transportation Energy News Modeling Modeling & Analysis From Compost to Sustainable...

  10. Northeast Home Heating Oil Reserve - Guidelines for Release ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation ...

  11. STEO October 2012 - home heating use

    U.S. Energy Information Administration (EIA) Indexed Site

    most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information ... While prices for the major heating fuels will be mostly flat ...

  12. Hillbrook Nursing Home Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility...

  13. Home Heating Hints | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Hints Home Heating Hints December 9, 2014 - 5:10pm Addthis Sealing air leaks can help you save energy and money this winter. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Sealing air leaks can help you save energy and money this winter. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy What are the key facts? Programmable

  14. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  15. The Future of Home Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lowest oil for oil replacement cost Ideal for high bio fraction future Best for existing oil customer value Advanced Liquid Fuel PM 2.5 emissions same as ULS CO2e emissions same as ...

  16. Alternative Fuels Data Center: Schwan's Home Service Delivers With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane-Powered Trucks Schwan's Home Service Delivers With Propane-Powered Trucks to someone by E-mail Share Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Facebook Tweet about Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Twitter Bookmark Alternative Fuels Data Center: Schwan's Home Service Delivers With Propane-Powered Trucks on Google Bookmark Alternative Fuels Data Center: Schwan's Home Service

  17. STEO October 2012 - home heating supplies

    U.S. Energy Information Administration (EIA) Indexed Site

    sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. ...

  18. GRID INDEPENDENT FUEL CELL OPERATED SMART HOME

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2003-12-07

    A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journal paper is under review. Three theses have been completed and three additional theses are in progress.

  19. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data ...

  20. Energy Saver 101: Home Heating | Department of Energy

    Energy Savers [EERE]

    Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  1. Energy Saver 101: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver 101: Home Heating Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That ...

  2. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important reduction in air pollutants that contribute directly to acid rain and other adverse impacts in the United States. When all air emissions are included, low sulfur content home heating oil and utility gas are virtually equal in their environmental impacts.

  3. Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat,

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fight the Freeze, and Conquer the Mountains Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Beat the Heat, Fight the Freeze, and Conquer the Mountains on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Beat

  4. #AskEnergySaver: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating #AskEnergySaver: Home Heating October 29, 2014 - 12:56pm Addthis This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. This month our experts answered your #AskEnergySaver questions on home heating. | Image courtesy of Sarah Gerrity, Energy Department. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs Looking for more ways to save energy? Check out Energy Saver for

  5. Northeast Home Heating Oil Reserve - Guidelines for Release | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Heating Oil Reserve » Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise dispose of petroleum distillate from the Reserve in order to maintain the quality or quantity of the petroleum distillate or to maintain the

  6. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  7. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office of Public Affairs Space heating is likely the largest energy expense in your home, accounting for about 45 percent of the average American family's energy bills. That...

  8. Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve.

  9. NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) QUESTIONS AND ANSWERS

    Broader source: Energy.gov [DOE]

    The Questions and Answers document is a compilation of the most commonly asked questions (and answers) concerning the online auction system for the Northeast Home Heating Oil Reserve.

  10. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  11. Bio-Oil Deployment in the Home Heating Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Oil Deployment in the Home Heating Market March 23, 2015 Dr. Thomas A. Butcher ... and end user acceptance. * Heating oil and diesel transportation both use the same ...

  12. DOE Accepts Bids for Northeast Home Heating Oil Stocks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) today has awarded contracts to three companies who successfully bid for the purchase of 984,253 barrels of heating oil from the Northeast Home Heating Oil Reserve.

  13. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  14. #HeatChat @Energy: Ask Us Your Home Heating Questions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy #HeatChat @Energy: Ask Us Your Home Heating Questions #HeatChat @Energy: Ask Us Your Home Heating Questions October 21, 2015 - 10:10am Addthis Check out our <a href="/node/780416">Energy Saver 101 infographic</a> for everything you need to know about home heating. Check out our Energy Saver 101 infographic for everything you need to know about home heating. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs How can I participate? Ask us

  15. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate

    Broader source: Energy.gov [DOE]

    The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy said today.

  16. #AskEnergySaver: Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating #AskEnergySaver: Home Water Heating March 24, 2014 - 11:35am Addthis Did you know: Water heaters account for nearly 17 percent of a home’s energy use, consuming more energy than all other household appliances combined. For more about water heaters, check out our <a href="/node/612476">Energy Saver 101 home water heating infographic</a>. | Photo by Eric Grigorian, U.S. Department of Energy Solar Decathlon. Did you know: Water heaters account for nearly 17

  17. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Seeks Commercial Storage for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March

  18. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve.

  19. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  20. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The value of the tax credit is $0.01/gallon for each percent of biodiesel blended with conventional home heating oil, up to a maximum of $0.20/ gallon. In other words, the purchaser of a mixture ...

  1. Save on Home Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Home Water Heating Save on Home Water Heating August 19, 2014 - 10:46am Addthis Purchasing a water heater with the ENERGY STAR® label ensures you are buying an energy efficient appliance designed to save consumers money. | Photo courtesy of Dennis Schroeder, National Renewable Energy Labs Purchasing a water heater with the ENERGY STAR® label ensures you are buying an energy efficient appliance designed to save consumers money. | Photo courtesy of Dennis Schroeder, National Renewable

  2. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download a <a href="/node/784286">high-resolution version</a> of the infographic or individual sections. | Infographic by <a

  3. DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated...

  4. Guide to Home Heating and Cooling

    SciTech Connect (OSTI)

    2010-10-01

    Get the most out of your heating and cooling systems, including types, how to choose, and performing maintenance.

  5. DOE Completes Sale of Northeast Home Heating Oil Stocks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT.

  6. Home Heating Hints | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are not blocking heating registers. This will allow air to circulate more freely and save energy. Winter may mean colder weather is here, but it doesn't have to drain your...

  7. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  8. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, ...

  9. Energy Savings Week: Lowering Energy Bills with Efficient Home Heating

    Broader source: Energy.gov [DOE]

    With winter in full swing in many parts of the U.S., your thermostat may be getting more attention than usual. Whether you have a furnace, boiler, or heat pump system, you want to make sure your home stays warm—especially as holiday guests arrive. Fortunately, the Energy Department’s efforts to improve efficiency standards is paying dividends with energy bills associated with heating and appliances lower compared to past holiday seasons.

  10. Heated transportable fuel cell cartridges

    DOE Patents [OSTI]

    Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

    1985-01-01

    A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

  11. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find

  12. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  13. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces;...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Install Waste Heat Recovery Systems for Fuel-Fired Furnaces For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. ...

  14. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  15. Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of EV Charging Stations Kansas City Home to Nation's Largest Network of EV Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network of EV Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network of EV Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network of EV Charging Stations on Google Bookmark Alternative

  16. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  17. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  18. Passive solar heated energy conserving biosphere home. Final report

    SciTech Connect (OSTI)

    Piekarski, R.

    1985-01-01

    ''Warm Gold'' is an original design of a passive solar heated energy conserving biosphere home. It has been owner-built with financial help from the US Department of Energy through its Appropriate Technology Small Grants Program of 1980. The home incorporates the six major components of passive solar design: appropriate geometry and orientation, glazing, light levels and reflective surfaces, ventilation, thermal storage, and insulation. Warm Gold is an earth-sheltered home with earth cover on the roof as well as on the two opaque north leg walls. It is of durable and efficient masonry construction which included stone masonry with on-site materials and cement block and ready mix concrete. Excavation, backfill, and drainage were necessary aspects of earth sheltered construction together with the all-important Bentonite waterproofing system. Warm Gold is a house which meets all the national building code standards of HUD. The home has two bedrooms, one bathroom, living room, dining room-kitchen, greenhouse, and utility annex, all of which are incorporated with the earth-sheltered, passive solar systems to be a comfortable, energy-efficient living environment.

  19. Heat Pump Water Heaters and American Homes: A Good Fit?

    SciTech Connect (OSTI)

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  20. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  1. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  2. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, ... 10% for a residential multifunction heat pump that provides space conditioning, water ...

  3. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila; Smith, Raub Warfield

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  4. Performance of a small underfed wood chip-fired stoker in a hot air-heated home

    SciTech Connect (OSTI)

    Schneider, M.H.

    1983-01-01

    The goal of the study was to provide space heat for a home using forest biomass presently not in demand by industry, and by using a convenient, automatic, low-emission heating system. A stoker firing wood chips was installed in a home, and chips were prepared for it from the residues of a softwood clearcut. Residues from 1 and a quarter acre provided enough fuel to heat the house for the heating season. The chip-fired heating system was convenient, maintained the house at whatever temperature was set on the room thermostat, and generated little creosote or wood smoke. It was better at converting fuel to heat than the previous combustion heating systems in the house, with steady-state combustion efficiency of approximately 75% and longer-term appliance efficiency of 69%. Electric energy required for heating hot water was reduced approximately 27% as a result of a preheating coil located in the chip-fired furnace. The major cause of heat interruptions was jamming of the stoker which occurred on the average of every 18 and a half days. Clearing such jams was simple. The system operated safely throughout the test period.

  5. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reserve | Department of Energy Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have

  6. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power Systems | Department of Energy for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011. PDF icon infocallapr11_smith.pdf More Documents & Publications Fuel Cells at Supermarkets: NYSERDA's Perspective Fuel Cell Case Study Hydrogen

  7. #tipsEnergy: Saving on Home Heating Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the

  8. Do-It-Yourself Home Energy Audits | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    dangerous and unhealthy situation in the home. In homes where a fuel is burned (i.e., natural gas, fuel oil, propane, or wood) for heating, be certain the appliance has an...

  9. NREL Ignites New Renewable Fuels Heating Plant - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignites New Renewable Fuels Heating Plant Innovative DOE Contract Helps Lab Reduce Fuel Use, Carbon Emissions November 20, 2008 Golden, Colo. - With the spark from a high intensity road flare, engineers at the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable Fuels Heating Plant today. The $3.3 million project is the Laboratory's latest step toward operating as a net-zero energy facility. The RFHP will heat NREL's South Table Mountain Campus

  10. An Assessment of Heating Fuels And Electricity Markets During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013... Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce

  11. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect (OSTI)

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  12. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  13. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  14. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  15. Building America Whole-House Solutions for New Homes: Testing Ductless Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington | Department of Energy Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington Building America Whole-House Solutions for New Homes: Testing Ductless Heat Pumps in High-Performance Affordable Housing, The Woods at Golden Given, Tacoma,Washington The Woods is a 30-home, high- performance, energy efficient sustainable community built by Habitat for

  16. Building America Case Study: Calculating Design Heating Loads for Superinsulated Buildings, Ithaca, New York; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  17. #AskEnergySaver: Home Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    via email IW: It's not the fuel, it's how you burn it. Any fossil fuel -- gas, oil or propane -- or even wood or coal needs to be completely burned and its energy extracted as...

  18. NREL: Hydrogen and Fuel Cells Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Research Photo of a fuel cell electric vehicle refueling at a hydrogen dispensing station. NREL hydrogen and fuel cell research focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation, stationary, and portable applications. Projects range from fundamental research to overcome technical barriers, manufacturing process improvement to enable high-volume fuel cell production,

  19. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 PDF icon Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using Waste

  20. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  1. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  2. Measured heating system efficiency retrofits in eight manufactured (HUD-code) homes

    SciTech Connect (OSTI)

    Siegel, J.; Davis, B.; Francisco, P.; Palmiter, L.

    1998-07-01

    This report presents the results of field measurements of heating efficiency performed on eight all-electric manufactured homes sited in the Pacific Northwest with forced-air distribution systems. These homes, like more than four million existing manufactured homes in the US, were constructed to thermal specifications that were mandated by the US Department of Housing and Urban Development in 1976. The test protocol compares real-time measurements of furnace energy usage with energy usage during periods when zonal heaters heat the homes to the same internal temperature. By alternating between the furnace and zonal heaters on 2 hour cycles, a short-term coheat test is performed. Additional measurements, including blower door and duct tightness tests, are conducted to measure and characterize the home's tightness and duct leakage so that coheat test results might be linked to other measures of building performance. The testing was done at each home before and after an extensive duct sealing retrofit was performed. The average pre-retrofit system efficiency for these homes was 69%. After the retrofit, the average system efficiency increased to 83%. The average simple payback period for the retrofits ranges from 1 to 5 years in Western Oregon and 1 to 3 years in colder Eastern Oregon.

  3. Building America Case Studies for Existing Homes: Supplemental Ductless Mini-Split Heat Pump in the Hot-Humid Climate

    Broader source: Energy.gov [DOE]

    The Building America Partnership for Improved Residential Construction team that studied the effects of mini-split heat pumps in six central Florida homes.

  4. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  5. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  6. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    SciTech Connect (OSTI)

    Backman, C.; German, A.; Dakin, B.; Springer, D.

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  7. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  8. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve

    Broader source: Energy.gov [DOE]

    The Department of Energy, through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve.

  9. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    SciTech Connect (OSTI)

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  10. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  11. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for a Renewable Heating Oil Substitution Fuel in New ...

  12. Overall U-values and heating/cooling loads: Manufactured homes

    SciTech Connect (OSTI)

    Conner, C.C.; Taylor, Z.T.

    1992-02-01

    This manual specifies a method for calculating the overall thermal transmittance (also referred to as the overall U-value or U{sub o}), heating load, and cooling load of a manufactured (mobile) home. Rules, examples, and data required by the method are also presented. Compliance with the Department of Housing and Urban Development`s (HUD) U{sub o} and load calculation regulations contained in Sections 3280.506, 3280.510 and 3280.511 of the Manufactured Home Construction and Safety Standards must be demonstrated through the application of the method provided herein.

  13. GenSys Blue: Fuel Cell Heating Appliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GenSys Blue: Fuel Cell Heating Appliance GenSys Blue: Fuel Cell Heating Appliance Presented at the High Temperature Membrane Working Group Meetng, Nov. 16, 2009. PDF icon ...

  14. Load Preheating Using Flue Gases from a Fuel-Fired Heating System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Preheating Using Flue Gases from a Fuel-Fired Heating System This tip sheet discusses ... PROCESS HEATING TIP SHEET 9 PDF icon Load Preheating Using Flue Gases from a Fuel-Fired ...

  15. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research ...

  16. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  17. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Heat Is on in St. Louis Buses to someone by E-mail Share Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Facebook Tweet about Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Twitter Bookmark Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Google Bookmark Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Delicious Rank Alternative Fuels Data Center: The Heat Is on in St. Louis Buses on Digg Find More places to share

  18. Fossil fuel-fired peak heating for geothermal greenhouses

    SciTech Connect (OSTI)

    Rafferty, K.

    1997-01-01

    Greenhouses are a major application of low-temperature geothermal resources. In virtually all operating systems, the geothermal fluid is used in a hot water heating system to meet 100% of both the peak and annual heating requirements of the structure. This strategy is a result of the relatively low costs associated with the development of most US geothermal direct-use resources and past tax credit programs which penalized systems using any conventional fuel sources. Increasingly, greenhouse operations will encounter limitations in available geothermal resource flow due either to production or disposal considerations. As a result, it will be necessary to operate additions at reduced water temperatures reflective of the effluent from the existing operations. Water temperature has a strong influence on heating system design. Greenhouse operators tend to have unequivocal preferences regarding heating system equipment. Many growers, particularly cut flower and bedding plant operators, prefer the {open_quotes}bare tube{close_quotes} type heating system. This system places small diameter plastic tubes under the benches or adjacent to the plants. Hot water is circulated through the tubes providing heat to the plants and the air in the greenhouse. Advantages include the ability to provide the heat directly to the plants, low cost, simple installation and the lack of a requirement for fans to circulate air. The major disadvantage of the system is poor performance at low (<140{degrees}F) water temperatures, particularly in cold climates. Under these conditions, the quantity of tubing required to meet the peak heating load is substantial. In fact, under some conditions, it is simply impractical to install sufficient tubing in the greenhouse to meet the peak heating load.

  19. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  20. Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes

    Broader source: Energy.gov [DOE]

    In 2011, Rural Development, Inc. (RDI) completed the construction of Wisdom Way Solar Village (WWSV), which is a development of 20 very efficient homes in Greenfield, Massachusetts. The homes...

  1. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  2. Feasibility for Wood Heat - Collaborative Integrated Wood Energy...

    Office of Environmental Management (EM)

    for Wood Heat * Non-Profit Consortium of Ten Tribal Governments within the Yukon Flats. * ... Chalkyitsik * 80% of homes in Fort Yukon are heated by wood. Most use wood and fuel heat. ...

  3. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004 report was to determine the best opportunity fuel(s) for distributed energy resources and combined heat and power (DER/CHP) applications, examine the DER/CHP technologies that can use them, and assess the potential market impacts of opportunity fueled DER/CHP applications. PDF icon chp_opportunityfuels.pdf More

  4. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Technical Report: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of

  5. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  6. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  7. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification

    Broader source: Energy.gov [DOE]

    Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

  8. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  9. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  10. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central ... installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven ...

  11. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil Worskshop on RTP green fuel. PDF icon pyrolysis_lupton.pdf More Documents & Publications Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings Cellulosic Liquid Fuels Commercial Production Today Technical Information

  12. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy...

  13. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study ...

  15. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for ...

  16. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  17. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect (OSTI)

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  18. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.

  19. Table 26. Natural gas home customer-weighted heating degree days

    U.S. Energy Information Administration (EIA) Indexed Site

    96 Created on: 4/26/2016 6:14:01 PM Table 26. Natural gas home customer-weighted heating degree days Month/Year/Type of data New England Middle Atlantic East North Central West North Central South Atlantic CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 757 841 443 2014 749 742 909 1,002 562 2015 583 509 596 653 325 % Diff (normal to 2015) -17.0 -23.5 -21.3 -22.4 -26.6 % Diff (2014 to 2015) -22.2 -31.4

  20. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA Citation Details In-Document Search Title: Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During RIA This paper describes a model for the cladding-coolant heat transfer of high burnup fuel during a Reactivity Initiated Accident (RIA) which is implemented in the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the

  1. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes: Tucson, Arizona and Chico, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. Conceptual study of measures against heat generation for TRU fuel fabrication system

    SciTech Connect (OSTI)

    Kawaguchi, Koichi; Namekawa, Takashi

    2007-07-01

    To lower the reprocessing cost and the environmental burden, the Japan Atomic Energy Agency (JAEA) has developed low decontamination TRU fuel fabrication system. TRU fuel contains MA of 1.2 to 5 wt% and its decay heat is estimated a few tens W/kg-HM. As the heat affects fuel quality through oxidation of fuel material and members, it is necessary to remove decay heat. In this work, authors designed concepts of the measures against heat generation at typical equipments using with the thermal hydraulics analysis technique. As a result, it is shown that it is possible to cool fuel materials with specific heat generation up to 20 W/kg-HM enough, though more detailed study is required for comprehensive equipments. (authors)

  3. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  4. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Office | Department of Energy Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications

  5. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Heat Pump Systems » Air-Source Heat Pumps Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your home. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. This is possible because a heat pump moves heat rather than converting it from a fuel like combustion heating systems do. Air-source heat pumps have been used for many years in

  6. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  7. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  8. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  9. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2015 | Department of Energy Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research Inc., in collaboration with FuelCell Energy, is developing a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing

  10. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-05-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it reports some corrections made subsequent to release of the first two reports to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006a, b) and in this report.

  11. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  12. EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at...

  13. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Broader source: Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  14. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  15. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries ...

  16. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    higher electrical effciency than an ... of hybrid fuel cell systems also make them a suitable power source for urban and ... for material stability, strength, and ...

  17. Effects on carbon monoxide levels in mobile homes using unvented kerosene heaters for residential heating

    SciTech Connect (OSTI)

    Williams, R.; Walsh, D.; White, J.; Jackson, M.; Mumford, J.

    1992-01-01

    Carbon monoxide (CO) emission levels were continuously monitored in 8 mobile trailer homes less than 10 years old. These homes were monitored in an US EPA study on indoor air quality as affected by unvented portable kerosene heaters. Respondents were asked to operate their heaters in a normal fashion. CO, air exchange and temperature values were measured during the study in each home. Results indicate that consumers using unvented kerosene heaters may be unknowingly exposed to high CO levels without taking proper precautions.

  18. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  19. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security

    Broader source: Energy.gov [DOE]

    During a site visit to the Native Village of Teller in April 2012, the Office of Indian Energy's Strategic Technical Assistance Response Team helped the community successfully transfer 10,000 gallons of fuel to a bulk fuel facility to secure the community's heating supply for the winter.

  20. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  1. Technology Solutions Case Study: Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California

    SciTech Connect (OSTI)

    2013-11-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  2. The changing character of household waste in the Czech Republic between 1999 and 2009 as a function of home heating methods

    SciTech Connect (OSTI)

    Dolealov, Markta; Beneov, Libue; Zvodsk, Anita

    2013-09-15

    Highlights: The character of household waste in the three different types of households were assesed. The quantity, density and composition of household waste were determined. The physicochemical characteristics were determined. The changing character of household waste during past 10 years was described. The potential of energy recovery of household waste in Czech republic was assesed. - Abstract: The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Unions solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy.

  3. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type...

  4. Tips: Heating and Cooling | Department of Energy

    Office of Environmental Management (EM)

    to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type...

  5. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen

  6. Fundamentals of Understanding & Collecting data for SHOPPs EIA-877 Winter Heating Fuels Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Collection Procedures for Winter Heating Fuels Telephone Survey State Heating Oil and Propane Program (SHOPP) Office of Energy Statistics Office of Petroleum & Biofuels Statistics Petroleum Marketing Statistics Team October 8, 2014 | Washington, D.C. Presentation Roadmap Office of Petroleum and Biofuels Statistics 2 * Survey Overview * Getting Started * Pricing Characteristics * Collecting Additional Information * Weekly Data Submission * Weekly Data Collection Tips * Data

  7. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  8. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L.

    2012-07-01

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  9. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  10. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  11. Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain

    SciTech Connect (OSTI)

    Li, Jun; Yim, Man-Sung; McNelis, David; Piet, Steven

    2007-07-01

    As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

  12. Go for the Gold in Energy-Efficient Home Heating | Department...

    Broader source: Energy.gov (indexed) [DOE]

    As the Olympics strive to be more energy efficient, we can champion the same effort in our homes and become energy saving Olympians. One of the biggest places to save energy (and ...

  13. Industrial Heat Pumps for Steam and Fuel Savings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for ...

  14. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Energy Savers [EERE]

    ventilator. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. DOE Zero Energy Ready Home: Murphy Brothers Contracting,...

  15. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles. PDF icon DOE Zero Energy Ready Home: Murphy Brothers Contracting, Shore ...

  16. An Assessment of Heating Fuels And Electricity Markets During the

    Energy Savers [EERE]

    4: The Transportation Issue Amped Up! Volume 1, No. 4: The Transportation Issue Amped_Up_4.jpg Amped Up! is a bimonthly newsletter that highlights the initiatives, events, and technologies in the Office of Energy Efficiency and Renewable Energy that influence change. Features in this issue include: - Meet EV Everywhere Director Bob Graham - Deputy Assistant Secretary for Transportation Reuben Sarkar on the New Optima Initiative - Sustainable Transportation Day 2015 - Fuel Cell Electric Vehicles

  17. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  18. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  19. Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Air-to-Water Heat Pumps With Radiant Delivery in Low Load Homes Tucson, Arizona and Chico, California PROJECT INFORMATION Project Name: Field testing of air-to-water heat pump Location: Tucson, AZ and Chico, CA Partners: La Mirada Homes www.lamiradahomes.net Chico Green Builders Daikin www.daikinac.com ARBI http://arbi.davisenergy.com/ Building Component: HVAC, domestic hot water Application: New, single family Year Tested: 2011-2012 Applicable Climate Zones: Hot-dry, cold PERFORMANCE DATA Cost

  20. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pump - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech07_vineyard_040213.pdf More Documents & Publications Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Buildings Performance Database - 2013 BTO Peer Review

  1. Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems

    Broader source: Energy.gov [DOE]

    The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems in multifamily buildings.

  2. Field performance of a premium heating oil

    SciTech Connect (OSTI)

    Santa, T.; Jetter, S.

    1997-01-01

    As part of ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. The performance of this premium heating oil is discussed.

  3. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  4. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  5. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  6. NREL: Hydrogen and Fuel Cells Research - Renewable Electrolysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... station for fueling natural gas vehicles and 2) to a home for heating and hot water and 3) to a natural gas turbine, which is connected via an electric line to the electric grid. ...

  7. Efficient Solutions for Existing Homes Case Study: Solar Water Heating in Multifamily Buildings

    Broader source: Energy.gov [DOE]

    In spring 2014, Olive Street Development completed a major renovation project—converting an old school building in Greenfield, Massachusetts, into 12 high-performance apartments. The developer installed SDHW to reduce fossil-fuel consumption, and CARB has been monitoring the system since its completion.

  8. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  9. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  10. Measure Guideline. Heat Pump Water Heaters in New and Existing Homes

    SciTech Connect (OSTI)

    Shapiro, Carl; Puttagunta, Srikanth; Owens, Douglas

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs

  11. Method and apparatus for real-time measurement of fuel gas compositions and heating values

    DOE Patents [OSTI]

    Zelepouga, Serguei; Pratapas, John M.; Saveliev, Alexei V.; Jangale, Vilas V.

    2016-03-22

    An exemplary embodiment can be an apparatus for real-time, in situ measurement of gas compositions and heating values. The apparatus includes a near infrared sensor for measuring concentrations of hydrocarbons and carbon dioxide, a mid infrared sensor for measuring concentrations of carbon monoxide and a semiconductor based sensor for measuring concentrations of hydrogen gas. A data processor having a computer program for reducing the effects of cross-sensitivities of the sensors to components other than target components of the sensors is also included. Also provided are corresponding or associated methods for real-time, in situ determination of a composition and heating value of a fuel gas.

  12. Building America Technology Solutions for New and Existing Homes: Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast, Devens and Easthampton, Massachusetts

    Broader source: Energy.gov [DOE]

    In this project, Building Science Corporation evaluated the long-term performance of mini-split heat pumps (MSHPs) in 8 homes during a period of 3 years. The work examined electrical use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions.

  13. Building America Technology Solutions for New and Existing Homes: Ground Source Heat Pump Research, TaC Studios Residence, Atlanta, Georigia (Fact Sheet),

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the construction of a new test home in Atlanta, GA, that demonstrates current best practices for the mixed-humid climate, including a building envelope featuring advanced air sealing details and low density spray foam insulation, glazing that exceeds ENERGY STAR requirements, and a high performance heating and cooling system.

  14. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  15. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  16. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  17. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-11-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment,' ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations.

  18. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for installation labor and materials, and $627 for overhead and management), and the benefit-to-cost ratio was 1.48. A general trend toward higher-than-average fuel-oil savings was observed in houses with high pre-weatherization fuel-oil consumption. Program savings could likely be increased by targeting higher energy consumers for weatherization, although equity issues would have to be considered. Weatherization measures associated with higher-than-average savings were use of a blower door for air-sealing, attic and wall insulation, and replacement space-heating systems. Space-heating system tune-ups were not particularly effective at improving the steady-state efficiency of systems, although other benefits such as improved seasonal efficiency, and system safety and reliability may have resulted. The Program should investigate methods of improving the selection and/or application of space-heating system tune-ups and actively promote improved tune-up procedures that have been developed as a primary technology transfer activity. Houses were more air-tight following weatherization, but still leakier than what is achievable. Additional technology transfer effort is recommended to increase the use of blower doors considering that only half the weatherized houses used a blower door during air sealing. A guidebook developed by a committee of experts and covering a full range of blower-door topics might be a useful technology transfer and training document. Weatherization appeared to make occupants feel better about their house and house environment.

  19. Measured Performance of Occupied, Side-by-Side, South Texas Homes

    SciTech Connect (OSTI)

    Chasar, D.; vonSchramm, V.

    2012-09-01

    The performance of three homes in San Antonio, Texas with identical floor plans and orientation were evaluated through a partnership between the Florida Solar Energy Center (FSEC), CPS Energy, and Woodside Homes of South Texas. Measurements included whole house gas and electric use as well as heating, cooling, hot water, major appliances and indoor and outdoor conditions. One home built to builder standard practice served as the control, while the other homes demonstrated high performance features. Utility peak electric load comparisons of these dual-fuel homes provide an assessment of envelope and equipment improvements. The control home used natural gas for space and water heating only, while the improved homes had gas heating and major appliances with the exception of a high efficiency heat pump in one home. Data collection began in July of 2009 and continued through April of 2011. Energy ratings for the homes yielded E-Scales (aka HERS indices) of 86 for the control home, 54 for one improved home and 37 for the other home which has a 2.4kW photovoltaic array.

  20. Electrochemical Potential (ECP) of Clean Heated Fuel Cladding Material and Structural SS under BWR Operating Conditions

    SciTech Connect (OSTI)

    Pop, Mike G.; Bell, Merl; Kilian, Renate; Dorsch, Thomas; Christian, Mueller

    2007-07-01

    To preliminarily monitor the relative effect of advanced water chemistry measures on SS structural material and fuel cladding in BWR environments a number of experiments were performed using laboratory equipment (recirculation loop, autoclave with heated electrodes, reference electrodes, etc.). The simulation of the plant condition was done without impurities or crud deposit contribution (clean surfaces). Subsequent testing, performed during 2007 and not yet cleared for release, is considering the effect of combined complex BWR chemistries and crud deposition. The heated Zircaloy fuel cladding tubing was prepared to simulate heat transfer by internal heating at levels existing in BWR (70 W/cm{sup 2}). For comparison purposes additional type SS347 electrode and unheated zirconium was used. A platinum electrode was used to measure the redox potential of the electrolyte. A high temperature Ag/AgCl electrode was used as a reference electrode. The assembly was installed in a recirculation 1 liter autoclave. Present report presents corrosion potential measurements performed under the following BWR water chemistry conditions (at 288 deg. C fluid exit temperature, 86 bar with surface temperature of Zirconium hot finger at 296 deg. C) - normal (inert) water conditions, - hydrogen injection in three steps from 0.68 ppm to 1.6 ppm, - oxygen injection in three steps from 2.4 ppm to 10 ppm - -methanol 2 ppm and oxygen 2 ppm in a close loop (without methanol refreshing) (authors)

  1. DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders...

    Office of Environmental Management (EM)

    blown cellulose; wo air-to-air heat pumps SEER 14.1; HSPF 9.6; heat pump water heater. PDF icon DOE Zero Energy Ready Home Case Study: Evolutionary Home Builders, Geneva, IL More ...

  2. California Low Carbon Fuels Infrastructure Investment Initiative |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt082_ti_bowen_2012_o.pdf More Documents & Publications The Future of Home Heating StateActivity.pdf Hydrogen & Fuel Cells Program Overview

  3. Assessment of Heating Fuels and Electricity Markets During the Winters of 2013-2014 and 2014-2015 Now Available

    Broader source: Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and...

  4. Measured Performance of Occupied, Side-by-Side, South Texas Homes

    SciTech Connect (OSTI)

    Chasar, Dave; vonSchramm, Valerie

    2012-09-01

    The performance of three homes in San Antonio, Texas with identical floor plans and orientation were evaluated through a partnership between the Florida Solar Energy Center (FSEC), CPS Energy, and Woodside Homes of South Texas. Measurements included whole house gas and electric use as well as heating, cooling, hot water, major appliances and indoor and outdoor conditions. One home built to builder standard practice served as the control, while the other homes demonstrated high performance features. Utility peak electric load comparisons of these dual-fuel homes provide an assessment of envelope and equipment improvements.

  5. DOE Fuel Cell Technology Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technology Office - Sandia Energy Energy Search Icon Sandia Home Locations ... SunShot Grand Challenge: Regional Test Centers DOE Fuel Cell Technology Office Home...

  6. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England

    Broader source: Energy.gov [DOE]

    This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

  7. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  8. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOE Patents [OSTI]

    Koutsoukos, Elias P.

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  9. Wood and Pellet Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Heating Systems » Wood and Pellet Heating Wood and Pellet Heating A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie A wood stove on a stone hearth. | Photo courtesy of ©iStockphoto/King_Louie Today you can choose from a new generation of wood- and pellet-burning appliances that are cleaner burning, more efficient, and powerful enough to heat many average-sized, modern homes. Pellet fuel appliances burn small pellets that measure 3/8 to 1 inch in length.

  10. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  11. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  12. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  13. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  14. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  15. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  16. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  17. Microsoft PowerPoint - 2013-Winter Fuels.pptx

    Gasoline and Diesel Fuel Update (EIA)

    8 2013 | W hi DC October 8, 2013 | Washington, DC www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Overview Wi t F l O tl k f h h ld * Winter Fuels Outlook focuses on households. * EIA expects higher prices this winter for homes that heat with natural gas propane and electricity Home heating oil prices natural gas, propane, and electricity. Home heating oil prices are expected to be lower than last winter. * Forecast temperatures are close to last winter

  18. A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-Site Process Reducing Gas, Clean Power, and Heat Introduction In order for metal products to have desired properties, most metal is thermally processed at a high temperature one or more times under a controlled atmosphere. Many different thermal operations are used including oxide reduction, annealing, brazing, sintering, and carburizing. A mixture of hydrogen and nitrogen gas often provides a

  19. Examination of frit vent from Sixty-Watt Heat Source simulant fueled clad vent set

    SciTech Connect (OSTI)

    Ulrich, G.B.

    1995-11-01

    The flow rate and the metallurgical condition of a frit vent from a simulant-fueled clad vent set (CVS) that had been hot isostatically pressed (HIP) for the Sixty-Watt Heat Source program were evaluated. The flow rate form the defueled vent cup subassembly was reduced approximately 25% from the original flow rate. No obstructions were found to account for the reduced flow rate. Measurements indicate that the frit vent powder thickness was reduced about 30%. Most likely, the powder was compressed during the HIP operation, which increased the density of the powder layer and thus reduced the flow rate of the assembly. All other observed manufacturing attributes appeared to be normal, but the vent hole activation technique needs further refinement before it is used in applications requiring maximum CVS integrity.

  20. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, V.C.

    1997-01-01

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

  1. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, Volney C.

    1997-01-10

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

  2. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In...

  3. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  4. hydrogen-fuel-cell-powered generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-fuel-cell-powered generator - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers hydrogen-fuel-cell-powered generator Home...

  5. Applications of high-temperature solar heat to the production of selected fuels and chemicals

    SciTech Connect (OSTI)

    Beall, S.E. Jr.; Bamberger, C.E.; Goeller, H.A.

    1981-07-01

    An attempt is made to judge whether solar heat in the 500 K to 2500 K temperature range might be economical for some important fuel- and chemical-production processes. Previous work in related areas is reviewed and the chemicals aluminum oxide (and bauxite), calcium sulfate (and gypsum), and calcium oxide (lime) chosen for detailed study. In addition to reviewing the energy needs of the more common bulk chemicals, several innovative processes requiring heat in the 1500 to 2500 K range were investigated. Hydrogen production by several thermochemical means, carbon monoxide production by thermochemical and direct thermal dissociation, and nitrogen fixation by direct thermal reaction of nitrogen and oxygen in air were considered. The engineering feasibility of the processes is discussed. The problem of matching the conventional and innovative processes to a high-temperature solar supply is studied. Some solar-thermal power plants of current designs are examined and several advanced concepts of highly concentrating systems are considered for very high-temperature applications. Conclusions and recommendations are presented.

  6. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

  7. Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Score » Home Energy Score Report Home Energy Score Report The Home Energy Score is similar to a vehicle's miles-per-gallon rating. The Home Energy Score allows homeowners to compare the energy performance of their homes to other homes nationwide. It also provides homeowners with suggestions for improving their homes' efficiency. The process starts with a Home Energy Score Assessor collecting energy information during a brief home walk-through. Using the Home Energy Scoring Tool, developed by

  8. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  9. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51⁰C to 43 ⁰C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  10. Building America Technology Solutions for New and Existing Homes: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts

    Broader source: Energy.gov [DOE]

    The ARIES Collaborative partnered with Homeowners' Rehab Inc., a nonprofit affordable housing owner, to upgrade the central hydronic heating system in a 42-unit housing development, reducing heating energy use by an average of 19%.

  11. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect (OSTI)

    Morris, Robert Noel; Baldwin, Charles A; Hunn, John D; Demkowicz, Paul; Reber, Edward

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  12. Technology Solutions for New Homes Case Study: Indirect Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Indirect Solar Water Heating Systems in Single-Family Homes Technology Solutions for New Homes Case Study: Indirect Solar Water Heating Systems in Single-Family Homes In 2011, ...

  13. DOE Zero Energy Ready Home Case Study 2013: Nexus EnergyHomes...

    Energy Savers [EERE]

    ... A ground-source heat pump provides the home's heating and some of its hot water. A ground source heat pump is an electric heat pump that exchanges heat with the ground or ground ...

  14. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  15. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect (OSTI)

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  16. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The purpose of this Steam Technical Brief is to introduce heat-pump technology and its ... A heat pump is a device that can increase the temperature of a waste-heat source to a ...

  17. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  18. An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015

    Broader source: Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and electricity markets. In an effort to understand the impacts of the winter conditions on these markets, the Office of Electricity Delivery and Energy Reliability conducted an in-depth analysis of regional fuel and electricity sectors during the winters of 2013-2014 and 2014-2015 to assess market behavior and performance.

  19. printed-circuit heat exchanger PCHE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    printed-circuit heat exchanger PCHE - Sandia Energy Energy Search Icon Sandia Home ... SunShot Grand Challenge: Regional Test Centers printed-circuit heat exchanger PCHE Home...

  20. Load Preheating Using Flue Gases from a Fuel-Fired Heating System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Would the heat loss be considerable? 4. What type of ... Will an auxiliary heating system be needed? Resources See ... will mean a stronger economy, a cleaner environment, ...

  1. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented ...

  2. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect (OSTI)

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  3. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect (OSTI)

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

  4. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  5. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge ... Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the ...

  6. Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes

    SciTech Connect (OSTI)

    Im, Piljae; Hughes, Patrick; Liu, Xiaobing

    2012-01-01

    The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

  7. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham...

    Energy Savers [EERE]

    home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat pump heats and cools the home,...

  8. Building America Whole-House Solutions for New Homes: Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the energy performance of these homes and the ductless heat pumps (DHP) they employ. ... measures that focus on the DHPhybrid heating system and heat recovery ...

  9. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  10. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  11. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  12. QUIZ: Test your Home Energy IQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QUIZ: Test your Home Energy IQ QUIZ: Test your Home Energy IQ Test your Home Energy IQ Find out if you are the brightest bulb when it comes to home energy use trivia! 1. What accounts for the most energy use in American homes? Heating and cooling Water heating Electronics and lighting Appliances According to the most recent Residential Energy Consumption Survey, heating and cooling accounted for 48 percent of total energy consumption in American homes. However, this number is down from 58

  13. Passive Solar Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Design for Efficiency » Passive Solar Home Design Passive Solar Home Design This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography. This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot

  14. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power...

    Office of Scientific and Technical Information (OSTI)

    Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel ...

  15. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... (RCCI) Combustion in a Light-Duty Engine High Efficiency Fuel Reactivity ...

  16. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  17. DOE Challenge Home Case Study: Near Zero Maine Home II, Vassalboro...

    Energy Savers [EERE]

    ... One minisplit heat pump provides all of the heating and cooling the 1,200-ft 2 home needs. ... the heat exchanger, then further warmed as it enters the living space near the heat pump. ...

  18. H. R. 3856: A Bill to amend the Internal Revenue Code of 1986 to impose an excise tax on windfall profits derived from home heating oil, and for other purposes. Introduced in the House of Representatives, One Hundredth First Congress, Second Session, January 23, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The tax would be imposed on the producer or importer of the home heating oil. The amount of the tax would be 90 percent of the windfall profit on each barrel, which is defined as the gross profit over the producer's or importer's average gross profit per barrel from home heating oil sold during November 1989. If significant sales were not made by any person during November 1989, the amount will be determined by the Secretary based on national averages. The bill also establishes a Home Heating Oil Trust Fund to finance grants under the Low-Income Home Energy Assistance Act of 1981.

  19. Solar Water Heating: SPECIFICATION, CHECKLIST AND GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Table of ... Assumptions of the RERH Solar Water Heating Specification ...

  20. Coast Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association (CEPA) provides rebates on heat pumps for new homes which meet certain weatherization standards. To qualify for this rebate the home must have:

  1. Effects of Zircaloy oxidation and steam dissociation on PWR core heat-up under conditions simulating uncovered fuel rods

    SciTech Connect (OSTI)

    Viskanta, R.; Mohanty, A.K.

    1986-04-01

    The studies described in this report identify the regimes of slow transients in a partially uncovered core of a PWR. The threshold height and onset time for oxidation of the cladding of a fuel rod have been evaluated. The effects of oxidation in increasing the decay heat load, component temperature, reduction of cladding thickness and generation of hydrogen have been estimated. The condition for steam starvation has been determined. At high uncovered core heights, typically say 2.8 m for a geometry simulating the TMI-2 type of reactor, the solid and coolant temperatures can reach the limits of steam dissociation. The effects of radiation heat exchange between cladding and coolant, Zircaloy oxidation, steam dissociation, gap conductance between fuel and cladding and system pressure on the heatup of fuel rods have been investigated. The time for uncovering a certain core height is taken as the independent parameter. It is seen that if the uncovering process is allowed to continue beyond 9 minutes corresponding to an uncovered height of 1.9 m, onset of cladding oxidation can be a reality. These values provide a guideline for the response time of the emergency core cooling systems. 10 refs., 22 figs.

  2. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  3. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Buildings Performance ...

  4. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity

    Broader source: Energy.gov [DOE]

    Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

  5. Using Heat and Chemistry to Make Products, Fuels, and Power: Thermochemical Conversion

    SciTech Connect (OSTI)

    2010-09-01

    Information about the Biomass Program's collaborative projects exploring thermochemical conversion processes that use heat and chemistry to convert biomass into a liquid or gaseous intermediate.

  6. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Update to Include Evaluation of Impact of Including a Humidifier Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2007-02-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of a centrally ducted integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006a). The present report is an update to that document which summarizes results of an analysis of the impact of adding a humidifier to the HVAC system to maintain minimum levels of space relative humidity (RH) in winter. The space RH in winter has direct impact on occupant comfort and on control of dust mites, many types of disease bacteria, and 'dry air' electric shocks. Chapter 8 in ASHRAE's 2005 Handbook of Fundamentals (HOF) suggests a 30% lower limit on RH for indoor temperatures in the range of {approx}68-69F based on comfort (ASHRAE 2005). Table 3 in chapter 9 of the same reference suggests a 30-55% RH range for winter as established by a Canadian study of exposure limits for residential indoor environments (EHD 1987). Harriman, et al (2001) note that for RH levels of 35% or higher, electrostatic shocks are minimized and that dust mites cannot live at RH levels below 40%. They also indicate that many disease bacteria life spans are minimized when space RH is held within a 30-60% range. From the foregoing it is reasonable to assume that a winter space RH range of 30-40% would be an acceptable compromise between comfort considerations and limitation of growth rates for dust mites and many bacteria. In addition it reports some corrections made to the simulation models used in order to correct some errors in the TRNSYS building model for Atlanta and in the refrigerant pressure drop calculation in the water-to-refrigerant evaporator module of the ORNL Heat Pump Design Model (HPDM) used for the IHP analyses. These changes resulted in some minor differences between IHP performance as reported in Baxter (2006) and in this report.

  7. Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes -- Update to Include Analyses of an Economizer Option and Alternative Winter Water Heating Control Option

    SciTech Connect (OSTI)

    Baxter, Van D

    2006-12-01

    The long range strategic goal of the Department of Energy's Building Technologies (DOE/BT) Program is to create, by 2020, technologies and design approaches that enable the construction of net-zero energy homes at low incremental cost (DOE/BT 2005). A net zero energy home (NZEH) is a residential building with greatly reduced needs for energy through efficiency gains, with the balance of energy needs supplied by renewable technologies. While initially focused on new construction, these technologies and design approaches are intended to have application to buildings constructed before 2020 as well resulting in substantial reduction in energy use for all building types and ages. DOE/BT's Emerging Technologies (ET) team is working to support this strategic goal by identifying and developing advanced heating, ventilating, air-conditioning, and water heating (HVAC/WH) technology options applicable to NZEHs. Although the energy efficiency of heating, ventilating, and air-conditioning (HVAC) equipment has increased substantially in recent years, new approaches are needed to continue this trend. Dramatic efficiency improvements are necessary to enable progress toward the NZEH goals, and will require a radical rethinking of opportunities to improve system performance. The large reductions in HVAC energy consumption necessary to support the NZEH goals require a systems-oriented analysis approach that characterizes each element of energy consumption, identifies alternatives, and determines the most cost-effective combination of options. In particular, HVAC equipment must be developed that addresses the range of special needs of NZEH applications in the areas of reduced HVAC and water heating energy use, humidity control, ventilation, uniform comfort, and ease of zoning. In FY05 ORNL conducted an initial Stage 1 (Applied Research) scoping assessment of HVAC/WH systems options for future NZEHs to help DOE/BT identify and prioritize alternative approaches for further development. Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment, ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. In 2006, the two top-ranked options from the 2005 study, air-source and ground-source versions of an integrated heat pump (IHP) system, were subjected to an initial business case study. The IHPs were subjected to a more rigorous hourly-based assessment of their performance potential compared to a baseline suite of equipment of legally minimum efficiency that provided the same heating, cooling, water heating, demand dehumidification, and ventilation services as the IHPs. Results were summarized in a project report, Initial Business Case Analysis of Two Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes, ORNL/TM-2006/130 (Baxter 2006). The present report is an update to that document. Its primary purpose is to summarize results of an analysis of the potential of adding an outdoor air economizer operating mode to the IHPs to take advantage of free cooling (using outdoor air to cool the house) whenever possible. In addition it provides some additional detail for an alternative winter water heating/space heating (WH/SH) control strategy briefly described in the original report and corrects some minor errors.

  8. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer Visualization CAVE...

  9. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  10. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and...

  11. Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  12. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  13. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas

    Broader source: Energy.gov [DOE]

    Success story about using waste water treatment gas for hydrogen production at UC Irvine. Presented by Jack Brouwer, UC Irvine, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  14. Modeling Cladding-Coolant Heat Transfer of High-Burnup Fuel During...

    Office of Scientific and Technical Information (OSTI)

    the fuel performance code FRAPTRAN 1.2. The minimum stable film boiling temperature, affected by the subcooling and the clad oxidation, is modeled by a modified Henry correlation. ...

  15. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom

    Energy Savers [EERE]

    Homes | Department of Energy e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps. PDF icon BA_ZeroEnergyReady_e2Homes_062414.pdf More Documents & Publications

  16. DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes | Department of Energy e2 Homes, Winter Park, FL, Custom Homes DOE Zero Energy Ready Home Case Study: e2 Homes, Winter Park, FL, Custom Homes Case study of a DOE Zero Energy Ready Home in Winter Park, FL, that scored HERS 57 without PV or HERS -7 with PV. This 4,305-square-foot custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps. PDF icon BA_ZeroEnergyReady_e2Homes_062414.pdf More Documents & Publications

  17. Biomimetic Chalcogels for Solar Fuel Catalysis | ANSER Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Chalcogels for Solar Fuel Catalysis Home > Research > ANSER Research Highlights > Biomimetic Chalcogels for Solar Fuel Catalysis...

  18. Analyzing Design Heating Loads in Superinsulated Buildings

    SciTech Connect (OSTI)

    Arena, Lois

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  19. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact ...

  20. DOE Zero Energy Ready Home Case Study 2013: Dwell Development...

    Energy Savers [EERE]

    ... RENEWABLE READY meets EPA Renewable Energy- Ready Home. 1 2 3 4 5 6 7 DOE ZERO ENERGY READY HOME Dwell Development 3 The home's one mini-split heat pump is almost overkill given ...

  1. Building America Whole-House Solutions for New Homes: Urbane Homes,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisville, Kentucky | Department of Energy Urbane Homes, Louisville, Kentucky Building America Whole-House Solutions for New Homes: Urbane Homes, Louisville, Kentucky Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space. PDF icon Urbane Homes - Louisville, KY More Documents & Publications High

  2. DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Study, Nexus EnergyHomes, Frederick, MD, Production DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick, MD, Production This urban infill community features a package of SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. PDF icon Nexus EnergyHomes - Frederick, MD More Documents & Publications Building America Whole-House Solutions for New Homes: Nexus EnergyHomes - Frederick, Maryland DOE Zero Energy

  3. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  4. Characterization of emissions from a fluidized-bed wood chip home heating furnace. Final report Apr 82-May 83

    SciTech Connect (OSTI)

    Truesdale, R.S.

    1984-03-01

    The report gives results of measurements of emissions from a residential wood-chip combustor, operated in both a fluidized-bed and cyclone-fired mode, and their comparison with those from a conventional woodstove and industrial wood-fired boilers. In general, the combustion efficiency of the fluidized-bed and cyclone-fired wood-chip burner is higher than that of conventional woodstoves. Concomitant with this increase in efficiency is a decrease in most emissions. For the fluidized-bed tests, significant reductions of total hydrocarbons and CO were observed, compared to woodstove emissions. The cyclone test showed PAH levels far below those of conventional woodstoves, approaching levels measured in industrial wood-fired boilers. A baghouse, installed during two fluidized-bed tests, was extremely effective in reducing both particulate and PAH emissions. Method 5 samples from above the fluid bed suggest that appreciable PAH is formed in the upper region of the furnace or in the watertube heat exchangers. In general, the cyclone-fired mode was more effective in reducing emissions from residential wood combustion than the fluidized-bed mode.

  5. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    SciTech Connect (OSTI)

    2010-12-01

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the company's energy use, and reduce costs in an environmentally responsible manner.

  8. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  9. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Home | Department of Energy Coupeville, WA, Systems Home DOE Zero Energy Ready Home Case Study: Clifton View Homes, Coupeville, WA, Systems Home Case study of a DOE Zero Energy Ready Home on Whidbey Island, WA, that scored HERS 45 without PV. This 2,908-square-foot custom/system home has a SIP roof and walls, R-20 rigid foam under slab, triple-pane windows, ground source heat pump for radiant floor heat, and a unique balanced ventilation system using separate exhaust fans to bring

  10. DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home | Department of Energy San Marcos, CA, Production Home DOE Zero Energy Ready Home Case Study: KB Home, San Marcos, CA, Production Home Case study of a DOE Zero Energy Ready Home in San Marcos, CA that scored HERS 52 without PV, -4 with PV. This 52,778-square-foot production home has R-20 advanced framed walls with batts plus rigid foam sheathing, an air-source heat pump for central air in sealed attic, solar water heating and 100% LED lighting. PDF icon BA_ZeroEnergyReady_KB

  11. Microsoft Word - Heating Oil Season.docx

    Broader source: Energy.gov (indexed) [DOE]

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price...

  12. List of Heat recovery Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  13. Air Sealing Your Home | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Your Home Air Sealing Your Home Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Save on heating and cooling costs by checking for air leaks in common trouble spots in your home. Reducing the amount of air that leaks in and out of your home is a cost-effective way to cut heating and cooling costs, improve durability, increase comfort, and create a healthier indoor environment. Caulking and weatherstripping are two simple and effective air-sealing

  14. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  15. DOE Zero Energy Ready Home Case Study 2014: TC Legend Homes,...

    Energy Savers [EERE]

    ... Radiant heating loops with hot water from an air-to-water heat pump provide radiant heat to the home. ENERGY STAR appliances, an induction cooktop, and 100% LED lighting help to ...

  16. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey...

    Energy Savers [EERE]

    SIP above-grade walls, a 10.25-in. SIP roof, and triple-pane windows. The home has a ground-source heat pump provides radiant floor heat plus passive solar heating from large...

  17. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  18. DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX DOE Zero Energy Ready Home Case Study: M Street Homes, Houston, TX Case study of a DOE Zero Energy Ready home in Houston, TX, that achieves a HERS 45 without PV or HERS 32 with 1.2 kW PV. The three-story, 4,507-ft2 custom home is powered by a unique tri-generation system that supplies all of the home's electricity, heating, and cooling on site. The tri-generator is powered by a

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of a qualified Phill NGV home fueling appliance. SCAQMD and the Mobile Source Air Pollution Reduction Review Committee provide funding for the program, which will...

  20. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000C in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  1. Combi Systems for Low Load homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Context Technical Approach * A condensing water heater and hydronic air handler will used to provide space and water heating loads in almost 300 weatherized homes. * System ...

  2. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Integrated Space and Water Heating-Field Assessment Building America Technology Solutions for New and Existing Homes: Retrofit Integrated Space and Water Heating-Field ...

  3. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect (OSTI)

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  4. Energy Savers: Tips on Saving Money & Energy at Home

    SciTech Connect (OSTI)

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  5. Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

  6. Your Home Fire Safety Checklist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YourHome FireSafety Checklist U.S. Consumer Product Safety Commission Washington, D.C. 20207 Table of Contents About the Commission Introduction Sources Of Fire Supplemental Home Heating Equipment . . . . . . . . . . 1 Cooking Equipment . . . . . . . . . . . . 4 Cigarette Lighters and Matches . . . 4 Materials That Burn Upholstered Furniture . . . . . . . . . . 5 Mattresses and Bedding . . . . . . . . . 6 Wearing Apparel . . . . . . . . . . . . . . 6 Flammable Liquids . . . . . . . . . . . . 7

  7. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gökhan O. Alptekin TDA Research, Inc. Wheat Ridge, CO U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The objective is to develop a low-cost, high-capacity expendable sorbent to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit  The high concentrations of sulfur species in the

  8. DEMCO- Touchstone Energy Home Program

    Broader source: Energy.gov [DOE]

    DEMCO, a Touchstone Energy Cooperative, provides residential customers who have a qualified Touchstone Energy Home, a rebate of up to $0.10 per square foot of living area for electric heat pumps...

  9. Ukraine Fuel Removal: Fact Sheet | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Removal: Fact Sheet | National Nuclear Security Administration Facebook Twitter ... Blog Home Library Fact Sheets Ukraine Fuel Removal: Fact Sheet Ukraine Fuel Removal: ...

  10. Maritime Hydrogen Fuel Cell project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  11. fuel | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Jobs Working at NNSA Blog Home fuel fuel Cheaper catalyst may lower fuel costs for hydrogen-powered cars Sandia National Laboratories post-doctoral fellow Stan Chou demonstrates...

  12. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  13. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  14. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Equipment, Waste Heat Recovery Costs, ... Fuel Cell CHP Fuel Cell Electric Gas Turbine Internal Combustion ... Equipment, Waste Heat Recovery Costs, ...

  15. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Energy Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance Hydrogen and Fuel Cell Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon fuelcells_ataglance_2014.pdf More Documents & Publications Fuel Cell Technologies Office FY 2016 Budget At-A-Glance Fuel Cell Technologies Office FY 2015 Budget At-A-Glance Fuel Cell Technologies

  16. DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WA | Department of Energy Whidbey Island, WA DOE Zero Energy Ready Home Case Study: Clifton View Homes, Whidbey Island, WA Case study of a DOE Zero Energy Ready home on Whidbey Island, WA, that scores HERS 37 without PV or HERS -13 with 10 kW PV, enough to power the home and an electric car. The two-story custom home has ICF below-grade walls, 6.5-inch SIP above-grade walls, a 10.25-in. SIP roof, and triple-pane windows. The home has a ground-source heat pump provides radiant floor heat

  17. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA DOE Zero Energy Ready Home Case Study: TC Legend Homes, Bellingham, WA Case study of a DOE Zero Energy Ready home in Bellingham, WA, that achieves HERS 43 without PV or HERS 13 with 3.2 kW of PV. The 1,055-ft2 two-story production home has 6-in. SIP walls, a 10-in. SIP roof, and ICF foundation walls with R-20 high-density rigid EPS foam under the slab. A single ductless heat pump heats

  18. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Home: Near Zero Maine Home II, Vassalboro, Maine DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine Case study of a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar

  19. Absorption Heat Pump Water Heater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Absorption Heat Pump Water Heater Kyle Gluesenkamp Building Equipment Group, ETSD ... tested in early April An absorption heat pump transfers heat to the water from fuel and ...

  20. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Home Cooling Energy Saver 101 Energy Saver 101 We're covering everything you need to know about home cooling to help you save energy and money. Read more Ventilation Systems for Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read

  1. Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)

    SciTech Connect (OSTI)

    Gettings, M.B.

    2003-01-27

    The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely.

  2. Active Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary

  3. Active Solar Heating | Department of Energy

    Energy Savers [EERE]

    Home Heating Systems » Active Solar Heating Active Solar Heating This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating system. | Photo courtesy of Jim Schmid Photography, NREL This North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system supplies both domestic hot water and a secondary radiant floor heating

  4. New energy-conserving passive solar single-family homes. Cycle 5, Category 2 HUD solar heating and cooling demonstration program

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The 91 new single-family, energy-conserving passive solar homes described represent award winning designs of the series of five demonstration cycles of the HUD program. Information is presented to help builders and lenders to understand passive solar design, to recognize passive solar buildings, and to provide specific design, construction, and marketing suggestions and details. The first section describes the concept of passive solar energy, explains the various functions which passive solar systems must perform, and discusses the various types of passive systems found in the Cycle 5 projects. The second section discusses each of the 91 solar homes. The third section details the issues of climate requirements and site design concerns, gives examples of building construction, and suggests how to market solar homes. The appendices address more technical aspects of the design and evaluation of passive solar homes.

  5. Sandia Energy - Optimizing Engines for Alternative Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Engines for Alternative Fuels Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities Sensors & Optical Diagnostics Optimizing...

  6. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  7. DOE Zero Energy Ready Home Case Study: Shore Road Project - Old Greenwich, Connecticut

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Old Greenwich, CT, that scored HERS 40 without PV and HERS 27 with PV. This 4,100 ft2 custom home has 13-inch ICF basement walls and 11-inch ICF above-grade walls with a closed-cell spray foam-insulated roof deck, and a continuously running ERV. The house has a dual-fuel heat pump, an instantaneous condensing water heater, and 4.5-kW solar shingles.

  8. DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NM, Production | Department of Energy Homes Inc., Albuquerque, NM, Production DOE Zero Energy Ready Home Case Study: Palo Duro Homes Inc., Albuquerque, NM, Production Case study of a DOE Zero Energy Ready Home in Aztec, NM, that scored HERS 49 without PV. This 2,064-square-foot production home has advance framed walls, a spray foamed attic, an air source heat pump, and an HRV. PDF icon Palo Duro Homes, Inc.- Albuquerque, NM More Documents & Publications DOE Zero Energy Ready Home Case

  9. Building America Case Studies for New Homes: Performance and Costs of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ductless Heat Pumps in Marine Climate High-Performance Homes | Department of Energy Case Studies for New Homes: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes Building America Case Studies for New Homes: Performance and Costs of Ductless Heat Pumps in Marine Climate High-Performance Homes The Woods is a sustainable community built by Habitat for Humanity in 2013. This community comprises 30 homes that are high-performance and energy-efficient. With

  10. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  11. Fermilab | Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Contact Phone Book Fermilab at Work Jobs About About Fermilab Quick Info Science History Organization Photo and Video Gallery Diversity Education Safety Sustainability and...

  12. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User ID: Password: Log In Forgot your password? Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide...

  13. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working in CAES WIC Home Request Facility Use Conduct Research Flowchart Process Rad Info and Tools Chemical Requisition Guide Chemical and Supply Order Form Training Access...

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the ...

  15. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the ...

  16. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the ...

  17. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the ...

  18. Types of Homes

    Broader source: Energy.gov [DOE]

    Explore energy-saving information for apartments and rentals, earth-sheltered homes, log homes, and manufactured homes.

  19. Passive Solar Home Design | Department of Energy

    Energy Savers [EERE]

    Weatherize » Moisture Control Moisture Control Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Controlling moisture can make your home more energy-efficient, less costly to heat and cool, more comfortable, and prevent mold growth. Properly controlling moisture in your home will improve the effectiveness of your air sealing and insulation efforts, and these efforts in turn will help control moisture. The best

  20. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  1. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  2. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  3. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  4. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFCs performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cells microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  5. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect (OSTI)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.

  6. Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Basics Alternative Fuel Basics August 19, 2013 - 5:42pm Addthis Photo of a man in goggles looking at test tubes full of biodiesel. There are a number of fuels available for alternative fuel vehicles. Learn about the following types of fuels: Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Addthis Related Articles Advanced Technology and Alternative Fuel Vehicle Basics Glossary of Energy-Related Terms Natural Gas Fuel Basics Energy Basics Home Renewable Energy Homes

  7. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) | Department of Energy Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Researchers from Alliance for Residential Building Initiative worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump

  8. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  9. Energy-Efficient Home Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Energy-Efficient Home Design Energy-Efficient Home Design The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. The Home Energy Score is a

  10. Phononic Crystals: Engineering the Flow of Heat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phononic Crystals: Engineering the Flow of Heat - Sandia Energy Energy Search Icon Sandia ... Phononic Crystals: Engineering the Flow of Heat HomeAnalysis, Capabilities, Energy, ...

  11. Refuse-derived fuels in US Air Force heating and power systems. Final report, June 1982-February 1985

    SciTech Connect (OSTI)

    Joensen, A.W.

    1986-01-01

    This investigation was conducted to document and review all data associated with densified refuse-derived fuel (dRDF)--its preparation and properties, storage and handling, boiler cofiring efficiency and environmental emissions, potential boiler metal wastage, and any other experiences associated with the use of this fuel. The results of this investigation provide the basis for the development of an optimum dRDF fuel specification. These results identify performance characteristics and operating problems of the existing dRDF fuel pellet and contain an economic feasibility assessment of using this fuel.

  12. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  13. WIPP Home Page Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Page Search Enter word(s) to search for on the WIPP Home Page: Search

  14. Sandia-Univ. of Rochester Win Funding to Demonstrate Fuel Magnetization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Laser Heating Tools for Low-Cost Fusion Energy Sandia-Univ. of Rochester Win Funding to Demonstrate Fuel Magnetization and Laser Heating Tools for Low-Cost Fusion Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy

  15. Challenge Home

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Net-Zero Energy Home Coalition (NZEHC) Arizona Public Service, CL&P, and NYSERDA Hosting ... for national labeling program Budget History FY2010 FY2011 FY2012 DOE Cost-share DOE ...

  16. NEST HOME

    Broader source: Energy.gov [DOE]

    The Missouri University of Science and Technology returns for its sixth Solar Decathlon with its team’s 2015 entry, the Nest Home, designed to serve a family “from a full nest to an empty nest.”

  17. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  18. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future ...

  19. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions ...

  20. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affordable | Department of Energy Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable Case study of a DOE Zero Energy Ready Home in Phoenix, AZ, that scored HERS 58 without PV or HERS 38 with PV. This 1,700-square-foot affordable home has R-21 framed walls, a sealed closed-cell spray foamed attic, an air-source heat pump with forced air, and a solar combo system

  1. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  3. Documentation of Calculation Methodology, Input data, and Infrastructure for the Home Energy Saver Web Site

    SciTech Connect (OSTI)

    Pinckard, Margaret J.; Brown, Richard E.; Mills, Evan; Lutz, James D.; Moezzi, Mithra M.; Atkinson, Celina; Bolduc, Chris; Homan, Gregory K.; Coughlin, Katie

    2005-07-13

    The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

  4. Technology Solutions Case Study: Calculating Design Heating Loads for Superinsulated Buildings

    SciTech Connect (OSTI)

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, the Consortium for Advanced Residential Buildings team monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  5. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel cells provide power and heat cleanly and efficiently, using diverse domestic fuels, including hydrogen produced from renewable resources and biomass-based fuels. Fuel ...

  6. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating ...

  7. fuel cell | OpenEI Community

    Open Energy Info (EERE)

    fuel cell Home Dc's picture Submitted by Dc(266) Contributor 19 February, 2015 - 15:08 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review 2016 car fuel cell hybrid...

  8. Building America Technology Solutions for New and Existing Homes: Replacing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resistance Heating with Mini-Split Heat Pumps | Department of Energy Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. PDF icon Replacing Resistance Heating with Mini-Split Heat Pumps More Documents & Publications

  9. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  10. Energy Efficiency in the Home

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    The purpose of this lesson is to develop student understanding of the economic and environmental impact of energy use and energy management in a society where energy costs are rising as fossil fuels become increasingly scarce. Through personal investigation, students will learn how they can become more energy savvy and discover ways to conserve energy in their homes.

  11. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Retrofit Integrated Space and Water Heating: Field Assessment Minneapolis, Minnesota PROJECT INFORMATION Project Name: Retrofit Integrated Space and Water Heating: Field Assessment Location: Minneapolis, MN Partners: Center for Energy and Environment, www.mncee.org/ Sustainable Resources Center, www.src-mn.org/ University of Minnesota, www.bbe.umn.edu/index.htm NorthernSTAR Building America Partnership Building Component: HVAC Application: Retrofit; single family Year Tested: 2012 Climate

  12. HIA 2015 DOE Zero Energy Ready Home Case Study: Habitat for Humanity...

    Energy Savers [EERE]

    ... an R-20-insulated, cool, conditioned space for the home's high-efficiency heat pump. ... For further energy savings, the home is equipped with a SEER 15 air source heat pump. The ...

  13. DOE Zero Energy Ready Home Case Study: Southern Energy Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Energy Homes,...

  14. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott ...

  15. Home Performance with Energy Star. Which Measures Get You 30% Savings?

    Energy Savers [EERE]

    America | Department of Energy Home Improvement Catalyst: Bringing Energy Efficiency to More Homes Across America Home Improvement Catalyst: Bringing Energy Efficiency to More Homes Across America March 31, 2016 - 12:41pm Addthis Home Improvement Catalyst: Bringing Energy Efficiency to More Homes Across America The home improvement market represents $150 billion in annual investment, with more than 14 million projects that involve replacement or upgrades of heating and cooling systems,

  16. Fuel Cell Animation- Fuel Cell Stack (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  17. Fuel Cell Animation- Fuel Cell Components (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  18. List of Fuel Cells using Renewable Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Conservation...

  19. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  20. HOMEe | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: HOMEe Place: Denmark Product: Denmark-based maker of home automation products, including devices to manage lighting and climate. References: HOMEe1...

  1. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  2. Sandia Energy - ECIS-Automotive Fuel Cell Corporation: Hydrocarbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles Home Energy Transportation Energy CRF Partnership Energy Efficiency...

  3. Mixed Oxide (MOX) Fuel Fabrication Facility | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Home fieldoffices Savannah River Field Office Mixed Oxide (MOX) Fuel Fabrication ... Mixed Oxide Fuel Fabrication Facility MOX Savannah river site srs Related News Analysis of ...

  4. Biomimetic Chalcogels for Solar Fuel Catalysis | ANSER Center |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne-Northwestern National Laboratory Biomimetic Chalcogels for Solar Fuel Catalysis Home > Research > ANSER Research Highlights > Biomimetic Chalcogels for Solar Fuel Catalysis

  5. Fuel Cell Technologies Office Publication and Product Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies Office Publication & Product Library Fuel Cell Technologies Office Home Publication and Product Library Share this resource Publications Advanced Search ...

  6. Home Energy Score Sample Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sample Report Home Energy Score Sample Report The Home Energy Score is a national rating system developed by the U.S. Department of Energy. The Score reflects the energy efficiency of a home based on the home's structure and heating, cooling, and hot water systems. The Home Facts provide details about the current structure and systems. Recommendations show how to improve the energy efficiency of the home to achieve a higher score and save money. PDF icon Home Energy Score: Sample Report More

  7. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilledmaking the fuel-production process more efficient. The microorganisms dont require light, so they can be grown anywhereinside a dark reactor or even in an underground facility.

  8. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    SciTech Connect (OSTI)

    Al-Beaini, S.; Borgeson, S.; Coffery, B.; Gregory, D.; Konis, K.; Scown, C.; Simjanovic, J.; Stanley, J.; Strogen, B.; Walker, I.

    2009-09-01

    A green building competition, to be known as the Energy Free Home Challenge (EFHC), is scheduled to be opened to teams around the world in 2010. This competition will encourage both design innovation and cost reduction, by requiring design entries to meet 'zero net energy' and 'zero net cost' criteria. For the purposes of this competition, a 'zero net energy' home produces at least as much energy as it purchases over the course of a year, regardless of the time and form of the energy (e.g., electricity, heat, or fuel) consumed or produced. A 'zero net cost' home is no more expensive than a traditional home of comparable size and comfort, when evaluated over the course of a 30-year mortgage. In other words, the 'green premium' must have a payback period less than 30 years, based on the value of energy saved. The overarching goal of the competition is to develop affordable, high-performance homes that can be mass-produced at a large scale, and are able to meet occupant needs in harsh climates (as can be found where the competition will be held in Illinois). This report outlines the goals of the competition, and gauges their feasibility using both modeling results and published data. To ensure that the established rules are challenging, yet reasonable, this report seeks to refine the competition goals after exploring their feasibility through case studies, cost projections, and energy modeling. The authors of this report conducted a survey of the most progressive home energy-efficiency practices expected to appear in competition design submittals. In Appendix A, a summary can be found of recent projects throughout the United States, Canada, Germany, Switzerland, Sweden and Japan, where some of the most progressive technologies have been implemented. As with past energy efficient home projects, EFHC competitors will incorporate a multitude of energy efficiency measures into their home designs. The authors believe that the cost of electricity generated by home generation technologies will continue to exceed the price of US grid electricity in almost all locations. Strategies to minimize whole-house energy demand generally involve some combination of the following measures: optimization of surface (area) to volume ratio; optimization of solar orientation; reduction of envelope loads; systems-based engineering of high efficiency HVAC components, and on-site power generation. A 'Base Case' home energy model was constructed, to enable the team to quantitatively evaluate the merits of various home energy efficiency measures. This Base Case home was designed to have an energy use profile typical of most newly constructed homes in the Champaign-Urbana, Illinois area, where the competition is scheduled to be held. The model was created with the EnergyGauge USA software package, a front-end for the DOE-2 building energy simulation tool; the home is a 2,000 square foot, two-story building with an unconditioned basement, gas heating, a gas hot-water heater, and a family of four. The model specifies the most significant details of a home that can impact its energy use, including location, insulation values, air leakage, heating/cooling systems, lighting, major appliances, hot water use, and other plug loads. EFHC contestants and judges should pay special attention to the Base Case model's defined 'service characteristics' of home amenities such as lighting and appliances. For example, a typical home refrigerator is assumed to have a built-in freezer, automatic (not manual) defrost, and an interior volume of 26 cubic feet. The Base Case home model is described in more detail in Section IV and Appendix B.

  9. REFLECT HOME

    Broader source: Energy.gov [DOE]

    Sacramento is nicknamed the City of Trees, so it made sense for the California State University, Sacramento, team to showcase nature in its Solar Decathlon 2015 project. The team’s Reflect Home does just that by embracing the city’s sense of expansive greenery.

  10. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  11. Building America Efficient Solutions for Existing Homes Case...

    Energy Savers [EERE]

    BUILDING TECHNOLOGIES OFFICE Building America Efficient Solutions for Existing Homes Case ... Switching to an efficient heat pump with zonal controls was the best solution to save ...

  12. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Improve Performance of Combination Space- and Water-Heating Systems Building America Technology Solutions for New and Existing Homes: Advanced Controls Improve Performance ...

  13. Buildng America Whole-House Solutions for New Homes: William...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HERS-65 homes with energy-efficient heat pumps and programmable thermostats with humidity controls, foam-filled concrete block walls, draining house wrap, and airsealed kneewalls. ...

  14. Building America Whole-House Solutions for Existing Homes: Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Whole-House Solutions for Existing Homes: Multifamily Individual Heating and Ventilation Systems The conversion of an older Massachusetts building into ...

  15. Singing River Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet Comfort Advantage weatherization standards. To qualify for this rebate...

  16. Building America Technology Solutions for New and Existing Homes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts Building America Technology Solutions for New and Existing Homes: Boiler Control ...

  17. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fossil fuels and biomass; electric systems; and heat ... improve your plant's bottom line. * Many improvements ... Heat Losses Heat Losses Heat Transfer Advanced Materials ...

  18. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  19. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  20. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  1. Passive Solar Home Design | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    North Carolina home gets most of its space heating from the passive solar design, but the solar thermal system (top of roof) supplies both domestic hot water and a secondary...

  2. DOE Zero Energy Ready Home Case Study: TC Legend Homes, Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This house incorporates slab-on-grade, EPS roof, and radiant heating with an air-to-water heat pump that also preheats domestic hot water. Without counting in the solar panels, the home earns a home energy rating system (HERS) score of 37, with projected utility bills of about $740 a year. With the 6.4-kW photovoltaic power system installed on the roof, the home’s HERS scores drops to -1 and utility bills for the all-electric home drop to zero. This home was awarded a 2013 Housing Innovation Award in the affordable builder category.

  3. Home Energy Assessments

    Broader source: Energy.gov [DOE]

    A home energy assessment, also known as a home energy audit, is the first step to assess how much energy your home consumes and to evaluate what measures you can take to make your home more energy...

  4. Heating & Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Homes » Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. <a href="/energysaver/principles-heating-and-cooling">Learn more about the principles of heating and cooling</a>. Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for

  5. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 11.2 cents from a week ago to 2.91 per gallon. That's down 1.33 from a year ago, based on the ...

  6. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to 4.04 per gallon. That's up 4.9 cents from a year ago, based on the ...

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.26 per gallon. That's down 89 cents from a year ago, based on the ...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    6, 2014 Residential heating oil price decreases The average retail price for home heating oil rose 1.6 cents from a week ago to 4.24 per gallon. That's up 8.9 cents from a year ...

  9. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to 3.36 per gallon. That's down 52.5 cents from a year ago, based on the ...

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to 2.33 per gallon. That's down 89 cents from a year ago, based on the ...

  11. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.8 cents from a week ago to 3.33 per gallon. That's down 59.1 cents from a year ago, based on the ...

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to 2.10 per gallon. That's down 1.11 from a year ...

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Residential heating oil price decreases The average retail price for home heating oil fell 1.6 cents from a week ago to 3.42 per gallon. That's down 39.5 cents from a year ago, ...

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to 2.82 per gallon. That's down 1.36 from a year ago, based on the ...

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to 2.06 per gallon. That's down 75 cents from a year ago, based on the ...

  16. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices decrease The average retail price for home heating oil fell 1.8 cents from a week ago to 4.00 per gallon. That's down 2-tenths of a cent ...

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to 2.11 per gallon. That's down 72 cents from a year ago, based on the ...

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to 2.36 per gallon. That's down 97 cents from a year ago, based on the ...

  19. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based ...

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to 2.09 per gallon. That's down 82 cents from a year ago, based on the ...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to 2.08 per gallon. That's down 72 cents from a year ago, based on the ...

  2. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 3.3 cents from a week ago to 3.38 per gallon. That's down 43.9 cents from a year ...

  3. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2015 Residential heating oil price increases The average retail price for home heating oil rose 11.7 cents from a week ago to 3.03 per gallon. That's down 1.20 from a year ...

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to 2.38 per gallon. That's down 99 cents from a year ago, based on the ...

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to 2.21 per gallon. That's down 87 cents from a year ago, based on the ...

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to 2.10 per gallon. That's down 94 cents from a year ago, ...

  7. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to 3.45 per gallon. That's down 36.6 cents from a year ...

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 2.80 per gallon. That's down 1.44 from a year ago, based on the ...

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 17.7 cents from a week ago to 3.03 per gallon. That's down 1.09 from a year ago, based on the ...

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to 2.18 per gallon. That's down 79 cents from a year ago, based ...

  11. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 3.08 per gallon. That's down 90.3 cents from a year ago, based on the ...

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 3.43 per gallon. That's down 39 cents from a year ...

  13. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to 4.02 per gallon. That's up 1.7 cents from a year ago, based on the ...

  14. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to 4.18 per gallon. That's up 13 cents from a year ago, based on the ...

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 3.22 per gallon. That's down 73.6 cents from a year ago, based on the ...

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to 3.14 per gallon. That's down 81.1 cents from a year ...

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to 2.18 per gallon. That's down 87 cents from a year ago, based on the ...

  18. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 10.3 cents from a week ago to 3.29 per gallon. That's down 93.7 cents from a year ago, based on the ...

  19. Residential heating oil price increases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2015 Residential heating oil price increases The average retail price for home heating oil rose 14.7 cents from a week ago to 3.19 per gallon. That's down 1.06 from a year ...

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to 2.09 per gallon. That's down 1.20 from a year ...

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to 2.09 per gallon. That's down 1.09 from a year ...

  2. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 6.5 cents from a week ago to 4.24 per gallon. That's up 14.9 cents from a year ...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to 2.16 per gallon. That's down 75 cents from a year ago, based on the ...

  4. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to 4.06 per gallon. That's up 4.1 cents from a year ...

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 8 cents from a week ago to 3.21 per gallon. That's down 98.7 cents from a year ago, based on the ...

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to 2.12 per gallon. That's down 91 cents from a year ago, ...

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to 2.13 per gallon. That's down 80 cents from a year ago, based ...

  8. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  9. DOE Zero Energy Ready Home Case Study: Amerisips Homes, Charleston, SC |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Amerisips Homes, Charleston, SC DOE Zero Energy Ready Home Case Study: Amerisips Homes, Charleston, SC Case study of a DOE Zero Energy Ready home on Johns Island in Charleston, SC, that scored HERS 30 without PV, or HERS 1 with 6-kW of PV. This custom 2-story, 2,085 ft2, home is constructed of structural insulated panels, with 6.5-in. SIPs in the walls and 8.25-in. SIPs in the floor and roof. The HVAC system includes an air-to-water heat pump with fan coil that provides

  10. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

  11. Home Energy Score

    SciTech Connect (OSTI)

    2011-12-16

    The Home Energy Score allows a homeowner to compare her or his home's energy consumption to that of other homes, similar to a vehicle's mile-per-gallon rating. A home energy assessor will collect energy information during a brief home walk-through and then score that home on a scale of 1 to 10.

  12. TRACC Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    TRACC Home About TRACC Transportation Research Computing Resources Training & Workshops image image image image image image image image Previous Next Welcome To The Transportation Research And Analysis Computing Center (TRACC) Chartered in 1946 as the nation's first national laboratory, Argonne enters the 21st century focused on solving the major scientific and engineering challenges of our time: sustainable energy, a clean environment, economic competitiveness and national security. Argonne

  13. Heating Oil Reserve History

    Broader source: Energy.gov [DOE]

    Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed then-Energy Secretary Bill Richardson to establish a two million barrel home...

  14. DOE Tour of Zero: Cobbler Lane by Addison Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The home's fresh air system utilizes an outdoor air intake that is ducted to the return side of the heat pump air handler through a high-capture filter. Even when the heat pump is ...

  15. Home Energy Checklist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home Energy Checklist Home Energy Checklist This checklist outlines actions that conserve energy within homes. Today Checkbox Turn down the temperature of your water heater to the warm setting (120°F). You'll save energy and avoid scalding your hands. Checkbox Check if your water heater has an insulating blanket. An insulating blanket will pay for itself in one year or less! Checkbox Heating can account for almost half of the average family's winter energy bill. Make sure your furnace or heat

  16. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  17. New Whole-House Solutions Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida

    SciTech Connect (OSTI)

    none,

    2012-10-01

    PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15 with PV or HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV.

  18. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 2.84 per gallon, down 5.4 cents from last week

  19. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case ...

  20. Secretary Chu Announces More Stringent Appliance Standards for Home Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters and Other Heating Products | Department of Energy Stringent Appliance Standards for Home Water Heaters and Other Heating Products Secretary Chu Announces More Stringent Appliance Standards for Home Water Heaters and Other Heating Products April 1, 2010 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu announced today that the Department has finalized higher energy efficiency standards for a key group of heating appliances that will together save consumers

  1. Low Temperature Heat Release Behavior of Conventional and Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a ...

  2. FUEL ROD CLUSTERS

    DOE Patents [OSTI]

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  3. Combined Heat And Power Installation Market Analysis | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Analysis Home There are currently no posts in this category. Syndicate...

  4. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  5. NREL Evaluates Performance of Heat Pump Water Heaters (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    NREL evaluates energy savings potential of heat pump water heaters in homes throughout all U.S. climate zones.

  6. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  7. Heat and Cool | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water...

  8. Report on Solar Water Heating Quantitative Survey

    SciTech Connect (OSTI)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  9. Heat and Cool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Heat and Cool Heat and Cool Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water heating accounts for 18%, making these some of the largest energy expenses in any home. Space Heating and Cooling A variety of technologies

  10. Masco Home Services/WellHome | Open Energy Information

    Open Energy Info (EERE)

    WellHome Jump to: navigation, search Name: Masco Home ServicesWellHome Place: Taylor, MI Website: www.mascohomeserviceswellhome. References: Masco Home Services...

  11. Building America Case Study: Indirect Solar Water Heating Systems...

    Energy Savers [EERE]

    Indirect Solar Water Heating Systems in Single-Family Homes Greenfield, Massachusetts ... Building Component: Solar water heating Application: Single-family Years Tested: 2010-2013 ...

  12. TVA Partner Utilities- Energy Right Heat Pump Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat pumps in homes and small businesses. Installation,...

  13. Principles of Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the processes that help keep your body cool is important in understanding cooling strategies for your home. Principles of Heat Transfer Heat is transferred to and ...

  14. Modeling heat conduction and radiation transport with the diffusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heat conduction and radiation transport with the diffusion equation in NIF ALE-AMR This ... Home Search Collections Journals About Contact us My IOPscience Modeling Heat Conduction ...

  15. Guide to Geothermal Heat Pumps

    SciTech Connect (OSTI)

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  16. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silica Aerogel (Technical Report) | SciTech Connect Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel Citation Details In-Document Search Title: Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents,

  17. Buildings and Homes Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency » Buildings and Homes Success Stories Buildings and Homes Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in technology cost reduction, highly efficient methods and materials, construction planning, and practices to save energy in homes, have huge energy-saving potential. Explore EERE's buildings and homes success stories below. May 4, 2016 Credit: Oak Ridge National Laboratory. EERE Success Story-Energy-Efficient Heat Pump for

  18. Home Improvement Catalyst (HI-Cat) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement Catalyst (HI-Cat) Home Improvement Catalyst (HI-Cat) The Home Improvement Catalyst (HI-Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The home improvement market represents $150 billion in annual investment, with over 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation and other measures.

  19. DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Lancaster, CA DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA Case study of a DOE Zero Energy Ready home in Lancaster, CA, that achieved a HERS 43 without PV 43 or HERS 0 with 6.9-kW PV. The two-story, 2,537ft2 home serves as a model for the production builder, showcasing high-tech features including an electric car charging station, a compressed natural gas (CNG) car fueling station, a greywater recycling system that filters shower, sink, and clothes washer water for

  20. Building America Whole-House Solutions for New Homes: Tommy Williams Homes, Gainesville, Florida

    Broader source: Energy.gov [DOE]

    Case study of Tommy Williams Homes who partnered with Building America to build HERS-58 homes with foam gaskets at sill and top plates, fresh air intakes, SEER 16/HSPF 9.5 heat pumps, and tight air sealing of 2.7 ACH50.

  1. Buildng America Whole-House Solutions for New Homes: William Ryan Homes, Tampa, Florida

    Broader source: Energy.gov [DOE]

    Case study of William Ryan Homes, who worked with Building America research partner CARB to design HERS-65 homes with energy-efficient heat pumps and programmable thermostats with humidity controls, foam-filled concrete block walls, draining house wrap, and airsealed kneewalls.

  2. DOE Zero Energy Ready Home Case Study: M Street Homes — Smartlux on Greenpark, Houston, TX

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This builder certified its first DOE Zero Energy Ready Home and won a Production Builder honor in the 2014 Housing Innovation Awards. It is the first home in the world to use a tri-generation system to supply electricity, heating, and cooling on site.

  3. Home Energy Score Interactive Graphic

    Broader source: Energy.gov [DOE]

    To see a complete Home Energy Score, including Home Facts and Recommendations, view the Home Energy Score Sample Report.

  4. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  5. 5 Cool Things about Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Cool Things about Solar Heating 5 Cool Things about Solar Heating March 26, 2013 - 3:08pm Addthis Solar heating systems can be a cost-effective way to heat your home. | Photo...

  6. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  7. Home Improvement Catalyst: Bringing Energy Efficiency to More Homes Across America

    Broader source: Energy.gov [DOE]

    The home improvement market represents $150 billion in annual investment, with more than 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation, and other measures.

  8. Home Improvement Catalyst: Focused on Energy Efficiency to More Homes Across America

    Broader source: Energy.gov [DOE]

    The home improvement market represents $150 billion in annual investment, with more than 14 million projects that involve replacement or upgrades of heating and cooling systems, windows, siding and roofs, insulation, and other measures.

  9. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  10. DOE Zero Energy Ready Home Case Study, Nexus EnergyHomes, Frederick...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This urban infill community features a package of SIP walls, geothermal heat pumps, solar PV, and a proprietary energy management system. PDF icon Nexus EnergyHomes - Frederick, MD ...

  11. DOE Zero Energy Ready Home Case Study: TC Legend, Seattle, WA, Custom Home

    Broader source: Energy.gov [DOE]

    Case study of a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 37 without PV, HERS -1 with PV. This 1,915-square-foot custom home has SIP walls and roof, R-20 XPS under the slab, triple-pane windows, an air to water heat pump for radiant heat, and balanced ventilation with timer-controlled fans to bring in and exhaust air.

  12. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  13. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  14. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  15. Final Report: Weatherization and Energy Conservation Education and Home Energy and Safety Review in the Aleutian Islands

    SciTech Connect (OSTI)

    Bruce Wright

    2011-08-30

    Aleutian/Pribilof Islands Association, Inc. (APIA) hired three part-time local community members that desire to be Energy Technicians. The energy technicians were trained in methods of weatherization assistance, energy conservation and home safety. They developed a listing of homes in the region that required weatherization, and conducted on-site weatherization and energy conservation education and a home energy and safety reviews in the communities of Akutan, False Pass, King Cove and Nelson Lagoon. Priority was given to these smaller communities as they tend to have the residences most in need of weatherization and energy conservation measures. Local residents were trained to provide all three aspects of the project: weatherization, energy conservation education and a home energy and safety review. If the total energy saved by installing these products is a 25% reduction (electrical and heating, both of which are usually produced by combustion of diesel fuel), and the average Alaska home produces 32,000 pounds of CO2 each year, so we have saved about: 66 homes x 16 tons of CO2 each year x .25 = 264 tons of CO2 each year.

  16. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  17. Check Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Transfer Surfaces Check Heat Transfer Surfaces This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems. PROCESS HEAT TIP SHEET #4 PDF icon Check Heat Transfer Surfaces (September 2005) More Documents & Publications Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition Check Burner Air to Fuel Ratios Process Heating Assessment and Survey Tool (PHAST) Introduction

  18. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  19. Home Energy Solutions for Existing Homes

    Broader source: Energy.gov [DOE]

    The first step to participate in this program is to evaluate a home's energy use by using Energy Trust's online Home Energy Profile Tool or by calling 1-866-368-7878. Homeowners may also opt for a...

  20. Global Home Filesystem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Home Global Home Filesystem Overview Global home directories (or "global homes") provide a convenient means for a user to have access to dotfiles, source files, input files, configuration files, etc., regardless of the platform the user is logged in to. Quotas, Performance, and Usage Default global home quotas are 40 GB and 1,000,000 inodes. Quota increases in global homes are approved only in extremely unusual circumstances; users are encouraged to use the various scratch,

  1. Transitioning to High Performance Homes: Successes and Lessons Learned From Seven Builders

    SciTech Connect (OSTI)

    Widder, Sarah H.; Kora, Angela R.; Baechler, Michael C.; Fonorow, Ken; Jenkins, David W.; Stroer, Dennis

    2013-03-01

    As homebuyers are becoming increasingly concerned about rising energy costs and the impact of fossil fuels as a major source of greenhouse gases, the returning new home market is beginning to demand energy-efficient and comfortable high-performance homes. In response to this, some innovative builders are gaining market share because they are able to market their homes’ comfort, better indoor air quality, and aesthetics, in addition to energy efficiency. The success and marketability of these high-performance homes is creating a builder demand for house plans and information about how to design, build, and sell their own low-energy homes. To help make these and other builders more successful in the transition to high-performance construction techniques, Pacific Northwest National Laboratory (PNNL) partnered with seven interested builders in the hot humid and mixed humid climates to provide technical and design assistance through two building science firms, Florida Home Energy and Resources Organization (FL HERO) and Calcs-Plus, and a designer that offers a line of stock plans designed specifically for energy efficiency, called Energy Smart Home Plans (ESHP). This report summarizes the findings of research on cost-effective high-performance whole-house solutions, focusing on real-world implementation and challenges and identifying effective solutions. The ensuing sections provide project background, profile each of the builders who participated in the program, and describe their houses’ construction characteristics, key challenges the builders encountered during the construction and transaction process); and present primary lessons learned to be applied to future projects. As a result of this technical assistance, 17 homes have been built featuring climate-appropriate efficient envelopes, ducts in conditioned space, and correctly sized and controlled heating, ventilation, and air-conditioning systems. In addition, most builders intend to integrate high-performance features into most or all their homes in the future. As these seven builders have demonstrated, affordable, high-performance homes are possible, but require attention to detail and flexibility in design to accommodate specific regional geographic or market-driven constraints that can increase cost. With better information regarding how energy-efficiency trade-offs or design choices affect overall home performance, builders can make informed decisions regarding home design and construction to minimize cost without sacrificing performance and energy savings.

  2. Heat Distribution Systems | Department of Energy

    Energy Savers [EERE]

    Home Heating Systems » Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That leaves

  3. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Cool » Home Heating Systems » Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems.

  4. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George; Meyers, Steven J.; Lee, Arthur

    1996-01-01

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  5. DOE Zero Energy Ready Home Case Study: TC Legend Homes — Cedarwood, Bellingham, WA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    This house was the Grand Winner in the Affordable Builder category of the 2014 Housing Innovation Awards, and has 6-inch SIP walls, a 10-inch structural insulated panel roof, and insulating concrete forms foundation walls with R-20 high-density rigid EPS foam under the slab.A single ductless heat pump heats and cools the home, which also gets passive solar heating from south-facing triple-pane windows that heat a concrete slab floor plus a connected greenhouse.

  6. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are suitable for powering an internal combustion engine or motor or are used exclusively for heating, industrial, or farm purposes. Special fuels include biodiesel, blended biodiesel, and natural gas products, including liquefied and compressed natural gas. (Reference Indiana Code 6-6-2.5-1 and 6-6-2.5-22

  8. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation Heat Exchanger, Oak Ridge, Tennessee | Department of Energy Foundation Heat Exchanger, Oak Ridge, Tennessee Building America Technology Solutions for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic

  9. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNLs research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $1519,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.

  10. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  11. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters A diagram of a heat pump water heater. A diagram of a heat pump water heater. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore,

  12. DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Zero Energy Ready Home Case Study: Mandalay Homes, Phoenix, AZ, Affordable DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott Valley, AZ DOE Zero Energy Ready Home ...

  13. Dehumidifying Heat Pipes | Department of Energy

    Energy Savers [EERE]

    claims that your thermostat can be set higher with the low humidity air, allowing a net energy savings. Related Information Home Cooling Systems Air Conditioning Heat Pump Systems...

  14. Marshfield Utilities - Heat Pump Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    State Wisconsin Program Type Rebate Program Rebate Amount Ground Source Heat Pump: 150 Home Energy Audit: Free Summary Marshfield Utilities offers cash-back rewards for...

  15. Cheaper catalyst may lower fuel costs for hydrogen-powered cars...

    National Nuclear Security Administration (NNSA)

    Cheaper catalyst may lower fuel costs for hydrogen-powered cars | National Nuclear ... Home NNSA Blog Cheaper catalyst may lower fuel costs for ... Cheaper catalyst may ...

  16. Manufactured Homes Simulated Thermal Analysis and Cost Effectiveness Report.

    SciTech Connect (OSTI)

    Baylon, David

    1990-05-17

    In 1988 and 1989, 150 manufactured homes were built to comply with Super Good Cents (SGC) specifications adapted from the existing specifications for site-built homes under the Residential Construction Demonstration Project (RCDP). Engineering calculations and computer simulations were used to estimate the effects of the SGC specifications on the thermal performance of the homes. These results were compared with consumer costs to establish the cost-effectiveness of individual measures. Heat loss U-factors for windows, walls, floors and ceilings were established using the standard ASHRAE parallel heat flow method. Adjustments resulted in higher U-factors for ceilings and floors than assumed at the time the homes were approved as meeting the SGC specifications. Except for those homes which included heat pumps, most of the homes did not meet the SGC compliance standards. Nonetheless these homes achieved substantial reductions in overall heat loss rate (UA) compared to UAs estimated for the same homes using the standard insulation packages provided by the manufacturers in the absence of the RCDP program. Homes with conventional electric furnaces showed a 35% reduction in total UA while homes with heat pumps had a 25% reduction. A regression analysis showed no significant relationship between climate zone, manufacturer and UA. A modified version of SUNDAY building simulation program which simulates duct and heat pump performance was used to model the thermal performance of each RCDP home as built and the same home as it would have been built without SGC specifications (base case). Standard assumptions were used for thermostat setpoint, thermal mass, internal gains and infiltration rates. 11 refs., 5 figs., 5 tabs.

  17. Webinar: ENERGY STAR Hot Water Systems for High Performance Homes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: ENERGY STAR Hot Water Systems for High Performance Homes Webinar: ENERGY STAR Hot Water Systems for High Performance Homes This presentation is from the Building America research team BA-PIRC webinar on September 30, 2011 providing informationprovide information about how to achieve energy savings from solar water heating, electric dedicated heat pump water heating, and gas tankless systems. PDF icon es_hot_water_systems.pdf More Documents & Publications

  18. Building America Technology Solutions for New and Existing Homes:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculating Design Heating Loads for Superinsulated Buildings | Department of Energy Calculating Design Heating Loads for Superinsulated Buildings Building America Technology Solutions for New and Existing Homes: Calculating Design Heating Loads for Superinsulated Buildings During the winter of 2013-2014, the Consortium for Advanced Residential Buildings monitored the energy use of three homes in the EcoVillage community in climate zone 6 to evaluate the accuracy of two different mechanical

  19. List of Geothermal Heat Pumps Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Landfill Gas Methanol Passive Solar Space Heat Photovoltaics Solar Space Heat...

  20. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.